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Heuristic model for slow relaxation of excess conductance in electron glasses
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~Received 8 September 1999!

We discuss relaxation of excess conductanceDG observed in recent experiments on electron glasses. Using
a simple model based on some salient features of a hopping system with interactions, we show that for
relatively short timesDG scales like ln(t) and it becomes faster than that as time evolves. The crossover to a
faster than ln(t) dependence occurs whenwmint'1, wherewmin is the smallest relaxation rate in the system, and
t is the observation time.
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INTRODUCTION

The existence of a glassy phase in Anderson insula
was theoretically predicted by several authors.1 Recently
there were several reports on the nonergodic transport p
erties of such systems.2,3,4When excited from equilibrium by
either exposure to a burst of light or a sudden change of
carrier density, the conductance of such systems increa
This property was shown to be inherent to the hopp
system.2 More surprising is the observation that the exce
conductanceDG persists for long times~in some cases
hours! after the excitation. Recent experiments suggest
such extended relaxation times are associated w
interactions.5

Another question is the specific form of the relaxation la
DG(t). It turns out that for relatively short times, the tem
poral dependence ofDG can be well described by a logarith
mic law.6 Computational results based on the Coulomb g
model that predict such a temporal dependence, over sim
time scales, has been recently reported.7 When the measure
ment is extended over longer times however, a better fi
DG(t) is a power law, namelyDG(t)}t2a with a of the
order of 0.2–0.3.4 A reasonable fit toDG(t) can be also
obtained by a stretched exponent, namely, exp@2(t/t8)b# but
this entails the price of an additional parameter.

Either form of relaxation, namelyDG(t)} ln(t), or
DG(t)}t2a has no natural time scale. Nevertheless a ch
acteristic time scalet can be defined empirically by the two
dips experiment ~TDE!.4 This experiment employs a
MOSFET structure where the Anderson insulator forms
active conductance channel and its conductance is monit
as a function of the gate voltageVg . In theG(Vg) plots one
observes two dips with amplitudesA1 andA2 . The decaying
dip A1 occurs at the cool-downVg1 and the growing dipA2
at theVg2 to which the gate voltage is switched att50. The
amplitude of the dipsA1,2 are measured as functions of tim
with a time resolutiont0 ~the time it takes to sweepVg from
Vg1 to Vg2 , which is typically 30 s!. A typical TDE is shown
in Fig. 1 illustrating howA1 diminishes with t while A2
increases witht. An empirical ‘‘relaxation time’’t may then
be defined by the time at which the two dips have the sa
magnitude, i.e., byA1(t01t)5A2(t01t). The TDE is a
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very useful technique to monitor relaxation over extend
periods of time as it is less susceptible to temperature fl
tuations and instrumental drifts than the straightforwa
‘‘one-shot’’ measurement ofDG(t). Using this technique it
was shown4 that t depends on disorder, magnetic fields, a
on the carrier-concentrationn.5 The dependence onn turns
out to be very dramatic;t changes by almost three orders
magnitude whenn is varied in the range 431019– 5
31020cm23. This nontrivial observation led us to conclud
that electron-electron interactions must play a major role
the slow relaxation process.5

Figure 2 showsA1,2(t) for two samples with differentn
and the wayt is determined from such data. This figu
illustrates three points. First, the decrease oft with decreas-
ing n. Second, note that a logarithmic law fits theA1,2(t) data
fairly well over three decades. Third, the behavior ofA1(t)
andA2(t) is ‘‘complementary’’—one grows at thesamerate
at which the other diminishes. We shall use this interest
symmetry later on.

FIG. 1. An illustration of the TDE. The right dip (A1) occurs at
the cool-down value ofVg and decays in time. The left dip (A2)
occurs at the value to whichVg is switched at timet50 and grows
with t. Rh53.8 MV andT54.2 K.
6692 ©2000 The American Physical Society
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In this paper we offer a heuristic picture to explain som
of these experimental observations. The model we cons
assumes the existence of a wide spectrum of transition r
of a variable-range-hopping system. This of course is gen
and inherent to the hopping system whether interactions
present or not. Depicting the relaxation as a ‘‘dressing’’ p
cess pictorially includes the effects due to intercarrier int
actions. The model explains theDG(t)}2 ln(t) dependence
of the relaxation for relatively short times and the faster
pendence at later times. It also explains why at a cer
limit, the characteristic relaxation time appears to be o
weakly dependent on some parameters such as disord
temperature.

EXPERIMENT

Samples used in this study are thin films~200 Å thick! of
amorphous indium-oxidee-gun evaporated on 0.5mm thick
SiO2 layer thermally-grown on a heavily doped Si wafe
The latter served as the gate electrode. In this system
have the advantage of being able to control the carr
concentrationn over a wide range (1019– 331022cm23) by
varying the oxygen/indium ratio during film deposition. Di
order energy could be varied for each sample by ther
annealing.8 Combining these two it was possible to produ
a series of samples with differentn but with similar conduc-
tivity at 4.1 K.

Conductivity of the samples was measured using a
terminal ac technique employing a 1211-ITHACO curre
preamplifier and a PAR-124A lock-in amplifier. Fuller d
tails of sample preparation and measurement technique
given elsewhere.4,5

THE MODEL

We consider the case of an Anderson insulator excited
applying a sudden voltage step at the gate. When a fie
applied, the structure of the quasiparticles changes bec

FIG. 2. The time dependence ofA1 , A2 for two different carrier
concentrationsn. The experimental ‘‘relaxation time’’t is deter-
mined by thet at which A15A2 . Notice the logarithmic depen
dence ofA1 , A2 on t and the symmetry in their slopes.
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the field modifies the site potentials or because the conc
tration of particles changed. To make the transition from o
quasiparticle structure to the other, some particles beco
‘‘bare’’ and via subsequent transitions then rearranged i
new quasiparticles. Similarly when the concentration is s
denly changed, bare particles enter the system and
gradually form quasiparticles. The formation of quasipa
cles in glasses is a hierarchical process.9 In such a process
the motion of particles becomes gradually correlated w
more and more other particles and their mobility decrea
rapidly, as the ‘‘dressing’’ becomes more complete.

In the simplest possible model, the particles contribute
excess conduction only while they are totally bare. In oth
words, we neglect the contribution of ‘‘partially dressed
particles to the conduction. The excess conductance is
proportional ton(t). We farther assume that the generati
of bare particles from the ‘‘old’’ quasiparticles is as imm
diate as the excitation, e.g., change of local potential wit
field.

To calculateDG(t) we thus need to know the number o
bare particles as a function of timen(t), i.e., how many
survive at timet as undressed particles. The dressing of p
ticles is controlled by a distribution of transition ratesw. As
is usual in hopping cases, the ratesw depend exponentially
on some random variablex ~hopping distance and/or energy!,
w5w0 exp@2x#. The random variablex is distributed with a
function N(x). ThenN(w)dw5N(x)dx, or

N~w!5N„x~w!…
dx

dw
5

d

dw F2 ln
w

w0
GNF2 ln

w

w0
G

52
w0

w
NF2 ln

w

w0
G .

We now calculaten(t). The number of particles withw,
n(w,t) which survive to timet is n(0)N(w)exp(2wt)dw, so

n~ t !5E n~0!N~w!exp~2wt!dw

5E n~0!H 2
w0

w
NF2 ln

w

w0
G J exp~2wt!dw

5E n~0!H 2
w0

wt
NF2 ln

w

w0
G J exp~2wt!d~wt!

52n~0!w0E H 2
1

x
NF2 ln

x

w0t G J exp~2x!dx. ~1!

Ignoring for now the slowt dependence inherent in the log
rithmic dependence ofN, n(t) appears to be time indepen
dent. This of course cannot be exact. The reason for
problem is that we ignored the physical need for the ex
tence of some minimum ratewmin . „There is of course also
the maximum ratew0 @see Eq.~1!#, but it is clear from the
above that this is irrelevant fort.w0

21'10212sec.… If we do
incorporate the need forwmin as the lower limit of integration
overw ~in the simplest way by assuming a constant distrib
tion of x between somexmin andxmax), the last integral in Eq.
~1! becomes*wmint

` (1/x)e2xdx. This is a well known10 func-

tion of wmint. The expansion for smallwmint5xm is
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g2 ln~xm!2 (
n51

`

~21!n
xm

n

n•n!
, ~2!

whereg is the Euler constant. The terms of the sum altern
in sign ~the first is negative!. Since for smallxm the magni-
tude of the terms in this sum decrease with increas
n, the sum over all terms must be negative so t
2(n51

` (21)n(xm
n /n•n!) .0, with the absolute value in

creasing withxm . It therefore enhances2 ln(x) ~also positive
for xm,1), and hence renders the relaxation to be gradu
faster than ln(wmaxt) as t increases.

It should be stressed that the derivation of Eq.~2! ne-
glected any effects of the distributionN(w) other than to
consider the need for a cutoff at somewmin . The main justi-
fication for such an assumption is that the argument oN
changes only logarithmically witht @see Eq.~1!#. Thus, the
change in the argument ofN may not be significant for a
considerable change int. Over reasonably large intervals o
time, the time dependence of Eq.~2! can be approximated b
t2a with a small value ofa. Such a behavior is indeed ob
served in our experiments.4

The very slow decay ofn(t) can be best understood b
plotting the integrand of Eq.~1! on a log(t) scale. On such a
scale, the function exp(2wt) resembles a step function, unit
for t,w21 and zero for t.w21. The densityN(w) is
mainly proportional to 1/w which makes the density uniform
on a log(t) scale: N(w)5dN/dw}1/w, so w(dN/dw)
5(dN/d ln w)}w05const(w). The situation is represented i
Fig. 3. The curves represent the functionsn(w,t), i.e., the
functions exp(2wt) in accordance with the required distribu
tion N(w), with decreasingw from left to right all the way to
wmin . At any t, the sum over all the curves is proportional
n(t). The decrease ofn(t) within some intervalt corre-
sponds to the number of curves which decayed within
interval. Sayt progresses for several decades, but such
wmint!1. Then relatively few curves of all those remainin
up to wmin have decayed, so the relative decrease ofn(t)
over its time interval is very small.

FIG. 3. The decay of ‘‘undressed’’ particles~see text! with de-
cay ratesw taken to be exponential functions of a random varia
x, w5w0 exp@2x#. The figure corresponds to a uniform distributio
of x with an upper cutoff atxm and thus a minimum allowedwmin

5w0 exp@2xm#.
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We now wish to comment on the assumption thatDG
arises only from the presence of bare particles. We co
have considered just as well some later stage of the hiera
where the particles are already partially dressed. After
free particles undergo the first stage of dressing, i.e., a
1/wmin , their motion becomes correlated with a gradua
larger number of particles and their mobility keeps decre
ing. At any stage of the hierarchy, relaxation is governed
a spectrum of rates, which are exponentials of random v
ables. The decay of the conductivity will thus be describ
by the same equations as those derived above for the
particle stage, but withx ranging over successively large
values, with gradually lower mobility, and with gradual
smallerwmin , during successive stages of the hierarchy. T
functional dependenceDG(t) will be the same for each
stage, but with a scaled downDG and a scaled upt. The
question of which stage of dressing is observed then me
depends on the range of experimental times. The above
cussion suggests that generality is not lost by assuming
the system is at the first stage of the hierarchical evolutio

The above picture would result in a sequence of rel
ations ofDG which may not be smoothly connected. The
are two natural ways in which the total relaxation curve
smoothed out. The realistic distributionN(x) is not cut off
sharply atxm , and the various stages of hierarchical dress
will overlap in time, i.e., at any given time different particle
will be at different stages of dressing.

We now return to the experimental results. As alrea
noted, Eq.~2! agrees with previously reported measureme
of DG(t) inasmuch as at shortt ~presumablyt,wmin

21 ) the
relaxation is as log(t) and at longert the relaxation become
somewhat faster and representable by a power law. This
havior was found for a wide variety of parameters, except
samples with low carrier concentration where the relaxat
is much faster. In terms of the above model this can
interpreted as a rather largewmin , such thatwmin

21 is no longer
much larger thant. All this also ties in well with the experi-
mentally observed behavior oft. WheneverDG(t) can be
fitted to a power law,t is observed to remain nearly constan
This can be interpreted within the model in the followin
way. As long as thet•wmin!1, even though the ratesw for
the individual microscopic processes may change drastica
e.g., by a change of the temperatureT or by increasing dis-
order. For demonstration we use the fact that the power
is a scaling function obeyingn(ct)5c2an(t). Then the
equation which definest gives A1(t0)52A1(t01t)
52A1(t0$@ t01t#/t0%), soc5@ t01t#/t0 . The scaling prop-
erty of A1 results in (1/2)A1(t0)5caA1(t0)5A1(ct0), or
1/25$@ t01t#/t0%

a which gives

t5~21/a21!t0 . ~3!

Sot depends only ona and ont0 and we can expectt to be
the same for all samples as long asa remains the same~and
we keep the samet0).

In experiments reported earlier5 we performed a system
atic study oft(n) on a series of samples while the condu
tance, t0 , and temperature were all kept constant. Forn
above a certain value we observed a constant value ot,
which was about 1500 s. The experimental behavior ofA1(t)
at timest,t could be well described by4 A1(ct)}(ct20.2).
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Using Eq. ~2! with a520.2 and t0530 s one obtainst
'1000 s, in fair agreement with the experimental value.

The situation changes when themicroscopicrelaxationsw
become fast enough sowmin

21 approaches the observation tim
t such thatxm in Eq. ~2! is no longer small. The contribution
from the sum in Eq.~2! then rapidly increases in importanc
as wmin

21 approachest, and n(t) can no longer be approxi
mated by a power law over a large range oft. As a result the
global relaxation of n(t) becomes rapidly faster andt
smaller aswmin

21 gets closer tot. Whenwmin
21 ,t, n(t) decays as

exp(2wmint), i.e., the system becomes ergodic.
N.

p,
A dramatic drop in the value oft was observed as th
concentrationn fell below a certain value. Presumably th
rapid decrease oft(n) signals a transition towards a differ
ent, faster mode of decay, perhaps even to ergodic relaxa
It is of interest to see whether this transition might be to
regime where interactions cease to be important.
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