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Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional
system with periodicity in two directions

A. Grzybowski, E. Gwo´źdź, and A. Bródka
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

~Received 7 May 1999!

The Poisson summation formula is used to calculate the effective interaction of charged particles in a
three-dimensional system with periodicity in two dimensions. The interaction energy expression is identical to
that obtained from the Berthaut approach for the Gaussian spreading function, and its correspondence with the
results of the Rhee-Halley-Hautman-Rahman method is shown. The formalism based on the Poisson summa-
tion formula is used also to calculate the interaction energy of point-dipole moments.
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I. INTRODUCTION
Computer simulation techniques often require efficie

summation of long-range electrostatic interactions. For thr
dimensional periodicity of a system the Ewald summat
method is well known and widely used.1–5 Few years ago
Fuchizaki6 elaborated a generalization of the Ewald meth
concerningp-dimensional space andp-dimensional lattice
sums of quantities characterized by inverse power law
modulation wave vector. A relatively simple expression w
derived for odd-dimensional lattice and for arbitrary pow
as well as modulation wave vector. However, in many pr
lems of interest in physics and chemistry one encounters
tems which are infinite in some directions and finite in o
ers. In simulations of liquid and solid surfaces, membran
fluid trapped between two walls, adsorption processes o
surface, etc., one needs an extension of the Ewald metho
a three-dimensional system with periodicity in two directio
only.

In the past, several methods for semi-infinite systems
charges have been developed and tested7–11 in computer
simulations. Heyes and co-workers7,8 redeveloped the Ber
thaut method,12 for a charge spreading function of arbitra
analytical form, to obtain expressions for the electrosta
energy in infinite lamina. Considering the ionic charges o
the polar surface of a large piece of rigid ionic crystal Smi9

found expression for the interaction energy of the char
@Eq. ~68! in Ref. 9# which partly coincides with that pre
sented by Heyes and co-workers for the Gaussian sprea
function.7,8 Almost a decade ago Rheeet al.10 proposed an-
other method, called here the Rhee-Halley-Hautm
Rahman~RHHR! method, in which the energy expressio
was split into sums over the real and reciprocal-space latt
introducing a separation function. The separation functio
defined mainly in the reciprocal space and its suitable cho
causes both sums to converge at a sufficiently rapid r
Another approach was presented by Hautman and Kle11

who introduced the convergence functions in the real sp
The method may be applied to systems in which the size
the periodically replicated cell is larger compared to the
tent of the charges in the normal directions. This limitation
due to the fact that the interaction was expanded in a po
series inDz/D% whereD% and Dz are the components o
the distance between particles parallel and perpendicula
the plane of the periodic continuation, respectively.
PRB 610163-1829/2000/61~10!/6706~7!/$15.00
t
e-
n

d

d
s
r
-
s-

-
s,
a

for

f

c
r

s

ing

-

es
is
e
e.

e.
of
-

s
er

to

In this paper, we apply the Poisson summation formul13

to derive the effective energy expression for long-range C
lomb interactions in molecular dynamics of thre
dimensional system with periodicity in two directions. Th
approach corresponds to the method for systems under
odic boundary conditions in three dimensions,3 and we ana-
lyze singular parts of the energy expression using the c
vergent factor for a conditionally convergent sum. T
obtained results are compared with the energy functi
achieved from the other methods, particularly, the extens
of the Berthaut method7,8 and the RHHR method.10 There-
fore the first part of the work constitutes a test of the a
proach based on the Poisson summation formula for a ge
etry appropriate for simulation of surfaces and interfac
containing charged particles. Then, considering the same
ometry of a system of particles with point-dipole momen
we apply the method to find an expression for the dipo
dipole interaction energy.

II. COULOMB INTERACTION

We consider a simulation box in a shape of prism, with
square baseL3L and any height, which containsN charges.
The box repeated in the (x,y) plane gives a two-dimensiona
tetragonal lattice, and in the box centered atn5(n%,0), n%

5L(nx ,ny) where nx and ny are integers, a chargeqi is
located atr i1n. The total interaction energy of the bas
simulation box has the following form:

Ecc5
1

2 (
i , j 51

N

( 8
n

qiqj

ur i j 1nu
. ~1!

In the above expressionr i j 5r i2r j , and the sum overn is a
sum over all tetragonal lattice cells where the prime indica
that for n50 the terms withi 5 j are to be omitted. Taking
into account geometry of the system the relative charge
sition r i j is expressed byr i j 5(%i j ,zi j ). Defining the function
F(r ) and the factorF0 as

F~r !5(
n

1

ur1nu
, for rÞ0, andF05(

nÞ0

1

unu
, ~2!

the total energy can be expressed by
6706 ©2000 The American Physical Society
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Ecc5
1

2 (
i 51

N

(
j 51
j Þ i

N

qiqjF~r i j !1
1

2 (
i 51

N

qi
2F0 , ~3!

where the first term represents the interaction of a cha
with other charges from the basic simulation box and th
images whereas the second term describes interaction o
charge with its own images. To calculate the lattice sums~2!
we use the identity basing on the integral representation
the gamma function14

1

x2s
5

1

G~s!
E

0

`

ts21e2x2tdt ~4!

for s51/2, and the Poisson summation formula13 for the
two-dimensional space (x,y):

(
n%

e2u%1n%u2t5
p

L2t
(
G

eiG•% expS 2
G2

4t D . ~5!

In the above equationG is a two-dimensional vector in re
ciprocal lattice andG5uGu; G52p(kx ,ky)/L wherekx and
ky are integers.

Using Eq.~4! the functionF(r ) may be expressed by

F~r !5(
n

1

Ap
E

a2

`

t21/2e2ur1nu2tdt

1(
n%

1

Ap
E

0

a2

t21/2e2u%1n%u2t2z2tdt, ~6!

where the integral is split into two parts to eliminate sing
larity which is expected inF(r ), and the parametera2(a
.0) is chosen for computational convenience. Direct cal
lation of the integral in the first term and application of t
Poisson summation formula~5! to the second term of expres
sion ~6! gives

F~r !5(
n

erfc~aur1nu!
ur1nu

1
2Ap

L2 (
GÞ0

eiG•%

3E
1/a

`

expS 2
G2u2

4
2

z2

u2D du

1
Ap

L2 E0

a2

t23/2e2z2tdt, ~7!

where the term forG50 in the sum is evaluated separate
and the second term is achieved using the substitutionu2
e
ir
the

of

-

-

51/t. The two integrals appearing in Eq.~7! are known15 and
one obtains the following form ofF(r ):

F~r !5(
n

erfc~aur1nu!
ur1nu

1
p

L2

3 (
GÞ0

eiG•%

G FeGz erfcS G

2a
1azD

1e2GzerfcS G

2a
2azD G

2
2Ap

L2 F 1

a
e2a2z2

1Apz erf~az!G1
2Ap

L2
lim

t→01

e2z2t

At
,

~8!

where the singularity arises from the second integral of
pression~7!.

The same procedure applied to the evaluation of the fa
F0 yields

F05(
nÞ0

1

Ap
E

a2

`

t21/2e2unu2tdt

1(
n%

1

Ap
E

0

a2

t21/2e2un%u2t dt2
1

Ap
E

0

a2

t21/2dt

~9a!

5(
nÞ0

erfc~aunu!
unu

1
Ap

L2 (
GÞ0

E
0

a2

t23/2expS 2
G2

4t Ddt

1
Ap

L2 E0

a2

t23/2dt2
2a

Ap
~9b!

5(
nÞ0

erfc~aunu!
unu

1
p

L2 (
GÞ0

1

G
erfcS G

2a D
2

2Ap

aL2
1

2Ap

L2
lim

t→01

1

At
2

2a

Ap
. ~9c!

To apply the Poisson summation formula in Eq.~9a! the
n%50 term is added to the lattice sum with the integral
@0,a2# and then subtracted separately.

Inserting expressions~8! and ~9c! into Eq. ~3!, after
simple calculations, one obtains the final form of the to
interaction energy
rring in
Ecc5
1

2 (
i , j 51

N

qiqj( 8
n%

erfc@au~%i j 1n% ,zi j !u#
u~%i j 1n% ,zi j !u

1
p

2L2 (
i , j 51

N

qiqj (
GÞ0

eiG•%i j

G FeGzi j erfcS G

2a
1azi j D

1e2Gzi j erfcS G

2a
2azi j D G2

Ap

L2 (
i , j 51

N

qiqjF 1

a
e2a2zi j

2
1Apzi j erf~azi j !G2

a

Ap
(
i 51

N

qi
2 . ~10!

In the calculations we use charge neutrality of the system, which allows us to eliminate the singularities occu
expressions~8! and ~9!. These singular terms give the following contribution to the total energy:
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(
i , j 51

N

qiqj lim
t→01

e2zi j
2 t

At
5 (

i , j 51

N

qiqj lim
t→01

(
k50

`
~2zi j

2 !ktk21/2

k!

5S (
i 51

N

qi D 2

lim
t→01

1

At
, ~11!

and it is zero because it contains the factor (( i 51
N qi)

250.
To analyze the singularities appearing previously we

the approach proposed by de Leeuw, Perram, and Sm3

introducing the convergence factor exp(2sunu2) in the lattice
sumsF(r ) andF0

F~r !5(
n

e2sunu2

ur1nu
, for rÞ0, andF05(

nÞ0

e2sunu2

unu
.

~12!

The parameters is positive and after calculations we take t
limit as s→0. We concentrate on the singular parts intr
duced by theG50 terms which correspond to the last int
gral in Eq.~7! and the third term in Eq.~9b!. For the lattice
sum F(r ) defined by Eq.~12! the interesting part has th
following form:

Ap

L2 E0

a2 dt

At~ t1s!
expS 2

stu%u2

t1s
2z2t D

52
Ap

L2As
es(z22u%u2)

3E
1

s/(a21s) du

A~12u!u
expS sU%U2u2

sz2

u D ~13a!

52
Ap

L2
es(z22u%u2)H 1

As
FarcsinS s2a2

s1a2D 2
p

2 G
2 (

m51

`

~21!m
2a2m21z2m

~2m21!m!
1O~s1/2!J ~13b!

5
Ap

L2
es(z22u%u2)F p

As
2

2

a
1 (

m51

`

~21!m

3
2a2m21z2m

~2m21!m!
1O~s1/2!G ~13c!

5
Ap

L2
es(z22u%u2)F p

As
2

2

a
e2a2z2

22Apz erf~az!1O~s1/2!G . ~13d!

Equation ~13a! is obtained by using the substitutionu
5s/(t1s). In the right integral of Eq.~13a! the exponential
function only is dependent on the parameters, and expand-
ing this function in a power series ins and integrating term
by term one obtains Eq.~13b!. We are interested in very
small values of the parameters, and hence representing th
arcsine function by the Maclaurin series with respect tos the
e
h

-

expression~13c! is achieved. The final form~13d! may be
obtained using the Maclaurin series for the exponential fu
tion and error function.14 Similar procedure applied to th
singular part of the lattice sumF0 gives

Ap

L2 E0

a2 dt

At~ t1s!
52

Ap

L2As
E

1

s/(a21s) du

A~12u!u

52
Ap

L2As
FarcsinS s2a2

s1a2D 2
p

2 G
5

Ap

L2 F p

As
2

2

a
1O~s1/2!G . ~14!

Combining Eqs.~13d! and ~14! one obtains the following
contribution to the total energy:

2
Ap

L2 (
i , j 51

N

qiqje
s(zi j

2
2u%i j u

2)F 1

a
e2a2zi j

2
1Apzi j erf~azi j !G

1
Ap

2L2 F p

As
1O~s1/2!G S (

i 51

N

qi D 2

. ~15!

Because of charge neutrality the second term vanishes
taking the limit ass→0 the expression~15! tends to the third
term of Eq. ~10!. The above calculations indicate that th
convergence factor exp(2sunu2) for conditionally convergent
sums does not introduce any additional term to the to
energy function described by Eq.~10!.

Heyes and co-workers7,8 using the Berthaut method12 de-
rived expression for the Coulomb potential of infinite lami
point-charge lattice. They considered different spherica
symmetric charge spreading functions. Among others t
used Gaussian function where the charge density at a
tance u from the lattice site j was given by qja

3 exp
(2u2a2)/p3/2, and application of the function leads to th
energy expression7,8 identical to that given by Eq.~10!.

One must note that the approach proposed by Smith9 used
the integral representation~4! and the identity~26! in Ref. 9,
which corresponds to the Poisson summation formula~5!.
Therefore the Smith’s method is similar to that presen
here and the first two terms of Eq.~68! in Ref. 9 are identical
to the first, second, and fourth terms of Eq.~10! when a
5h/L andG52pm/L. The third term of Eq.~68! in Ref. 9
represents contributions to the energy expression forG50.
In the Smith’s method theG50 term was calculated in dif-
ferent manner and it is defined by the functionC3(r ) @Eq.
~63! in Ref. 9#. It is easy to see that the first term in th
functionC3(r ), for a net charge of a simulation cell assum
in the method, diverges as the thermodynamic limitK→` is
taken, and it corresponds to the singular parts of Eqs.~8! and
~9c! that are removed due to the charge neutrality conditi
The remaining terms in the functionC3(r ) should give the
third term of Eq.~10!, but because of approximations mad
in the Smith’s calculations we fail to prove exact equality
these terms.

Rheeet al.10 proposed a different method for the trea
ment of the long-range Coulomb interactions when the s
tem is finite in one of three dimensions. The method, start
from the charge density and solution of the Poisson equat
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introduces a functionf (a,G,z) which allows us to separate the electrostatic energy into a sum on lattice vectorsn% and a sum
on reciprocal-lattice vectorsG. The separation function must holdf (a,0,z)51, where the parametera determines how fast the
function approaches zero for largeG. For the symbols introduced previously the total energy10 has the following form:

Ecc5
1

2 (
i , j 51

N

qiqj(
n%

8F~a,zi j ,%i j 1n%!1
p

L2 (
i , j 51

N

qiqj (
GÞ0

e2Guzi j u

G
f ~a,G,zi j !e

2 iG•%i j 2
p

L2

3 (
i , j 51

N

qiqjF uzi j u2
] f ~a,G,zi j !

]G U
G50

G2
1

2 (
i 51

N

qi
2E

0

`

f ~a,G,0!dG, ~16!
s
-

a

-
ng

te

sed

ox
the
a-

and
where we use the explicit expressions forc1(a,$zi j %) and
c2(a) derived in Appendix A of Ref. 10. The function
F(a,z,%) and f (a,G,z) are related through two
dimensional Fourier transform as follows@Eq. ~A1! in Ref.
10#:

1

2pEV(%)
F~a,z,%!e2 iG•%d2%5

e2Guzu

G
@12 f ~a,G,z!#,

~17!

whereV(%) denotes an whole infinite two-dimensional re
space.

It is easy to see that expression~16! has the same struc
ture as Eq.~10!. We must note that the functions appeari
in the second and third sums of Eq.~10! are even functions
with respect tozi j and Eq.~10! may be rewritten replacing
zi j by uzi j u. Therefore comparing Eqs.~16! and~10! one has
two identities:

f ~a,G,z!5
1

2 Fe2Guzu erfcS G

2a
1aUzU D1erfcS G

2a
2aUzU D G ,

~18a!

F~a,z,%!5
erfc~au~%,z!u!

u~%,z!u
, ~18b!

where the function~18a! equals one forG50. First of all
one must check that the functionsf andF are related through
Eq. ~17!. The Fourier transform of the functionF(a,z,%)
may be expressed as follows:

1

2pEV(%)
F~a,z,%!e2 iG•%d2%

5
1

Ap
E

a2

`

dte2z2tt2
1
2E

0

`

d%%e2t%2
J0~G% ! ~19a!

5
1

GE
0

G/2a

uexpS 2
u2

2
2

G2z2

4u2 D F I 2
1
2
S u2

2 D2I 1
2
S u2

2 D Gdu

~19b!

5
e2Guzu

2G F22e2Guzu erfcS G

2a
1aUzU D2erfcS G

2a
2aUzU D G .

~19c!

In the calculations we introduce the polar coordinate sys
(%,w), wherew is an angle between the vector% and a space
fixed vectorG, and integration with respect tow on the in-
l

m

terval @0,2p# gives the Bessel function of the first kindJ0.
The integral representation14 of the right side of Eq.~18b!
and the change of the integral order give Eq.~19a!. The
integral with respect to% may be performed14 to give Eq.
~19b! where the substitutionu25G2/4t is used.I 1/2 andI 21/2
are the hyperbolic Bessel functions which can be expres
by the hyperbolic sine and cosine functions,14 respectively,
and one has the known integral15 which gives Eq.~19c!.
Finally, using the explicit form of the functionf (a,G,z) one
obtains the right side of Eq.~17!. Moreover, it is easy to
prove that using Eq.~18a! in the two last sums of Eq.~16!
gives the corresponding sums in Eq.~10!.

III. DIPOLE-DIPOLE INTERACTION

For N dipoles located in the rectangular simulation b
and periodic boundary conditions applied to the box in
plane (x,y) the total interaction energy of the basic simul
tion box has the following form:

Edd5
1

2 (
i , j 51

N

( 8
n H mi•mj

ur i j 1nu3

23
@mi•~r i j 1n!#@mj•~r i j 1n!#

ur i j 1nu5 J ~20!

where the symbols have the same meaning as in Sec. II,
mi denotes a dipole moment which is located atr i1n in the
box centered atn. Introducing the lattice sumsC(r ), C0 ,
Q(r ,j), andQ0(j) and defining

C~r !5(
n

1

ur1nu3
, for rÞ0, andC05(

nÞ0

1

unu3
,

~21a!

Q~r ,j!5(
n

e2 i j•(r1n)

ur1nu5
, for rÞ0,

andQ0~j!5(
nÞ0

e2 i j•n

unu5
, ~21b!

the total energy~20! can be expressed by
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Edd5
1

2 (
i 51

N

(
j 51
j Þ i

N

mimjC~r i j !1
1

2 (
i 51

N

umi u2C0

1
3

2 (
i 51

N

(
j 51
j Þ i

N

~mi•“j!~mj•“j!Q~r i j ,j!U
j50

1
3

2 (
i 51

N

~mi•“j!~mi•“j!Q0~j!U
j50

. ~22!

In the above equation the first and third terms describe in
action of a dipole moment with other dipole moments fro
the simulation box and their images whereas the second
fourth terms represent interaction of the dipole moment w
its own images. Similarly as in the previous section ea
vector is represented by its components parallel and per
dicular to the plane (x,y) andj5(j% ,jz).

We calculate the sums~21a! in exactly the same way a
for the Coulomb interaction lattice sums, and the identity~4!
for s53/2 and the Poisson summation formula~5! lead to

C~r !5
2

Ap
(

n
E

a2

`

t1/2e2ur1nu2tdt

1
2Ap

L2 (
G

eiG•%E
0

a2

t21/2expS 2z2t2
G2

4t Ddt,

~23a!

C05
2

Ap
(
nÞ0

E
a2

`

t1/2e2unu2tdt

1
2Ap

L2 (
G

E
0

a2

t21/2expS 2
G2

4t Ddt2
4a3

3Ap
.

~23b!
r-

nd
h
h
n-

In the case of the sums~21b! we use the identity~4! for s
55/2 and the Poisson summation formula13 in the following
form:

(
n%

e2[ tu%1n%u21 i j%•(%1n%)]5
p

L2t
(
G

eiG•%

3expS 2
uG1j%u2

4t D ,

~24!

and the sums are given as follows:

Q~r ,j!5
4

3Ap
(

n
e2 i j•(r1n)E

a2

`

t3/2e2ur1nu2tdt

1
4Ap

3L2 (
G

eiG•%2 i jzz

3E
0

a2

t21/2expS 2z2t2
uG1j%u2

4t Ddt,

~25a!

Q0~j!5
4

3Ap
(
nÞ0

e2 i j•nE
a2

`

t3/2e2unu2tdt

1
4Ap

3L2 (
G

E
0

a2

t21/2expS 2
uG1j%u2

4t Ddt2
4a5

3Ap
.

~25b!

Inserting the identities~23! and ~25! into Eq. ~22! and per-
forming required calculations the total energy of the dipo
dipole interaction is given by
on
Edd5
1

Ap
(

i , j 51

N

( 8
n H ~mi•mj !E

a2

`

t1/2e2ur i j 1nu2tdt22@mi•~r i j 1n!#@mj•~r i j 1n!#E
a2

`

t3/2e2ur i j 1nu2tdtJ
1

Ap

L2 (
i , j 51

N

(
G

eiG•%i j ~m i
zm j

z!H E
0

a2

t21/2expS 2zi j
2 t2

G2

4t Ddt22zi j
2 E

0

a2

t1/2expS 2zi j
2 t2

G2

4t DdtJ
1 i

Ap

L2 (
i , j 51
iÞ j

N

(
GÞ0

eiG•%i j @m i
z~mj

%
•G!1~mi

%
•G!m j

z#zi j E
0

a2

t21/2expS 2zi j
2 t2

G2

4t Ddt1
Ap

2L2 (
i , j 51

N

(
GÞ0

eiG•%i j ~mj
%
•G!

3~mi
%
•G!E

0

a2

t23/2expS 2zi j
2 t2

G2

4t Ddt2
2a3

3Ap
(
i 51

N

umi u2, ~26!

where the components of the dipole moment parallel and perpendicular to the plane (x,y) are denoted bym% and mz,
respectively. The integrals in Eq.~26! may be performed14,15 to give the final expression of the dipole-dipole interacti
energy:
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Edd5
1

2 (
i , j 51

N

( 8
n%

$~mi•mj !B@a,u~%i j 1n% ,zi j !u#2@mi•~%i j 1n% ,zi j !#@mj•~%i j 1n% ,zi j !#C@a,u~%i j 1n% ,zi j !u#%

1
p

2L2 (
i , j 51

N

(
G

~m i
zm j

z! cos~G•%i j !$E~a,G,zi j !2G@D~a,G,zi j !1D~a,G,2zi j !#%1
p

2L2 (
i , j 51

N

(
GÞ0

@m i
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B~a,r !5erfc~ar !/r 31~2a/Ap!exp~2a2r 2!/r 2,

C~a,r !53 erfc~ar !/r 51~2a/Ap!~2a213/r 2!

3exp~2a2r 2!/r 2,

D~a,G,z!5exp~Gz!erfc~G/2a1az!,

E~a,G,z!5~4a/Ap!exp~2G2/4a22a2z2!.

In practice, taking into account the fact that for typical valu
of the parametera>5/L the functionsB(a,r ) and C(a,r )
decay quickly to zero with increasingr, the real-space sum i
truncated by omitting contributions from pairs for whichr i j
.L/2. In other words, the real-space sum is restricted to
basic simulation box, i.e.,n%5(0,0) and the normal mini-
mum image convention is applied, and it is calculated in
same way as in a case of a system with periodicity in th
dimensions.4,5 Moreover, it is easy to prove that apart fro
the last sum the expression~27! can be obtained from Eq
~10! replacingqiqj by 2(mi•“ r i

)(mj•“ r j
).

IV. CONCLUSIONS

Using the Poisson summation formula we redevelop
Ewald method for the Coulomb interactions in systems w
periodicity in two directions and finite extent in the thir
direction. We show that the convergence factor, proposed
de Leeuw, Perram, and Smith,3 introduced in the two-
dimensional lattice sums allows to eliminate the singular p
in elegant way but does not give any additional term, p
ticularly a term proportional to the square of the net dip
moment of the configuration which was achieved for a thr
dimensional system.3

The method based on the Poisson summation form
gives the same expression for the electrostatic energy a
Berthaut method with the Gaussian charge spread
function.7,8 We prove also that the RHHR method10 for the
separation function defined by Eq.~18a! gives the energy
function identical to that obtained from the method based
the Poisson summation formula and/or the Berthaut meth
In that sense the three methods are equivalent. The Bert
method allows us to modify the charge spreading function
the real space whereas the RHHR method gives possibilit
s

e

e
e

n
h

y

rt
r-

-

la
the
g

n
d.
aut
n
to

change the separation function, which depend on the ve
G in the two-dimensional reciprocal space and may dep
on the variablez in the real space. Our results indicate th
for a given charge spreading function one may find cor
sponding separation function in the RHHR method, e.g.,
the Gaussian spreading function applied to charges the s
ration function is given by Eq.~18a!. Of course, a given
separation function is associated with a certain cha
spreading function, however, the calculation may be hard
even impossible.

From the physical point of view the Berthaut approach
the most instructive method; the energy function is deriv
from first principles and the method illustrates the physi
ideas. However, the method may be hardly applied to in
actions of higher electrostatic multipoles and in those ca
the Poisson summation formula should be a helpful to
which we show for the dipole-dipole interactions.

At the end we would like to comment shortly numeric
implications of the obtained results. Because of the dou
sum over all distinct pairs of particles in the reciprocal spa
appearing in Eqs.~10! and ~27!, the direct use of the two-
dimensional Ewald summation formula is computationa
expensive. To improve efficiency of the summation of t
Coulomb interactions two modifications were propose
Spohr16 suggested the use of a precalculated table of po
tial energy, forces, etc., and the calculations may be p
formed by interpolation of the table. The other approach7,17

makes possible to neglect the reciprocal sum withGÞ0 by
diminishing the parametera value and including the contri
bution from the first layer of image cells in the real spa
summation. A significant reduction of the computing time
given by the calculations with a precalculated table, ho
ever, the calculations are still slower than those using
conventional three-dimensional Ewald summation~compare
data in Ref. 18!.

We should point out that the regular three-dimensio
Ewald technique was applied also in case of systems peri
in two directions including an empty space into the ba
simulation box to avoid an artificial influence from the pe
odic images in the third direction~see Refs. 16, 18, and
references cited therein!. Recently, Yeh and Berkowitz18

showed that even large height of the simulation box, i
large size of the empty space, does not eliminate the c
pling between the periodic replicas of the interface, a
simulations of interfacial systems using that method can l
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to erroneous results. Therefore they included the sha
dependent correction term, suitable for the slab geome
proposed by Smith.19 The modified approach,18 i.e., the
three-dimensional Ewald method with a correction term
computationally efficient and accurate, however, to get g
numerical results, the simulation box must also contain
empty space.

Finally, we must stress that the two-dimensional Ew
summations given by Eqs.~10! and ~27! as well as the
RHHR approach10 treat correctly long-range interactions
o

c

e

e-
y,

s
d
n

d

system of finite thickness. Therefore, although the calcu
tions are rather slow, the results of simulation using
method proposed here may be used to test other techniq
as it was done in Refs. 16 and 18.
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