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Heuristic model for slow relaxation of excess conductance in electron glasses
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We discuss relaxation of excess conducta@ observed in recent experiments on electron glasses. Using
a simple model based on some salient features of a hopping system with interactions, we show that for
relatively short times\G scales like In) and it becomes faster than that as time evolves. The crossover to a
faster than Inj) dependence occurs when,,t=1, wherew,,, is the smallest relaxation rate in the system, and
t is the observation time.

INTRODUCTION very useful technique to monitor relaxation over extended
periods of time as it is less susceptible to temperature fluc-

The existence of a glassy phase in Anderson insulatortiations and instrumental drifts than the straightforward
was theoretically predicted by several authb®ecently “one-shot” measurement ah G(t). Using this technique it
there were several reports on the nonergodic transport propvas showfi that r depends on disorder, magnetic fields, and
erties of such systenfs**When excited from equilibrium by ~on the carrier-concentration® The dependence om turns
either exposure to a burst of light or a sudden change of theut to be very dramatict changes by almost three orders of
carrier density, the conductance of such systems increasesagnitude whenn is varied in the range 410°-5
This property was shown to be inherent to the hoppingx 10°°cm™3. This nontrivial observation led us to conclude
systen? More surprising is the observation that the excesghat electron-electron interactions must play a major role in
conductanceAG persists for long timegin some cases, the slow relaxation process.
hourg after the excitation. Recent experiments suggest that Figure 2 showsA; ,(t) for two samples with different
such extended relaxation times are associated witland the wayr is determined from such data. This figure
interactions’ illustrates three points. First, the decrease wfith decreas-

Another question is the specific form of the relaxation lawing n. Second, note that a logarithmic law fits the,(t) data
AG(t). It turns out that for relatively short times, the tem- fairly well over three decades. Third, the behaviorAqt)
poral dependence @G can be well described by a logarith- andA,(t) is “complementary”—one grows at theamerate
mic law® Computational results based on the Coulomb gapat which the other diminishes. We shall use this interesting
model that predict such a temporal dependence, over similaymmetry later on.
time scales, has been recently report&tihen the measure-
ment is extended over longer times however, a better fit to
AG(t) is a power law, namehAG(t)«t™“ with « of the
order of 0.2-0.3. A reasonable fit toAG(t) can be also
obtained by a stretched exponent, namely,[ eXpt’)?] but
this entails the price of an additional parameter.

Either form of relaxation, namelyAG(t)«=In(t), or
AG(t)ect™ has no natural time scale. Nevertheless a char-
acteristic time scale can be defined empirically by the two-
dips experiment (TDE).* This experiment employs a
MOSFET structure where the Anderson insulator forms the
active conductance channel and its conductance is monitored
as a function of the gate voltagg,. In theG(V) plots one
observes two dips with amplitudds andA,. The decaying
dip A, occurs at the cool-dowly; and the growing dipA,
at theVg, to which the gate voltage is switchedtat0. The
amplitude of the dip#\; , are measured as functions of time
with a time resolutiort, (the time it takes to sweey, from
Vg1 t0 Vg, Which is typically 30 & A typical TDE is shown
in Fig. 1 illustrating howA; diminishes witht while A, FIG. 1. Anillustration of the TDE. The right dipA;) occurs at
increases with. An empirical “relaxation time” 7 may then  the cool-down value of/y and decays in time. The left dipAg)
be defined by the time at which the two dips have the sameccurs at the value to whictg is switched at timé¢=0 and grows
magnitude, i.e., byA,(to+ 7)=A(to+ 7). The TDE is a witht. Rp=3.8MQ andT=4.2K.
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10 . . : . T the field modifies the site potentials or because the concen-

I e 4 | tration of _partlcles changed. To make the transition from one

o A ./0’ quasiparticle structure to the other, some particles become

06 o, ¥ “bare” and via subsequent transitions then rearranged into

0al /,:,:*Q\ | new quasiparticles. Similarly when the concentration is sud-

' o ¥ T O‘O\Q denly changed, bare particles enter the system and they
n=5-10" cm .

02 | o gradually form quasiparticles. The formation of quasiparti-

S , , ) cles in glasses is a hierarchical procéss.such a process
g : - ‘ - T the motion of particles becomes gradually correlated with
< sk o .- i more and more other particles and their mobility decreases
1107 e’ _.,,—"' rapidly, as the “dressing” becomes more complete.
081 a4 ] In the simplest possible model, the particles contribute to
04k g il excess conduction only while they are totally bare. In other
7 \\O‘b"- words, we neglect the contribution of “partially dressed”
02r | O\“\Q\ i particles to the conduction. The excess conductance is then
00 . . . . > proportional ton(t). We farther assume that the generation
10° 10’ 10° 10° 10° 10° 10° of bare particles from the “old” quasiparticles is as imme-
t(sec) diate as the excitation, e.g., change of local potential with a

field.

To calculateAG(t) we thus need to know the number of
bare particles as a function of timg(t), i.e., how many
survive at timet as undressed particles. The dressing of par-
ticles is controlled by a distribution of transition rat@sAs
is usual in hopping cases, the rateslepend exponentially

In this paper we offer a heuristic picture to explain SOME " me random variable(hopping distance andfor ene)
of these experimental observations. The model we consider pping distance €19y
=wg exd —x]. The random variabl& is distributed with a

assumes the existence of a wide spectrum of transition rat .

of a variable-range-hopping systemF.)This of course is gener Fncﬂon N(x). ThenN(w)dw=N(x)dx, or
and inherent to the hopping system whether interactions are

present or not. Depicting the relaxation as a “dressing” pro- N(w) = N(x(w))% — i
cess pictorially includes the effects due to intercarrier inter- dw dw
actions. The model explains theG(t) = —In(t) dependence

of the relaxation for relatively short times and the faster de- =— %N
pendence at later times. It also explains why at a certain

limit, the characteristic relaxation time appears to be onl . .
PP 4 e now calculaten(t). The number of particles withwv,

eakly dependent on some parameters such as disorder
weakly Cep P N ! ﬁfw,t) which survive to time is n(0)N(w)exp(—wt)dw, so

FIG. 2. The time dependence Af, A, for two different carrier
concentrations1. The experimental “relaxation time'r is deter-
mined by thet at which A;=A,. Notice the logarithmic depen-
dence ofA;, A, ont and the symmetry in their slopes.
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EXPERIMENT n(t)=f N(O)N(w)exp(—wt)dw
Samples used in this study are thin fili290 A thick of
amorphous indium-oxide-gun evaporated on 0,6m thick :j n(O)( — %N _|nﬂ ]exp(—wt)dw
SiO, layer thermally-grown on a heavily doped Si wafer. w Wo

The latter served as the gate electrode. In this system we W
have the advantage of being able to control the carrier- :j n(O){——ON
concentratiom over a wide range (#8-3x10?2cm ) by wt
varying the oxygen/indium ratio during film deposition. Dis- 1
order energy could be varied for each sample by thermal :—n(o)wof [— —N
annealing® Combining these two it was possible to produce X

a series of samples with differentout with similar conduc- Ignoring for now the slowt dependence inherent in the loga-

tivity at 4.1 K. oo L i
Conductivity of the samples was measured using a twcglthmIC dependence dfl, n(t) appears to be time indepen

terminal ac technique employing a 1211-ITHACO Currentdent. This of course cannot be exact. The reason for this
preamplifier and a PAR-124A lock-in amplifier. Fuller de- problem is that we ignored the physical need for the exis-

. . . tence of some minimum rat®,;,. (There is of course also
tails of sample preparation and measurement techniques ale . but it is clear f h
given elsewher&5 e maximum r_atqvo [see Eq.(1)], L ut it is clear from the
above that this is irrelevant far-w, *~ 10" 1?sec) If we do
incorporate the need fav,,, as the lower limit of integration

THE MODEL overw (in the simplest way by assuming a constant distribu-

We consider the case of an Anderson insulator excited bjjon of x betweozcen SOMEmin andxmay), the last integrgl in Eq.
applying a sudden voltage step at the gate. When a field i) becomes/(;, (L/x)e*dx. This is a well know’ func-
applied, the structure of the quasiparticles changes becausen of w,,,t. The expansion for smaW,,t=xy, is

W
Wo

] exp —wt)d(wt)

| X
—In—:
Wot

]exq —x)dx. (1)
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FIG. 3. The decay of “undressed” particlésee text with de-

A. VAKNIN, Z. OVADYAHU, AND M. POLLAK

PRB 61

We now wish to comment on the assumption thad
arises only from the presence of bare particles. We could
have considered just as well some later stage of the hierarchy
where the particles are already partially dressed. After the
free particles undergo the first stage of dressing, i.e., after
1MW, their motion becomes correlated with a gradually
larger number of particles and their mobility keeps decreas-
ing. At any stage of the hierarchy, relaxation is governed by
a spectrum of rates, which are exponentials of random vari-
ables. The decay of the conductivity will thus be described
by the same equations as those derived above for the bare
particle stage, but withkx ranging over successively larger
values, with gradually lower mobility, and with gradually
smallerw,,,, during successive stages of the hierarchy. The
functional dependencA&G(t) will be the same for each
stage, but with a scaled dowhG and a scaled up. The
question of which stage of dressing is observed then merely
depends on the range of experimental times. The above dis-

cay ratesw taken to be exponential functions of a random variablecussion suggests that generality is not lost by assuming that
X, W=W exf —x]. The figure corresponds to a uniform distribution the system is at the first stage of the hierarchical evolution.

of x with an upper cutoff ak,, and thus a minimum allowed;,

=Wy eX{ —Xml-

n
Xm
n-n'’

y—ln(xm)—n; (—1n (2)

The above picture would result in a sequence of relax-
ations of AG which may not be smoothly connected. There
are two natural ways in which the total relaxation curve is
smoothed out. The realistic distributid(x) is not cut off
sharply atx,,, and the various stages of hierarchical dressing
will overlap in time, i.e., at any given time different particles

wherevy is the Euler constant. The terms of the sum alternateyill be at different stages of dressing.

in sign (the first is negative Since for smallk,, the magni-

We now return to the experimental results. As already

tude of the terms in this sum decrease with increasingioted, Eq(2) agrees with previously reported measurements
n, the sum over all terms must be negative so thabf AG(t) inasmuch as at shott(presumablyt<w 1) the

—30_1(=1)"(xp/n-n!)>0, with the absolute value in-
creasing withx,, . It therefore enhances|In(x) (also positive

min
relaxation is as log) and at longet the relaxation becomes
somewhat faster and representable by a power law. This be

for x,<<1), and hence renders the relaxation to be gradualljravior was found for a wide variety of parameters, except for

faster than Inf,,,t) ast increases.

It should be stressed that the derivation of E2). ne-
glected any effects of the distributidd(w) other than to
consider the need for a cutoff at somg,;,. The main justi-
fication for such an assumption is that the argumenNof
changes only logarithmically with[see Eq.1)]. Thus, the
change in the argument & may not be significant for a
considerable change in Over reasonably large intervals of
time, the time dependence of E&) can be approximated by
t~“ with a small value ofe. Such a behavior is indeed ob-
served in our experiments.

The very slow decay of(t) can be best understood by
plotting the integrand of Eq1) on a logf) scale. On such a
scale, the function exp{wt) resembles a step function, unity
for t<w™! and zero fort>w~!. The densityN(w) is
mainly proportional to 4 which makes the density uniform
on a logf) scale: N(w)=dN/dwe1/w, so w(dN/dw)
= (dN/d In w)cwP=const{v). The situation is represented in
Fig. 3. The curves represent the functiamsv,t), i.e., the
functions exp{-wt) in accordance with the required distribu-
tion N(w), with decreasingv from left to right all the way to

samples with low carrier concentration where the relaxation
is much faster. In terms of the above model this can be
interpreted as a rather largg,;,, such tha’wr;iln is no longer
much larger than. All this also ties in well with the experi-
mentally observed behavior af WheneverAG(t) can be
fitted to a power lawy is observed to remain nearly constant.
This can be interpreted within the model in the following
way. As long as the-w,;,<<1, even though the ratesg for
the individual microscopic processes may change drastically,
e.g., by a change of the temperatdrer by increasing dis-
order. For demonstration we use the fact that the power law
is a scaling function obeyingn(ct)=c™ “n(t). Then the
equation which definest gives Ai(tg)=2A(to+7)
=2A1(to{[to+ 71/to}), SoC=[tg+ 7]/ty. The scaling prop-
erty of A; results in (1/27(tg) =c*A4(tg) =A(cty), or
1/2={[to+ 7]/to}* which gives
r=(2¥—1)t,. ©)
So 7 depends only o and onty and we can expectto be
the same for all samples as longa@semains the sam@nd

Wnin- At anyt, the sum over all the curves is proportional to we keep the samg).

n(t). The decrease ofi(t) within some intervalt corre-

In experiments reported earlfewe performed a system-

sponds to the number of curves which decayed within thisatic study ofr(n) on a series of samples while the conduc-
interval. Sayt progresses for several decades, but such thatnce,ty, and temperature were all kept constant. For
Wnint<<1. Then relatively few curves of all those remaining above a certain value we observed a constant value, of

up to wp,; have decayed, so the relative decrease(dj
over its time interval is very small.

which was about 1500 s. The experimental behavidkdft)
at timest< 7 could be well described ByA;(ct)o(ct™%?).
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Using Eg. (2) with a=—0.2 andt,=30s one obtainsr A dramatic drop in the value of was observed as the
~1000s, in fair agreement with the experimental value. concentratiomn fell below a certain value. Presumably the

The situation changes when thecroscopicrelaxationsy rapid decrease of(n) signals a transition towards a differ-

become fast enough sg, . approaches the observation time ent, fasf[er mode of decay, perhap_s even t_o_ergoqlic relaxation.
t such that,, in Eq. (2) is no longer small. The contribution It is of interest to see whether this transition might be to a
m . .

from the sum in Eq(2) then rapidly increases in importance "€9ime where interactions cease to be important.
as wr;ﬁ1 approached, andn(t) can no longer be approxi-

mated by a power law over a large rangq.oﬁxs a result the ACKNOWLEDGMENT
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