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Relative energetics and structural properties of zirconia using a self-consistent
tight-binding model

Stefano Fabris, Anthony T. Paxton, and Michael W. Finnis
Atomistic Simulation Group, Department of Pure and Applied Physics, Queen’s University, Belfast BT7 1NN, United Kingdo

~Received 31 August 1999!

We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the
polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the cationd orbitals.
This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the
Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and
polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman
theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of
all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a
greater contribution than the polarizability to the energy differences between phases. Results for elastic con-
stants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and
compared with some experimental data and first-principles calculations. We suggest that the model will be
useful for studying finite temperature effects by means of molecular dynamics.
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I. INTRODUCTION

Solid solutions of zirconia (ZrO2) containing other oxides
are among the major representatives of modern ceramic
terials. The wide range of applications, including tradition
structural refractories, fuel cells, and electronic devices s
as oxygen sensors,1,2 testifies to the technological importanc
of zirconias. Different divalent and trivalent oxides are add
to ZrO2 in order to improve its thermomechanical propertie
and charge-compensating vacancies are thereby introd
on the anion sublattice. The macroscopic effects associ
with the impurities are very well known,3–5 but a micro-
scopic model that gives a theoretical interpretation is s
missing. As a preliminary step, this paper provides a phys
picture of the crystal thermodynamics of pure zirconia, co
bining the results of first-principles density functional a
semiempirical Tight Binding~TB! calculations.

Zirconia has three zero-pressure polymorphs; these h
cubic (c), tetragonal (t), and monoclinic~m! symmetry. The
high-temperaturec phase6,7 (Fm3m) is stable between 257
K and the melting temperature of 2980 K. Thet structure8,9

(P42 /nmc), which is stable between 1400 and 2570 K,
closely related to thec one: the internal degree of freedomd
shifts the oxygen ions away from the centrosymmetric po
tions along theX2

2 mode of vibration~Fig. 1! and forces the
c/a ratio of the unit cell to adjust. Below 1400 K the low
symmetry m phase10–12 (P21 /c) is thermodynamically
stable.

Besides its technological implications, the relationship
tween these structures is of fundamental interest. The me
nisms of the phase transformations, the effects of impuri
and vacancies on them, and their relationship to the natur
the bonding still require explanation, and this may shed li
on the properties of other, more complex oxides.

The crystal structure of purely ionic bonded materials c
be determined on the basis of radius-ratio rules,13 based
purely on electrostatic arguments. Because of the small
PRB 610163-1829/2000/61~10!/6617~14!/$15.00
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of the Zr41 ions, these rules place ZrO2 on the border be-
tween the eightfold coordinated fluorite structure and the s
fold coordinated rutile one (P42 /mnm). The radius-ratio is
too blunt a tool to account for the absolute stability of t
unique sevenfold coordinatedm structure.

The classical empirical models of zirconia are based
the a priori assumption of itsionicity. Empirical approaches
like the shell model or the rigid ion model~RIM! described
the structural,14 dynamical,15,16 and transport17–19 properties
of the phases on which they were parameterized, but faile
predict the absolute stability of them structure. The most
detailed of such models was developed by Wilsonet al.,20

whose environment-dependent compressible and polariz
ion model ~CIM-DQ! demonstrated the importance of th
anion polarizabilities at both dipole and quadrupole levels

FIG. 1. Cubic and tetragonal structures of ZrO2. Light and dark
circles denote oxygen and zirconium atoms, respectively. Arro
represent the structural instability of the oxygen sublattice along
X2

2 mode of vibration.
6617 ©2000 The American Physical Society
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6618 PRB 61FABRIS, PAXTON, AND FINNIS
the energetics of zirconia. However, further calculation21

carried out with this model revealed that even though it p
dicted the correct energy ordering of thec, t, andm phases, it
predicted that the rutile structure should be even more sta
and this phase is never observed experimentally in zirco

The experience gained with the CIM-DQ model sugge
that a successful empirical model of zirconia should desc
the effects of the atomic polarization, but should also
beyond a purely ionic description of the bonding. The par
covalent character of zirconia has already been postulat22

and is evident from electronic structure calculations based
density functional theory. In this paper we further investig
the recently proposed polarizable self-consistent tight bi
ing ~SC-TB! model,23–25 which combines the physical con
cepts of covalency, ionicity, and polarizability. Using th
SC-TB model we are drawn to the conclusion that the co
lent character of the Zr-O bond makes a significant contri
tion to the relative energetics of different structures, wh
would explain the limited predictive power of the previo
ionic models.

There have been several previous approaches to analy
the structural and electronic properties of zirconia. Boyer a
Klein26 used the augmented plane wave~APW! method to
derive pair potentials with which to investigate the equat
of state of thec phase. Cohenet al.27 calculated the relative
energetics and the elasticity using the Potential Indu
Breathing~PIB! method based on the Gordon-Kim approac
Zandiehnademet al.28 studied the electronic structure with
first-principles linear combination of atomic orbitals metho
The FLAPW calculations of Jansen29 predicted for the first
time the correct energetic ordering between thec andt struc-
tures at zero absolute temperature, identifying the dou
well in the potential energy that governs their relative sta
ity. The double well was subsequently confirmed byab initio
Hartree-Fock~HF! calculations,30,31but these did not predic
the stability of them structure over thet one. Only the very
recent density functional theory~DFT! calculations32–34con-
sistently reproduce the relative energetics of the three zi
nia polymorphs at 0 K.

The plan of the present paper is as follows. In Sec. II
describe the model used in the calculations, the inclusion
the atomic polarizability in the TB framework and the p
rametrization procedure. A preliminary account of this wo
has been published.24 We have made DFT calculations o
band structures of the simple structures for this purpose,
ing a new full-potential, linear muffin tin orbital metho
~NFP-LMTO!. The predictive power of the new model
tested against the DFT calculations in Sec. III A, where
study the relative energetics of zirconia. Section III B f
cuses on the relationship between thec and t structures: the
Landau theory of phase transformation is used to inter
the results of the static calculations. In Sec. IV, we expl
the elastic and the vibrational properties of the high symm
try phases. The results are summarized in the conclud
section.

II. THE TIGHT-BINDING MODEL

A. Including polarizabilities in TB

In the TB approximation the crystal wave function can
expressed as a linear combination of atom-centred orbi
which we denoteuRL&:
-
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uCnk&5(
Rl

cRL
nk uRL&. ~1!

L is a composite angular momentum indexL5( l ,m) of the
atomic orbital centered on the site whose position isR, n
andk are the band andk-vector indices of the single particl
wave function. For the purpose of derivation, we express
local orbitals as a product of a radial function and a r
spherical harmonic

^r uRL&5 f Rl~ ur2Ru!YL~r2R!, ~2!

although in ourempirical TB scheme the explicit functiona
forms of the radial wave functions are not required. To si
plify the notation, we will frequently suppress the site ind
R, in which case one can take it we are referring to an at
at the origin andr is a small vector in its neighborhood.

The total HamiltonianH can be expressed as a sum
two terms,H5H 01H8. In traditional self-consistent~SC!
TB, H 0 contains both on-site and intersite terms. The on-s
terms are diagonal inL, and are often taken as Hartree-Fo
term values of the isolated atoms. The intersite terms are
bonding integrals. The additional part of the Hamiltonia
H8, is diagonal inR andL in the traditional approach~Ma-
jewski and Vogl35,36!. It controls the charge redistributio
between neighboring sites, which results from the bala
between the opposite effects due to the on-site Coulomb
pulsion ~HubbardU) and Madelung potentials.

What is missing in the previous model is the effect of t
crystal fields on the valence electrons, i.e., the atomicpolar-
izability. In a preliminary account of this work24 we indi-
cated how to include the polarization effects in a SC-T
formalism by adding off-diagonal termsHRLRL8

8 to the on-
site blocks of the Hamiltonian. Here we describe how
make that extension.

If we assume the on-site charge distribution to be loc
ized, then its total multipole momentQL has a monopole
contribution from the ionic core charge and a multipole~in-
cluding monopole! contribution from the valence charge:

QL5QidL01QL
e . ~3!

As Stone37 points out, the electronic multipole moment o
a site is the expectation value of the operator

Q̂L
e5er̂lYL~ r̂ !, ~4!

where e is the charge of the electron. Neglecting inters
terms like^R8L8uQ̂RL

e uR9L9& for R8,R9ÞR, the definition of
the on-site multipole moment is therefore

QL
e[ (

L8L9
(
nk

occ.

cL8
nkcL9

nk^L8uQ̂L
euL9&. ~5!

By invoking equations~2! and ~4!, the last factor of Eq.~5!
can be expressed as a product of two quantities, the G
coefficientsCL8L9L , which dictate the selection rules, an
the integralsD l 8 l 9 l , which will be new parameters of th
model:

^L8uQ̂L
euL9&5e D l 8 l 9 l CL8L9L , ~6!
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CL8L9L5E YL8YL9YLdV, ~7!

D l 8 l 9 l5E f l 8~r ! f l 9~r !r l 12dr, ~8!

wheredV stands for the element of solid angle sinu du df.
The role of the Gaunt coefficients, which depend on the
gular part of the wave function only, is to select the te
with symmetryL arising from the coupling of the on-sit
orbitals L8 and L9. The D parameters, depending on th
radial part of the wave function, determine the magnitude
the coupling. The substitution of Eq.~6! in Eq. ~5! defines
the multipole moment of symmetryL on the siteR.

Having defined the on-site multipole moments, we c
calculate the fields that they generate on all the lattice s
The derivation uses standard results from classical elec
statics. The electrostatic potential is expanded in par
waves about the site:

V~r !5(
L

VLr lYL~r !, ~9!

where, using the Poisson equation,

VL54p (
R8Þ0

(
L8

B̃LL8~R8!QR8L8 , ~10!

and

B̃LL8~R!5
4p

~2l 11!!! ~2l 811!!!

3(
L9

~21! l 8~2l 921!!!

uRu l 911
YL9~R!CL9L8L .

~11!

The sum overL9 is restricted to the values for whichl 95 l

1 l 8; B̃LL8 are proportional to the well-known LMTO-ASA
structure constants.38 The component of electrostatic pote
tial VL couples different orbitals on a site giving the matr
elements:

^L8uH8uL9&5(
L

VLD l 8 l 9 lCL8L9L . ~12!

The diagonal elements of the Hamiltonian are adjusted
using a single HubbardU in the standard way, which adds
termUdNRl to each diagonal matrix element. The quantit
dNRl are the changes in the electronic charge projected o
a site and orbital compared to the input, non-self-consis
charge. We use the standard Mulliken projection. Finally
Schrödinger equation is solved using a self-consistent ite
tive procedure with charge mixing to obtain the coefficie
cRL

nk and hence the multipoles.
It is useful to step back at this point and compare

above model with the Hohenberg-Kohn-Sham one, wh
exchange and correlation energy functionalUxc@n# has been
expanded to second order in the electron density n(r ):39
-
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UHKS5(
n,k

occ

^CnkuTS1V0
xc1V0

H1V0
i uCnk&

1Uxc@n0#2E V0
xcn0dr2UH@n0#1Uii

1
1

2E E S e2

ur2r 8u
1

d2Uxc

dndn8
U

n5n0

D dndn8dr dr 8.

~13!

n0 denotes a reference electron density, which we will co
sider as a superposition of spherical ionic charges;TS is the
kinetic energy operator of the noninteracting electron g
V0

xc , V0
H , andV0

i are the exchange and correlation, Hartr
and ionic potentials calculated at the reference cha
n0 ; dn denotes the deviation from that reference (dn5n
2n0) andn8 refers to the electron density atr 8. UH andUii

are, respectively, the Hartree and the ion-ion electrost
energies.

Without the last term, this is simply the Harris-Foulke
functional. It generates a non-self-consistent TB model
which the first term is the sum of the eigenvalues while
second is a sum of pair potentials.40 If the last term is in-
cluded, the total energy must be minimized iteratively, a
the last term now provides the self-consistency correction
the Kohn-Sham Hamiltonian.

The last line of Eq.~13! represents the Hartree energy
the deviation from the reference charge,UH@dn#, and the
second-order term of theUxc Taylor expansion. We can
identify this term in our SC-TB model as follows:

1

2E E S e2

ur2r 8u
1

d2Uxc

dndn8
U

n5n0

D dndn8drdr 8

[
1

2 (
RL

~UdNRl
2 1QRLVRL!. ~14!

Our total energy in the SC-TB model is therefore

UTB5(
n,k

occ

^CnkuH 0uCnk&1Upair

1
1

2 (
RL

~UdNRl
2 1QRLVRL!. ~15!

It can be verified that, by minimizing the above expre
sion with respect to the expansion coefficients in the wa
functions, we recover the Schro¨dinger equation with the
SC-TB Hamiltonian.

Calculation of the forces on the ions is very straightfo
ward once we have the self-consistent wave functions
multipoles. For if an ion is moved a small distancedR, there
is no change in total electronic energy to first order in t
dcRL

nk . Therefore we can calculate the force due to the cha
in the first term of Eq.~15! by the conventional formulas
using the derivatives of the non-self-consistent Hamilton
matrix elements~see following section!. In calculating the
forces due to the last term of Eq.~15! we can hold the mul-
tipoles fixed and use standard electrostatics. There is no
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FIG. 2. Band structure of cubic zirconia. In a
the panels, starting from the bottom it is possib
to identify the oxygen 2p valence bands and th
unoccupied zirconium 4d bands, which are partly
hybridized with the oxygen 3s one. The large
crystal field splitting of the 4d bands predicted by
the LDA calculation~c! is reproduced with the
SC-TB model,~a! and~b!, when theDddg param-
eter is included.
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tribution to the forces from the on-site energy containingU.
The simple form of these results for the forces in TB is
direct analogy with the application of the Hellman
Feynman theorem in DFT.

B. Parametrization

Each parameter of the model has been adjusted to
results of NFP-LMTO calculations, details of which a
specified in the previous work on zirconia.24 Our TB descrip-
tion of zirconia uses a minimal basis of atomic orbitals. T
oxygen atoms are modeled with 2p and 3s orbitals and with
a fixed core charge of14, while on the zirconium atoms
there are 4d orbitals and a core charge of14. The purpose
of the 3s orbital on the oxygen is twofold: to allow an extr
degree of freedom for polarization, which is otherwise
stricted to charge transfer between its 2p orbitals, and to
better reproduce the structure of the conduction bands.
he

e

-

A repulsive Born-Mayer pair potentialUpair has been cho-
sen in order to reproduce the lattice parameter and the
modulus of thec phase. Only the first Zr-O coordinatio
shell has been included in this interaction.

The HamiltonianH 0 has been adjusted to theab initio
electronic structure of thec phase shown in Fig. 2~c!. We
chose the Goodwin-Skinner-Pettifor41 distance dependenc
of the 10 hopping integrals involved. The HubbardU have
been fixed to 1 Ry. The parameters of the SC-TB model
collected in Table I.

The basis set chosen reduces the number of symme
allowed D parameters to 4:Dspp, Dppd , Dddd , and Dddg .
The first two refer to thes andp orbitals of oxygen ions, the
last two to thed orbitals on the zirconium.

In the highly symmetricc structure the first nonspherica
terms of the potentialVL on the cation and anion sites haveg
and f symmetry, respectively. The latter cannot interact w
the oxygen orbitals, the former splits the energetic levels
TABLE I. Parameters of the polarizable SC-TB model. Energy in Ry and lengths in atomic units.

On site parameters
H s

05 0.35 Us51
H p

0520.70 Up51
H d

0520.10 Ud51

Bond integrals

Vll8Sdr D
n

expHnF2S r

rc
Dnc

1Sd

rc
DncGJ

Vll 8 n nc d rc Vll 8 n nc d rc

sss 20.060 2 0 4.90 6.24 pds 20.100 4 0 4.24 4.90
sps 0.070 2 0 4.90 6.24 pdp 0.058 4 0 4.24 4.90
pps 0.050 3 4 4.90 6.24 dds 20.050 5 0 6.02 6.93
ppp 20.008 3 4 4.90 6.24 ddp 0.033 5 0 6.02 6.93
sds 20.050 3 0 4.24 4.90 ddd 0.008 5 0 6.02 6.93

Polarization terms
Dspp50.73 Dddd50
Dppd51.89 Dddg563.5

Pair potential
U(r )5Ae(2br)

A5181.972 b51.652
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the zirconiumd orbitals andDddg determines the magnitud
of the energy splittingde. Cubic crystal field theory42 pre-
dicts the proportionality betweende and the radial distribu-
tion of chargê r 4&, which is the definition ofDddg given in
Eq. ~8!. Figures 2~a! and 2~b! show the effect of theDddg
polarization term on the band structure of thec phase: the
splitting of the d bands could not be captured with th
SC-TB without the polarizability parameters. Reasona
values of theDddd parameter have no significant effect o
any physical properties studied here, therefore we set
zero.

Less symmetric structures are necessary to parame
the remainingD ’s. In the rutile phase, thel 53 component of
the crystal field acting on the oxygen ions splits thep levels.
Consequently, it contributes to the width of the 2p band: this
effect is controlled byDppd , which we adjust to match the
ab initio band structure of the rutile phase. The last te
Dspp has been chosen in order to reproduce the depth of
double well in the potential energy of thet structure.

III. ENERGETICS OF BULK PHASES

A. Energy-volume curves

1. Zero-pressure phases

The predictive power of the polarizable TB model h
been investigated by comparing its results with NFP-LMT
calculations. The energy-volume curves calculated with
two methods are shown in Fig. 3. Each energy value
volved the full relaxation of all the degrees of freedom of t
structures.

FIG. 3. SC-TB~top! and NFP-LMTO~bottom! energy-volume
data for the cubic (c), tetragonal (t), monoclinic~m!, and rutile~r!
phases fitted with Murnaghan equation of states.
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The c and thet phases were used in the parametrizat
procedure, therefore there is automatic agreement of the
methods for these crystal structures. The true prediction
the model is the absolute stability of the monoclinic pha
This indicates the transferability of the parameters betw
the phases.

The rutile phase, which is not experimentally observ
has been included in the study because further calculat
with the CIM-DQ ~Ref. 20! model predicted the rutile phas
to be more stable than the monoclinic one. Figure 3 sho
that the SC-TB model does not suffer from this proble
although the relative energy of the rutile phase is less t
with the DFT. To our knowledge, the SC-TB is the fir
semi-empirical model, which reproduces the correct order
of these polymorphs at zero temperature, including the
bility of the m phase.

Table II summarizes the structural properties calcula
with the NFP-LMTO method and with the polarizab
SC-TB model, comparing them with other theoretical a
experimental works. Thec and m lattice parameters are re
ferred to the 12-atom unit cell, while thet ones are given in
terms of the 6-atom unit cell. A comparison of the ener
differences between the phases of zirconia calculated w
different methods is given in Table III.

2. High-pressure phases

Under pressure, the low temperaturem phase transforms
to an orthorhombic structure, known as ortho I (oI), whose
crystallography is still controversial. X-ray diffractio
analysis44,45 suggests it belongs to thePbcm space group,
while neutron-diffraction studies46,47 propose thePbca
space group. We carried out the calculations using the la
structure. The phase transition pressure strongly depend
the state of the sample and is believed to be between 3 a
GPa.48–50 A second pressure-induced phase transition is
served around 15 GPa,50 where theoI transforms to the
orthorhombic phase termed ortho II (oII ). The latter is iso-
structural to cotunnite (PbCl2) and belongs to thePnam
space group.51 The pressure increases the coordination nu
ber of the zirconium atoms from 7 to 9.

A comprehensive first-principles study of the two orth
rhombic phases has apparently not yet been made: Sta
et al.33 studied theoI structure only, while Jomardet al.34

focused on theoII phase.
The atomic environment of the high-pressure phase

completely different to that of thec and t phases used in the
parametrization of the TB model, therefore these orthorho
bic structures provide a severe benchmark for the trans
ability of the TB parameters.

The energy ordering of the phases predicted by the
model is

Um,UoI,Ut,Uc,UoII ,

which is the same as we obtain by combining the results
Refs. 33 and 34. The numerical values of the energy dif
ences are summarized in Table III and compare reason
well with the ab initio results. The energy-volume curves
the orthorhombic phases are shown in Fig. 4: all the degr
of freedom were fully relaxed and their values are collec
in Table IV.
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TABLE II. Equilibrium structural parameters for the 0-pressure phases of ZrO2. The lattice parametersa, b, c ~a.u.!, and the volumes
(a.u./ZrO2) of the c, t, andm structure are referred to the 12-atom, 6-atom, and 12-atom unit cells, respectively.d denotes the interna
degree of freedom of thet phase~see Fig. 1!, b is the angle of them cell in degrees, andx, y, z are the fractional coordinates of th
nonequivalent sites in them structure.

Expt.a SC-TB NFP-LMTO PW-PP PW-PP FLAPW
Refs. 6,8 This work This work Ref. 32 Ref. 33 Ref. 29

Cubic
Volume 222.50 213.40 210.33 215.29 220.84 217.81
a 9.619 9.486 9.442 9.514 9.595 9.551

Tetragonal
Volume 229.93 217.73 215.16 218.69 225.31 218.84
a 6.748 6.709 6.695 6.734 6.797 6.747
c/a 1.451 1.442 1.434 1.432 1.435 1.425
d/c 0.057b 0.047 0.051 0.042 0.042 0.029

Monoclinic
Volume 237.67 222.89 226.13 230.51 236.46
a 9.733 9.592 9.417 9.611 9.733c

b/a 1.012 1.001 1.036 1.024 1.012c

c/a 1.032 1.019 1.057 1.028 1.032c

b 99.23 98.00 98.57 99.21 99.23c

xZr 0.275 0.272 0.274 0.278 0.277
yZr 0.040 0.027 0.040 0.042 0.043
zZr 0.208 0.217 0.212 0.210 0.210
xO1

0.070 0.078 0.069 0.077 0.064
yO1

0.332 0.336 0.339 0.349 0.324
zO1

0.345 0.342 0.338 0.331 0.352
xO2

0.450 0.452 0.448 0.447 0.450
yO2

0.757 0.752 0.753 0.759 0.756
zO2

0.479 0.472 0.478 0.483 0.479

aThe experimental values of the cubic and tetragonal structures have been extrapolated at 0 K using the thermal expansion data from Ref.
bAt 1568 K.
cFixed to the experimental values of Ref. 8.
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Although the TB model predicts the correct relative en
getics of the phases, it is not capable of describing the su
pressure-induced phase transformationm↔oI . Figure 4
shows the common-tangent between them and the oII
phases. As the pressure is increased, the model misse
correct sequence of the phases, predicting am↔oII
pressure-induced phase transformation at 5 GPa.
-
tle

the

B. Cubic versus tetragonal phases

1. Static calculations

The relationship between the cubic and the tetrago
phases is governed by a volume dependent double well in
potential energy. Since the FLAPW calculation of Jansen54,29

who predicted it first, the double well has been confirmed
from

TABLE III. Energy differences (mRy/ZrO2) between the zirconia polymorphs and thec phase calculated

at the minimized structural parameters of Tables II and IV. The experimental values are derived
enthalpy differences at the phase transition temperature.

DUt2c DUm2c DUOI2c DUOII 2c

Expt. Ref. 43 24.2 28.8
SC-TB 23.0 27.4 23.6 2.8
NFP 23.6 27.7
PW-PP Ref. 32 23.3 27.5
PW-PP Ref. 33 23.5 28.2 25.3
PW-PP Ref. 34 21.5a 25.9b 24.4a 213.9b 0.7a 7.3b

aLDA calculation.
bPerdew-Wang GGC calculation.
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several otherab initio calculations and it is now well estab
lished.

In this section we analyze the nature of the 0 K energy
surface by combining the information gained using two ve
different approaches: the NFP-LMTO method and the po
izable TB model. The qualitative and quantitative agreem
between the results of the two calculations, shown in
previous section, entitles us to use the physical picture p
vided by the simpler model to interpret theab initio results.

Starting from thec phase, thet structure can be obtaine
by continuously stretching the unit cell along thec crystal-
lographic direction and by displacing the oxygen columns
d along the tetragonal axis according to theX2

2 mode of
vibration ~Fig. 1!. We calculated the total energy of the cry
tal using the two methods, for different values of (d, c/a) at
several volumes.

The energy curve exhibits a single-well or a double-w
structure depending on the specific volume. At small v
umes,V1, the tetragonal distortion is energetically unfavor
and the equilibrium structure is cubic~Fig. 5!. When the

FIG. 4. Energy-volume curves for the monoclinic~m! and ortho-
rhombic (oI andoII ) phases calculated with the TB model.
y
r-
nt
e
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l
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cubic phase is stable, there is no distinct metastable tetr
nal phase with which to compare its energy, so the ener
of the two phases merge. At larger volumes,V2, a structural
instability appears and thec structure spontaneously distor
to the t one ~Fig. 5!.

The curvature of the energy surfaces is related to
phase transition mechanism. It is clear from Fig. 5 th
]2E/](c/a)2 is positive, while]2E/]d2 is negative: this sug-
gests that the phase transition is driven by thed instability
and that the adjustment of thec/a ratio is a secondary effect
The coupling between these two order parameters will
further discussed when we interpret the double well us
Landau theory.

Our local-density approximation~LDA ! and TB results
for the depth of the double well at thet-phase equilibrium
volume, V2, are consistent with the recent LDA values
'7 mRy.33,34 This energy barrier for the 6-atom unit ce
corresponds to a temperature of'1100 K. The same resul

FIG. 5. SC-TB cohesive energy vs tetragonal distortiond: vol-
ume andc/a dependence.~a! Single well atV15198 a.u/ZrO2; ~b!
Double well atV25218 a.u/ZrO2.
TABLE IV. External and internal degrees of freedom of the orthorhombic structures. Lattice parametersa, b, c in a.u., volumes in
a.u./ZrO2. The fractional coordinates of the non-equivalent sites are denoted withx, y, andz.

Ortho I Ortho II
Expt. SC-TB PW-PP Expt. SC-TB PW-PP

Ref. 52 This work Ref. 33 Ref. 53 This work Ref. 34

Vol. 228.159 218.69 226.7 203.54 196.08 212.44
a 19.060 18.737 19.060a 10.558 10.541 10.721
b/a 0.522 0.520 0.522a 0.596 0.592 0.593
c/a 0.505 0.511 0.505a 1.161 1.139 1.163

xZr 0.884 0.880 0.884 0.246 0.255 0.253
yZr 0.033 0.002 0.036 0.250 0.250 0.250
zZr 0.256 0.256 0.253 0.110 0.099 0.111
xO1

0.978 0.978 0.978 0.360 0.354 0.360
yO1

0.748 0.745 0.739 0.250 0.251 0.250
zO1

0.495 0.509 0.499 0.424 0.421 0.425
xO2

0.791 0.784 0.790 0.025 0.022 0.023
yO2

0.371 0.371 0.374 0.750 0.749 0.750
zO2

0.131 0.130 0.127 0.339 0.338 0.340

aFixed to the experimental values of Ref. 52.
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was obtained by Jansen54 with the FLAPW method who pro-
posed a value of'1200 K. It is natural that these temper
tures, extrapolated from the 0 K potential energy, underest
mate the experimental phase transition temperature of 2
K.6 The experimentally observed phase transition temp
ture can be considered as the sum of the kinetic contribut
of all the activated eigenmodes, while the calculated ene
barrier refers to the kinetic contribution of theX2

2 eigenmode
only. Even though it is reasonable to expect that at the ph
transition the soft mode in the phonon spectra~Fig. 6! will be
highly weighted in the total density of states, the kine
energykT associated with all the other modes of vibratio
will still contribute to the measured phase transition tempe
ture.

2. Physical interpretation of the double well

What causes thec↔t symmetry breaking? The tetragon
distortion of the oxygen sublattice implies the following ge
metrical changes:~i! Two Zr-O bond lengths get smaller an
two get longer but the average Zr-O distance increases~ii !
entire columns of oxygen atoms shift one with respect
each other~see Fig. 1! therefore the nearest-neighbor O-
distances along the column remain constant while the o
four nearest-neighbor O-O distances increase.~iii ! All the
Zr-Zr distances remain constant. The overall increase of b
the Zr-O and the O-O bond lengths is the basis of our in
pretation of the double well, founded mainly on electrosta
arguments.

By adjusting the various parameters describing ionic
covalency, and polarizability of the TB model we can sel
and isolate the effects that induce the double well, but be
doing so it is instructive to understand how a simple R
answers to the same question. It has been shown20 that it is
possible to reproduce the double well with a RIM in whi
there are two contributions: a repulsive short-ranged pairw
interactionUpair and a long-ranged electrostatic termUii .

URIM5(
i , j

Ae2bri j 1(
i , j

zizj

r i j
5Upair1Uii , ~16!

z is the ionic charge andr i j is the interatomic distance be
tween the ionsi and j.

FIG. 6. Phonon dispersion curves of cubic zirconia in the@100#
direction. Closed circles are TB calculations, dashed lines
guides to the eye. Note the imaginary frequency of theX2

2 mode of
vibration.
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The Zr-O bonds increase and decrease in length in a s
metric way. As a net result, the centrosymmetric position
the oxygen atoms is a relative maximum of the Coulom
energyUii . The change in the Madelung potential caused
the tetragonal distortion is shown in Fig. 7~a!. The overall
increase of the O-Zr and O-O distances makes the oxy
sites much more sensitive to the change of the Madel
potential than the zirconium ones. The structural instabi
can therefore be interpreted as an effective way of minim
ing the electrostatic energy of the oxygen sublattice. T
repulsive Zr-O interaction counteracts the structural insta
ity driven by the electrostatics, in a way which dominates
large displacements because of the exponential distance
pendence of this repulsion. The double well shape of
energy profile is due to the different functional form of the
opposing energy terms of Eq.~16!. This argument clearly
depends on the strength of the repulsion, and does not w
if the repulsion is too weak.

It can be noticed that analogous terms are present in
TB model and a similar interpretation is tempting. Howev
we now have the additional effects due to polarization,
valency, and charge redistribution. Figure 7~b! shows that
the absolute value of the self-consistent equilibrium cha
Q decreases on both species. Consequently, in this app
mation, the on-site energy

re

FIG. 7. d dependence of:~a! Madelung potential,~b! self-
consistent chargeQ5Qe1Qi , ~c! Electrostatic and Hubbard ene
gies as in Eq.~17!, ~d! the same including dipoles and quadrupole
The zero of energy is the top of the double well atV2, total energies
are in Ry/formula unit, other quantities in a.u./ion.
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1

2 (
RL

@UdNRl
2 1QRLVRL#, ~17!

plotted in Fig. 7~c!, decreases not only because of the pre
ous geometric arguments but also because the charge r
tribution reduces the ionic charges and therefore both
O-O and Zr-Zr electrostatic interactions.

It is interesting to note that, on the oxygen atoms,
self-consistent chargeuQeu decreases withd even though the
total on-site potential, the sum of the Hubbard and elec
static terms as in Eq.~17!, increases. This nonintuitive be
havior of the charge transfer is due to covalency. The cha
transfer is controlled both by the on-site potential and by
bonding integrals, which depend on the Zr-O distance.
dÞ0, the overall increase in the Zr-O distance results i
decrease in the magnitude of the hopping integrals, and
overcomes the opposing effect of change in the on-site
tential,pushing backsome electrons from the oxygen to th
zirconium sites.

In the CIM-DQ, it was the quadrupole polarization of th
O ions, which stabilized the tetragonal structure, so it is
interest to see if it is also the development of a quadrup
moment in the tetragonal phase, which stabilizes it within
SC-TB model.

In fact it turns out that covalency is the main effect, a
though polarizability is still significant. Thet structure is
stable with respect to thec one even with anonpolarizable
SC-TB model@Fig. 8 ~top curve!#: the small energy differ-
ence is due to both ionicity and covalency of the crystal. T
addition of the oxygen polarizability enhances the ene
difference between the two phases deepening and broade
the double well@Fig. 8 ~bottom curve!#.

We can be more specific about the nature of the polar
tion. In thec structure, the first nonzero components of t
electrostatic potential areV0 and V3. The latter could, in
principle, induce an octapole momentQ3 on the anions. We
truncated the multipolar expansion of the atomic multip
moments to the quadrupolesQ2, therefore, within this ap-
proximation, the ions in thec structure are not polarized
Higher-order terms can be included in the expansion, but

FIG. 8. Double well in the TB total energy atV2 : (3) no
coupling between the potential and the oxygen atomic orbitals; (s)
with dipoles and quadrupoles on the oxygen atoms.
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overall agreement of the results with both experiments
first-principle calculations demonstrates that the model is
ready capturing the important physics of the system.

As the anion sublattice is distorted, the symmetry low
ing induces thel 51 and l 52 components of the potentia
which couple thes andp oxygen atomic orbitals. The mag
nitude of the coupling, and therefore of the multipole m
ments, is controlled by the parametersDspp andDppd . The
latter, fixed in order to reproduce the electronic structure
the rutile phase, produces very weak quadrupole mome
whose contribution to the double well is negligible. Th
former controls the size of the dipole moments whose sy
metric distribution further minimizes the electrostatic ener
@Fig. 7~d!#. The total effect on the double well is shown
Fig. 8.

3. Landau theory

The c↔t phase transition can be interpreted in terms
the Landau theory.55 In a subsequent paper we plan to e
plore the free energy surface atT.0 with this formalism, so
it is convenient to introduce it here to discuss theT50 re-
sults. Experimentally, the mechanism of this phase transi
has been very controversial and a clear description is
missing.56–63

Chan64 suggested that a partial softening of an elastic c
stant is the driving force of this phase transition and, af
symmetry considerations based on the elastic strains o
concluded that the phase transition must be of first order.
show here that the inclusion of the order parameterd gives a
second-order phase transition. A similar discussion has b
given by Ishibashi and Dvor´ăk.65

According to the Landau theory, the appropriate therm
dynamic potential, which describes the relationship betw
the two phases of interest, is expanded in a Taylor serie
one or more order parameters, in which the expansion c
ficients are temperature dependent. The order parameter
nonzero in the low-symmetry phase and vanish in the hi
symmetry one, providing therefore a unique way to differe
tiate the two phases. The terms involved in the Taylor
pansion are invariants under the symmetry operations of
high-symmetry phase and can be identified using gro
theory.

In the case of zirconia, thec structure is unstable alon
the three crystallographic directions, therefore the distorti
alongx, y, andz have to be explicitly treated in the energ
expansion. This suggests the following nine order para
eters, defined in terms of the strain tensore, and grouped into
four symmetry-adapted bases, which spans the corresp
ing irreducible representations:

dx ,dy ,dz T1

exx1eyy1ezz A1

~2ezz2exx2eyy!,~exx2eyy!A3 E

exy ,eyz ,ezx T2.

A complete analysis involving all the order paramete
will be done in a separate paper, here we simplify the to
energy expansion selecting one of the three possible di
tions of the tetragonal axis. Under this hypothesis three or
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parameters are necessary to describe thec↔t phase transi-
tion of zirconia:d, h, andh0. The high-temperaturec phase
has the full cubic symmetrym3m and the only degree o
freedom is the hydrostatic strainh05exx1eyy1ezz. The
low-symmetry t phase is defined by the distortion of th
anionic sublatticed, which we define as the amplitude of th
X2

2 mode of vibration, and by the tetragonal strainh
5(2ezz2exx2eyy).

The three order parameters can be hierarchically class
according to the amount of symmetry breaking that they
volve. The hydrostatic strainh0 preserves the cubic symme
try of the crystal. The tetragonal strainh maintains the num-
ber of atoms in the primitive cell and lowers the symmetry
the point group 4/mmm, which still has the mirror symmetry
operation perpendicular to the tetragonal axis. The tetrag
distortiond breaks this symmetry operation and involves c
doubling. Therefore, according to Landau theory,d is the
primary order parameter,h is the secondary, andh0 is the
tertiary one.

The potential energy is expanded as a power serie
these order parameters around the equilibrium volume of
cubic phaseV0 ~Fig. 9!:

U2UV0

c 5
a2

2
d21

a4

4
d41b0d2h01b1d2h1

c0

2
h0

21
c1

2
h2

1O~d6!. ~18!

The elastic constantsc0 andc1 are proportional respectivel
to the bulk modulus and toC85 1

2 (c112c12) in the c phase
described in the next section. The third-order termd3 is for-
bidden by symmetry, therefore this transition is of seco
order if a2 goes negative.

The volume dependence of the order parameters ca
studied by setting to zero¹hU and¹h0

U. Both theab initio

and TB results~Fig. 10! confirm the analytic expressions:

5
h 5 2

b1

c1
d2

h0 5 2
b0

c0
d2

⇒H d } Ah0

h } h0 .
~19!

FIG. 9. Energy-volume curves for thec andt structures: note the
convergence at small volumesV1 , V0, andV2 are the equilibrium
volumes of thec and t phases, respectively.
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These expressions show that the second-order strain t
of Eq. ~18! are already proportional tod4 and therefore,
within the chosen order of approximation, it is not necess
to include third-order terms ine i j . Moreover, from the static
results it is clear that the description of the high-temperat
stability of thec phase must go beyond the quasi-harmo
approximation. The higher the temperature, the larger
volume and, according to Fig. 10, the largerd andh. There-
fore, in a simple quasiharmonic picture, a higher tempera
seems to favor thet phase with respect toc, in contradiction
to the experimental observation.

The parametersc1 and c0 are known from the elastic
properties of the crystal and have been calculated indep
dently ~see next section!. The coefficientsa2 and a4 have
been fitted to the double well of an undistorted stress-f
cubic crystal~in the senseh50 and h050). In a similar
way, b1 and b0 have been fitted to the double well of
tetragonal crystal atV0 (h050, hÞ0) and of a cubic crys-
tal near V0 (h50, h0Þ0), respectively. Figure 11~a!
shows the three curves used for the fitting procedure.
agreement is very good even far away from the refere

FIG. 10. Volume dependence of the order parameters calcul
with the TB model:h0 is the hydrostatic strain of the cubic ce
from the reference volumeV0 , h is the tetragonal strain of the cel
andd ~a.u.! is the tetragonal distortion of the oxygen sublattice.

FIG. 11. SC-TB total energy vs tetragonal distortiond. ~a! Fit of
the data with the Landau energy expansion Eq.~18!; ~b! transfer-
ability of the coefficients at values of hydrostatic (h0) and tetrago-
nal (h) strains different from the reference ones.
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volume of the energy expansion@Fig. 11~b!#. This demon-
strates that the fourth-order truncation in Eq.~18! is suffi-
cient to capture all the essential features of the 0 K energy
surface.

Nardelli et al.66,67 have shown the crucial role played b
the coupling between different order parameters and ho
can affect the correct interpretation of the phase transfor
tion. To see this we substitute the relationships~19! back in
Eq. ~18!:

U2UV0

c 5
a2

2
d21Fa4

4
2

b0
2

2c0
2

b1
2

2c1
Gd41O~d6!. ~20!

The above equation shows that the coupling term@(b0
2/2c0)

1(b1
2/2c1)# can renormalize the fourth-order coefficient, a

could make it negative. In that case it would be necessar
truncate Eq.~18! at the sixth-order term ind, including
therefore the third-order terms in the strain. These wo
then drive the phase transition making it first order.64,68 The
numerical values of the coefficients~Table V! allow us to
estimate the amount of the coupling. We find that the c
pling term is'20% of a4/4, not big enough to affect the
sign of the fourth-order coefficient and therefore the 0
calculations suggest that the phase transition is displaciv
second order.

The temperature dependence of the elastic const
might change this description and the final answer will
given by high-temperature molecular dynamics calculatio
which are in progress.

IV. DISTORTIONS

A. Elastic constants

The elasticity ofc and t zirconia has been explored wit
the TB model. The analysis involved the distortion of t

TABLE V. Coefficients~a.u.! of the energy Taylor expansio
Eq. ~18!.

a2520.053 b0520.062 c050.621
a450.347 b1520.152 c150.818
it
a-

to

d

-

of

ts
e
s,

crystal along high-symmetry directions, the calculation
the total energy for different values of the distortion para
eter and the fit of the results to a polynomial. The rigidity
the crystal with respect the particular distortion applied h
been extracted from the quadratic coefficient of the ene
series expansion. For each strain of thet structure, we con-
strained the volume to the predicted equilibrium value a
minimized the energy with respect to the internal degrees
freedom.

Volume conserving stretches along the high-symmetry
rections of thec unit cell ^100& and ^111& provide C8
5 1

2 (c112c12) and c44, respectively. Extra distortions ar
necessary when the symmetry is lower: ifz is the tetragonal
axis, an independent set of five shear moduli were obtai
by stretching alonĝ100&, ^001&, ^111&, ^110&, and^101&.
The bulk moduli have been obtained by fitting the energ
volume curves with a Birch-Murnaghan equation
state.69,70

Liu et al.71 used the slope of the acoustic branches
small wavelength of a ZrO2-Y2O3 ~15%! system to estimate
the elastic constants of the cubic phase. Kandilet al.72 di-
rectly measured the elastic constants of Yttria Stabilized Z
conia~YSZ! single crystals: the reference values included
Table VI are extrapolations to 0% impurities. To our know
edge there is no equivalent experimental study of the elas
ity of the t phase. The most recent values73 are measured via
a powder diffraction technique on 12% Ce-dopedt zirconia.

We compare our predictions with theoretical and expe
mental data in Table VI. The results of two other theoreti
approaches, the Hartree-Fock and the PIB ones, are very
ferent. As already mentioned in the Introduction, none
these calculations predicted the correct relative energetic
all the crystal structures. Elasticity is a property of the ene
second derivative: a good description of the energy curve
a prerequisite for reliable elastic constant calculations.

The fairly good agreement of our calculations with t
experiments further indicates that the SC-TB model captu
the main physics of the bonding. The bulk modulus, ho
ever, is seriously overestimated: this may not be an intrin
limitation of the TB model, because it was fit precisely to t
NFP-LMTO calculation, which similarly overestimates th
quantity.
3

TABLE VI. Elastic constants~GPa! of the c and t structures.

SC-TB Expt. PIB HF DFT
This work Refs. 71, 72, 73 Ref. 27 Ref. 30 Ref. 3

Cubic
K0 310 194 254 288 222 268
C8 175 167 165 195 304
c44 57 47 61 180 82

Tetragonal
K0 190 151 179 197
c11 366 327 465
c33 286 264 326
c12 180 100 83
c13 80 62 49
c44 78 59 101
c66 88 64 156
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TABLE VII. Phonon frequencies~THz! at theG andX points of the BZ.

SC-TB DFT DFT Expt.
Mode This work Ref. 74 Ref. 75 Refs. 68, 79, 80

G point
T1u

(TO) 6.3 8.1 8.5 9.6
T2g

15.0 17.6 16.5 18.3
T1u

~LO! 20.1 19.7 21.1

X point
X2

2 5.1i 5.8i 5.9i
X5

2 4.5 4.9 3.5 5.1
X5

1 5.0 8.9 11.7
X4

2 12.5 11.0 11.6
X4

1 18.1 17.0 16.0
X1

1 25.0 21.0 21.0
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B. Phonon spectra

In order to test the model further, as well as to give fu
ther insight into the spontaneous symmetry breaking of thc
phase, we studied its vibrational properties. First-princi
calculations74,75 predict an imaginary frequency at th
boundary of the Brillouin zone~BZ!: this reinforces the idea
that the phase transition is displacive, and driven by the s
ening of an optic mode.

Our calculations were carried out with the TB model on
96-atom unit cell. The eigenvalues and eigenvectors of
possible vibrational modes in that unit cell, were found
diagonalizing the dynamical matrix, which we calculated u
ing the direct method. The procedure was as follows.

Within the harmonic approximation, the potential ener
F is expanded to second order in powers of the atomic
placementsu:

F5F01
1

2 (
l ,k,a

l 8,k8,b

FabS l l 8

kk8
D uaS l

k D ubS l 8

k8
D 1•••.

~21!

We use the notation of Maradudinet al.:76 k and l label,
respectively, the atom in the primitive cell and the positi
of the primitive cell with respect to some origin. The dire
method consists in computing the force constantsFab via
total energy and force calculations. In general, the atomk in
the l cell is displaced by a small amount in directiona and
the Hellmann-Feynman forces on the other atoms are
corded. These give directly the quadratic terms in the to
energy expansion. The force constantsFab can be related to
the corresponding term of the dynamical matrixD via the
usual relation:

DabS k

kk8
D 5~1/AMkMk8!(

l
FabS l

kk8
D e22pk•x( l ).

~22!

Mk is the mass of the atomk andk is a point in the BZ. The
crystal symmetry can considerably reduce the number
necessary independent calculations.77,78

The phonon spectra plotted along the high-symmetry
rection ^100& are shown in Fig. 6. The main feature of th
-

e

ft-

e

-

s-

e-
al

of

i-

spectra is the imaginary frequency of theX2
2 mode of vibra-

tion, which corresponds to the tetragonal instability shown
Fig. 5. As already mentioned the tetragonal instability
volves cell doubling therefore the corresponding eigenvec
appears at the BZ border of thec phase. The soft mode at th
X point is the natural consequence of the negative curva
of the energy surface atd50 ~Fig. 5!. Setting to zero the
dipolar polarizability of the anions (Dspp50), theX2

2 mode
is still soft, n50.8i , but the force constant corresponding
the instability is much smaller. This is consistent with Fig.
where the same effect is studied from the energetic poin
view: the energy curve is concave atd50 even when the
oxygens are not polarizable.

The effect of the oxygen polarizability is evident on th
T1u infrared-active mode, which involves the rigid displac
ment of the two atomic sublattices. The calculated vibrat
frequency is 7.9 THz when the anions are not polarizable
6.3 THz when the dipolar degree of freedom is allowed. T
closer agreement of the nonpolarizable result with the D
frequencies of 8.1–8.5 THz, together with the overestimat
of the bulk modulus suggests that the present model co
slightly overestimate both the short-range repulsion betw
closed shells of electrons, responsible for the high b
modulus, and the long-range polarization effects, wh
make theT1u frequency lower than theab initio values. The
results might be improved with a more accurate reparame
zation but the physical interpretation of theab initio results,
which is the main objective of this analysis, is unlikely
change.

Table VII shows the general agreement of the TB mo
with other calculations and with the experimental data. T
latter are measured by Raman spectroscopy and inel
neutron scattering at high temperatures on YSZ.

Certain nonanalytical terms in the dynamical matrix ha
been neglected, namely those relating to macroscopic po
ization or the Berry phase. For this reason our calculati
cannot reproduce the LO-TO splitting of 12 THz calculat
by Detrauxet al.74 The non-analytical terms can be approx
mated by knowing the Born effective charge and the diel
tric tensor, both of which could in principle be obtained fro
our model. This has previously been done in a T
framework,81 although not for ZrO2, and we plan to investi-
gate the effect in the future.



bl
re
ra

b
a

ys
us
a

m
pl
ig

th
ia
x

in
r-

ole
le
d

ou
rg
o
u

he

that
er

stic
.

em-
the
lar
her-
r-
mo-
ic
ns

hin
cts
al
ated

ce
s-

F.
o.
by

ic
sses

-

PRB 61 6629RELATIVE ENERGETICS AND STRUCTURAL . . .
V. CONCLUSIONS

We have explored the predictive power of a polariza
SC-TB model by investigating the crystal stability of pu
zirconia. The results of this extended TB model are in ove
good agreement with our ownab initio ~NFP-LMTO! calcu-
lations and with previous experimental and theoreticalab
initio studies. This semiempirical model has captured the
sic physics of the relative phase stability of zirconia with
set of parameters that are transferable between the cr
structures. A noteworthy improvement over all previo
models is the absolute stability of the monoclinic structure
0 K with respect to the usual set of alternatives. This de
onstrates that the model is ready to deal with more com
cated crystalline environments such as solid solutions, h
temperature distortions, or interfaces.

The TB model predicts that the covalent character of
Zr-O bond plays a major role in the energetics of zircon
more so than the polarizability of the oxygen ions. For e
ample, the double well about the cubic structure, absent
rigid ion model, exists when covalency is included; it is fu
ther enhanced by including also polarizability at the dip
level. We do not believe that the separation between cova
effects and polarizability effects is unique, since it depen
on the choice of basis functions. Quite possibly the previ
polarizable ion models were capturing some effects of cha
redistribution, which could alternatively be described by c
valency. It remains to be seen if a model for zirconia witho
explicit covalency could satisfactorily reproduce all t
structural energies.

The Landau theory, used to interpret the TB andab initio
.
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results, together with the lattice dynamic analysis, shows
the c↔t phase transition is displacive of the second ord
and is driven by the softening of theX2

2 mode of vibration. If
it had been driven by a softening of the corresponding ela
constantc112c12 it would have been a first-order transition
The partial softening of the elastic constants due to the t
perature could also in principle change the character of
phase transition. We are currently applying the molecu
dynamics technique to understand the high-temperature t
modynamic stability of thec phase and to explore the cha
acter of the phase transition. To this end we can use ther
dynamic integration to go beyond the harmon
approximation. The preliminary results of these calculatio
will appear in the near future.82

Since the valence electrons are treated explicitly wit
the SC-TB model we also hope to be able to study the effe
of point defects. This would be more difficult with a classic
polarizable ion model because of the problems associ
with charge conservation and redistribution.
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