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Ewald summation of electrostatic interactions in molecular dynamics of a three-dimensional
system with periodicity in two directions
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The Poisson summation formula is used to calculate the effective interaction of charged particles in a
three-dimensional system with periodicity in two dimensions. The interaction energy expression is identical to
that obtained from the Berthaut approach for the Gaussian spreading function, and its correspondence with the
results of the Rhee-Halley-Hautman-Rahman method is shown. The formalism based on the Poisson summa-
tion formula is used also to calculate the interaction energy of point-dipole moments.

I. INTRODUCTION In this paper, we apply the Poisson summation forula

Computer simulation techniques often require efficientto derive the effective energy expression for long-range Cou-
summation of long-range electrostatic interactions. For thredomb interactions in  molecular dynamics of three-
dimensional periodicity of a system the Ewald summationdimensional system with periodicity in two directions. This
method is well known and widely uséd® Few years ago approach corresponds to the method for systems under peri-
Fuchizak? elaborated a generalization of the Ewald methododic boundary conditions in three dimensicrend we ana-
concerningp-dimensional space anpg-dimensional lattice lyze singular parts of the energy expression using the con-
sums of quantities characterized by inverse power law anglergent factor for a conditionally convergent sum. The
modulation wave vector. A relatively simple expression wasobtained results are compared with the energy functions
derived for odd-dimensional lattice and for arbitrary powerachieved from the other methods, particularly, the extension
as well as modulation wave vector. However, in many prob-of the Berthaut methdd and the RHHR methotf. There-
lems of interest in physics and chemistry one encounters sy$ere the first part of the work constitutes a test of the ap-
tems which are infinite in some directions and finite in oth-proach based on the Poisson summation formula for a geom-
ers. In simulations of liquid and solid surfaces, membranesgtry appropriate for simulation of surfaces and interfaces
fluid trapped between two walls, adsorption processes on eontaining charged particles. Then, considering the same ge-
surface, etc., one needs an extension of the Ewald method fometry of a system of particles with point-dipole moments
a three-dimensional system with periodicity in two directionswe apply the method to find an expression for the dipole-
only. dipole interaction energy.

In the past, several methods for semi-infinite systems of
charges have been developed and téstédn computer
simulations. Heyes and co-workéfsredeveloped the Ber-
thaut method? for a charge spreading function of arbitrary ~ We consider a simulation box in a shape of prism, with a
analytical form, to obtain expressions for the electrostaticsquare base XL and any height, which contaimécharges.
energy in infinite lamina. Considering the ionic charges ovefThe box repeated in thex(y) plane gives a two-dimensional
the polar surface of a large piece of rigid ionic crystal Sthith tetragonal lattice, and in the box centerechat(n,,0), n,
found expression for the interaction energy of the charges-L(n,,n,) wheren, and n, are integers, a chargg is
[Eq. (68) in Ref. 9 which partly coincides with that pre- located atr;+n. The total interaction energy of the basic
sented by Heyes and co-workers for the Gaussian spreadirggmulation box has the following form:
function”® Almost a decade ago Rhet al° proposed an-
other method, called here the Rhee-Halley-Hautman- 1 N
Rahman(RHHR) method, in which the energy expression Ecc=§ 2 2'
was split into sums over the real and reciprocal-space lattices hi=1
introducing a separation function. The separation function i . .
defined mainly in the reciprocal space and its suitable choic the above expressian; =r;—r;, and the sum oven is a

causes both sums to converge at a sufficiently rapid rateum over all tetragonal lattice cells where the prime indicates
that forn=0 the terms withi=j are to be omitted. Taking

(_i)nto account geometry of the system the relative charge po-

The method may be applied to systems in which the size 01N Tij (;S ﬁprreSSEd by;j = (€ij ,2ij) - Defining the function
the periodically replicated cell is larger compared to the ex-P(r) and the factob, as

tent of the charges in the normal directions. This limitation is 1 1

due to the fact that the interaction was expanded in a power q)(r)zz forr+0, and®y= 2 )

II. COULOMB INTERACTION

diq;
rij+n|”

@

series inAz/Ap whereAp and Az are the components of 7 |r+n|’ iZo|n|’
the distance between particles parallel and perpendicular to
the plane of the periodic continuation, respectively. the total energy can be expressed by
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1NN N =1/t. The two integrals appearing in Eq) are knowr® and
) 2 ]2 qig; P (rij)+ 5 E 47 ®o, (3)  one obtains the following form ob(r):
j#i
erf r+n
where the first term represents the interaction of a chargeb(r)=>, M 12
with other charges from the basic simulation box and their n [r+n| L
images whereas the second term describes interaction of the QiG-0 G
charge with its own images. To calculate the lattice s(@ns X D Gz erf({_ +az
we use the identity basing on the integral representation of é7o G 2a
the gamma functiort G
+ eGZerfc< —— az)
1 j 1 tht @ 2a
— == | tte
x2s T'(s))o 2\/— oy (e +2\/—| o
for s=1/2, and the Poisson summation fornidldor the |_2 a zerf(az) t_':l N
two-dimensional spacex(y): @®
- G? here the singularity arises from th di | of ex-
ety T iG-o e where the singularity arises from the second integral of ex
E € ¢ L2t Z € exp( 4t)' ®) pression(7).

The same procedure applied to the evaluation of the factor
In the above equatio is a two-dimensional vector in re- ¢ yields

ciprocal lattice ands=|G|; G=2m(k,k,)/L wherek, and
k, are integers.

1 (> . 2
Using Eq.(4) the function®(r) may be expressed by ‘I’o=go —TJ Rt In"tgt

1 (~ 2
(D rN= _J’ t—1/2e—|r+n\ tdt
=2 ]

2 2
“p-Vzg—Ingl’t gt — ij“ t~ 224t
Jmlo

¥ 1J
ng\/;O

+ LJ'O(Z':71/297\QJrnQ\thZztd.t7 (6) (ga)
T erfo(aln]) | G
where the integral is split into two parts to eliminate singu- = > T Y f t ex;{ E)dt
larity which is expected inP(r), and the parametew?(a n+o L= 6o Jo
>0) is chosen for computational convenience. Direct calcu- \/; 20
lation of the integral in the first term and application of the +— t gt— — (9b)
Poisson summation formu(&) to the second term of expres- 0 ™
sion (6) gives
erfo(a|n|) T 1 fc( G)
o= erfoa|r+n|) N 2\m S oo 20 ] LZ 2. G e 5,
n r+n| L? &Fo
L 2\/? 2( 1 2a (90
xf ex —Gu—z—du a'-z to“/— \/—
1/ 4 U2

To apply the Poisson summation formula in E§a) the
\/; 32— 2 n,=0 term is added to the lattice sum with the integral on
1z J t dt, () [0 «?] and then subtracted separately.
Inserting expressiong8) and (9¢) into Eq. (3), after
where the term folG=0 in the sum is evaluated separately simple calculations, one obtains the final form of the total
and the second term is achieved using the substitutfon interaction energy

erfd:a|(glj+nglzlj)|] ™ N
Ecc__ “ aig IZ Qlj+ng’zlj)| o2 2: id

G#0

+ —GZij f E_
e er 2 aZij

E q.qJ

|]—l

2.2
TR \/;Zij erf(azij)

N
- % S o (10

In the calculations we use charge neutrality of the system, which allows us to eliminate the singularities occurring in
expressiong8) and (9). These singular terms give the following contribution to the total energy:
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N e—z?jt N (— 22 ktk-112 expression(130) is achieved. The final fornil3d may be
> g;q; lim => g;qg; lim 2 ”— obtained using the Maclaurin series for the exponential func-
ihj=1 {0+ \ﬁ ij=1 t0+K=0 tion and error functiod? Similar procedure applied to the

N s L singular part of the lattice sunb, gives
= i lim —, 11
(Zlq') Ho*\/f (12) f fs/(a +3)
2 [
and it is zero because it contains the factﬁfxlqi)Z:O. ‘[(HS) L Vs (1-uu
To analyze the singularities appearing previously we use s—a?\ =
the approach proposed by de Leeuw, Perram, and 3mith == arcsir{—z - =
introducing the convergence factor exgg{n|?) in the lattice L2\s Sta 2
sums®(r) and®
(r) 0 alx 2
a2 a2 =—|—=——+0(s*?]|. (14)
e s/n| e s[n| L2 \/g o
d(r)= z forr#0, and®,= >,
| + | n#0 |n|

Combining Eqgs.(13d) and (14) one obtains the following

(12) contribution to the total energy:

The parametes is positive and after calculations we take the

limit as s—0. We concentrate on the singular parts intro- azg
duced by theG=0 terms which correspond to the last inte- ~ .21 gl ) A+ Vmzer(az;)
gral in Eqg.(7) and the third term in Eq9b). For the lattice
sum ®(r) defined by Eq.12) the interesting part has the Jm| o N 2
following form: + L2 $+O(sl’2) (IEl qi) ) (15)
_Trfa"‘ dt p(_ stlo|? _th) Because of charge neutrality the second term vanishes and
Jt(t+s) t+s taking the limit ass— 0 the expressiofil5) tends to the third
term of Eq.(10). The above calculations indicate that the
. \/; s(2-|0?) convergence factor exp@n|?) for conditionally convergent
- Lz_\/ge sums does not introduce any additional term to the total-
energy function described by E€L0).
g?rs  du , sZ Heyes and co-workef$ using the Berthaut methdtide-
X f ————exp s|o|u— —) (139 rived expression for the Coulomb potential of infinite lamina
! V(1-uju u point-charge lattice. They considered different spherically
symmetric charge spreading functions. Among others they
- _ ﬁes(22|g|2){i arcsir{ s—o? _ zl used Gaussian function where the charge density at a dis-
- 2 2 2 tance u from the lattice sitej was given by q;a®exp
- Vs St (—u?ad)/7*?, and application of the function leads to the
* 2@2m—1z2m N energy expressidlf identical to that given by Eq(10).
- Z (— 1)mm O(s"? (13b) One must note that the approach proposed by Sraithd
m=1 ' the integral representatidd) and the identity(26) in Ref. 9,
" which corresponds to the Poisson summation forn{Gla
:ﬁes(zz,m@) m E+ S o(—pym Therefore the Smith’s method is similar to that presented
L2 a wh here and the first two terms of E@8) in Ref. 9 are identical
to the first, second, and fourth terms of EGO) when «
22 1z2m s =py/L andG=2mu/L. The third term of Eq(68) in Ref. 9
X Zm=1mi +0(s™) (130 represents contributions to the energy expressiorGfer0.
In the Smith’s method th&=0 term was calculated in dif-
\/— ) ferent manner anc_i it is defined by the funqti@n;(r) [I_Eq.
_ s2-lo| T _ Z e (63) in Ref. 9. It is easy to see that the first term in the
L2 { Js @ functionW5(r), for a net charge of a simulation cell assumed

in the method, diverges as the thermodynamic ligit « is
taken, and it corresponds to the singular parts of Ejsand
~2\mz erf(az)+0(sl’2)1_ (13d (9 that are removed due to the charge neutrality condition.

The remaining terms in the functiofr;(r) should give the
Equation (139 is obtained by using the substitutiom  third term of Eq.(10), but because of approximations made
=s/(t+s). In the right integral of Eq(133 the exponential in the Smith’s calculations we fail to prove exact equality of
function only is dependent on the parameteand expand- these terms.
ing this function in a power series mand integrating term Rheeet al!° proposed a different method for the treat-
by term one obtains Eq13hb. We are interested in very ment of the long-range Coulomb interactions when the sys-
small values of the parametsyand hence representing the tem is finite in one of three dimensions. The method, starting
arcsine function by the Maclaurin series with respecttioe ~ from the charge density and solution of the Poisson equation,
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introduces a functiof(«,G,z) which allows us to separate the electrostatic energy into a sum on lattice vegtamsl a sum
on reciprocal-lattice vectorS. The separation function must hdlfle,0,z) =1, where the parameter determines how fast the
function approaches zero for lar@e For the symbols introduced previously the total en&tdpas the following form:

1 P e~ Glzjl G T
_ / -G _
ECC_Ei,jZl qiqj% F(aaziijij+ng)+FiJ§__:l Qin;OTf(a,G,Zij)e @i E
N
f(a,G,z;) 1 ®
X,Z 0;q; |Zij|_—IJ _—2 Q.Zf f(2,G,0/dG, (16)
i,j=1 JG G=0 2 i=1 0

where we use the explicit expressions fo(«,{z;}) and terval[0,27] gives the Bessel function of the first kirlg.
c,(a) derived in Appendix A of Ref. 10. The functions The integral representatithof the right side of Eq(18b)
F(a,z,0) and f(a,G,z) are related through two- and the change of the integral order give E#9a. The
dimensional Fourier transform as folloEq. (A1) in Ref.  integral with respect t@ may be performeld to give Eq.

10]: (19b) where the substitution?= G?/4t is used] ;, andl _,,
ol are the hyperbolic Bessel functions whicgﬁcan be expressed
—i e by the hyperbolic sine and cosine functiofigespectivel
- iG 042, _ _ y yp £esp Ys
27 Q(Q)F(a’z’g)e do=—g[1-H(aG2)], and one has the known integrawhich gives Eq.(190).

(17 Finally, using the explicit form of the functiof{ «,G,z) one
hereQ.(o) d hole infini di ional Iobtains the right side of Eq17). Moreover, it is easy to
where{)(g) denotes an whole infinite two-dimensional rea prove that using Eq(18a in the two last sums of Eq16)

space. ives the corresponding sums in Ed0).
It is easy to see that expressi@tb) has the same struc- g P g H40

ture as Eq(10). We must note that the functions appearing

in the second and third sums of Ed.0) are even functions Ill. DIPOLE-DIPOLE INTERACTION
with respect toz;; and Eq.(10) may be rewritten replacing ) ) . )
z;; by |z;;|. Therefore comparing Eq§16) and(10) one has For N dipoles located in the rectangular simulation box
two identities: and periodic boundary conditions applied to the box in the
plane ,y) the total interaction energy of the basic simula-
1 G G tion box has the following form:
f(a,G,z)==| €2l erfd — + a|z| | +erfd — —al|Z| ||,
2 2a 2a
N
(83 E :E E 2’ M- 1
erfa(a|(0.2))) 2T
F(a,Z,Q)ZW, (18b
' Q[Mi'(rij+n)][ﬂj'(rij+n)] 5
where the function18a equals one foilG=0. First of all oo Irii+n|® (20
one must check that the functiohandF are related through 4
Eq. (17). The Fourier transform of the functioR(«,z,0) , )
may be expressed as follows: where the symbols have the same meaning as in Sec. Il, and
i denotes a dipole moment which is located;atn in the
1 iGouo box centered ah. Introducing the lattice sum¥(r), ¥y,
> “(Q)F(a,z,e)e ede 0(r,&), and® (&) and defining
_ 1 J'wdte’zztt*%fmdgge*wz‘] (Go) (198
T 0 Y(r)= , forr#0, and¥,= 2>, —,
Jmla? 0 v ; Ir+n|3 ° r§o|n|3
(219
1J'G/2a p( u? G%z22 1(u2) l(uz)
== uexp — 5 — I_l—=]—1}—/|du
G 0 2 4u2 2 2 2 2 e*ig'(r+n)
(19b O(r,§=2 ———=, forr#0,
ol noo|r+n|
_¢ 2—e?6l4 grf E+az —erf E—az
2G 2a 2a ' i
o-if
{86 andOg(£)=>, (21b)

. . . 5"’
In the calculations we introduce the polar coordinate system n70 [n|
(0,9), wheree is an angle between the vectorand a space
fixed vectorG, and integration with respect ¢ on the in-  the total energy20) can be expressed by
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1 NN 1 N In the case of the sum@1b) we use the identity4) for s
=5 > D mp r,J)+ E | i 2 =5/2 and the Poisson summation fornidla the following
=t form:
3 N N
t32 2 (- V-V )O(r;; &) S, e tlemglrigeemngl= TS giee
i #i £=0 No Lt G
L3 S X ex et gl
5 2 (1 VI (mV9O(§) (22 a )
_ e 24
In the above equation the first and third terms describe inter- @49
action of a dipole moment with other dipole moments fromand the sums are given as follows:
the simulation box and their images whereas the second and
fourth terms represent interaction of the dipole moment with
its own images. Similarly as in the previous section each O(r, &)= 2 e—ug(r+n)J 32 Ir+nl’ty¢
vector is represented by its components parallel and perpen-
dicular to the planex,y) andé=(§,.¢,).
We calculate the sum@1a in exactly the same way as 4\/— 2 oiGe-itz
for the Coulomb interaction lattice sums, and the ider(#y 3|_2
for s=3/2 and the Poisson summation form¢fa lead to
< 1 2 |G+§9|2
2 - ) X |t Y2exp —Z2t— ————|dt,
‘l’(r): _ E f tl/2e—|r+n\ tdt 0 4t
m o Ja (258
2 : o? G?
+—\/2; > e'G'QJ t‘l’zexp( 2t—4—t)dt
L2 G 0 O£ w_goe I§nj 1320 Inltg g
(233
4J— G+ & 4a®
:i 2 tl/ ~|n|? tdt 3L2 % 0 t 1 X[<_| 4t§e| )dt_ 3\/—
\/; n#0 .
(25
e > f“zrl’z p( Gz)dt 408
exp — ——|dt— ——. i i iti i .
2 < Jo at 3\/; Inserting the identitie$23) and (25) into Eq. (22) and per

forming required calculations the total energy of the dipole-
(23b  dipole interaction is given by

N
Edd:— .21 2/ r(ﬂll'LJ)f 2tl/Ze*|rij+n|2tdt_2[ﬂi,(rij+n)][ﬂj.(rij+n)]f 2t3/2erij+n2tdtJ

@ _1n 2 G? 2 (<% 2 G

N
+— E 2 e ei(uiuf)

,_
I
A

N 2 N
) G .
+iﬁ > e'C il ui(pl G+ (uf- G)MJ]Z'JI e p(_zizit__ dt+ £ > E e'®Ci(ul-G)
L ij=1 G0 4t 2121721 &%0
i#]
2 G2 243 N
@ L-32 2
X(”FG)jO t exi{_zijt_ﬁ>dt_ \/—E |M| ) (26)

where the components of the dipole moment parallel and perpendicular to the plgneate denoted byu? and u?
respectively. The integrals in E¢26) may be performetd'® to give the final expression of the dipole-dipole interaction
energy:
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pzd

1
Eqa= 2| Z (- ILJ)B[CY|(Q|1+“Q,Z”)|] Lo Q|J+ngaz|1)][ﬂj (Qlj+nelzlj)]c[a|(Qlj+ng!zlj)|]}
N
Z’LTZIJEIEw.upcos(eeij){E(a,e,zi,->—G[D<a,e,zi,->+D(a,G 2o 2 > [uinf-

cog G- o;;
+(pf-G)u]si(G- )[D(@.G,z))~D(.G,~ 21+ ”21 2 (1f-G)(p G)%[D(a,e,zip

N
+D(a,G,—z 2 | |2 (27)
|

with change the separation function, which depend on the vector
5 o G in the two-dimensional reciprocal space and may depend

B(a,r)=erfo(ar)/r®+ (2almexp — a?r?)ir?, on the variablez in the real space. Our results indicate that

5 5 5 for a given charge spreading function one may find corre-
Cla,r)=3erfdar)/r®+(2al\m)(2a%+3I?) sponding separation function in the RHHR method, e.g., for

the Gaussian spreading function applied to charges the sepa-

X exp(— a?r?)/r?, . SRR :
ration function is given by Eq(18a. Of course, a given

D(a,G,z)=expGz)erfd G/l2a+ az), separation function is associated with a certain charge
spreading function, however, the calculation may be hard or
E(a,G,Z) — (4&/\/;)qu o G2/4a2— aZZZ). even ImpOSSIble.

From the physical point of view the Berthaut approach is
In practice, taking into account the fact that for typical valuesthe most instructive method; the energy function is derived
of the parameteww=5/L the functionsB(«,r) andC(a,r) from first principles and the method illustrates the physical
decay quickly to zero with increasingthe real-space sum is ideas. However, the method may be hardly applied to inter-
truncated by omitting contributions from pairs for which  actions of higher electrostatic multipoles and in those cases
>L/2. In other words, the real-space sum is restricted to théhe Poisson summation formula should be a helpful tool,
basic simulation box, |eng (0,0) and the normal mini- which we show for the dipole-dipole interactions.
mum image convention is applied, and it is calculated in the At the end we would like to comment shortly numerical
same way as in a case of a system with periodicity in threémplications of the obtained results. Because of the double
dimensiong:®> Moreover, it is easy to prove that apart from sum over all distinct pairs of particles in the reciprocal space,
the last sum the expressid@7) can be obtained from Eq. appearing in Egs(10) and (27), the direct use of the two-
(10) replacingq;q; by _(Mi'vri)(ﬂj'vrj)- dimensional Ewald summation formula is computationally
expensive. To improve efficiency of the summation of the
Coulomb interactions two modifications were proposed.
Spoht® suggested the use of a precalculated table of poten-
Using the Poisson summation formula we redevelop arial energy, forces, etc., and the calculations may be per-
Ewald method for the Coulomb interactions in systems withformed by interpolation of the table. The other apprddéh
periodicity in two directions and finite extent in the third makes possible to neglect the reciprocal sum V@th 0 by
direction. We show that the convergence factor, proposed bgliminishing the parameter value and including the contri-
de Leeuw, Perram, and Smithintroduced in the two- bution from the first layer of image cells in the real space
dimensional lattice sums allows to eliminate the singular parsummation. A significant reduction of the computing time is
in elegant way but does not give any additional term, pargiven by the calculations with a precalculated table, how-
ticularly a term proportional to the square of the net dipoleever, the calculations are still slower than those using the
moment of the configuration which was achieved for a threeconventional three-dimensional Ewald summatioompare
dimensional systerh. data in Ref. 18
The method based on the Poisson summation formula We should point out that the regular three-dimensional
gives the same expression for the electrostatic energy as tt@vald technique was applied also in case of systems periodic
Berthaut method with the Gaussian charge spreading two directions including an empty space into the basic
function/® We prove also that the RHHR meth8dor the  simulation box to avoid an artificial influence from the peri-
separation function defined by E(l8a gives the energy odic images in the third directiofsee Refs. 16, 18, and
function identical to that obtained from the method based omeferences cited therginRecently, Yeh and Berkowit?
the Poisson summation formula and/or the Berthaut methocghowed that even large height of the simulation box, i.e.,
In that sense the three methods are equivalent. The Berthalatrge size of the empty space, does not eliminate the cou-
method allows us to modify the charge spreading function impling between the periodic replicas of the interface, and
the real space whereas the RHHR method gives possibility tsimulations of interfacial systems using that method can lead

IV. CONCLUSIONS
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to erroneous results. Therefore they included the shapesystem of finite thickness. Therefore, although the calcula-
dependent correction term, suitable for the slab geometrytions are rather slow, the results of simulation using the
proposed by Smith? The modified approacH, i.e., the  method proposed here may be used to test other techniques,
three-dimensional Ewald method with a correction term, isas it was done in Refs. 16 and 18.

computationally efficient and accurate, however, to get good

numerical results, the simulation box must also contain an
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