PHYSICAL REVIEW B VOLUME 61, NUMBER 10 1 MARCH 2000-II

Calculation of Neel temperature for S=1/2 Heisenberg quasi-one-dimensional antiferromagnets
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Isotropic S=1/2 quasi-one-dimensional antiferromagnets are considered within the bosonization method.
The 1£, corrections to the interchain mean-field thedwherez, is the number of nearest neighbors in
transverse to chain directionare obtained for the ground-state sublattice magnetiz&jand Neel tempera-
ture Ty . The corrections td’y make up about 25% of mean-field value, while thosggcare small enough
(especially in the three-dimensional cas&he fluctuation corrections obtained improve considerably the
agreement with the experimental data for magnetic-chain compounds;K@&WcuO;, and CaCuO;.

[. INTRODUCTION tween integer and half-integer spins and predicts in both the
cases a finite critical valuel,~Je™ ™, so that afJ’|<J.
Systems containing chains of magnetic atoms are investine quantityS, vanishes and

gated for a long time from both theoretical and experimental

point of view. There exist many real compounds which are = 1y FEL

“almost” one-dimensional1D), i.e., have small interchain SoIn| 3"/ 3¢], TNOCSO\/m @

coupling. Here belong, e.g., KCyF S,CuO; (spin S for |J’| greater but not too close ti .

=1/2), CsNiC} (S=1), CsVCL (S=3/2) etc. There are a  This  contradiction ~was resolved  within  the

number of approaches which give a possibility to performrenormalization-group(RG) approach®2 which showed

calculations for purely 1D magne(Bethe ansatz, exact nu- that for inverse-length scaleg>J./J the standard two-

merical diagonalization, different versions of numericaldimensional NloM Sca”ng equations are app”cab'e, and the

renormalization group, quantum Monte-Carlo method)etc. gpin field scale factoz , indeed satisfieZ ; Y%xIn u. At the

At the same time, consideration of multichain problem withS me time. for half-in#eger spins ﬁI<J’7J one hasz Y2

the use of these methods meets difficulties, so that '[heoreticgjal 12 This mean’ that for both integcer and half—irllLteger

approaches are of interest, which can adequately describe tg ins and|J’|>J’ we have the spin-wave behavié?)
C )

situation in quasi-1D magnets in the presence of interlayer’ . . . e
coupling andfor anisotropy. while for half-integer spins anfl’|<J; Eq. (1) holds.(We

As for purely 1D antiferromagnets, there is well-known suppose here that for half-integer spins the renormalized cou-

theoretical result by Haldahevho mapped the spin-chain pling constant satisfieg, <Qc whe_re 9e IS th_e critical 3b
problem to nonlinear-sigma model (M) and showed that coupling con.stant.. Apparently, this inequality holds in the
the cases of integer and half-integer spins differ qualitatively??S€nce of dimerization, see Refs. 6 and 7.

(for a review see, e.g., Ref)2For half-integer spins, the  Inthe ex,tr_emely quantum case=1/2 we havelc~J, so
so-called topologicab-term in the effective action occurs, that|J’|<J¢ in a broad region ofJ’|. Therefore, one can
which leads to unusual magnetic behavior of such chains. Agonclude that interchain mean-field theory of Refs. 35 gives
follows from the Bethe ansatz solution 6 1/2 (the same @ qualitatively correct description &=1/2 quasi-1D mag-
situation holds for any half-integer spin vajuground state Nets. At the same time, this theory does not take into account
in this case already possesses quasi-long-range order. THEerchain fluctuations. In particular, the calculated value of
excitation spectrum turns out to be gapless and spin correld€ Neel temperature is not sensitive to space dimensionality
tors have a power-law behavior, but staggered magnetizatio®f the system, although in tiie=1+1 case(both the dimen-

is zero(the situation is reminiscent of théY model below ~ Sions are supposed to be spatial, but second one corresponds
the Kosterlitz-Thouless poirify). It is natural to suppose O the direction, transverse to the chaive should havely

that in such a state the true long-range order is induced by af 0; for thed=1+2 case the values i turn out to be too
arbitrarily small interchain coupling’ and/or magnetic an- Nigh in comparison with experimental data. '

isotropy. For the isotropic Heisenberg model, this problem TO obtain the corrections to mterchaln mean-field theory,
was investigated within different theoretical methods. TheWe use the ¥, expansion £, is the number of nearest
interchain mean-field theoty® predicts for the ground-state Neighbors in directions transverse to the chaifihis ap-

i h is similar to the expansion inzl(or inverse interac-
t red magnetizati nd Neel temperaturg, the re-  Proach 1 . X
zualltgsge ed magnetizatic and Neel temperaturgy the re tion radius 1R), which has been used to improve the stan-

dard mean-field theory of Heisenberg magnets many years
_ ago in Refs. 9 and 10. This approach is also equivalent to the
Sox V|13, Tnex|Jd'| (1)  spin-fluctuation approach in the theory of itinerant magnets
by Moriyal!
and therefore indeed yields occurrence of long-range order at The plan of paper is as follows. In Sec. Il we consider the
arbitrarily small|J’|. The behavior(1) contradicts to the bosonization of the system of interacting Heisenberg chains.
standard spin-wave theory, which does not distinguish beln Sec. Ill we calculate fluctuation corrections to the inter-
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chain mean-field theory. In Sec. Il we discuss the results an@which arises after applying the Jordan-Wigner transforma-

compare them with experimental data on magnetic chaiiion); this term is marginal and produces logarithmic correc-

compounds. In Appendix A, the perturbation theorylinis  tions to thermodynamic quantitié$?~° Calculations(see

considered and the first-orderzl/correction to the mean- Refs. 4 and 14give g,/(27)=0.25. The second line of Eq.

field value of Neel temperature are calculated. In AppendiX7) describes the interaction between the chains. Note that

B, we demonstrate how the same results can be obtaineshly relevant terms are included in this summand since the

more elegantly in spirit of the spin-fluctuation approach bymarginal terms give smaller contributideee Ref. 18

Moriya. Finally, in Appendix C fluctuation corrections to the

ground-state staggered magnetization are derived. IIl. MEAN-FIELD APPROXIMATION FOR BOSONIZED
HAMILTONIAN AND 1 /z; CORRECTIONS

Il. THE MODEL AND ITS BOSONIZATION . L . .
The simplest way of treating interchain exchange interac-

We consider theéS=1/2 isotropic Heisenberg model of tions is the mean-field approximatiéDecoupling the inter-

quasi-1D antiferromagnet action term
1 cos B¢i)coY Bpi+ s )—2(COL Boi+ 5 )OI Bei) (8)
Hz\]z Sh,iSI1+l,i+§‘J’ 2 Sn,iSn,jy (3) i i+6, i+, i
i nij) we obtain

wheren numerates sites along the chains @jjdare indices

of the chainsJ>0 andJ’ are intra- and interchain exchange HMFZE > f dX[Hi2+(07x€0i)2]+guE f dx cos 28¢,
parameters, respectively. We consider only the case 29 [

[J']<J.
. . . N
Each chain can be “bosonized” with the use of the stan- —"h f dxco Y, 9
dard relationgsee, e.g., Ref. 12 ™ MFEi “Bei) ©
$1i=3i00+(=1)"mi(x), (4) ~Where

where huer=12, 3" \{coq Bo;)) m, (10
B z, is the number of nearest neighbors in the transvéxse

Ji(x)= E&Xgoi(x), chain directions ¢, =4 for simple cubic lattice This ap-

proximation gives a possibility to reduce the multichain
5 problem to a single-chain one in an effective staggered mag-
netic field. Introducing the function

A
I (x) = —ex *iB6;(x)]cosBe;(X)

A
B(h;T)=—(co MNhs 11
are the cyclic vector current components and (hiT) 7T< LB A

which should be calculated in the presence of the last term in

A : . .
n(x)= ;COSﬂ(Pi(X)' Eqg. (9), we obtain the self-consistent equation for the sublat-
tice magnetizatiors in the mean-field approximation in the
®  form
. A : — —
i (X)=—exd £186(x)] Swr=B(z,3'Sug;T). (12)

Despite the Hamiltonian,z, EQ. (9), has a one-chain
form, calculation of the functioB(h;T) (which is an analog
of the Brillouin function in the usual mean-field theory of
Heisenberg magnetsat arbitrary T is a very complicated
v task. Scaling arguments sugg&h; T) =h3f (h?¥T) with
H= 5 E f dX[Hi2+(’9x€Di)2]+guz j dxcos 28¢; some scaling functiofi(x). Forg,=0 (in this case, we have

' ' a standard sine Gordon, or, equivalently, massive Thirring
mode) B(h;T) was calculated by Bethe ansatz in Ref. 17.

are their “staggered” analogs. Herg,is the scale renormal-
ization constantgp;(x) is the boson operato3=+/27r.
Then we obtain the bosonized Hamiltonian in the f&tm

J'\? . \ _

- dxco o , However, in two following cases the calculation can be per-
2m? i% [cos Bei)cod Bers) formed analytically:i) T=0 where we hav®

+cosB(6i.s5 —0i)], (7) B(h;0)=0.677h/v)YJ 1+ (g /2m)In(v/A)]¥2, (13)

where v =J/2, TI; is the momentum that is canonically Where

conjugated tap; , and 6; satisfiesd, 0,= —1II; . The first line

in Eq. (7) corresponds to a system of separate chains and has

the form of a standard sine-Gordon Hamiltonian. First termgnd (ii) h—0 where
in Eq. (7) describes a free-boson system, and the second one

arises because of Umklapp scattering of original fermions B(h,T)=hyxo(T). (14

A=2.085 123
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Here, xo(T) is the staggered susceptibility of the system in  Now, we can calculate the spin-fluctuation corrections to

the absence df,*6 interchain mean-field theory owing to collective modes.
_ Similar to the case of the simplest mean-field approximation
Yo [AJ\ ~ T1/4) in the theory of Heisenberg magnét¥ these corrections
XO(T):?L(T)’ XO:WZZ-BB‘L (15 can be obtained within the Zkxpansion. Since we treat

only transverse neighbors within the mean-field approach,
where we have p|Cked out the fac&é for the sake of con- One has to Speak about thelllexpansion. To construct this
venience and expansion, we consider the perturbation theory in
J'Imaxbye,T)~1/z, (see Appendix A which is an analog
of expansion inJ/maxhye,T)~1/z for three-dimensional
In—+5Inin—+0(1) (16 Heisenberg magnet&. From this viewpoint, the above-
discussed mean-field approximation is just the zeroth-order
is the spin-field renormalization factor that arises because af, 1/z, , so that the fluctuation corrections to this approxima-
the presence of the marginal operator; the single-chain nuion can be obtained in a regular way. The leadifirgt order
merical calculation? yield C=0.15,A=5.8. Thus, one can in 1/z,) corrections come from the diagrams which include
see that the above-mentioned scaling functi¢x) satisfies gne RPA-interaction line.
f(x)~x at x—0 andf(»)=const. The result14) gives a The details of calculations are discussed in Appendix A.
possibility to calculate the value ofy in the mean-field For the Neel temperature we obtain to first order in, 1/
theory since forT—Ty we just havehy—0. Thus, we
obtain the equatich Ta=kJ'2, YoL(A/Ty), (22)

1/2
L(AJIT)=C

TN =2.3"XoL (AITYF). (17 where
We have included in Eq(16) a double-logarithmic term, 2 1 1 1 -1
which was not taken into account in Ref. 4 and modifiesy— 1_77T drf dV(r,7)|=F(r,7)+=G(r,7) ,
somewhat numerical resul(see below. As discussed in the 2x9’—= Jo 8 2

Introduction, the mean-field approximati¢h?7) is not quite
satisfactory to describe experimental data. In particular, the (22
values of Neel temperatures are considerably overestimated. = d
The reason of this is that the mean-field approximatiorf/(r,T):f a9,
does not take into account the collective excitations, which —o 27T
substantially contribute to the thermodynamic properties.

Such excitations can be considered within the random-phase xS COsQ + €cosqy
approximation (RPA). The RPA spin susceptibilities are N Gy 2x0— (COSQy+ COSTy) Xo( Uz 27min)
given by*° Y
Xexpig,r—2minT)
e
+— Xo (q21w) . i
X (0,w)= =7 — , (188  andF(r,7), G(r,7) are the four-point averages determined
(Ax.Qy)xo (07, @) in Appendix A. The resul(21) differs from the mean-field
2 result(17) by a factor ofk, which depends only on the lattice
2 X0 (dz,®) structure in the directions perpendicular to chains. Numerical
X0z, 0) (18b)

_3 z ' calculation ford=1+2 case(simple cubic latticg yields k
1 (qx,qy)xoz(qz,w) =0.70. Thus, with account of the functidn(A/Ty), the
where, for the square lattice in the direction transverse tqowering of Ty due to interchain fluctuation effects is about
chains, 25% of its mean-field value. Fat=1+ 2 the integral in Eq.

(22) is divergent and we havéy=0.

The same resul21) can also be derived in a more elegant
vo(Q, ) being the dynamical staggered susceptibility for theway within the spin-fluctuation approach by Morlyasee
model (9) and we have taken into account only staggereddppendix B.
components of the susceptibility. Agaipy(q, ) is given by Corrections to the ground-state staggered magnetization
simple analytical expressions only in two cas&s:0 (for ~ are calculated in Appendix C. We have
the results see Ref. 5 and also Appendjx&@idh— 0 where _

J'(0x,qy) =2J"(cosq,+ cosqy), (19

we havé®*for both the susceptibilities So=(0.677-0.311)hy?, (23
1 (A~ where the last term in the brackets represents the ddr-

(20 0.038 d=1+2
~ 1 T(14+ik, )T (14+ik-) v=k 1=10193 d=1+1. (24)

XO(k! V) =7 : . » RNt .
4 T'(3/4+ik )T (3/4+ik_ 4 . N
( ke )T( Ik-) T Note that we do no take into account the logarithmic correc-

As it should be,x(0,0)= xo(T). tions owing to presence of the marginal operator, since there
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in the three-dimensional case they can be neglected.

APPENDIX A: PERTURBATION THEORY IN J’

IV. COMPARISON WITH THE EXPERIMENTAL DATA AND THE DIAGRAM TECHNIQUE
AND CONCLUSION FOR SPIN OPERATORS

In this appendix, we consider perturbation theory irfor

The results obtained enable one to perform quantitati
N ! P quant IVthe field theory with the Lagrangian

comparison with experimental data on magnetic chain sys-
tems. Consider first the compound KGukith S=1/2. Ac-
cording to Ref. 20, we havé=406 K, S;/S=0.25. As dis- v
cussed by SchulZ,this value of S, corresponds tal’/J L=5 Z fdzx(&soi)2+gu2i fdeCOS 2B e
=0.047, so thatl’=19.1 K. The simplest mean field ap-

proximation (17) yields Ty=47 K. From (21) we obtain

Tn=37.7 .K, which is somewhat lower in comparison with _ lhz j d%x cos Be;)

the experimental result of Ref. 20y=39 K. Thus, our ap- T

proximation slightly overestimates the effects of fluctuations,
but improves reasonably the mean-field approximation. Con-

2
tribution of the double-logarithmic term in E416) makes I 2 f dzx[cos(,8<p,)coiﬂgo,+5 )
up about 5% and improves the agreement with the experi- 0o
mental data.
AnotherS=1/2 chain compound that is widely discussed +c0sB(6;4 5 — 6)], (A1)

in recent publications is $€uO;, which has the following
parameteré!?? J=2600 K, Ty=5 K. Direct experimental

?;llts;ﬁj ré] o?':'e ?/\?esi)nt;ati)rlit] ,u ST%E il)_r?]ne?]trﬁeeﬁg\elgr;}ix which corresponds to the Hamiltoni&n), the external stag-
N gered magnetic fielth being introduced. In Eq.7) we have
Eq. (23) So/S=0.042, which is in agreement with the ex- ysed the complex coordinate=x+iv . Further in this ap-
perimental data$0/S<O 05). pendix we use the system of units where 1. Consider the
For CaCuO; the experimental parameters have following calculation of staggered magnetization
values?t?25=1/2, J=2600 K andTy= 11 K. From Eq.(21)

we find J’=4.3 K andS,/S=0.062. Taking into account

above results for SCuO; we find that the latter value is §:x(cog(,3¢i)>/wl

again in excellent agreement with the experimental ata,

which give Sy(CaCuG;)/Sy(SrLCu0;)=1.5+0.1. Thus,

the result(21) is sufficient to describe quantitatively real The perturbation theory id’ is constructed in a standard

quasi-1D magnetic systems. way (see, e.g., Ref. 23To obtain the series id’ we write
In the isotropic quasi-1D magnets under considerationfown the expression in the path integral formalism

the fluctuation corrections modify only numerical factor in

the expression fofy. One can expect, however, that in the

anisotropic case the form of functional dependeiigél’)

will be also modified. The influence of anisotropy on the Y

Neel temperature will be considered elsewhere. Another in- S=—

teresting question concerns quasi-1D magnets with half- 7 JD‘D exp(— L[ ¢])

integer spinsS>1/2. As discussed in the Introduction, in this

case there is a crossover from “usual” spin-wave behavior

of staggered magnetization to non-spin-wave one. The e , _
pressions forTy should be also changed because of thlxr0 zeroth order in)” (i.e., atJ’=0) we havel=L, and

j Do cos(Bei(0))exp — L[ o)

(A2)

crossover.
Finally, despite the standard spin-wave theory yields a .
qualitatively correct description of integer-spin magnetic So=B(h;T), (A3)

chains, the corresponding values of Neel temperatures are

also overestimated in comparison with experimental data.

Thus calculation of fluctuation corrections for these magnetsvhere the functiorB was introduced in Eq11). Expanding
is also of interest. Eq. (A2) in J’ we obtain
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§:

\ | DecotBe0nexs— LoD (1 Lo+ L2 )
=

f Do exp(— Lol @1) (1= Lini+ Li/2+---)

A
= —(c08Bei(0))(L= Lingt L2+ )0 comn (A4)

where we have denoted...)q=/De¢ ...expLyl¢])/ A2
JDgexp(=Lol¢]) and X(Z)Z(qbw):;f d*x(cosB¢i(0)cosBei(X))ojr
<Coiﬁ¢i(o))£innt>0,conn:<Co§:890i(0))£ innt>0 Xexp(—iqzx+iwnr),
i (A8)
R SEUD )
m=0 m! (n_ m)' Xar*(qz,w): %J dzx<eiﬁ[9i(0)79i(x)]>0
X(codBei(0) L) o(Lint o-

(A5) Xexp —iqX+tiw,T),

the two-operator irreducible average being given by
Each term in Eq(A4) can be represented by its own dia- _
gram; the diagram technique is the same as that for spin (AB)ir=(AB)~(A)B) (A9)
operator$'® (some elements of the diagram technique areand, following Ref. 11, we have introduced the correctibn
shown in Fig. J. All diagrams are classified by powers of in the denominator to satisfy the self-consistency require-
the parameteld’/maxhye,T)~1/z, . Diagrams of Fig. 2 ment. In the cas@ <Ty under consideration, this is deter-
have zeroth order in 2/ . The summation of these diagrams mined by the condition [x*(0,0)] *=0, ie. §
leads to a shift of the external magnetic field by the mean=z, J’ y; ~(0,0)— 1. Transforming Eq(A7) back to the real

field space,
= S +-.z ™ dg, +-.z ;
h—h=h+hye, hyr=2,3'S. (AB) A Z(X)=Ti2 quq Vg i)
wn - x Gy
[The same result could be obtained by eliminating the mean- XexpigX—iw,7), (A10)

field term directly in Eq(A1).] The diagrams of first order in . . L .
1/z, [see Fig. 8] have one RPA-interaction lingFig. \é\:‘chi);tasl(r;)lior the sublattice magnetizatisee the diagrams

3(b)]. These are directly connected to the RPA susceptibili-
ties (18) by L A8
S=B(h;T)+ —3f d?xd?y[ V¥ x—y)
+-,z ’ ’ 2., +—.2 2m
VTG 0) =" (ax, Ay) 137 (0, ay) 1% T Tz @), L
X(cosB¢;i(0)cosBei(X)cosBei(Y))oir+ V' (X—Y)
Thus, we obtain X(CoSB;(0)eFiMe=1AOMy . ], (A11)

where

g )= ¥ (gy,9)

- ’ +-,z ! (A7)
1+6-J (qxaqy)XO ' Z(q21w)

where
@ =<§*% = <Sizsiz>ir
= <5580,

........ =T

FIG. 1. Some elements of diagram technique for spin operators
(for a detailed description see Ref.)1The first three irreducible FIG. 2. Diagrams for staggered magnetization to zeroth order in
averages are determined by E¢&9), (A12), and(Al14). 1/z, (mean-field approximation
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FIG. 3. (a) Diagrams of first order in ] for staggered magne-

tization. (b) Equations for RPA interaction lines.

- <AB>ir<C>
(A12)

(ABC)ir=(ABC)—(A)(BC)ir —(B)(AC);;

(all averages are calculated wilh—f]). Up to this moment,
we did not use a concrete form gf. As already pointed in
the main text, the only case where the averages inA&tjl)

can be calculated analytically is the linhit=0. In this limit,
we have

<COS,B‘P|(0)COSE(P|(X cosBoi(y >0|r

:lﬁf d?z(cosBei(0)cosBe;(z)
p @i @i
X cosBei(X)cosBei(Y))ojr » (A13)

V. YU. IRKHIN AND A. A. KATANIN

PRB 61

where

(ABCD);;=(ABCD)—(AD);(BC);

_<AB>ir<CD>ir

_<BD>ir<AC>ir
(A14)

and similar expression for transverse components; the aver-

ages in the right-hand side of EGA13) are calculated a
=0. Thus we have =0, hy—0

)\2
S= ;hMFf d?z(cospB¢i(0)cosBei(2))

)\4
+ FhMFJ d?x d?y d?Z[ V¥ x—y)
a

X(cosBei(0)cosBe;i(X)cosBei(y)CoSBei(2))o;r
+V*H T (x—y)

X(cosBe;(0)cosBe;(z)ePiX~1A%MY . 7. (A15)

Note that the S(2) invariance guarantees ht=0

f d®x d%y d*Z[(cosB¢;(0)cosBei(X)cosBei(y)cosBei(2))or

—3(cosBei(0)cosBei(x)ePHM 7184 1=0.

(Al6)

Calculating atB3?= 2 the averages in the right-hand side of E415) in the presence of the marginal operagpros B¢,

(which produces logarithmic correctionse obtain

1 A 1 A ls(2)s(x—y)|
2 2 2 2 z
hMFL( Hd saca  aahet 1) [ xevaae ) o
|s(2)s(z-y)| |s(y)s(z=x)| 2 2 2
|§(Z)§(y)§(z X)s(x=y)|  [s(2s(X)s(z=y)s(x=y)| [s(@sx=y)| [sX)s(y=2)[ [s(y)s(x—2)]
1 A 1 s(X)s(z=y)s(z=x)s(y)
ik L2< ) d*>xd?y d?zv* - —— R \/ —— —1], Al17
Tgr f ey N @5yl e[ $(0s(z-y)s(z=X)s(y) A
|
where the bar states for the complex conjugate, 1 A 2 A
s(X)=sin(7#Tx)/(7T) (A18) J'erV [ F(r+ = G( )} (A19)
where
and L(A/T) is determined by Eq(16). Introducing k=X
—y instead of x and passing to the variablesrT etc. we }O:gf d?z———~2.1184 (A20)
s(2)]

obtain the result



PRB 61

and

[s(2)s(n)]
F(n= | d’yd?z = —— =
M f yae [s(r+y)s(y)s(z—y—r)s(z—y)|

[s(2)s(z—y)|
[s(2)s(y)s(z—y—ns(r)|

[s(y)s(z—y—1)| 2
R@s(ry)sz-y)sm|  [S@50)

2 2
Rtyis(y-2|  [Sys(rty-2)

1
G = d2 d2 T~ ~
=] o ol
XR{ \/s<r+y)e<z y)s(z—y-ns(y)
s(r+y)s(z—y)s(z—y—ns(y)

In Egs.(A20)-(A22) we have used

1 (A21)

(A22)

S(X)=sinh(7X). (A23)
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F=Folhye)+ 2 {IN[1+3" (9, a) xg (Az,iwp)]

Q'wn

+In[1+J"(qy vqy)Xéz(qz dwg) ]}
Differentiating with respect tt,, we readily obtain

(B3)

aXari(qzai wp)
dh

l J’ (Qquy)
2q|wn 1+J’ (qxuqy)XO (qz1|wn)

J'(qx.,qy)
1+J3'(0x,Gy) x50z, i wp)

This is just the resulfAll) of Appendix A. Representing
xo(Q;,iw,) via boson variables, differentiating mand cal-
culating again the corresponding averages we return to Eg.
(A19).

aXéZ(qz i)
dh ’

(B4)

APPENDIX C: GROUND-STATE FLUCTUATION
CORRECTIONS IN THE ABSENCE OF MARGINAL
OPERATOR

In this appendix, we consider ground-state corrections to
the mean-field value of sublattice magnetization. We use the
expression(A1l) [or, equivalently,(B4)], where atT=0

Finally, using the connectiofA6) between the mean field (Refs. 4 and b
and the staggered magnetization and collecting all correc-

tions to the denominator analogously to the usual three- 1

dimensional Heisenberg magnétsye obtain the resul21)
of the main text.

APPENDIX B: SPIN-FLUCTUATION APPROACH
TO THERMODYNAMICS OF QUASI-1D
HEISENBERG MAGNETS

The results of previous appendix can be obtained in a

much more simple way with the use of the spin-fluctuation

approach proposed by Mori¥/afor description of thermody-
namics of itinerant magnets where the Stoner théadyich

is an analog of the mean-field theory in Heisenberg magnets
turns out to be quite not satisfactory. To apply the spin-

fluctuation approach, we represent Hamilton{@8has

H=Ho+ Hint,

HOZJ; Sn,iSnJrl,i_hMF; (—-D"S . (BY)

|nt ‘]Z Snsn)n,

where AB);,=AB—(A)(B). With the use of the Hellmann-
Feynman theorem, we obtain for the free energy

f—f0<hMF)+ P fdJ [ (Qiwn) + XA Giwy)],
' (B2)

whereFy(hyg) is the free energy correspondingfy,. Us-
ing the RPA result$18) one can find

AZ
Xo = , (C1
4|3"| w?+v2g?+A?
2 212 A? 2
Xo 4)3'| 0?+v2%g?+3A2
with
A=6.1753"|, Z'/1Z=0.49,
(C3
Sp=1.0171J’|

andhye=2z,J'S, (we neglect here the contribution of mar-
ginal operator. Differentiating Eq.(B4) in hyg (with ac-
count of implicit dependence af on hy,r) we obtain after
some algebraic manipulations

S Ar?A
S0~ 47To7h’

(C4

1
=> [ (1-Ty/2)In
% A=t

q

+(3-2'Ty2Z)In——————|,
1-Z'T¢/(32)

where summation is performed over the transverse compo-

nents,I",=cosq for d=1+1 andI' ;= (cosq,+cosqy)/2 for

d=1+2. Calculating the integral numerically we obtain

the result(23) of the main text.
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