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Calculation of Neel temperature for SÄ1Õ2 Heisenberg quasi-one-dimensional antiferromagnets

V. Yu. Irkhin* and A. A. Katanin
Institute of Metal Physics, Ekaterinburg 620219, Russia

~Received 14 September 1999!

Isotropic S51/2 quasi-one-dimensional antiferromagnets are considered within the bosonization method.
The 1/z' corrections to the interchain mean-field theory~where z' is the number of nearest neighbors in

transverse to chain directions! are obtained for the ground-state sublattice magnetizationS̄0 and Neel tempera-

ture TN . The corrections toTN make up about 25% of mean-field value, while those toS̄0 are small enough
~especially in the three-dimensional case!. The fluctuation corrections obtained improve considerably the
agreement with the experimental data for magnetic-chain compounds KCuF3 , Sr2CuO3, and Ca2CuO3 .
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I. INTRODUCTION

Systems containing chains of magnetic atoms are inve
gated for a long time from both theoretical and experimen
point of view. There exist many real compounds which a
‘‘almost’’ one-dimensional~1D!, i.e., have small interchain
coupling. Here belong, e.g., KCuF3 , Sr2CuO3 ~spin S
51/2), CsNiCl3 (S51), CsVCl3 (S53/2) etc. There are a
number of approaches which give a possibility to perfo
calculations for purely 1D magnets~Bethe ansatz, exact nu
merical diagonalization, different versions of numeric
renormalization group, quantum Monte-Carlo method et!.
At the same time, consideration of multichain problem w
the use of these methods meets difficulties, so that theore
approaches are of interest, which can adequately describ
situation in quasi-1D magnets in the presence of interla
coupling and/or anisotropy.

As for purely 1D antiferromagnets, there is well-know
theoretical result by Haldane1 who mapped the spin-chai
problem to nonlinear-sigma model (NLsM) and showed that
the cases of integer and half-integer spins differ qualitativ
~for a review see, e.g., Ref. 2!. For half-integer spins, the
so-called topologicalu-term in the effective action occurs
which leads to unusual magnetic behavior of such chains
follows from the Bethe ansatz solution forS51/2 ~the same
situation holds for any half-integer spin value!, ground state
in this case already possesses quasi-long-range order.
excitation spectrum turns out to be gapless and spin corr
tors have a power-law behavior, but staggered magnetiza
is zero~the situation is reminiscent of theXY model below
the Kosterlitz-Thouless pointTKT). It is natural to suppose
that in such a state the true long-range order is induced b
arbitrarily small interchain couplingJ8 and/or magnetic an
isotropy. For the isotropic Heisenberg model, this probl
was investigated within different theoretical methods. T
interchain mean-field theory3–5 predicts for the ground-stat

staggered magnetizationS̄0 and Neel temperatureTN the re-
sults

S̄0}AuJ8u/J, TN}uJ8u ~1!

and therefore indeed yields occurrence of long-range orde
arbitrarily small uJ8u. The behavior~1! contradicts to the
standard spin-wave theory, which does not distinguish
PRB 610163-1829/2000/61~10!/6757~8!/$15.00
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tween integer and half-integer spins and predicts in both
cases a finite critical value,Jc8;Je2pS, so that atuJ8u,Jc8

the quantityS̄0 vanishes and

S̄0} lnuJ8/Jc8u, TN}S̄0AuJ8u ~2!

for uJ8u greater but not too close toJc8 .
This contradiction was resolved within th

renormalization-group~RG! approach2,6–8 which showed
that for inverse-length scalesm@Jc8/J the standard two-
dimensional NLsM scaling equations are applicable, and t
spin-field scale factorZm indeed satisfiesZm

21/2} ln m. At the
same time, for half-integer spins atm!Jc8/J one hasZm

21/2

}m1/2. This means6,7 that for both integer and half-intege
spins anduJ8u@Jc8 we have the spin-wave behavior~2!,
while for half-integer spins anduJ8u!Jc8 Eq. ~1! holds.~We
suppose here that for half-integer spins the renormalized c
pling constant satisfiesgm,gc where gc is the critical 3D
coupling constant. Apparently, this inequality holds in t
absence of dimerization, see Refs. 6 and 7.!

In the extremely quantum caseS51/2 we haveJc8;J, so
that uJ8u!Jc8 in a broad region ofuJ8u. Therefore, one can
conclude that interchain mean-field theory of Refs. 3–5 gi
a qualitatively correct description ofS51/2 quasi-1D mag-
nets. At the same time, this theory does not take into acco
interchain fluctuations. In particular, the calculated value
the Neel temperature is not sensitive to space dimension
of the system, although in thed5111 case~both the dimen-
sions are supposed to be spatial, but second one corresp
to the direction, transverse to the chain! we should haveTN
50; for thed5112 case the values ofTN turn out to be too
high in comparison with experimental data.

To obtain the corrections to interchain mean-field theo
we use the 1/z' expansion (z' is the number of neares
neighbors in directions transverse to the chain!. This ap-
proach is similar to the expansion in 1/z ~or inverse interac-
tion radius 1/R), which has been used to improve the sta
dard mean-field theory of Heisenberg magnets many ye
ago in Refs. 9 and 10. This approach is also equivalent to
spin-fluctuation approach in the theory of itinerant magn
by Moriya.11

The plan of paper is as follows. In Sec. II we consider t
bosonization of the system of interacting Heisenberg cha
In Sec. III we calculate fluctuation corrections to the inte
6757 ©2000 The American Physical Society
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chain mean-field theory. In Sec. III we discuss the results
compare them with experimental data on magnetic ch
compounds. In Appendix A, the perturbation theory inJ8 is
considered and the first-order 1/z' correction to the mean
field value of Neel temperature are calculated. In Appen
B, we demonstrate how the same results can be obta
more elegantly in spirit of the spin-fluctuation approach
Moriya. Finally, in Appendix C fluctuation corrections to th
ground-state staggered magnetization are derived.

II. THE MODEL AND ITS BOSONIZATION

We consider theS51/2 isotropic Heisenberg model o
quasi-1D antiferromagnet

H5J(
n,i

Sn,iSn11,i1
1

2
J8 (

n,^ i j &
Sn,iSn, j , ~3!

wheren numerates sites along the chains andi , j are indices
of the chains,J.0 andJ8 are intra- and interchain exchang
parameters, respectively. We consider only the c
uJ8u!J.

Each chain can be ‘‘bosonized’’ with the use of the sta
dard relations~see, e.g., Ref. 12!

Sn,i5Ji~x!1~21!nni~x!, ~4!

where

Ji
z~x!5

b

2p
]xw i~x!,

~5!

Ji
6~x!5

l

p
exp@6 ibu i~x!#cosbw i~x!

are the cyclic vector current components and

ni
z~x!5

l

p
cosbw i~x!,

~6!

ni
6~x!5

l

p
exp@6 ibu i~x!#

are their ‘‘staggered’’ analogs. Here,l is the scale renormal
ization constant,w i(x) is the boson operator,b5A2p.

Then we obtain the bosonized Hamiltonian in the form13

H5
v
2 (

i
E dx@P i

21~]xw i !
2#1gu(

i
E dx cos 2bw i

2
J8l2

2p2 (
i ,d'

E dx@cos~bw i !cos~bw i 1d'
!

1cosb~u i 1d'
2u i !#, ~7!

where v5pJ/2, P i is the momentum that is canonical
conjugated tow i , andu i satisfies]xu i52P i . The first line
in Eq. ~7! corresponds to a system of separate chains and
the form of a standard sine-Gordon Hamiltonian. First te
in Eq. ~7! describes a free-boson system, and the second
arises because of Umklapp scattering of original fermio
d
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x
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e

-

as
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s

~which arises after applying the Jordan-Wigner transform
tion!; this term is marginal and produces logarithmic corre
tions to thermodynamic quantities.4,14–16 Calculations~see
Refs. 4 and 14! give gu /(2p).0.25. The second line of Eq
~7! describes the interaction between the chains. Note
only relevant terms are included in this summand since
marginal terms give smaller contribution~see Ref. 13!.

III. MEAN-FIELD APPROXIMATION FOR BOSONIZED
HAMILTONIAN AND 1 Õz� CORRECTIONS

The simplest way of treating interchain exchange inter
tions is the mean-field approximation.4 Decoupling the inter-
action term

cos~bw i !cos~bw i 1d'
!→2^cos~bw i 1d'

!&cos~bw i ! ~8!

we obtain

HMF5
v
2 (

i
E dx@P i

21~]xw i !
2#1gu(

i
E dx cos 2bw i

2
l

p
hMF(

i
E dx cos~bw i !, ~9!

where

hMF5z'J8l^cos~bw i !&/p, ~10!

z' is the number of nearest neighbors in the transverse~to
chain! directions (z'54 for simple cubic lattice!. This ap-
proximation gives a possibility to reduce the multicha
problem to a single-chain one in an effective staggered m
netic field. Introducing the function

B~h;T!5
l

p
^cos~bw i !&h , ~11!

which should be calculated in the presence of the last term
Eq. ~9!, we obtain the self-consistent equation for the sub

tice magnetizationS̄ in the mean-field approximation in th
form

S̄MF5B~z'J8S̄MF ;T!. ~12!

Despite the Hamiltonian,HMF , Eq. ~9!, has a one-chain
form, calculation of the functionB(h;T) ~which is an analog
of the Brillouin function in the usual mean-field theory o
Heisenberg magnets! at arbitrary T is a very complicated
task. Scaling arguments suggestB(h;T)5h1/3f (h2/3/T) with
some scaling functionf (x). Forgu50 ~in this case, we have
a standard sine Gordon, or, equivalently, massive Thirr
model! B(h;T) was calculated by Bethe ansatz in Ref. 1
However, in two following cases the calculation can be p
formed analytically:~i! T50 where we have4,5

B~h;0!.0.677~h/v !1/3@11~gu/2p!ln~v/D!#1/2, ~13!

where

D.2.085v1/3h2/3

and ~ii ! h→0 where

B~h,T!5hx0~T!. ~14!
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Here,x0(T) is the staggered susceptibility of the system
the absence ofh,4,16

x0~T!5
x̃0

T
LS LJ

T D , x̃05
G2~1/4!

4G2~3/4!
.2.1884, ~15!

where we have picked out the factorx̃0 for the sake of con-
venience and

L~LJ/T!5CF ln
LJ

T
1

1

2
ln ln

LJ

T
1O~1!G1/2

~16!

is the spin-field renormalization factor that arises becaus
the presence of the marginal operator; the single-chain
merical calculations18 yield C.0.15, L.5.8. Thus, one can
see that the above-mentioned scaling functionf (x) satisfies
f (x);x at x→0 and f (`)5const. The result~14! gives a
possibility to calculate the value ofTN in the mean-field
theory since forT→TN we just havehMF→0. Thus, we
obtain the equation4

TN
MF5z'J8x̃0L~LJ/TN

MF!. ~17!

We have included in Eq.~16! a double-logarithmic term
which was not taken into account in Ref. 4 and modifi
somewhat numerical results~see below!. As discussed in the
Introduction, the mean-field approximation~17! is not quite
satisfactory to describe experimental data. In particular,
values of Neel temperatures are considerably overestima

The reason of this is that the mean-field approximat
does not take into account the collective excitations, wh
substantially contribute to the thermodynamic properti
Such excitations can be considered within the random-ph
approximation ~RPA!. The RPA spin susceptibilities ar
given by4,5

x12~qz ,v!5
x0

12~qz ,v!

12J8~qx ,qy!x0
12~qz ,v!

, ~18a!

xzz~qz ,v!5
x0

zz~qz ,v!

12J8~qx ,qy!x0
zz~qz ,v!

, ~18b!

where, for the square lattice in the direction transverse
chains,

J8~qx ,qy!52J8~cosqx1cosqy!, ~19!

x0(q,v) being the dynamical staggered susceptibility for t
model ~9! and we have taken into account only stagge
components of the susceptibility. Again,x0(q,v) is given by
simple analytical expressions only in two cases:T50 ~for
the results see Ref. 5 and also Appendix C!, andh→0 where
we have19,16 for both the susceptibilities

x0~qz ,v!5
1

T
LS L

T D x̃0~qz /T,v/T!,

~20!

x̃0~k,n!5
1

4

G~1/41 ik1!G~1/41 ik2!

G~3/41 ik1!G~3/41 ik2!
, k65

n6k

4p
.

As it should be,x0(0,0)5x0(T).
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Now, we can calculate the spin-fluctuation corrections
interchain mean-field theory owing to collective mode
Similar to the case of the simplest mean-field approximat
in the theory of Heisenberg magnets,9,10 these corrections
can be obtained within the 1/z-expansion. Since we trea
only transverse neighbors within the mean-field approa
one has to speak about the 1/z' expansion. To construct thi
expansion, we consider the perturbation theory
J8/max(hMF ,T);1/z' ~see Appendix A!, which is an analog
of expansion inJ/max(hMF ,T);1/z for three-dimensional
Heisenberg magnets.10 From this viewpoint, the above
discussed mean-field approximation is just the zeroth-or
in 1/z' , so that the fluctuation corrections to this approxim
tion can be obtained in a regular way. The leading~first order
in 1/z') corrections come from the diagrams which inclu
one RPA-interaction line.

The details of calculations are discussed in Appendix
For the Neel temperature we obtain to first order in 1/z'

TN5kJ8z'x̃0L~L/TN!, ~21!

where

k5H 12
p2

2x̃0

E
2`

`

drE
0

1

dtṼ~r ,t!F1

8
F~r ,t!1

1

2
G~r ,t!G J 21

,

~22!

Ṽ~r ,t!5E
2`

` dqz

2p

3(
n

(
qx ,qy

cosqx1cosqy

2x̃02~cosqx1cosqy!x̃0~qz,2p in !

3exp~ iqzr 22p int!

andF(r ,t), G(r ,t) are the four-point averages determin
in Appendix A. The result~21! differs from the mean-field
result~17! by a factor ofk, which depends only on the lattic
structure in the directions perpendicular to chains. Numer
calculation ford5112 case~simple cubic lattice! yields k
.0.70. Thus, with account of the functionL(L/TN), the
lowering of TN due to interchain fluctuation effects is abo
25% of its mean-field value. Ford5112 the integral in Eq.
~22! is divergent and we haveTN50.

The same result~21! can also be derived in a more elega
way within the spin-fluctuation approach by Moriya11 ~see
Appendix B!.

Corrections to the ground-state staggered magnetiza
are calculated in Appendix C. We have

S̄05~0.67720.311I !hMF
1/3 , ~23!

where the last term in the brackets represents the 1/z' cor-
rection with

I 5H 0.038 d5112

0.193 d5111.
~24!

Note that we do no take into account the logarithmic corr
tions owing to presence of the marginal operator, since th
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exists no simple ways of calculating dynamical stagge
susceptibility atT50 in the presence of such an operat
However, one can see that we have nearly 10% lowering

S̄0 for d5111 and only 2% lowering ford5112. Thus
the fluctuation corrections to ground-state magnetization
much less important than those to the Neel temperature,
in the three-dimensional case they can be neglected.

IV. COMPARISON WITH THE EXPERIMENTAL DATA
AND CONCLUSION

The results obtained enable one to perform quantita
comparison with experimental data on magnetic chain s
tems. Consider first the compound KCuF3 with S51/2. Ac-

cording to Ref. 20, we haveJ5406 K, S̄0 /S50.25. As dis-

cussed by Schulz,4 this value of S̄0 corresponds toJ8/J
50.047, so thatJ8519.1 K. The simplest mean field ap
proximation ~17! yields TN547 K. From ~21! we obtain
TN537.7 K, which is somewhat lower in comparison wi
the experimental result of Ref. 20,TN539 K. Thus, our ap-
proximation slightly overestimates the effects of fluctuatio
but improves reasonably the mean-field approximation. C
tribution of the double-logarithmic term in Eq.~16! makes
up about 5% and improves the agreement with the exp
mental data.

AnotherS51/2 chain compound that is widely discuss
in recent publications is Sr2CuO3, which has the following
parameters:21,22 J52600 K, TN55 K. Direct experimental
data forJ8 are absent, but using Eq.~21! and the experimen
tal value ofTN we obtainJ851.85 K. Then, we have from

Eq. ~23! S̄0 /S50.042, which is in agreement with the e

perimental data (S̄0 /S<0.05).
For Ca2CuO3 the experimental parameters have followi

values:21,22S51/2, J52600 K andTN511 K. From Eq.~21!

we find J854.3 K and S̄0 /S50.062. Taking into accoun
above results for Sr2CuO3 we find that the latter value is
again in excellent agreement with the experimental dat22

which give S̄0(Ca2CuO3)/S̄0(Sr2CuO3)51.560.1. Thus,
the result ~21! is sufficient to describe quantitatively re
quasi-1D magnetic systems.

In the isotropic quasi-1D magnets under considerati
the fluctuation corrections modify only numerical factor
the expression forTN . One can expect, however, that in th
anisotropic case the form of functional dependenceTN(J8)
will be also modified. The influence of anisotropy on t
Neel temperature will be considered elsewhere. Another
teresting question concerns quasi-1D magnets with h
integer spinsS.1/2. As discussed in the Introduction, in th
case there is a crossover from ‘‘usual’’ spin-wave behav
of staggered magnetization to non-spin-wave one. The
pressions forTN should be also changed because of t
crossover.

Finally, despite the standard spin-wave theory yield
qualitatively correct description of integer-spin magne
chains, the corresponding values of Neel temperatures
also overestimated in comparison with experimental d
Thus calculation of fluctuation corrections for these magn
is also of interest.
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APPENDIX A: PERTURBATION THEORY IN J8
AND THE DIAGRAM TECHNIQUE

FOR SPIN OPERATORS

In this appendix, we consider perturbation theory inJ8 for
the field theory with the Lagrangian

L5
v
2 (

i
E d2x~]w i !

21gu(
i
E d2x cos 2bw i

2
l

p
h(

i
E d2x cos~bw i !

2
J8l2

2p2 (
i ,d'

E d2 x@cos~bw i !cos~bw i 1d'
!

1cosb~u i 1d'
2u i !#, ~A1!

which corresponds to the Hamiltonian~7!, the external stag-
gered magnetic fieldh being introduced. In Eq.~7! we have
used the complex coordinate x5x1 ivt. Further in this ap-
pendix we use the system of units wherev51. Consider the
calculation of staggered magnetization

S̄5l^cos~bw i !&/p.

The perturbation theory inJ8 is constructed in a standar
way ~see, e.g., Ref. 23!. To obtain the series inJ8 we write
down the expression in the path integral formalism

S̄5
l

p

E Dw cos„bw i~0!…exp~2L@w#!

E Dw exp~2L@w#!

. ~A2!

To zeroth order inJ8 ~i.e., atJ850) we haveL5L0 and

S̄05B~h;T!, ~A3!

where the functionB was introduced in Eq.~11!. Expanding
Eq. ~A2! in J8 we obtain
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S̄5
l

p

E Dw cos„bw i~0!…exp~2L0@w#!~12Lint1L int
2 /21••• !

E Dw exp~2L0@w#!~12Lint1L int
2 /21••• !

5
l

p
^cos„bw i~0!…~12Lint1L int

2 /21••• !&0,conn, ~A4!
a-
sp
ar
f

s
a

a

il

ire-
r-

to
r in
where we have denoted̂. . . &05*Dw . . . exp(2L0@w#)/
*Dwexp(2L0@w#) and

^cos„bw i~0!…L int
n &0,conn5^cos„bw i~0!…L int

n &0

2 (
m50

n21
~n! !2

m! ~n2m!!

3^cos„bw i~0!…L int
m &0^L int

n2m&0 .

~A5!

Each term in Eq.~A4! can be represented by its own di
gram; the diagram technique is the same as that for
operators9,10 ~some elements of the diagram technique
shown in Fig. 1!. All diagrams are classified by powers o
the parameterJ8/max(hMF ,T);1/z' . Diagrams of Fig. 2
have zeroth order in 1/z' . The summation of these diagram
leads to a shift of the external magnetic field by the me
field

h→h̃5h1hMF , hMF5z'J8S̄. ~A6!

@The same result could be obtained by eliminating the me
field term directly in Eq.~A1!.# The diagrams of first order in
1/z' @see Fig. 3~a!# have one RPA-interaction line@Fig.
3~b!#. These are directly connected to the RPA susceptib
ties ~18! by

V12,zz~q,v!5J8~qx ,qy!1@J8~qx ,qy!#2x12,zz~qz ,v!.

Thus, we obtain

V12,zz~q,v!5
J8~qx ,qy!

11d2J8~qx ,qy!x0
12,zz~qz ,v!

, ~A7!

where

FIG. 1. Some elements of diagram technique for spin opera
~for a detailed description see Ref. 10!. The first three irreducible
averages are determined by Eqs.~A9!, ~A12!, and~A14!.
in
e

n

n-

i-

x0
zz~qz ,v!5

l2

p2E d2x^cosbw i~0!cosbw i~x!&0,ir

3exp~2 iqzx1 ivnt!,
~A8!

x0
12~qz ,v!5

l2

p2E d2x^eib[u i (0)2u i (x)]&0

3exp~2 iqzx1 ivnt!,

the two-operator irreducible average being given by

^AB& ir 5^AB&2^A&^B& ~A9!

and, following Ref. 11, we have introduced the correctiond
in the denominator to satisfy the self-consistency requ
ment. In the caseT<TN under consideration, this is dete
mined by the condition @x12(0,0)#2150, i.e. d
5z'J8x0

12(0,0)21. Transforming Eq.~A7! back to the real
space,

V12,zz~x!5T(
ivn

E
2p

p dqz

2p (
qx ,qy

V12,zz~q,ivn!

3exp~ iqzx2 ivnt!, ~A10!

we obtain for the sublattice magnetization@see the diagrams
of Fig. 3~a!#

S̄5B~ h̃;T!1
l3

2p3E d2xd2y@Vzz~x2y!

3^cosbw i~0!cosbw i~x!cosbw i~y!&0,ir 1V12~x2y!

3^cosbw i~0!eibu i (x)e2 ibu i (y)&0,ir #, ~A11!

where

rs
FIG. 2. Diagrams for staggered magnetization to zeroth orde

1/z' ~mean-field approximation!.
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^ABC& ir 5^ABC&2^A&^BC& ir 2^B&^AC& ir 2^AB& ir ^C&
~A12!

~all averages are calculated withh→h̃). Up to this moment,
we did not use a concrete form ofL0. As already pointed in
the main text, the only case where the averages in Eq.~A11!

can be calculated analytically is the limith̃→0. In this limit,
we have

^cosbw i~0!cosbw i~x!cosbw i~y!&0,ir

5
l

p
h̃E d2z^cosbw i~0!cosbw i~z!

3cosbw i~x!cosbw i~y!&0,ir , ~A13!

FIG. 3. ~a! Diagrams of first order in 1/z' for staggered magne
tization. ~b! Equations for RPA interaction lines.
where

^ABCD& ir 5^ABCD&2^AD& ir ^BC& ir 2^BD& ir ^AC& ir

2^AB& ir ^CD& ir ~A14!

and similar expression for transverse components; the a

ages in the right-hand side of Eq.~A13! are calculated ath̃
50. Thus we have ath50, hMF→0

S̄5
l2

p2
hMFE d2z^cosbw i~0!cosbw i~z!&

1
l4

2p4
hMFE d2x d2y d2z@Vzz~x2y!

3^cosbw i~0!cosbw i~x!cosbw i~y!cosbw i~z!&0,ir

1V12~x2y!

3^cosbw i~0!cosbw i~z!eibu i (x)2 ibu i (y)&0,ir #. ~A15!

Note that the SU~2! invariance guarantees ath̃50
E d2x d2y d2z@^cosbw i~0!cosbw i~x!cosbw i~y!cosbw i~z!&0,ir

23^cosbw i~0!cosbw i~x!eibu i (y)2 ibu i (z)&0,ir #50. ~A16!

Calculating atb252p the averages in the right-hand side of Eq.~A15! in the presence of the marginal operatorgucos 2bwi
~which produces logarithmic corrections! we obtain

S̄5
1

2
hMFLS L

T D E d2z
1

u§~z!u
1

1

16
hMFL2S L

T D E d2x d2y d2zVzz~x2y!F u§~z!§~x2y!u
u§~x!§~y!§~z2x!§~z2y!u

1
u§~z!§~z2y!u

u§~z!§~y!§~z2x!§~x2y!u
1

u§~y!§~z2x!u
u§~z!§~x!§~z2y!§~x2y!u

2
2

u§~z!§~x2y!u
2

2

u§~x!§~y2z!u
2

2

u§~y!§~x2z!uG
1

1

4
hMFL2S L

T D E d2x d2y d2zV12~x2y!
1

u§~z!§~x2y!u
ReFA§~x!§~z2y!§~ z̄2 x̄!§~ ȳ!

§~ x̄!§~ z̄2 ȳ!§~z2x!§~y!
21G , ~A17!
where the bar states for the complex conjugate,

§~x!5sinh~pTx!/~pT! ~A18!

and L(L/T) is determined by Eq.~16!. Introducing r5x

2y instead of x and passing to the variables r˜5rT etc. we
obtain the result
S̄5
1

T
hMFx̃0LS L

T D H 11
p2

2Tx̃0

LS L

T D
3E d2rV~r!F1

8
F~r!1

1

2
G~r!G J , ~A19!

where

x̃05
p

2E d2z
1

u §̃~z!u
.2.1184 ~A20!
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and

F~r!5E d2y d2zF u §̃~z!§̃~r!u

u §̃~r1y!§̃~y!§̃~z2y2r!§̃~z2y!u

1
u §̃~z!§̃~z2y!u

u §̃~z!§̃~y!§̃~z2y2r!§̃~r!u

1
u §̃~y!§̃~z2y2r!u

u §̃~z!§̃~r1y!§̃~z2y!§̃~r!u
2

2

u §̃~z!§̃~r!u

2
2

u §̃~r1y!§̃~y2z!u
2

2

u §̃~y!§̃~r1y2z!u
G ~A21!

G~r!5E d2y d2z
1

u §̃~z!§̃~r!u

3ReFA §̃~r1y!§̃~z2y!§̃~ z̄2 ȳ2 r̄!§̃~ ȳ!

§̃~ r̄ 1 ȳ!§̃~ z̄2 ȳ!§̃~z2y2r!§̃~y!
21G .

~A22!

In Eqs.~A20!–~A22! we have used

§̃~x!5sinh~px!. ~A23!

Finally, using the connection~A6! between the mean field
and the staggered magnetization and collecting all cor
tions to the denominator analogously to the usual thr
dimensional Heisenberg magnets,24 we obtain the result~21!
of the main text.

APPENDIX B: SPIN-FLUCTUATION APPROACH
TO THERMODYNAMICS OF QUASI-1D

HEISENBERG MAGNETS

The results of previous appendix can be obtained i
much more simple way with the use of the spin-fluctuat
approach proposed by Moriya11 for description of thermody-
namics of itinerant magnets where the Stoner theory~which
is an analog of the mean-field theory in Heisenberg magn!
turns out to be quite not satisfactory. To apply the sp
fluctuation approach, we represent Hamiltonian~3! as

H5H01Hint,

H05J(
n,i

Sn,iSn11,i2hMF(
n,i

~21!n1 iSi ,n
z , ~B1!

Hint5
1

2
J8(̂

i j &
~Sn,iSn, j ! ir ,

where (AB) ir 5AB2^A&^B&. With the use of the Hellmann
Feynman theorem, we obtain for the free energy

F5F0~hMF!1
1

2 (
q,ivn

E dJ8@x12~q,ivn!1xzz~q,ivn!#,

~B2!

whereF0(hMF) is the free energy corresponding toH0. Us-
ing the RPA results~18! one can find
c-
-

a

s
-

F5F0~hMF!1
1

2 (
q,ivn

$ ln@11J8~qx ,qy!x0
12~qz ,ivn!#

1 ln@11J8~qx ,qy!x0
zz~qz ,ivn!#%. ~B3!

Differentiating with respect tohMF we readily obtain

S̄5S̄MF

1
1

2 (
q,ivn

F J8~qx ,qy!

11J8~qx ,qy!x0
12~qz ,ivn!

]x0
12~qz ,ivn!

]h

1
J8~qx ,qy!

11J8~qx ,qy!x0
zz~qz ,ivn!

]x0
zz~qz ,ivn!

]h G . ~B4!

This is just the result~A11! of Appendix A. Representing
x0(qz ,ivn) via boson variables, differentiating inh and cal-
culating again the corresponding averages we return to
~A19!.

APPENDIX C: GROUND-STATE FLUCTUATION
CORRECTIONS IN THE ABSENCE OF MARGINAL

OPERATOR

In this appendix, we consider ground-state corrections
the mean-field value of sublattice magnetization. We use
expression~A11! @or, equivalently,~B4!#, where atT50
~Refs. 4 and 5!,

x0
125

1

4uJ8u

D2

v21v2q21D2
, ~C1!

x0
zz5

Z8/Z

4uJ8u

D2

v21v2q213D2
~C2!

with

D.6.175uJ8u, Z8/Z.0.49,

~C3!

S̄0.1.017uJ8u

andhMF5z'J8S̄0 ~we neglect here the contribution of ma
ginal operator!. Differentiating Eq.~B4! in hMF ~with ac-
count of implicit dependence ofJ8 on hMF) we obtain after
some algebraic manipulations

S̄5S̄02
D

4p

]D

]h
I ,

~C4!

I 5(
q

F ~12Gq8/2!ln
1

12Gq8

1~32Z8Gq8/2Z!ln
1

12Z8Gq8/~3Z!
G ,

where summation is performed over the transverse com
nents,Gq85cosq for d5111 andGq85(cosqx1cosqy)/2 for
d5112. Calculating the integralI numerically we obtain
the result~23! of the main text.
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