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We describe an empirical, self-consistent, orthogonal tight-binding model for zirconia, which allows for the
polarizability of the anions at dipole and quadrupole levels and for crystal field splitting of the datibitals.
This is achieved by mixing the orbitals of different symmetry on a site with coupling coefficients driven by the
Coulomb potentials up to octapole level. The additional forces on atoms due to the self-consistency and
polarizabilities are exactly obtained by straightforward electrostatics, by analogy with the Hellmann-Feynman
theorem as applied in first-principles calculations. The model correctly orders the zero temperature energies of
all zirconia polymorphs. The Zr-O matrix elements of the Hamiltonian, which measure covalency, make a
greater contribution than the polarizability to the energy differences between phases. Results for elastic con-
stants of the cubic and tetragonal phases and phonon frequencies of the cubic phase are also presented and
compared with some experimental data and first-principles calculations. We suggest that the model will be
useful for studying finite temperature effects by means of molecular dynamics.

. INTRODUCTION of the ZF#* ions, these rules place Zs@n the border be-
tween the eightfold coordinated fluorite structure and the six-
Solid solutions of zirconia (Zrg) containing other oxides fold coordinated rutile oneR4,/mnm). The radius-ratio is
are among the major representatives of modern ceramic méo blunt a tool to account for the absolute stability of the
terials. The wide range of applications, including traditionalunique sevenfold coordinated structure.
structural refractories, fuel cells, and electronic devices such The classical empirical models of zirconia are based on
as oxygen sensofs testifies to the technological importance the a priori assumption of itgonicity. Empirical approaches
of zirconias. Different divalent and trivalent oxides are addedike the shell model or the rigid ion modéRIM) described
to ZrO, in order to improve its thermomechanical properties,the structuraf? dynamical}‘r"m and transpoi‘f‘.lg propertie_s
and charge-compensating vacancies are thereby introduc®fithe phases on which they were parameterized, but failed to

on the anion sublattice. The macroscopic effects associatdedict the absolute stability of the structure. The mZ%St
with the impurities are very well knowir® but a micro- detailed of such models was developed by Wilsiral,,

scopic model that gives a theoretical interpretation is stiIIWhose environment-dependent compres_sible and polarizable
P g P ion model (CIM-DQ) demonstrated the importance of the

Egi'&%ﬁis (p:)rr;/e éltrgllTﬁgritoedp;rfglriigi%irp%rivgfcsozig?zzﬁa}gnion polarizabilities at both dipole and quadrupole levels on
bining the results of first-principles density functional and
semiempirical Tight BindindTB) calculations. Z N B

Zirconia has three zero-pressure polymorphs; these hav'
cubic (c), tetragonal (), and monoclinidm) symmetry. The
high-temperature phasé’ (Fm3m) is stable between 2570
K and the melting temperature of 2980 K. Thetructuré”®
(P4,/nmq), which is stable between 1400 and 2570 K, is || @
closely related to the one: the internal degree of freedain
shifts the oxygen ions away from the centrosymmetric posi-
tions along theX;, mode of vibration(Fig. 1) and forces the
c/a ratio of the unit cell to adjust. Below 1400 K the low-
symmetry m phasé®? (P2,/c) is thermodynamically [ ] & ®
stable.

Besides its technological implications, the relationship be-
tween these structures is of fundamental interest. The meche
nisms of the phase transformations, the effects of impurities
and vacancies on them, and their relationship to the nature o
the bonding still require explanation, and this may shed light
on the properties of other, more complex oxides. FIG. 1. Cubic and tetragonal structures of ZrQight and dark

The crystal structure of purely ionic bonded materials cartircles denote oxygen and zirconium atoms, respectively. Arrows
be determined on the basis of radius-ratio rdfebased represent the structural instability of the oxygen sublattice along the
purely on electrostatic arguments. Because of the small siz&, mode of vibration.
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the energetics of zirconia. However, further calculatfons

carried out with this model revealed that even though it pre- W= cRIRL). 1)
dicted the correct energy ordering of the, andm phases, it Rl

predicted that the rutile structure should be even more stablg, is a composite angular momentum index (1,m) of the
and this phase is never observed experimentally in zirconiayiomic orbital centered on the site whose positiomRjs n

The experience gained with the CIM-DQ model suggests, . are the band anki-vector indices of the single particle
that a successful empirical model of zirconia should descnb@vave function. For the purpose of derivation, we express the

the effects of the atomic polarization, but should also g : . :
beyond a purely ionic description of the bonding. The partia?lsosﬁér%ﬁ'tﬁ;rssnﬁ: product of a radial function and a real

covalent character of zirconia has already been postifated

and is evident from electronic structure calculations based on _

density functional theory. In this paper we further investigate (rRL)=fr(Ir=RDYL(r=R), @

the recently proposed polarizable self-consistent tight bindalthough in ourempirical TB scheme the explicit functional

ing (SC-TB) model?*~2*which combines the physical con- forms of the radial wave functions are not required. To sim-

cepts of covalency, ionicity, and polarizability. Using the plify the notation, we will frequently suppress the site index

SC-TB model we are drawn to the conclusion that the covaR, in which case one can take it we are referring to an atom

lent character of the Zr-O bond makes a significant contribuat the origin and is a small vector in its neighborhood.

tion to the relative energetics of different structures, which  The total Hamiltonian can be expressed as a sum of

would explain the limited predictive power of the previous two terms, H="H°+H'. In traditional self-consistentSC)

ionic models. TB, H° contains both on-site and intersite terms. The on-site
There have been several previous approaches to analyzifgrms are diagonal ih, and are often taken as Hartree-Fock

the structural and electronic properties of zirconia. Boyer anderm values of the isolated atoms. The intersite terms are the

Klein®® used the augmented plane wal&PW) method to  bonding integrals. The additional part of the Hamiltonian,

derive pair potentials with which to investigate the equationt{’, is diagonal inR andL in the traditional approactMa-

of state of thec phase. Coheet al?’ calculated the relative jewski and Vogit®39. It controls the charge redistribution

energetics and the elasticity using the Potential Induce@hetween neighboring sites, which results from the balance

Breathing(PIB) method based on the Gordon-Kim approach.between the opposite effects due to the on-site Coulomb re-

Zandiehnadenet al?® studied the electronic structure with a pulsion (HubbardU) and Madelung potentials.

first-principles linear combination of atomic orbitals method.  What is missing in the previous model is the effect of the

The FLAPW calculations of Jansénpredicted for the first crystal fields on the valence electrons, i.e., the atquolar-

time the correct energetic ordering betweendlandt struc-  jzability. In a preliminary account of this wotk we indi-

tures at zero absolute temperature, identifying the doubleated how to include the polarization effects in a SC-TB

well in the potential energy that governs their relative stabil-tormalism by adding off-diagonal term}, ., to the on-

ity. The double well was subsequently confirmeddyinitio  gjie piocks of the Hamiltonian. Here we describe how we

Hartree-FockHF) calculations”* but these did not predict .1 e that extension.

the stability of them structure over thé one. Only the very If we assume the on-site charge distribution to be local-

recent density functional theofpFT) calculations®>*con-  i,aq then its total multipole momer®, has a monopole

sistently reproduce the relative energetics of the three Zircoc‘:ont’ribution from the ionic core chargeL and a multipre

nia_polymorphs at 0 K. _ cluding monopolg contribution from the valence charge:
The plan of the present paper is as follows. In Sec. Il we

describe the model used in the calculations, the inclusion of QL=0Q18,,+0Q¢. 3)
the atomic polarizability in the TB framework and the pa-

rametrization procedure. A preliminary account of this work  Ag Stoné” points out, the electronic multipole moment on
band structures of the simple structures for this purpose, us-

ing a new full-potential, linear muffin tin orbital method Q‘EZe?'YL(f), (4
(NFP-LMTO). The predictive power of the new model is

tested against the DFT calculations in Sec. lll A, where wewheree is the charge of the electron. Neglecting intersite
study the relative energetics of zirconia. Section Il B fo-terms like(R’L’|Q%, |R"L") for R’,R"# R, the definition of
cuses on the relationship between thandt structures: the  the on-site multipole moment is therefore

Landau theory of phase transformation is used to interpret

the results of the static calculations. In Sec. IV, we explore occ. A

the elastic and the vibrational properties of the high symme- Q= > cf'fcf‘,f(L’|Q‘f|L”). (5)
try phases. The results are summarized in the concluding L'L” Nk

section.

By invoking equationg2) and (4), the last factor of Eq(5)

can be expressed as a product of two quantities, the Gaunt
coefficientsC, , »_, which dictate the selection rules, and
A. Including polarizabilities in TB the integralsA,/», which will be new parameters of the
model:

Il. THE TIGHT-BINDING MODEL

In the TB approximation the crystal wave function can be
expressed as a linear combination of atom-centred orbitals, el
which we denotéRL): (L'|QEIL"y=eAym Crrpn (6)
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occ
CL’L”L:J Yo YnY dQ, (7 UHKSZZ( (WK Tg+ VEC+ VH+ V| k)
n,
Al,l,,,zf f1.(r)f(r)r' 2dr, (8) +UX°[n0]—f VEenodr — UM ng] + U
whered() stands for the element of solid angle gid6dg. 1 e? 52uxe , ,
The role of the Gaunt coefficients, which depend on the an- + Qf f T ; onén’drdr’.
. . [r=r’| onén’| _
gular part of the wave function only, is to select the term n=ng

with symmetryL arising from the coupling of the on-site (13)

orbitals L’ and L”. The A parameters, depending on the

radial part of the wave function, determine the magnitude oflo denotes a reference electron density, which we will con-

the coupling. The substitution of E¢6) in Eq. (5) defines  sider as a superposition of spherical ionic chardess the

the multipole moment of symmetty on the siteR. kinetic energy operator of the noninteracting electron gas,
Having defined the on-site multipole moments, we canVs®, Vi, andVj are the exchange and correlation, Hartree

calculate the fields that they generate on all the lattice sitesind ionic potentials calculated at the reference charge

The derivation uses standard results from classical electrd¥,; én denotes the deviation from that referencgn€n

statics. The electrostatic potential is expanded in partiat-ng) andn’ refers to the electron density gt. U™ andU™

waves about the site: are, respectively, the Hartree and the ion-ion electrostatic
energies.
| Without the last term, this is simply the Harris-Foulkes
V(r)=; Vi), ®  functional. It generates a non-self-consistent TB model in
which the first term is the sum of the eigenvalues while the
where, using the Poisson equation, second is a sum of pair potentidfsif the last term is in-

cluded, the total energy must be minimized iteratively, and
the last term now provides the self-consistency correction to

Vi =4m Z 2 BL/(R)QriLr, (10 the Kohn-Sham Hamiltonian.
Rz0L The last line of Eq(13) represents the Hartree energy of
and the deviation from the reference chardé[ 6n], and the
second-order term of th&*® Taylor expansion. We can
A identify this term in our SC-TB model as follows:
B (R)= ,
21+ 21"+ 1) 1 e? 5°uxe
/ §JJ | ,|+5 oy énén’drdr’
(- =11 r=r non- | _,
X > R Y(R)Crn oy
LH 1
(11) =5 g& (USNE +QrVaL)- (14

The sum ovell” is restricted to the values for whidl=1

+1’; B,,, are proportional to the well-known LMTO-ASA
structure constanfS. The component of electrostatic poten-

Our total energy in the SC-TB model is therefore

occ

tial V, couples different orbitals on a site giving the matrix UTBIZJ( (WK H Ok + ypar
elements: n
1
+5 2 (USNE +QrVrL)- (15
<L’|H’|L">:2 VLA|’|"|CL/L"L . (12) 2 RL

It can be verified that, by minimizing the above expres-

The diagonal elements of the Hamiltonian are adjusted bgion with respect to the expansion coefficients in the wave
using a single Hubbart in the standard way, which adds a functions, we recover the Schiimger equation with the
term U 6Ng, to each diagonal matrix element. The quantitiesSC-TB Hamiltonian.

O6Ng, are the changes in the electronic charge projected onto Calculation of the forces on the ions is very straightfor-
a site and orbital compared to the input, non-self-consistenvard once we have the self-consistent wave functions and
charge. We use the standard Mulliken projection. Finally themultipoles. For if an ion is moved a small distan#ie, there
Schralinger equation is solved using a self-consistent iterais no change in total electronic energy to first order in the
tive procedure with charge mixing to obtain the coefficientsscll . Therefore we can calculate the force due to the change
¢ and hence the multipoles. in the first term of Eq.(15) by the conventional formulas,

It is useful to step back at this point and compare theusing the derivatives of the non-self-consistent Hamiltonian
above model with the Hohenberg-Kohn-Sham one, whosenatrix elementssee following section In calculating the
exchange and correlation energy functiondf[ n] has been forces due to the last term of E(L5) we can hold the mul-
expanded to second order in the electron density: tipoles fixed and use standard electrostatics. There is no con-



6620 FABRIS, PAXTON, AND FINNIS PRB 61

(a) TB Aggy =0 (b) TB Aggy #0 (¢) NFP-LMTO
0.2 -I i ] _, ’ _l—: } \}
ok o N < SZf 14 FIG. 2. Band_structure of cubic zir_cqnia. In _aII
=3 \d T L | 12 the panels, starting from the bottom it is possible
=02t e T AT to identify the oxygen B valence bands and the
i‘; i 11 unoccupied zirconiumd bands, which are partly
%0‘0'4' ™~ W\ dos hybridized with the oxygen 8 one. The large
H gk ~ I A | K \/ % ' crystal field splitting of the d bands predicted by
Y % N § N A\ 0.6 the LDA calculation(c) is reproduced with the
—0.8 [~ LN M N M L/ SC-TB model (@) and(b), when theA 444 param-
L ™ 117 ] 11 104 eter is included.
XK T XW 1L TXK T XWL I'sK I xwi 7
tribution to the forces from the on-site energy containiihg A repulsive Born-Mayer pair potenti&alP®" has been cho-

The simple form of these results for the forces in TB is asen in order to reproduce the lattice parameter and the bulk
direct analogy with the application of the Hellmann- modulus of thec phase. Only the first Zr-O coordination

Feynman theorem in DFT. shell has been included in this interaction.
The Hamiltonian° has been adjusted to trab initio
B. Parametrization electronic structure of the phase shown in Fig.(2). We

chose the Goodwin-Skinner-Pettifbrdistance dependence

Each parameter of the model has been adjusted to thgf the 10 hopping integrals involved. The Hubbasdhave
results of NFP-LMTO calculations, details of which are peen fixed to 1 Ry. The parameters of the SC-TB model are
specified in the previous work on zircorfthOur TB descrip-  collected in Table I.
tion of zirconia uses a minimal basis of atomic orbitals. The The basis set chosen reduces the number of symmetry-
oxygen atoms are modeled witlpnd 3 orbitals and with  allowed A parameters t0 4Ag,,, Appg, Agga, andAggg.
a fixed core charge of-4, while on the zirconium atoms The first two refer to the andp orbitals of oxygen ions, the
there are 4 orbitals and a core charge ef4. The purpose last two to thed orbitals on the zirconium.
of the 3s orbital on the oxygen is twofold: to allow an extra  In the highly symmetric structure the first nonspherical
degree of freedom for polarization, which is otherwise re-terms of the potentia¥, on the cation and anion sites haye
stricted to charge transfer between itp 2rbitals, and to andf symmetry, respectively. The latter cannot interact with
better reproduce the structure of the conduction bands.  the oxygen orbitals, the former splits the energetic levels of

TABLE |. Parameters of the polarizable SC-TB model. Energy in Ry and lengths in atomic units.

On site parameters

H2= 0.35 Us=1
Hp=—0.70 Up=1
Hy=-0.10 Ug=1
Bond integrals
d\" r\%e [d\%
V||r(—) exi{n _(— +(— j|}
r re re
V. n ne d le Vi n ne d re
Sso —0.060 2 0 4.90 6.24 pdo —0.100 4 0 4.24 4.90
Spo 0.070 2 0 4.90 6.24 pdm 0.058 4 0 4.24 4.90
ppo 0.050 3 4 4.90 6.24 ddo —0.050 5 0 6.02 6.93
ppm —0.008 3 4 4.90 6.24 ddw 0.033 5 0 6.02 6.93
sdo —0.050 3 0 4.24 4.90 dds 0.008 5 0 6.02 6.93
Polarization terms
Agpp=0.73 Agga=0
Appd: 189 Addgz 635

Pair potential
U(r)=Aelb"
A=181.972 b=1.652
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20 TR The ¢ and thet phases were used in the parametrization

15 ,"..f'_ procedure, therefore there is automatic agreement of the two
~ ',' methods for these crystal structures. The true prediction of
2 101 A the model is the absolute stability of the monoclinic phase.
§ X/ This indicates the transferability of the parameters between
% 3 - N the phases.

5 ok b i o PR - The rutile phase, which is not experimentally observed,
< Heiagoee ™" .*'x f has been included in the study because further calculations
S "*.%t X 1 with the CIM-DQ (Ref. 20 model predicted the rutile phase

el 1N .. .
10 T S R T to be more stable than the monoclinic one. F|ggre 3 shows
200 205 210 215 220 225 230 235 240 245 250 that the SC-TB model does not suffer from this problem,
although the relative energy of the rutile phase is less than
20 T with the DFT. To our knowledge, the SC-TB is the first
“agt! semi-empirical model, which reproduces the correct ordering
15 ,{' g, X of these polymorphs at zero temperature, including the sta-
S! 10 T i bility of the m phase.
] Table Il summarizes the structural properties calculated
Z 57 7 with the NFP-LMTO method and with the polarizable
S 0 i SC-TB model, comparing them with other theoretical and
< * experimental works. The and m lattice parameters are re-
SE SRS - ferred to the 12-atom unit cell, while theones are given in
terms of the 6-atom unit cell. A comparison of the energy
-10 e differences between the phases of zirconia calculated with
200 205 210 215 220 225 230 235 240 245 250 . S .
different methods is given in Table III.
Volume (a.u./ZrO,)

FIG. 3. SC-TB(top) and NFP-LMTO(bottom) energy-volume 2. High-pressure phases

data for the cubicc), tetragonal (), monoclinic(m), and rutile(r) Under pressure, the low temperatumephase transforms
phases fitted with Murnaghan equation of states. to an orthorhombic structure, known as orthool) whose
crystallography is still controversial. X-ray diffraction
the zirconiumd orbitals andA 4, determines the magnitude analysi$** suggests it belongs to tebcm space group,
of the energy splittinge. Cubic crystal field theoA? pre- ~ while neutron-diffraction studié&*’ propose thePbca
dicts the proportionality betweefie and the radial distribu- space group. We carried out the calculations using the latter
tion of charge(r*), which is the definition ofA4gq given in  Structure. The phase transition pressure strongly depends on
Eq. (8). Figures 2a) and 2b) show the effect of the\ 444 the state of the sample and is believed to be between 3 and 6
polarization term on the band structure of thehase: the GPa®®*°A second pressure-induced phase transition is ob-
splitting of the d bands could not be captured with the served around 15 GP4,where theo, transforms to the
SC-TB without the polarizability parameters. Reasonabledrthorhombic phase termed ortho (). The latter is iso-
values of theAyqq parameter have no significant effect on structural to cotunnite (Pbg)l and belongs to thé®nam
any physical properties studied here, therefore we set it t§pace group’ The pressure increases the coordination num-
zero. ber of the zirconium atoms from 7 to 9.

Less symmetric structures are necessary to parametrize A comprehensive first-principles study of the two ortho-
the remaining\’s. In the rutile phase, the=3 component of  rhombic phases has apparently not yet been made: Stapper
the crystal field acting on the oxygen ions splits fhievels. et al® studied theo, structure only, while Jomaret al>*
Consequently, it contributes to the width of the Band: this  focused on the,, phase.
effect is controlled byA,,4, which we adjust to match the ~ The atomic environment of the high-pressure phases is
ab initio band structure of the rutile phase. The last termcompletely different to that of the andt phases used in the
Aspp has been chosen in order to reproduce the depth of thearametrization of the TB model, therefore these orthorhom-
double well in the potential energy of thestructure. bic structures provide a severe benchmark for the transfer-

ability of the TB parameters.
The energy ordering of the phases predicted by the TB
IIl. ENERGETICS OF BULK PHASES model is

A. Energy-volume curves UM<uo<Ut<Uc<UOn,

1. Zero-pressure phases which is the same as we obtain by combining the results of

The predictive power of the polarizable TB model hasRefs. 33 and 34. The numerical values of the energy differ-

been investigated by comparing its results with NFP-LMTOences are summarized in Table Ill and compare reasonably
calculations. The energy-volume curves calculated with thevell with the ab initio results. The energy-volume curves of
two methods are shown in Fig. 3. Each energy value inthe orthorhombic phases are shown in Fig. 4: all the degrees
volved the full relaxation of all the degrees of freedom of theof freedom were fully relaxed and their values are collected
structures. in Table IV.



6622 FABRIS, PAXTON, AND FINNIS PRB 61

TABLE II. Equilibrium structural parameters for the 0-pressure phases of.Zrke lattice parametewss, b, c (a.u), and the volumes
(a.u./ZrQ) of thec, t, andm structure are referred to the 12-atom, 6-atom, and 12-atom unit cells, respecfivagyotes the internal
degree of freedom of thephase(see Fig. 1, B is the angle of then cell in degrees, and, y, z are the fractional coordinates of the
nonequivalent sites in the structure.

Expt.2 SC-TB NFP-LMTO PW-PP PW-PP FLAPW
Refs. 6,8 This work This work Ref. 32 Ref. 33 Ref. 29
Cubic
Volume 222.50 213.40 210.33 215.29 220.84 217.81
a 9.619 9.486 9.442 9.514 9.595 9.551
Tetragonal
Volume 229.93 217.73 215.16 218.69 225.31 218.84
a 6.748 6.709 6.695 6.734 6.797 6.747
cla 1.451 1.442 1.434 1.432 1.435 1.425
dlc 0.057° 0.047 0.051 0.042 0.042 0.029
Monoclinic
Volume 237.67 222.89 226.13 230.51 236.46
a 9.733 9.592 9.417 9.611 9.783
b/a 1.012 1.001 1.036 1.024 1.0712
c/a 1.032 1.019 1.057 1.028 1.032
B 99.23 98.00 98.57 99.21 9923
Xzp 0.275 0.272 0.274 0.278 0.277
Yzr 0.040 0.027 0.040 0.042 0.043
Zy 0.208 0.217 0.212 0.210 0.210
Xo, 0.070 0.078 0.069 0.077 0.064
Yo, 0.332 0.336 0.339 0.349 0.324
Zo, 0.345 0.342 0.338 0.331 0.352
Xo, 0.450 0.452 0.448 0.447 0.450
Yo, 0.757 0.752 0.753 0.759 0.756
Zo, 0.479 0.472 0.478 0.483 0.479

#The experimental values of the cubic and tetragonal structures have been extragdlakedsing the thermal expansion data from Ref. 6.
PAt 1568 K.
‘Fixed to the experimental values of Ref. 8.

Although the TB model predicts the correct relative ener- B. Cubic versus tetragonal phases
getics of the phases, it is not capable of describing the subtle

. . . 1. Static calculations
pressure-induced phase transformation-o0,. Figure 4

shows the common-tangent between tmeand the o, The relationship between the cubic and the tetragonal
phases. As the pressure is increased, the model misses tbleases is governed by a volume dependent double well in the
correct sequence of the phases, predictingma-o,  potential energy. Since the FLAPW calculation of Jari$éh

pressure-induced phase transformation at 5 GPa. who predicted it first, the double well has been confirmed by

TABLE lll. Energy differences (mRy/Zrg) between the zirconia polymorphs and thghase calculated
at the minimized structural parameters of Tables Il and IV. The experimental values are derived from
enthalpy differences at the phase transition temperature.

AUt*C AUm*C AUO,*C AUO”ﬂ:
Expt. Ref. 43 —42 -8.8
SC-TB -3.0 ~7.4 -3.6 2.8
NFP -3.6 -7.7
PW-PP Ref. 32 -33 -75
PW-PP Ref. 33 -35 -8.2 -53
PW-PP Ref. 34 -15 —-59 — 4.8 —13.9 0.2 7.2

4 DA calculation.
bperdew-Wang GGC calculation.
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10 (a) (b)
156 — T3 g
-%=- c/a=0.99  # " % c/a=0.99
1554 = c/a=1.00 § ag ¥ — c/a=1.0041
- AT - cfa=101 W -8 cfa=1.01 ]
o) Gy ~ c/a=1.02%
= = 152 1 i
§1 Q 0
-1
g 5 .
S’ m -1
2 £ 148
S F =) g
< 14.6I V2 i
ol 144
190 195 200 205 210 215 220 225 230 235 149 L L ,"",‘ 1-3
Volume (a.u./Z10,) 0 0.050.1015020250 0.1020.304050.6

o d (a.u.) S (auw)
FIG. 4. Energy-volume curves for the monoclitm) and ortho-

rhombic (0, ando,;) phases calculated with the TB model. FIG. 5. SC-TB cohesive energy vs tetragonal distor#omwol-
ume ancc/a dependencda) Single well atvV,;=198 a.u/ZrQ; (b)

several otheab initio calculations and it is now well estab- DPouble well atv,=218 a.u/ZrQ.
lished.

In this section we analyze the nature oéth K energy cubic phase is stable, there is no distinct metastable tetrago-
surface by combining the information gained using two verynal phase with which to compare its energy, so the energies
different approaches: the NFP-LMTO method and the polaref the two phases merge. At larger volum¥s, a structural
izable TB model. The qualitative and quantitative agreemeninstability appears and thestructure spontaneously distorts
between the results of the two calculations, shown in theo thet one (Fig. 5).
previous section, entitles us to use the physical picture pro- The curvature of the energy surfaces is related to the
vided by the simpler model to interpret tlag initio results.  phase transition mechanism. It is clear from Fig. 5 that

Starting from thec phase, the structure can be obtained §?E/d(c/a)? is positive, whiled’E/345? is negative: this sug-
by continuously stretching the unit cell along tberystal-  gests that the phase transition is driven by thimstability
lographic direction and by displacing the oxygen columns byand that the adjustment of tlnéa ratio is a secondary effect.

6 along the tetragonal axis according to tX¢ mode of  The coupling between these two order parameters will be
vibration (Fig. 1). We calculated the total energy of the crys- further discussed when we interpret the double well using
tal using the two methods, for different values &f (c/a) at  Landau theory.

several volumes. Our local-density approximatiofLDA) and TB results

The energy curve exhibits a single-well or a double-wellfor the depth of the double well at thephase equilibrium
structure depending on the specific volume. At small vol-volume, V,, are consistent with the recent LDA values of
umes.,V,, the tetragonal distortion is energetically unfavored~7 mRy3*34 This energy barrier for the 6-atom unit cell
and the equilibrium structure is cubi€ig. 5. When the corresponds to a temperaturefl100 K. The same result

TABLE IV. External and internal degrees of freedom of the orthorhombic structures. Lattice parametersc in a.u., volumes in
a.u./ZrQ. The fractional coordinates of the non-equivalent sites are denotedkwish andz

Ortho | Ortho I

Expt. SC-TB PW-PP Expt. SC-TB PW-PP

Ref. 52 This work Ref. 33 Ref. 53 This work Ref. 34
Vol. 228.159 218.69 226.7 203.54 196.08 212.44
a 19.060 18.737 19.060 10.558 10.541 10.721
b/a 0.522 0.520 0.52 0.596 0.592 0.593
c/a 0.505 0.511 0.505 1.161 1.139 1.163
Xzp 0.884 0.880 0.884 0.246 0.255 0.253
Yzr 0.033 0.002 0.036 0.250 0.250 0.250
Zz, 0.256 0.256 0.253 0.110 0.099 0.111
Xo, 0.978 0.978 0.978 0.360 0.354 0.360
Yo, 0.748 0.745 0.739 0.250 0.251 0.250
Zo, 0.495 0.509 0.499 0.424 0.421 0.425
Xo, 0.791 0.784 0.790 0.025 0.022 0.023
Yo, 0.371 0.371 0.374 0.750 0.749 0.750
Z5 0.131 0.130 0.127 0.339 0.338 0.340

2

Fixed to the experimental values of Ref. 52.
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vibration. -0.05 %20 0.0 .
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. . -0.15 == anions -9
was obtained by Jans&hwith the FLAPW method who pro- 02 | () =@~ cations RV
. %.
posed a value o 1200 K. It is natural that these tempera- -Obzg r ~0- total *
tures, extrapolated from ¢h0 K potential energy, underesti- '0'1
mate the experimental phase transition temperature of 257( 55 - o S
K.% The experimentally observed phase transition tempera- 0 -ﬂ.&:_'g'j'ﬂ""ﬂ"'ﬂ""m .
ture can be considered as the sum of the kinetic contributionss, -0.05 T RR99. ]
. ; . 0.1 %20 q
of all the activated eigenmodes, while the calculated energy< 75 |- «2- anions X% 2. 1
barrier refers to the kinetic contribution of thg eigenmode 02  (d) -~ cations "“"~x:°~e.,e .
only. Even though it is reasonable to expect that at the phast '%22 r -0 total , T ]
transition the soft mode in the phonon specay. 6) will be "o 01 02 03 04 05 06
highly weighted in the total density of states, the kinetic 6 (a.u.)

energykT associated with all the other modes of vibrations

will still contribute to the measured phase transition tempera- FIG. 7. 6 dependence of(a) Madelung potential,(b) self-
ture. consistent charg®=Q®+Q', (c) Electrostatic and Hubbard ener-

gies as in Eq(17), (d) the same including dipoles and quadrupoles.
The zero of energy is the top of the double welVat total energies
are in Ry/formula unit, other quantities in a.u./ion.
What causes the—t symmetry breaking? The tetragonal
distortion of the oxygen sublattice implies the following geo-  The Zr-O bonds increase and decrease in length in a sym-
metrical changedi) Two Zr-O bond lengths get smaller and metric way. As a net result, the centrosymmetric position of
two get longer but the average Zr-O distance increa@@s. the oxygen atoms is a relative maximum of the Coulomb
entire columns of oxygen atoms shift one with respect toenergyU'. The change in the Madelung potential caused by
each other(see Fig. 1 therefore the nearest-neighbor O-O the tetragonal distortion is shown in Fig(ay. The overall
distances along the column remain constant while the othéncrease of the O-Zr and O-O distances makes the oxygen
four nearest-neighbor O-O distances incredse). All the  sites much more sensitive to the change of the Madelung
Zr-Zr distances remain constant. The overall increase of botpotential than the zirconium ones. The structural instability
the Zr-O and the O-O bond lengths is the basis of our intercan therefore be interpreted as an effective way of minimiz-
pretation of the double well, founded mainly on electrostaticing the electrostatic energy of the oxygen sublattice. The
arguments. repulsive Zr-O interaction counteracts the structural instabil-
By adjusting the various parameters describing ionicityity driven by the electrostatics, in a way which dominates at
covalency, and polarizability of the TB model we can selectiarge displacements because of the exponential distance de-
and isolate the effects that induce the double well, but beforgendence of this repulsion. The double well shape of the
doing so it is instructive to understand how a simple RIMenergy profile is due to the different functional form of these
answers to the same question. It has been sfbthat it is opposing energy terms of E416). This argument clearly
possible to reproduce the double well with a RIM in which depends on the strength of the repulsion, and does not work
there are two contributions: a repulsive short-ranged pairwisg the repulsion is too weak.
interactionUP?" and a long-ranged electrostatic teki. It can be noticed that analogous terms are present in the
TB model and a similar interpretation is tempting. However,
“bri ZiZ i i we now have the additional effects due to polarization, co-
URIM:;] Ae br”+i2j ?:Upauun' (16 valency, and charge redistribution. Figuré)7shows that
the absolute value of the self-consistent equilibrium charge
z is the ionic charge and; is the interatomic distance be- Q decreases on both species. Consequently, in this approxi-
tween the ions andj. mation, the on-site energy

2. Physical interpretation of the double well
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overall agreement of the results with both experiments and
first-principle calculations demonstrates that the model is al-
ready capturing the important physics of the system.

As the anion sublattice is distorted, the symmetry lower-
ing induces thd =1 andl =2 components of the potential,
which couple thes and p oxygen atomic orbitals. The mag-
nitude of the coupling, and therefore of the multipole mo-
ments, is controlled by the parametérg,, andA,,4. The
latter, fixed in order to reproduce the electronic structure of
the rutile phase, produces very weak quadrupole moments,
whose contribution to the double well is negligible. The
former controls the size of the dipole moments whose sym-
metric distribution further minimizes the electrostatic energy

. . . [Fig. 7(d)]. The total effect on the double well is shown in
0 01 02 03 04 05 06 Fig. 8.

4 (a.m)

AU (mRy/ZrO,)

2k

—w— AL =0 A =0
PP %
|—e— A0 A0

] 3. Landau theory
FIG. 8. Double well in the TB total energy at,: (X) no

coupling between the potential and the oxygen atomic orbitél3; ( The c—t phase transition can be interpreted in terms of
with dipoles and quadrupoles on the oxygen atoms. the Landau theory? In a subsequent paper we plan to ex-
plore the free energy surface®Bt-0 with this formalism, so
it is convenient to introduce it here to discuss e 0 re-

1 . . : "
> > [USNZ,+ Qg Ve, (17)  sults. Experimentally, the mechanism of this phase transition
RL has been very controversial and a clear description is still
56-63

missing’

plotted in Fig. 7c), decreases not only because of the previ- Cha??“ suggested that a partial softening of an elastic con-
ous geometric arguments but also because the charge redigant is the driving force of this phase transition and, after
tribution reduces the ionic Charges and therefore both thgymmetry considerations based on the elastic strains on|y,
O-O and Zr-Zr electrostatic interactions. concluded that the phase transition must be of first order. We

It is interesting to note that, on the oxygen atoms, theshow here that the inclusion of the order paramétgives a
self-consistent charg®®| decreases witld even though the  second-order phase transition. A similar discussion has been
total on-site potential, the sum of the Hubbard and electrogjven by Ishibashi and Dvek.®®
static terms as in qu?), increases. This nonintuitive be- According to the Landau theory’ the appropriate thermo-
havior of the charge transfer is due to covalency. The charggynamic potential, which describes the relationship between
transfer is controlled both by the on-site potential and by thehe two phases of interest, is expanded in a Taylor series in
bonding integrals, which depend on the Zr-O distance. Fopne or more order parameters, in which the expansion coef-
0#0, the overall increase in the Zr-O distance results in icients are temperature dependent. The order parameters are
decrease in the magnitude of the hopping integrals, and thisonzero in the low-symmetry phase and vanish in the high-
overcomes the opposing effect of change in the on-site pasymmetry one, providing therefore a unique way to differen-
tential, pushing baclsome electrons from the oxygen to the tiate the two phases. The terms involved in the Taylor ex-
zirconium sites. pansion are invariants under the symmetry operations of the

In the CIM-DQ, it was the quadrupole polarization of the high-symmetry phase and can be identified using group
O ions, which stabilized the tetragonal structure, so it is oftheory.
interest to see if it is also the development of a quadrupole |n the case of zirconia, the structure is unstable along
moment in the tetragonal phase, which stabilizes it within thehe three crystallographic directions, therefore the distortions
SC-TB model. alongx, y, andz have to be explicitly treated in the energy

In fact it turns out that covalency is the main effect, al- expansion. This suggests the following nine order param-
though polarizability is still significant. The structure is  eters, defined in terms of the strain tenspand grouped into

stable with respect to the one even with anorpolarizable  four symmetry-adapted bases, which spans the correspond-
SC-TB model[Fig. 8 (top curve]: the small energy differ- ing irreducible representations:

ence is due to both ionicity and covalency of the crystal. The
addition of the oxygen polarizability enhances the energy

difference between the two phases deepening and broadening Ox:0y 10 T
the double wel[Fig. 8 (bottom curve]. Exteyte, Ay
We can be more specific about the nature of the polariza- e —e—€ e 3 E
tion. In thec structure, the first nonzero components of the (2€2: e &py) (Ex €yy) 3
electrostatic potential ar¥, and V5. The latter could, in Exy» €yzs €2x Ta.

principle, induce an octapole mome@t on the anions. We

truncated the multipolar expansion of the atomic multipole A complete analysis involving all the order parameters

moments to the quadrupolé€3,, therefore, within this ap- will be done in a separate paper, here we simplify the total

proximation, the ions in the& structure are not polarized. energy expansion selecting one of the three possible direc-
Higher-order terms can be included in the expansion, but thdons of the tetragonal axis. Under this hypothesis three order
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Volume (a.u./ZrO,) FIG. 10. Volume dependence of the order parameters calculated

with the TB model: 5, is the hydrostatic strain of the cubic cell
from the reference volumé,, 7 is the tetragonal strain of the cell,
and é (a.u) is the tetragonal distortion of the oxygen sublattice.

FIG. 9. Energy-volume curves for tleeandt structures: note the
convergence at small volumé&s , Vg, andV, are the equilibrium
volumes of thec andt phases, respectively.

parameters are necessary to describecthd phase transi- These expressions show that .the second-order strain terms
tion of zirconia:é, 7, and . The high-temperaturephase  ©f Ed. (18) are already proportional t@* and therefore,

has the full cubic symmetryn3m and the only degree of W|t_h|n the ch_osen order of a_pprOX|mat|on, it is not necessary
freedom is the hydrostatic straing= e+ €y, + €,,. The to include third-order terms ig;; . Moreover, from the static
low-symmetryt phase is defined by the dyiétortion of the results itis clear that the description of the high-temperature
anionic sublattices, which we define as the amplitude of the StaPility of thec phase must go beyond the quasi-harmonic

X, mode of vibration, and by the tetragonal strain approximation. The higher the temperature, the larger the

_ volume and, according to Fig. 10, the largeand . There-
=(2€22 € €py).- , , .. fore, in a simple quasiharmonic picture, a higher temperature
The three order parameters can be hierarchically classified" <’ K

according to the amount of symmetry breaking that they inSeems to favor thephase with respect tq in contradiction

volve. The hydrostatic strair, preserves the cubic symme- to ?ﬁeenggﬂeetgﬁ Ogsnzr\éangrné Coun from the el
try of the crystal. The tetragonal strainmaintains the num- P 1 0 .
ber of atoms in the primitive cell and lowers the symmetry topropernes of the crystal and have been calculated indepen-

the point group 4hmm which still has the mirror symmetry dently _(see next sectign The coefficientsa_z anda, have
operation perpendicular to the tetragonal axis. The tetragon%ﬁgiré f(':trte;;ﬁir:hﬁ]edosizlse w_el(l) Ognzn uE(g:)stolrrgeg :itrrﬁ”sasr—free
distortion 6 breaks this symmetry operation and involves cellwa b yand b have beeer?_fitted tontoh_e déuble well of a
doubling. Therefore, according to Landau theofyjs the Y, D1 0

. : . tetragonal crystal af, (7o=0, 7#0) and of a cubic crys-
FerL?;;yoonrger parameter; is the secondary, and is the - "~ Vo (7=0, 70#0), respectively. Figure 1a)

The potential energy is expanded as a power series iisihows the three curves used for the fitting procedure. The

these order parameters around the equilibrium volume of thggreement is very good even far away from the reference
cubic phase/, (Fig. 9):

(@)
a a, Co Cq 2
c 2 2 2 2 2 — =
Uy =—6+—-6+ + + =5t = + Me=0  n=0
U-Uby= 5 8% 3 84 bod ot badint ot 57 x =0 =001
| | @ mp=0.01 1=0
+0(8%). (18 b
. - . X\
The elastic constantsg, andc, are proportional respectively 0 2 %

to the bulk modulus and t€' = (c;;— ;) in the ¢ phase X
described in the next section. The third-order teftris for-

bidden by symmetry, therefore this transition is of second

e B

AU (mRy/ZrO,)

order if a, goes negative. B

The volume dependence of the order parameters can be 27 om ¥ : “:‘0'007 1-2
studied by setting to zerg ,U andV,,OU. Both theab initio TaeX 8 n=0.007
and TB resultgFig. 10 confirm the analytic expressions: N S B I i PR B
0 0102030405060 010203040506
_ by 2 d (a.u) é (a.n.)
n = ——90
1 NS N .
N (19) FIG. 11. SC-TB total energy vs tetragonal distorti&r(a) Fit of

. the data with the Landau energy expansion 8@); (b) transfer-
Ny = ——25 7 o ability of the coefficients at values of hydrostatigy) and tetrago-
Co nal () strains different from the reference ones.
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TABLE V. Coefficients(a.u) of the energy Taylor expansion crystal along high-symmetry directions, the calculation of

Eq. (18). the total energy for different values of the distortion param-
eter and the fit of the results to a polynomial. The rigidity of

a,=—0.053 bo=—0.062 Co=0.621 the crystal with respect the particular distortion applied has

a,=0.347 b;=-0.152 ¢;=0.818 been extracted from the quadratic coefficient of the energy

series expansion. For each strain of theructure, we con-
o ) strained the volume to the predicted equilibrium value and
volume of the energy expansigfrig. 11(b)]. This demon-  minimized the energy with respect to the internal degrees of
strates that the fourth-order truncation in E@8) is suffi-  feedom.

cient to capture all the essential features @ hK energy Volume conserving stretches along the high-symmetry di-

surface. 6667 , rections of thec unit cell (100 and (111) provide C’
Nardelli et al”">*" have shown the crucial role played by =1(cy;—cqp) and cyy, respectively. Extra distortions are

the coupling between _diﬁerent o_rder parameters and how iﬁecessary when the symmetry is lowerz it the tetragonal
can affect the correct interpretation of the phase transformayyis an independent set of five shear moduli were obtained
tion. To see this we substitute the relationship8) back in by stretching along100), (001), (111), (110), and(101).

Eq. (18): The bulk moduli have been obtained by fitting the energy-
volume curves with a Birch-Murnaghan equation of

U-uy¢ :%52 %_b_é_b_i M+ 0(8%. (20 state®70
Voo 2 4 2cy 2c ' Liu etal’* used the slope of the acoustic branches at

small wavelength of a Zr@Y,0; (15%) system to estimate
The above equation shows that the coupling (026 e elastic constants of %r)]ezcugbgc ph)as)(/e. Kaedibl.” di-
+(b1/2c,)] can renormalize the fourth-order coefficient, and rectly measured the elastic constants of Yttria Stabilized Zir-
could make it negative. In that case it would be necessary tgonja(YSz) single crystals: the reference values included in
truncate Eq.(18) at the sixth-order term ins, including  Taple VI are extrapolations to 0% impurities. To our knowl-
therefore the third-order terms in the strain. These woulqg.dge there is no equivalent experimental study of the elastic-
then drive the phase transition making it first oréet” The ity of the t phase. The most recent valfare measured via
numerical values of the coefficientSable V) allow us to 5 powder diffraction technique on 12% Ce-dopegirconia.
estimate the amount of the coupling. We find that the cou- '\e compare our predictions with theoretical and experi-
pling term is ~20% of a,/4, not big enough to affect the mental data in Table VI. The results of two other theoretical
sign of the fourth-order coefficient and therefore the 0 Ky proaches, the Hartree-Fock and the PIB ones, are very dif-
calculations suggest that the phase transition is displacive @rent. As already mentioned in the Introduction, none of
second order. _ these calculations predicted the correct relative energetics of

‘The temperature dependence of the elastic constanig the crystal structures. Elasticity is a property of the energy
might change this description and the final answer will besecond derivative: a good description of the energy curves is
given by high-temperature molecular dynamics calculationsy prerequisite for reliable elastic constant calculations.

which are in progress. The fairly good agreement of our calculations with the
experiments further indicates that the SC-TB model captures
IV. DISTORTIONS the main physics of the bonding. The bulk modulus, how-

ever, is seriously overestimated: this may not be an intrinsic
limitation of the TB model, because it was fit precisely to the

The elasticity ofc andt zirconia has been explored with NFP-LMTO calculation, which similarly overestimates this
the TB model. The analysis involved the distortion of thequantity.

A. Elastic constants

TABLE VI. Elastic constant§GPa of the c andt structures.

SC-TB Expt. PIB HF DFT
This work Refs. 71, 72, 73 Ref. 27 Ref. 30 Ref. 33
Cubic
Ko 310 194 254 288 222 268
c’ 175 167 165 195 304
Caa 57 47 61 180 82
Tetragonal

Ko 190 151 179 197
Ci1 366 327 465
Ca3 286 264 326
C1io 180 100 83
Ci3 80 62 49
Caa 78 59 101

Ces 88 64 156
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TABLE VII. Phonon frequencie$THz) at thel” and X points of the BZ.

SC-TB DFT DFT Expt.

Mode This work Ref. 74 Ref. 75 Refs. 68, 79, 80
I" point

T,, (TO) 6.3 8.1 8.5 9.6

ng 15.0 17.6 16.5 18.3

Tlu (LO) 20.1 19.7 21.1
X point

X5 5.1i 5.8 5.9

Xs 4.5 4.9 35 51

Xz 5.0 8.9 11.7

X, 12.5 11.0 11.6

Xy 18.1 17.0 16.0

X5 25.0 21.0 21.0

B. Phonon spectra spectra is the imaginary frequency of tie mode of vibra-

In order to test the model further, as well as to give fur-tion, which corresponds to the tetragonal instability shown in

ther insight into the spontaneous symmetry breaking otthe Fi9- 5. As already mentioned the tetragonal instability in-
phase, we studied its vibrational properties. First-principIeVOIVes cell doubling therefore the corresponding eigenvector
calculationd*” predict an imaginary frequency at the appears at the BZ border of tegphase. The soft mode at the

boundary of the Brillouin zonéBZ): this reinforces the idea X point is the natural consequence of the negative curvature

that the phase transition is displacive, and driven by the soft(-)f the energy surface a=0 (Fig. 5). Setting to zero the

ening of an optic mode dipolar polarizability of the anionsXs,,=0), theX, mode
Our calculations were carried out with the TB model on a/S St,i” SOft.' .V:.O'a' but the force constant qorrespo_ndin_g ©
96-atom unit cell. The eigenvalues and eigenvectors of thihe instability is much smaller._ This is consistent w!th Fig. 8
possible vibrational modes in that unit cell, were found by'Where the same effect is studied from the energetic point of
diagonalizing the dynamical matrix, which we calculated us-VIeW: the energy curve is concave a&0 even when the
ing the direct method. The procedure was as follows. oxygens are not polarizable.
Within the harmonic approximation, the potential energy The effect of the oxygen polarizability is evident on the

® is expanded to second order in powers of the atomic dis] tu infrared-active mode, which involves the rigid displace-
placementsi: ment of the two atomic sublattices. The calculated vibration

frequency is 7.9 THz when the anions are not polarizable and
6.3 THz when the dipolar degree of freedom is allowed. The
+ee closer agreement of the nonpolarizable result with the DFT
frequencies of 8.1-8.5 THz, together with the overestimation
(21) of the bulk modulus suggests that the present model could
slightly overestimate both the short-range repulsion between
We use the notation of Maradudiet al.’® x and| label, closed shells of electrons, responsible for the high bulk
respectively, the atom in the primitive cell and the positionmodulus, and the long-range polarization effects, which
of the primitive cell with respect to some origin. The direct make theT,, frequency lower than thab initio values. The
method consists in computing the force constahts; via  results might be improved with a more accurate reparametri-
total energy and force calculations. In general, the atoim  zation but the physical interpretation of tab initio results,
thel cell is displaced by a small amount in directianand  which is the main objective of this analysis, is unlikely to
the Hellmann-Feynman forces on the other atoms are rezhange.
corded. These give directly the quadratic terms in the total Table VII shows the general agreement of the TB model
energy expansion. The force constadrg; can be related to  with other calculations and with the experimental data. The
the corresponding term of the dynamical matfixvia the latter are measured by Raman spectroscopy and inelastic

1 I’ | |’
end 3 ol S

KK' K
1" «",B

usual relation: neutron scattering at high temperatures on YSZ.
Certain nonanalytical terms in the dynamical matrix have
k | been neglected, namely those relating to macroscopic polar-
— (11 —2ak-x(l '
Daﬁ( KK,) = MKM,«)Z ‘baﬁ( KK’)e X0, ization or the Berry phase. For this reason our calculations

(22) cannot reproduce the LO-TO splitting of 12 THz calculated
by Detrauxet al.”* The non-analytical terms can be approxi-
M, is the mass of the atom andk is a point in the BZ. The mated by knowing the Born effective charge and the dielec-
crystal symmetry can considerably reduce the number offric tensor, both of which could in principle be obtained from
necessary independent calculatiéh& our model. This has previously been done in a TB
The phonon spectra plotted along the high-symmetry diframework®! although not for ZrQ, and we plan to investi-
rection (100) are shown in Fig. 6. The main feature of the gate the effect in the future.
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V. CONCLUSIONS results, together with the lattice dynamic analysis, shows that

We have explored the predictive power of a polarizablethe c—t phase transition is displacive of the second order

SC-TB model by investigating the crystal stability of pure gnd S driven l?y the softening .Of the, mode of V|brat'|on. If .
zirconia. The results of this extended TB model are in overallt had been driven by a softening of the corresponding elastic

good agreement with our owab initio (NFP-LMTO) calcu- constantc;;— ¢, it. would have bgen a first-order transition.
lations and with previous experimental and theoretigal The partial softening of the elastic constants due to the tem-

initio studies. This semiempirical model has captured the bapﬁraturte coql_d als\?v'n principle ctrllange lth_e cf:ﬁ\racterl of :he
sic physics of the relative phase stability of zirconia with aPbhase transition. We are currently applying th€ molecutar

set of parameters that are transferable between the crysth namics _techniqye fo understand the high-temperature ther-
structures. A noteworthy improvement over all previousmOdynarnIC stability of the phase and to explore the char-

models is the absolute stability of the monoclinic structure agcter O.f the_ pthaset'transflon. To thtl)s enddwetﬁan uhse thermo-
0 K with respect to the usual set of alternatives. This dem- ynamic Integration  fo go  beyon € harmonic
onstrates that the model is ready to deal with more COI,np"gipprommatlon. The preliminary results of these calculations

cated crystalline environments such as solid solutions, highWIII appear in the near futur. - .
temperature distortions, or interfaces. Since the valence electrons are treated explicitly within

The TB model predicts that the covalent character of the‘he S.C'TB model we also hope to be "’?b.'e to st.udy the ef_fects
Zr-0 bond plays a major role in the energetics of zirconia,Of point defects. This would be more difficult with a classical

more so than the polarizability of the oxygen ions. For eX_polarizable ion model because of the problems associated

ample, the double well about the cubic structure, absent in yith charge conservation and redistribution.
rigid ion model, exists when covalency is included; it is fur-
ther enhanced by including also polarizability at the dipole
level. We do not believe that the separation between covalent S.F. is grateful for support from the European Science
effects and polarizability effects is unique, since it depend$-oundation, Forbairt, and the British Council, and for discus-
on the choice of basis functions. Quite possibly the previousions with John Corish and Nigel Marks. A.T.P. and M.W.F.
polarizable ion models were capturing some effects of chargare grateful to the EPSRC for funding under Grants No.
redistribution, which could alternatively be described by co-L66908 and No. L08380. This work has been supported by
valency. It remains to be seen if a model for zirconia withoutthe European Communities HCM Network “Electronic
explicit covalency could satisfactorily reproduce all the Structure Calculations of Materials Properties and Processes
structural energies. for Industry and Basic Science” under Grant No. ERBFM-
The Landau theory, used to interpret the TB ahdinitio = RXCT980178.
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