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Error analysis of XAFS measurements

H. J. Krappe and H. H. Rossner
Hahn-Meitner-Institut Berlin, Glienicker Straße 100, D-14109 Berlin, Germany

~Received 9 July 1999!

We propose a method to analyze x-ray-absorption fine-structure data that avoids an arbitrary restriction of
the size of the model-parameter space. It starts with ana priori guess of the model parameters which is
introduced into the fitting procedure by Bayesian arguments. Two different descriptions are discussed to
determine the relative impact of thea priori and experimental information on the fit. The resulting algorithms
are tested by application to three simulated experiments at the TaL3-edge and to CuK-edge data.
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I. INTRODUCTION

Traditionally measured extended or near-edge x-r
absorption fine-structure~EXAFS or NEXAFS! raw data are
subject to various manipulations like Fourier filtering a
background subtraction, often on the basis of the individ
experience of the experimentalist. This makes it difficult
follow the error propagation from the measured input data
the output of the data analysis in a systematic, quantitativ
reliable way. Furthermore, the effects of systematic err
resulting from shortcomings of the many-body solid-st
theory used in EXAFS are difficult to quantify. We fee
therefore, that a more systematic investigation of the relia
ity of EXAFS data analyses would be worthwhile. This r
quires reliable estimates of both the errors of the XAFS m
surements as well as those connected with the theore
model on which the data analysis is based. Although b
types of errors are not always known with the desirable
liability, it may be useful to show what could be gained by
more dependable error estimate of the input data than a
able at present, in order to motivate a careful analysis of
various sources of systematic errors in future work on XA
data.

In the following we shall try to identify and quantify th
various sources of statistical and systematic errors ente
the data processing. Using well-defined statistical proced
the effect of these input errors on the resulting fit is det
mined. As in most high-precision data analyses, Bayes
arguments will be used. Special effort is made not to co
promise the genuine information content in the data ba
priori assumptions. The algorithm is tested by application
four sets of data: the copperK-edge data of Newville1 and
three sets of computer-generated tantalumL3-edge data.

II. FORMULATION OF THE PROBLEM

The following discussion will be based on the standa
formula for x-ray absorption on a polycrystalline or amo
phous sample2,3

m~k!2mback~k!2m0~k!

m0~k!

5x~k!5
S0

2

k (
i

Ni

u f i~k,Ri !u

Ri
2

e22k2s i
2
22Ri /l(k)

3sin@2kRi1f i~k!# ~1!
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with the wave number

k5A2m

\2
~hn2E0!,

where E0 refers to the Fermi energy reckoned from t
muffin-tin potential zero. In Eq.~1! m(k) is the measured
absorption signal. The background absorptionmback(k) is as-
sumed to contain all known systematic disturbing contrib
tions to the absorption, like tails of nearbyK andL edges of
other atoms, signals from photons scattered in the monoc
mator or the target, and other errors to be determined
principle by appropriate reference measurements, and
practice often by the Victoreen procedure.4 Remaining errors
in the differencem(k)2mback(k) are therefore supposed t
have numerous, statistically independent errors of com
rable size. By virtue of the central limit theorem they a
lumped together in a Gaussian distribution with wid
Dm(k). The absorption coefficientm0(k) of the absorbing
atom, with no other atoms present in the lattice, is an ar
cial quantity to be obtained from theory. The same holds
the effective curved-wave backscattering amplitudef i(k,x)
and the net phase shiftf i(k,x), connected with thei th shell
of neighboring atoms. TheN-component vectorx stands for
the half-path lengthsRi and coordination numbersNi , to be
determined by the fit. Also the mean free pathl(k) and the
‘‘many-body’’ amplitude reduction-factorS0

2 are in principle
obtained from an approximate treatment of the ma
electron system surrounding the absorbing atom. Finally,
temperature-dependent and angular-averaged variancess i

2 of
the atomic positions in thei th shell with respect to the ab
sorbing atom can be calculated from the optical branch of
phonon spectrum or, if the latter is not available, appro
mately from the spring constants between neighboring p
of atoms. It should be noted that all cumulants of the pe
in the pair-distribution function above the second one
neglected in Eq.~1!.

The quantitiesmback, m0 , u f i(Ri)u, f i , l, S0
2 , s i

2 , and
E0 are represented by theM component vectory(k,x). Be-
cause of the practical difficulty to account exhaustively
all contributions tomback and the limitations in the theory o
the electronic many-body system in a solid, all compone
of y are subject to systematic errors. In order to achiev
quantitative error analysis, it is obviously necessary to qu
6596 ©2000 The American Physical Society
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PRB 61 6597ERROR ANALYSIS OF XAFS MEASUREMENTS
tify one’s confidence in evaluating these quantities. For t
purpose we shall introduce probability distributio
Pj (y)dyj to find the valueyj of the j th component ofy to lie
betweenyj and yj1dyj when the other components hav
values y1 , . . . ,yj 21 ,yj 11 , . . . ,yM . We shall not discuss
here how these—in general non-normal—distributions
be obtained~for instance, by performing calculations in mo
reliable, but more expensive approximation schemes!. In-
stead, the functionsPj will be treated as an input of Gaussia
shape. It is often difficult enough to obtain an estimate fo
width Dyj in addition to a mean valueyj

(0) . Given these two
numbers, a Gaussian is the most probable distribution fu
tion from the point of view of maximizing the information
theoretical entropy. For the sake of simplicity we assu
that the errors for different components ofy are statistically
independent. Therefore,

P~y!dMy')
j 51

M

e21/2(yj 2yj
(0))2/Dyj

2
dMy. ~2!

In the following it is convenient to rewrite Eq.~1! as

m~k!5g„k;x,y~k,x!…,

the ‘‘model’’ being defined by the functiong. The observ-
able m(k) is assumed to be measured at theL values
k1 , . . . ,kL of its argument. We order the terms in the sum
Eq. ~1! according to decreasing average amplitude and tr
cate the sum after theI th term. Calling the truncated sum
xI(k), the model function

g~k!5mback~k!1m0~k!1m0~k!xI~k!,

therefore, contains a truncation error. It is useful
consider the differencesXi(kl)5xI 1 i(kl)2xI(kl) for i
51, . . . ,I max. If I max is chosen sufficiently large to accumu
late reasonable statistics, the numbersXi(kl) at each fixedkl
turn out to have roughly a Gaussian distribution. We m
then define average values

X~kl !5
1

I max
(
i 51

I max

Xi~kl !

and a correlation matrix

S l l 85X~kl !X~kl 8!2X~kl !•X~kl 8!.

We found for all examples investigated so far that

S l l .X~kl !
2
, l 51, . . . ,L.

We, therefore, model the truncation error, i.e., the distri
tion of the stochastic vectorg8 with components

g8~kl !5g~kl !1m0X~kl !,

by the distribution

Pmodel~g8!'e2(1/2)xmodel
2 (g,g8);

here, in matrix notation,

xmodel
2 5~g82g!TB8~g82g!

in terms of a symmetric matrixB8 whose inverse is given by
is

n

a

c-

e

f
n-

y

-

~B821! l l 85m0~kl !m0~kl 8!S l l 8 .

The total uncertainty due to systematic errors is then

Psyst~g8,y!5Pmodel~g8!)
j 51

M

Pj~y!.

It may be desirable to determine some of the compone
of y by fitting the data, rather than relying on model calc
lations. In this case they have to be added to the vectox,
thus increasing the dimension of the space of model par
eters. In general it cannot be expected that a given se
measured data allows the determination of vectorsx with too
many components. However, it is not easy to know in a
vance what the maximal admissible number of compone
of x is that can reliably be determined by a given set of da
In fact, due to cross correlations between the errors in
components ofx, one expects that the data determine the
only in some subspace of the whole parameter space,
complementary subspace being ‘‘drowned’’ in the combin
noise of the data and the systematic error ofy. One, there-
fore, needs a general algorithm to determine these subsp

III. EXTENDED x2 FIT

It is inconceivable that a precision measurement is d
on a sample whose structure is totally unknown. In a typi
case some estimate of the components ofx is knowna priori
although, perhaps, with large uncertainty.5 Calling this esti-
matex(0), the aim of the fit procedure is to find the probab
ity distribution for the relative differences (xn

2xn
(0))/Dxn , n51, . . . ,N, on the basis of the information

gained by the measurement. The order of magnitude of
range over which one expects thexn to differ from xn

(0) is
called Dxn . To simplify the notation the symbolx shall in
the following be used to represent these relative differenc
Just as one knowsa priori an estimatex(0), one may model
one’s uncertainty of this guess by a Gaussian probab
distribution

Pprior~x!5Npriore
2(1/2)xprior

2 (x) ~3!

with the normalization factorNprior and the quadratic form

xprior
2 ~x!5 (

n,n851

N

Ann8xnxn8 . ~4!

This ansatz can also be obtained from the requirem
that Pprior should maximize the information-theoretical e
tropy *Pprior(x)ln Pprior(x)dm(x) under the constraint that

^x&prior50 and ^xnxn8&prior5Ann8
21 ,

and that the probability measure inx space is given by

dm~x!5 )
n51

N

dxn .

Note that by itself the maximum-entropy principle neith
yields x(0), nor the metrical tensorAnn8 or the metricm(x).
Conditions for a reasonable choice of the quadratic fo
Ann8 shall be discussed in the next section.
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There are often good reasons to modify the ansatz Eq.~3!.
There exist, e.g., lower and upper limits for the distancesRi
beyond which no result of a fit would be acceptable,
matter how well it fits the data. Therefore, thea priori prob-
ability Eq. ~3! may be substituted by the cutoff Gaussian

Pprior5Nprior8 )
n51

N

Q~xn2xn
l !Q~xn

u2xn!e2(1/2)xprior
2

, ~5!

whereQ is the step function,Nprior8 is a new normalization
factor and

xn
l <xn<xn

u , n51, . . . ,N,

defines the permissible range of model parameters.
After the measurement, experimental valuesm l

5m(kl), l 51, . . . ,L are known, with normal-distributed
errorsDm l8 at wave vectorskl , determined with errorsDkl ,
which we assume to be also normal distributed and stat
cally independent. Then the conditional probability to findm
onceg8 is given is

P~mug8!5)
l 51

L

~2pDm l
2!21/2e2(1/2)xexp

2

with

xexp
2 5(

l 51

L Fm l2g8~kl !

Dm l
G2

and

Dm l
25Dm l8

21S dg8

dk Uk5kl
Dkl D 2

. ~6!

To account also for the systematic errors, this function m
be weighted withPsyst

Pcond~mux!5E Psyst„g8,y;g~x,y!…P~mug8!dMydLg8.

~7!

To perform the integrations in Eq.~7! it is convenient to
introduce the rescaled vectorsm, g, andg8 with components
m l /Dm l , g„kl ;x,y(kl ,x)…/Dm l , and g8(kl)/Dm l , respec-
tively, and the matrixB21 with components

~B21! l l 85
~B821! l l 8

Dm~kl !Dm~kl 8!
5

m0~kl !

Dm~kl !

m0~kl 8!

Dm~kl 8!
S l l 8 .

In terms of these rescaled quantities we have

xexp
2 5~m2g8!T~m2g8!

and

xmodel
2 1xexp

2 5g8T~11B!g822~mT1gTB!g81gTBg1mTm.

Using the formula6

E e2(1/2)xTAx1bTxdLx5F ~2p!L

det~A!G
1/2

e(1/2)bTA21b, ~8!
o

ti-

st

which is valid for any symmetricL3L matrix A possessing
an inverseA21, andL-dimensional vectorsx and b, the g8
integration in Eq.~7! yields

Pcond~mux!5E e2(1/2)x inter
2

21/2(y2y(0))TD(y2y(0))dMy ~9!

in terms of the diagonal matrixD with componentsD j j 8
5Dyj

22d j j 8 ( j 51, . . . ,M ) and

xinter
2 52~mT1gTB!~11B!21~m1Bg!1gTBg1mTm.

~10!

Here we have assumed Gaussian distributions for thePj and
disregarded the cutoff factors in Eq.~5!. Keeping only terms
up to linear order inB21 gives

xinter
2 5gT~12B21!g22mT~12B21!g1mT~12B21!m.

According to Bayes’ theorem thea posterioriprobability
to find x is given by5,7

Ppost5
Pprior~x!Pcond~mux!

E Pprior~x!Pcond~mux!dNx
. ~11!

This theorem expresses the modification of thea priori ex-
pectation of the model parametersx as a result of the experi
ment.

Traditionally one first determinesmback by fitting the pre-
edge spectrum to a Victoreen function, then one determ
m0 by passing a smoothing spline through the data above
edge, finally one fixesE0, thus constructing the EXAFS sig
nal x(k) which is then Fourier transformed to obtain theRj
andNj from peak positions and zero moments of the pea
respectively. In contrast, we have proposed above to ca
late the various fit parameters in Eq.~1! in onestep. This is
done with the purpose of keeping control of the correlatio
between their errors.

Our approach is basically ak-space fit. It may be useful to
compare it withR-space fits which are frequently used
various variants to analyze XAFS data. Ifg(k) is measured
at L52Lk11 equidistant valueskl in the intervalkmin<kl
<kmax one may representkx(k) in this interval by the Fou-
rier series

~k81k0!x~k81k0!5 (
n52`

`

cneindrk8

with cn5c2n* , the midpointk05 1
2 (kmax1kmin) and k5k8

1k0, wheredr 52p/(kmax2kmin) is the optical resolution.
The expansion coefficientscn are given by

cn5
dr

2pE2p/dr

p/dr

~k81k0!x~k81k0!e2 indrk8dk8

'
1

2Lk11 (
l 52Lk

Lk

klx~kl !e
2 indr (kl2k0), n>0. ~12!

The cn are a discrete representation of the EXAFS signa
r space,F@kx(k);r #, with r 5ndr , n>0.

Rewriting Eq.~1! as
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kx~k!5(
j

Aj sin~2kRj1f j !

and neglecting thek dependence of the amplitudesAj and
phasesf j , insertion into Eq.~12! yields

cn5(
j

Aje
i (2k0Rj 1f j 2p/2)

sin@~2Rj2ndr !p/dr #

2Rj2ndr
.

The last factor on the right-hand side~rhs! of this equation is
strongly peaked atn52Rj /dr if Rj (kmax2kmin)@1. There-
fore, ucnu2 peaks strongly at thesen values, which allows one
to obtain theRj ~andAj

2) from thecn . But since the phase
and amplitudes are actuallyk dependent, andm0(k) may
have Fourier components in the EXAFS regime, such
analysis can only yield a first estimate of theRj . A set of
empirical rules8 was introduced to correct the number, po
tion, and width of the peaks of the Fourier-transformed E
AFS signal for thesek dependences. A systematic analysis
error propagation under these rules would require still m
empirical rules. One may therefore wonder whether the F
rier technique is really the adequate tool for a high-precis
analysis of EXAFS data. Furthermore, one is often interes
only in a couple of numbersRj and integer coordination
numbersNj , rather than in the whole continuous function
r F @kx(k);r #. To extract this information out of the signal i
k space more specific ways than a~truncated! Fourier trans-
form appear to be preferable.

IV. LINEAR MODELING

The simplest case arises wheng is a linear function ofx,
i.e., when the initial guessx(0) is sufficiently close to the
final solution to justify the linear expansion

g~k;x,y!5g„k;0,y~k,0!…1 (
n51

N

gn~k,y!xn , ~13!

with

gn~k;y!5
]g

]xn
U

x50

1(
j 51

M
]g

]yj
U

y5y(k,0); x50

]yj~k,x!

]xn
U

x50

.

In this approximationxexp
2 becomes a quadratic form ofx.

To simplify the situation further we shall assume that o
ability to determine the components ofy from many-body
theory is sufficiently advanced that the systematic errorsDyj
are small and allow an expansion ofg(k;x,y) to linear order
in y2y(0),

g~k;x,y!5g~k;x,y(0)!1(
j 51

M
]g

]yj
U

y5y(0)

~yj2yj
(0)!. ~14!

In terms of the rectangular matrices

Gln5gn~kl !/Dm l , n51, . . . ,N, l 51, . . . ,L,

Tl j 5
1

Dm l

]g~kl !

]yj
U

y5y(0),x50

, j 51, . . . ,M , l 51, . . . ,L,

and the vectorg05g(0,y(0)) we have, again, in matrix nota
tion
n

-
-
f
e
u-
n
d

r

g~x,y!5g01Gx1T~y2y(0)!.

This expansion is substituted into Eq.~10! and they inte-
gration in Eq. ~9! is performed using again Eq.~8!. The
conditional probability is then Gaussian inx, Pcond

}exp(21/2xcond
2 ) with

xcond
2 5xTQx22bTx1~m2g0!TC~m2g0!

in terms of the information matrixQ, the vectorbT, and the
L3L matrix C,

Q5GTCG, ~15a!

bT5~m2g0!TCG, ~15b!

C5$12~11B21!21T@D1TT~11B21!21T#21TT%

3~11B21!21. ~15c!

If the systematic errors described by the matricesB21 and
D21 are small compared to the experimental errorsDm l , the
brackets in Eq.~15c! may be expanded in powers of the
matrices. To linear order inB21 and D21 one obtainsC
512B212TD21TT or to the same order

C5~11B211TD21TT!21.

If, in addition, one neglects the off-diagonal matrix eleme
of Cll 8 , one arrives at the rather simple expression

xcond
2 5(

l 51

L Fm l2g~kl ;x,y(0)!

Dm l
eff G 2

~16!

with

~Dm l
eff!25~Dm l !

21(
j 51

M F]g~kl ;0,y(0)!

]yj
Dyj G2

1m0~kl !
2S l l ,

which generalizes the usual expression forxexp
2 to the case of

a model with intrinsic uncertainties.
The a posteriori distribution Eq. ~11! becomesPpost

}exp(21
2xpost

2 ) with

xpost
2 5xprior

2 1xcond
2 5xT~A1Q!x22bTx1~m2g0!TC

3~m2g0!. ~17!

The a posterioriexpectation value of the model paramete

x̄ª^x&post5E xPpost~x!dNx,

follows from the normal equations

]xpost
2

]xn
50, n51, . . . ,N. ~18!

More explicitly, one obtains the set of linear equations

(
n851

N

~Qnn81Ann8!x̄n85bn , ~19!

and thea posteriorivariance matrix is given by
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^~xn2 x̄n!~xn82 x̄n8!&post5~Qnn81Ann8!
21. ~20!

The interpretation of Eq.~19! is particularly transparen
whenAnn8 commutes withQnn8 , which, in particular, is the
case whenAnn8 is proportional to the unit matrix. This is in
fact the choice most frequently made. Denoting the eigen
ues ofQ andA by qn andan , respectively, and the compo
nents ofx andb in the eigenrepresentation ofQ by x̃ and b̃,
respectively, the linear system of equations~19! decouples in
this representation,

~qn1an!x̃n5b̃n , n51, . . . ,N. ~21!

The eigenvaluesqn may be ordered in decreasing siz
uqnu>uqn11u. The condition number of the matri
Q, q1 /qN , increases with the sizeN of the model-paramete
space and reaches values between 103 and 1015 in the ex-
amples to be discussed later. Since the model parametex̃n

are finite, theb̃n also have to decrease with increasingn,
roughly in parallel withqn . However, theb̃n are subject to
‘‘noise,’’ because they depend throughb on the observables
m l . Since there is no reason why the noise level should a
decrease, the solution of Eq.~21! becomes meaningless fo
sufficiently largen unless the eigenvaluesan prevent the sum
qn1an from becoming too small. The matrixA therefore has
to be bounded from below to serve this purpose. The pre
value of the bound shall be determined below. At this po
we only want to point out that thea priori probability is seen
to introduce the matrixA into Eq.~21!, which formally regu-
larizes the ill-posed inversion problemQx̄5b in the sense of
Tikhonov.9

Those directions in model-parameter space for whichqn
>an are defined to span the subspaceR. Its orthogonal
complement is calledP. So the data dominate the fit inR,
and thea priori assumptions are dominant inP. The simplest
case arises when the eigenvalues ofQ decrease in size by a
order of magnitude going from one eigenvalue to the nex
the relevant range of eigenvalues defining the bounda
betweenR andP spaces,

qn@an in R, ~22a!

qn!an in P. ~22b!

This is frequently observed in fit problems involving mod
spaces of dimension larger than ten.10 Then Eqs.~22! can be
satisfied by the choiceAnn85adnn8 . The overall weight fac-
tor a controls the impact of thea priori information on the
fit compared to the experimental information.

Two methods will be discussed in the following to dete
mine a. Both were proposed by Turchin6,11 with the inten-
tion not to compromise the information in the data by t
stronga priori conditions. In the first method the paramet
a is determined in the fitting procedure by imposin
Turchin’s condition11

^xcond
2 &post5L. ~23!

This equation is to be added to the linear equations~19! to
determine theN model parametersxn anda simultaneously.
l-

,

o

se
t

n
es

l

r

Note that this system of equations is nonlinear since Eq.~23!
is nonlinear. It is to be solved by an appropriate iterati
scheme.

The meaning of Eq.~23! becomes more transparent b
noticing that from

^xcond
2 ~x!&post2xcond

2 ~ x̄!5 (
n,n8

Qn,n8~^xnxn8&2 x̄nx̄n8!,

one obtains with Eqs.~20! and ~23!

xcond
2 ~ x̄!5L2tr

Q

Q1A
. ~24!

If @Q,A#50, the rhs of Eq.~24! can be written in the
form

Leff5L2 (
n51

N
qn

qn1a
.

Instead of Eq.~23! the more convenient expression E
~24! will be used together with Eq.~19! to determine the
solutionx* 5 x̄ anda* 5a. In R space the terms in the sum
are approximately equal to unity, and they are approxima
zero inP. The trace therefore measures roughly the dim
sion ofR. The expression on the rhs of Eq.~24! thus extends
the concept of the number of degrees of freedomL2N in
well-posed inversion problems to the present case of an
posed problem. We, therefore, call this expressionLeff , the
effective number of degrees of freedom.

There is an alternative interpretation of Turchin’s con
tion which is also valid whenQ andA do not commute. All
points x in model-parameter space for whichxcond

2 (x)<Leff

form an ellipsoid. All of them are compatible with the da
within one standard deviation and must therefore be con
ered as indistinguishable on the basis of the measureme
the initial guessx(0) does not happen to lie inside this ellip
soid, it is easy to show that Eqs.~19! and~23! determine that
point x* on the surface of the ellipsoid which is closest to t
origin, i.e., to thea priori assumption, distances being me
sured with the metricAnn8 .12,13 In fact, minimization of the
distance(nn8Ann8xnxn8 with the constraint Eq.~24! may be
written as

]xn
@xprior

2 ~x!1Lxcond
2 ~x!#50,

whereL is a Lagrange multiplier. In view of Eqs.~17!, ~18!,
and~19!, x5 x̄ is seen to solve this equation withL51, and
Eq. ~24! is satisfied forx̄5x* . The determination ofa by
Turchin’s condition therefore ensures that the informat
contained in the data is not distorted bya priori assumptions
sincex* still belongs to the one-standard-deviation ellipso
But of all the points of the ellipsoid the one closest to thea
priori guess is selected.

Our procedure is closely related to a treatment of thex2

fit by the singular-value-decomposition method with a su
stitution of the small singular values of the matrixQ by
infinitely large ones.14 This amounts to an exact projection o
the model space onto the spaceR. What might appear there
as a mathematical trick is seen in our stochastic interpr
tion of the regularization to lead to a straightforward det
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PRB 61 6601ERROR ANALYSIS OF XAFS MEASUREMENTS
mination of the cutoff parametera* , independent of the nu
merical accuracy of the inversion algorithm used in t
calculation.

When the sequence of eigenvalues ofQ does not decreas
as fast as assumed above, it is not desirable to definA
essentially as a projector ontoR space. In fact, the boundar
betweenR andP spaces is then somewhat blurred and o
needs a smoother onset of the regularizing effect ofA. In-
stead of formal recipes to constructA it is advisable in this
case to incorporate as much intuitive understanding of
physical system under consideration as possible in const
ing the a priori error correlation-matrixAnn8 in model pa-
rameter space. One should then normalizeA by extracting
the largest eigenvaluea as a factor. Writing

A5aA8, ~25!

the largest eigenvalue ofA8 is defined to be unity. Once on
has assumed some reasonable form forA8 the overall weight
factor a can again be determined from Eq.~24!. This pre-
vents the information in the experimental data to be seriou
distorted. Only the details of the smooth transition fromR to
P spaces depend on the choice ofA8.

It is important to stress that thea posteriori probability
does not imply a statement about the closeness of the s
tion x* to the true solution. Instead it is the probability th
the a priori model parametersx(0) have to be modified as
consequence of the information gained by the experime
data. If, for example,x(0) would be so close to the true so
lution thatxcond

2 (0)5L, a* could be chosen infinitely large
and Eqs.~19! and ~24! could be satisfied withx* 50, i.e.,
without changing thea priori model parameters at all. In thi
case the variance matrix (Q1a* )21 becomes infinitely
small. This does not mean that the solutionx* 50 is particu-
larly accurate, but that there is no need to modify any co
ponent of thea priori vector x(0) as a consequence of th
information gained by the experimental data.

It is useful to compare this concept of ana posteriori
error matrix with the error matrix obtained in traditionalx2

fits. In such a fit one decidesa priori which of the compo-
nents ofx one considers to be determined completely by
data, e.g., besidesS0

2 andE0 the first three half-path length
R1 , R2, andR3 and the corresponding Debye-Waller para
eters s1

2, s2
2, and s3

2, resulting in the eight-dimensiona
spaceR spanned by these parameters. The rest of the m
parameters are treated as undetermined by the data. In
terminology this amounts to a choice of the regularizat
matrix Ann8 as a projector onto the spaceR of the well-
determined model parameters. In general, the informa
matrix Q does not commute with such a projector. The p
jection of thea posteriori error matrix (Q1A)21 onto the
spaceR would then be the error matrix in the traditionalx2

fit. Uncertainties of the model, which are included in o
definition of Q, are not considered in the standard fit.

The regularization parametera* which satisfies Eq.~23!
represents the strongest regularization still compatible w
the data. As we shall see, there are situations in which
would like to decrease the effect of thea priori choice of the
model parametersx(0) on the fit. For such situations Turchi
suggested6 to use instead ofa* the maximum of the follow-
ing function ofa:
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P~aug!5const•aN/2e1/2(
nn8

bn(Q1aI )
nn8
21

bn8@det~Q1aI !#21/2.

~26!

It represents an estimate of the most probable value of
regularization parametera inferred from the data in a Baye
sian sense. The zero of the logarithmic derivative of Eq.~26!
with respect toa is given by

]aln P5
N

2a
2

1

2
ux~a!u22

1

2
tr~Q1aI !2150. ~27!

We shall call the solution of this equationa8* . The meaning
of the function Eq.~26! implies thata8* <a* .

V. NONLINEAR INVERSION PROBLEMS

If the a posteriorierrors inx andy are not so large tha
they lead out of the range of validity of the linear expansio
~13! and~14!, and if the higher cumulants in the distribution
Pprior andPj are negligible in the vicinity of the solutionx* ,
the initial guessx(0) may still be outside the range of validit
of Eq. ~13!. In this case the guessx(0) has first to be im-
proved before the formalism of the last section can be
plied. The most convenient, but not necessarily converg
method for this purpose is Newton’s algorithm. Since t
normal equations in each iteration step are likely to be
conditioned, a regularization of the matrix inversion at ea
step is necessary. Again the matrixA5aA8 can be used for
this purpose with a parametera typically several orders of
magnitude larger than the optimala satisfying Turchin’s
condition Eq. ~24!.12 In the resulting iteration scheme th
solution vectorx(n11) is obtained from the preceding solu
tion x(n) by solving the regularized linear equations

(
n851

N

@Qnn8
(n)

~x(n11)2x(n)!n81Ann8
(n) xn8

(n11)
#5bn

(n) , x(0)50.

~28!

The matrixQ(n) and the vectorb(n) are given by Eqs.~15!, in
terms of the vectorg(n) with components

gl
(n)5

g@kl ;x(n),y~kl ,x
(n)!#

Dm l

instead ofg0 and the rectangular matrices

Tl , j
(n)5

1

Dm l

]g~kl !

]yj
U

y5y(kl ,x
(n)),x5x(n)

and

Gl ,n
(n)5F ]g~kl !

]xn
U

x5x(n)

1(
j 51

M
]g~kl !

]yj
U

y5y(kl ,x
(n));x5x(n)

•

]yj~kl ,x!

]xn
U

x5x(n)
G Y

Dm l .

This scheme is just the Levenberg-Marquardt algorithm.15 If
necessary, its convergence properties may be improved
the under-relaxation technique.
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A strategy is required to decrease the regularization
rametera during the iteration. We shall use below the fo
lowing scheme: Starting with a value of the order of mag
tude of the largest eigenvalue of the matrixQ, a is
decreased in each step of the iteration by the same facto
the end of the Levenberg-Marquardt regime the condit
number of the regularized matrixQ1aA8 shall still be well
above the rounding limit of the computer.

The iteration scheme~28! can be rather cumbersome n
merically when the matrix dimensionsN or L are large.
Three simplifications of the scheme have, therefore, b
tested in several examples and have been found to lea
acceptable results:~i! Except for the last step in the iteratio
scheme, where Eq.~24! or ~27! are to be satisfied, the rathe
complicated form ofxcond

2 in terms of the matrixC, Eq.
~15c!, has been simplified to the expression~16!; ~ii ! the
partial derivatives]yj (kl ,x)/]xnux5xn have been substitute
by the derivatives taken atx5x(0)50, and the derivatives
with respect to thes2 components ofx are taken to be zero
~iii ! the truncation errorS l l 8 has been calculated only once
the start of the iteration atx50, and the differencesXi have
been defined with respect to a change of 0.1% in the curv
wave amplitudes.

Thea posteriorierrors depend on the combined statistic
and systematic errors and in addition on thea priori prob-
ability. This is unavoidable for an ill-posed inversion pro
lem. But nevertheless it is an undesirable feature of tha
posteriori distribution that different researchers may ha
different opinions aboutPprior and, therefore, obtain differen
results from fitting the same data. Although the options in
choice ofA are reduced by determininga from Eq.~23!, the
choice ofx(0) still contains an element of considerable ar
trariness. However, as we have seen, inR space it is essen
tially the data which determine the result of the fit. For
function F„PR(x)… depending only on the projectionPR of
the model space on the subspaceR, errors can be defined
which depend only on the experimental and systematic
rors. One, therefore, expects

F̄5 lim
a→0

^F&post

and

DF5~ lim
a→0

^~F2F̄ !2&post!
1/2

to exist, which then are thea priori-independent averag
value and error ofF, respectively.

If, however, thea posteriori errors are so large that th
fluctuations around the solutionx* lead out of the range o
the linear expansion Eq.~13!, or if a possible skewness o
kurtosis of the distributionsPj plays a role, analytical meth
ods are rather useless and thea posterioridistribution has to
be constructed by Monte Carlo simulations using Eqs.~2!,
~4! or ~5!, ~11!, and~25!. It is not clear how to generalize Eq
~23! to obtain the optimala in this case. However, it is clea
that a condition like Eq.~23! or Eq. ~27! is needed to deter
mine the relative weight of thea priori information com-
pared to the experimental information entering the fitti
procedure.
a-
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n

n
to
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As an example for the algorithm described in this sect
we analyze theK-edge copper data from Ref. 1 obtained
10 K for k values between 0.05 and 24.95 Å21 in steps of
0.05 Å21. We use thesexexp(k) data in thek range from
0.1 to 19.9 Å21 and assign an absolute statistical error
Dxexp50.001 to these data, which is consistent with the r
value of F@xexp(k);r # between 20 and 25 Å . In this tes
calculation we do not analyze the procedures used in Re
to obtain x(k) from the observablem(k). As the a priori
model-parameter set we intentionally choose incorrect lat
parameters:Ri values of an ideal fcc lattice with lattice con
stant 3.614 96 Å , valid at 291 K,16 and Debye-Waller pa-
rameters from the correlated Debye model atu5291 K with
uDebye5315 K.17 As initial values forE0 and S0

2 we took
E058979 eV,18 S0

250.9. The coordination numbersNi are
not included in the fit, however the half-path lengthsRi are
varied independently and not just via the lattice constant.
calculate the XAFS signal from the model-parameter set,
FEFF7code17 is used with 78 paths included in the sum of E
~1!, ordered according to increasing path length and acco
ing for multiple scattering paths. They correspond to a fil
of the curved wave-amplitude ratio inFEFF7of 4% within a
prefixed cluster radius of 8 Å . The largest half-path leng
in this set isRmax57.7 Å .

The truncation errorS l l 8 is determined as described i
Sec. II with I 578, I max51000. The square roots of its diag
onal matrix elementsDxS5AS l l are plotted in Fig. 1 to-
gether with the experimental errorsDxexp. The vectory has
the 157 componentsl,u f 1(R1)u,f1 , . . . u f 78(R78)u,f78. The

FIG. 1. The total errorDxeff ~solid line! as function ofk, the
experimental errorDxexp ~dashed line!, the truncation errorDxS

5AS l l ~dash-dotted line!, and the systematic errorDxsyst ~dotted
line! for the Cu data.

FIG. 2. EXAFS oscillations of the experimentalxexp(kl) ~dots!
and thea priori xprior(kl) ~line! for the 10 K Cu data.
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PRB 61 6603ERROR ANALYSIS OF XAFS MEASUREMENTS
errors associated with them are assumed to beDl/l
510%, D f i / f i57%, andDf i50.07 rad. The resulting ef
fective error

Dxeff~kl !5ADxexp~kl !
21(

j 51

157 S ]x~kl ;y!

]yj

Dyj D 2

1S l l

~29!

is represented by a solid curve in Fig. 1. Superimposed
the curve’s general falloff with increasingk are rapid oscil-
lations. They are mainly due to the derivatives (]x/]yj )

2.
All of them contain terms of the form( i@ai sin(2kRi)
1bi cos(2kRi)#. The square of this expression gives rise to
sum and difference frequencies contained in the EXAFS
nal Eq. ~1!. Another systematic error~short dashed line! is
added to this quantity to account for deficiencies of
theory for smallk, in particular for the truncation inr space
at 8 Å , and for uncertainties inmback at smallk values. We
found that without this extra error the fitting procedure yie
a considerable number of half-path lengthsRi which are
shifted towards larger values than thea priori distances. In
Fig. 2 the quantitykx(k), calculated from thea priori pa-
rameter set is shown as full line and compared with the
perimental data.

In the Levenberg-Marquardt regime of the iterati
scheme the regularization parametera is decreased as show
in Fig. 3. The corresponding decrease of the funct
xcond

2 (xn) is displayed as well. The eigenvalues of the 1
dimensional information matrixQ are plotted in Fig. 4. Also
indicated are the valuesa* and a8* of the regularization
parameter which satisfy conditions~24! and ~27!, respec-
tively. The correspondingR spaces have dimensions of 2
and 40. In the remaining subspacesP of the model-

FIG. 3. Regularization parametera ~dashed line! and xcond
2

~solid line! of the first five iteration steps for the Cu data.

FIG. 4. Eigenvaluesqn of the information matrixQ(x* ) ~dots!
for the Cu data plotted with the cutoff linesa5a* anda5a8* .
n

ll
-

e

-

n

parameter space the data do not influence the fit. These n
bers are smaller than the ‘‘number of independent d
points’’ traditionally used in Fourier analysisNd
'(2/p)DkDR555, with Dk5kmax2kmin516.8 Å21 and
DR5Rmax2R155.1 Å , where the effective narrowing o
the bandwidthDk due to the large extraa priori error for
smallk values has been taken into account. The larger siz
Nd is not surprising since according to information theoryNd
represents the number of items that can be encoded on
bandwidthDk if the information is ideally packed. In gen
eral, however, it is not ideally packed.

One may expect to obtain a qualitative estimate for
degree to which thenth component of the solution vectorx*
is modified by the data by taking a unit vector in the dire
tion n and calculating the lengthsn of its projection into the
spaceR. In terms of the componentsuni of the i th eigenvec-
tor of the matrixQnn81a* dnn8 one finds

sn
25(

i 51

N

uni
2 qi

qi1a*
5 (

n851

N

Qnn8~Q1a* I !n8n
21 '(

i 51

iR
uni

2 ,

where i R is the number of eigenvaluesqi for which qi
.a* . Note that the determination ofa* , a8* , x* , and s
requires only the inversion of the regularized matrixQ1A,
and not its diagonalization. The latter was introduced h
only for illustrative purposes. Values ofsn

2 close to unity
indicate parameters which are in this sense well determi

FIG. 5. Components of the solution vectorx(a* ) for the half-
path lengthsRi of the Cu data together with the one-standa
deviationa posteriori error-band~lower part!. The corresponding
lengthssi of the projection of the components ofx* into the space
R are shown in the upper part.

FIG. 6. Components of the solution vectorx(a* ) for the Debye-
Waller parameterss i

2 of the Cu data together with the one
standard-deviationa posteriori error-band~lower part!. The corre-
sponding lengthssi of the projection of the components ofx* into
the spaceR are shown in the upper part.
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by the data. The quantitiessn
2 are plotted in Figs. 5 and 6

One sees that large values ofsn
2 for certainRi go together

with large values ofsn
2 for the corresponding Debye-Walle

parameters i
2 . Somewhat surprisingly, thes i

2 seem to be
better determined than the correspondingRi .

The components of the solution vectorx* are shown in
the lower frame of Figs. 5 and 6 together with theira poste-
riori errors. The scaling factorsDxn of the components ofx
are defined using the estimatesDS0

250.1 andDE052 eV.
The values ofDRi were set equal to the difference of th
half-path lengths corresponding to the lattice constants f
temperature of 291 K (a53.614 96 Å ) and of 10 K (a
53.6032 Å ).17 Similarly theDs i

2 values were taken as dif
ferences of the results obtained from the correlated De
model at 291 and 10 K. Using these scaling factors thexn*
values forn.2 should be21 within thea posteriorierror
margin, if the data would actually determine allRi ands i

2 ,
and if their values would be those of the ideal fcc lattice w
lattice constant a53.6032 Å and of the correlate
Debye model at 10 K. Actually only the fitte
values of R1 and R2, and of s i

2 with i
51, 2, 6, 11, 12, 14, 24, 34, 44, 45, 47, 60, 70, d
fer by more than two standard deviations from t
a priori assumptions. Note that the numbersi
51, 2, 6, 9, 24, 44, 63 label single scattering pathsi
511 marks a focusing double scattering path,i 512 a path
with four atoms in a row. Surprisingly, thes i

2 seem to be
somewhat more sensitive to the experimental~rather than the
a priori! input of the fit than theRi . It is remarkable that the
fit yields R152.545060.0016 Å for the first half-path
length, which is by two standard deviations smaller than
a

e

e

nearest-neighbor distance of 2.5479 Å in the fcc lattice w
a53.6032 Å . Since thea priori assumption was even
larger than this distance, the result of the fit is certainly n
due to thea priori input. It is, however, subject to the appro
priateness of theFEFF7code and our assumptions on the si
of its systematic errors.

The regularization parametera* was determined from the
condition that the solution should be as close to thea priori
parameter set as compatible with the data. A smaller we
is given to thea priori input when the ‘‘most probable’’
regularization parametera8* is used. The components of th
solution vectorx8* corresponding toa5a8* are displayed
in Fig. 7. Since the dimension of theR space is larger now
the sn are generally larger than in Figs. 5 and 6. Since tha

FIG. 7. Components of the solution vectorx(a8* ) for the Cu
data together with the one-standard-deviationa posteriori error-
band ~lower part!. The lengths sn of the projection of the
components ofx8* into the spaceR are shown in the uppe
part. The parameter sequence starting withn51 is
S0

2 , E0 , R1 , . . .R78, s1
2 , . . .s78

2 .
s

TABLE I. Scattering-path features of thea priori Ta crystal strucure. For each scattering pathi the component numbersnR andns2 are

given in columns 2 and 3, where the correspondingRi ands i
2 are located, respectively, in the vectorx. The fourth column shows the value

of Ri ~in Å ) for the ideal lattice and the fifth column gives the vertex angles for each scattering pathi.

i nR ns2 Ri Angles i nR ns2 Ri Angles

1 3 44 2.858 180, 180 22 24 65 5.815 151, 55, 155
2 4 45 3.300 180, 180 23 25 66 6.158 180, 55, 180, 55
3 5 46 4.508 125, 125, 109 24 26 67 6.158 125, 55, 125, 55
4 6 47 4.508 125, 109, 125 25 27 68 6.158 55, 180, 55, 180
5 7 48 4.667 180, 180 26 28 69 6.158 55, 180, 55, 180
6 8 49 5.191 145, 145, 71 27 29 70 6.158 180, 125, 180, 125
7 9 50 5.191 145, 71, 145 28 30 71 6.158 55, 125, 55, 125
8 10 51 5.472 180, 180 29 31 72 6.158 90, 125, 71, 125
9 11 52 5.633 135, 90, 135 30 32 73 6.499 149, 121, 90
10 12 53 5.716 180, 180 31 33 74 6.499 149, 90, 121
11 13 54 5.716 180, 180, 0 32 34 75 6.499 121, 90, 149
12 14 55 5.716 180, 0, 180 33 35 76 6.600 180, 180
13 15 56 5.716 180, 0, 180, 0 34 36 77 6.600 180, 180, 0
14 16 57 5.716 180, 180, 180, 180 35 37 78 6.600 180, 0, 180
15 17 58 5.716 0, 180, 0, 180 36 38 79 6.600 180, 0, 180, 0
16 18 59 5.716 109, 180, 109, 180 37 39 80 6.600 0, 180, 0, 180
17 19 60 5.716 71, 180, 71, 180 38 40 81 6.841 90, 125, 0, 145
18 20 61 5.716 109, 71, 109, 71 39 41 82 6.841 145, 0, 125, 90
19 21 62 5.716 71, 109, 71, 109 40 42 83 6.841 90, 145, 0, 125
20 22 63 5.815 155, 151, 55 41 43 84 6.841 135, 55, 109, 90
21 23 64 5.815 155, 55, 151
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PRB 61 6605ERROR ANALYSIS OF XAFS MEASUREMENTS
posteriori errors are also larger in this case, many more
theRi ands i

2 are compatible with the expectation for the f
lattice at 10 K. However,R1 is still smaller by more than one
standard deviation.

VI. EXPERIMENT DESIGN

Before an experiment starts, a number of decisions h
to be made. There is the trivial question to optimizeDm l
since according to Eq.~6! choosing smaller valuesDk, i.e., a
narrower slit setting, means reduced statistics under the
straint of constant beam time for eachl value, thus increasing
Dm l8 . The optimal choice depends on]g(k;x,y)/]k. Then
there is the less trivial question how to distribute thekl op-
timally and to find the optimalL, again under the constrain
of constant total beam time. Further one needs to know
which extent it is desirable to reduce theDm l in view of the
assumed systematic errors, which limit the value of the m
surement anyhow. Finally, one may want to achieve a cer
minimal accuracy for at least some model parameters
therefore the question arises whether this accuracy ca
achieved at all in view of the systematic errors and, if it c
be achieved, what the minimal beam time is, assumingL and
Dm l to be already optimized.

Since most of these optimization problems are nonline
Monte Carlo simulations, preceding the experiment, are m
appropriate. They all follow the same strategy: Using a s
posedly truex(true) for the model parameters and the modelg,
valuesm(kl) are calculated at prescribed valueskl . Based on
the simplified version forxcond

2 given by Eq.~16! Gaussian-

FIG. 8. The total errorDxeff ~solid line! as function ofk, the
experimental errorDxexp ~dashed line!, and the truncation erro
DxS5AS l l ~dash-dotted line! for the first computer experiment.

FIG. 9. EXAFS oscillations of the ‘‘experimental’’xexp(kl)
~dots! and thea priori xprior(kl) ~line!.
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distributed random numbers with widthDm l
eff are added to

the m l . The resulting ‘‘pseudoexperimental’’m l are used as
input for the fit procedure and it is checked how accurat
the original model parametersx(true) are reproduced. Also the
a posteriori distribution of the fitted model parameters
obtained, which allows one to decide whether the requi
accuracy can be achieved with the assumed experimenta
ting and with the estimated systematic errors.

A. Computer experiment 1

As an example for the procedure proposed in this pa
we simulate an experiment on tantalum with a bcc latti
We assume that the lattice is actually strongly distorted,
that thea priori guess corresponds to the distancesRi and
coordination numbersNi of the ideal lattice. In order to show
the robustness of the iteration procedure we shall assume
also the first two components of the vectorx, E0, andS0

2 and
the Debye-Waller parameterss i

2 are actually, in our com-
puter example, very far away from their standard valu
Specifically, thea priori vector of model parametersx(0) has
components:E059881 eV, theL3 edge of tantalum,S0

2

51, all half-path lengthsRi are computed for the ideal bc
lattice with lattice constant 3.3 Å and alls i

2 are assumed to
be 0.003 Å2. For the actual, distorted system we assu
E059879 eV, S0

250.8, the lattice constant is reduced b
1% compared to the ideal lattice values, and alls i

2 are as-
sumed to be 0.001 Å2. We shall refer to this set of mode
parameters in the following as the ‘‘true’’ parameter setxtrue.
It describes a strongly compressed system, rarely me
practice. But here we want to find out whether the proced
finds an acceptable solution even in an extreme situat
where thea priori guessx(0) is far from the true solution.
The coordination numbersNi shall be always those of th
ideal lattice and are therefore not included in the fit and
the parameter setx.

To calculate scattering amplitudes and phases we use
FEFF7code17 for a Ta cluster with radius 7 Å , and select th
41 paths of single and multiple scattering with an avera
contribution of more than 4% to the sum in Eq.~1!. The
vector x then consists of the N584 quantities
S0

2 ,E0 ,R1 , . . .R41,s1
2 , . . .s41

2 , where the half-path length
Ri are assumed to be arranged in increasing order. The l
estRi is 6.84 Å . Table I shows for these 41 paths the co
ponent numbersn of the vectorx for the correspondingRi

FIG. 10. Radial distribution of the absolute value of the Four
coefficientcn of kxexp(kl) normalized to its maximum value~thin
line! compared to the relative amplitudes of the next-neigh
shells~thick bars!.
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6606 PRB 61H. J. KRAPPE AND H. H. ROSSNER
ands i
2 together with the half-path lengthsRi

(0) and the ver-
tex angles of the scattering paths: a single scattering path
single line traversed back and forth and has the two ve
angles 180, 180; a stretched double scattering path
angles 180, 0, 180, and so on. The vectory has theM583
componentsl,u f 1(R1)u,f1 , . . . u f 41(R41)u,f41. A first com-
puter experiment is defined by thek window kmin
50.1 Å 21, kmax519.9 Å21, and L5397, i.e., measure
ments are assumed to be done atk values in steps of
0.05 Å21. We do not consider the reduction of the obse
ablem(k) to x(k) in this example.

Using xtrue as input for theFEFF7 code, we calculate
‘‘true’’ values xtrue(kl), l 51, . . . 397 to which Gaussian
distributed errors with widthDxl

eff are added at random re
sulting in ‘‘experimental’’ xexp(kl). To obtain the width
Dxl

eff of Eq. ~29! we assume in this example ‘‘experimenta
errors Dxl of 1024 at each kl and model uncertaintie
Dyj /yj of 0.3% for the mean free pathl, for all amplitudes
u f (Ri)u, and for all the phasesf i . The truncation errorS l l
was determined from comparingFEFF7results received from
a curved wave amplitude filter of 4% with a sequence
results between the path numberI 541 and the maximum
path numberI max51000. These errors are plotted in Fig.
For k,2 Å 21 the errorDxeff is seen to be dominated b
the truncation error. In theFEFF7code thek dependence ofS0
for small k is neglected. The corresponding uncertainty

FIG. 11. Regularization parametera ~dashed line! and xcond
2

~solid line! of the first five iteration steps for the first comput
experiment.

FIG. 12. Upper part:xcond
2 ( x̄) ~solid line! and the effective num-

ber of degrees of freedomLeff ~dashed line! as function of the
regularization parametera. Lower part: Logarithmic derivative of
Eq. ~26! with respect toa.
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assumed to be absorbed inS l l . Our choice for the small size
of the errorsDxl andDxl

eff was motivated by an attempt t
be equally far away from the two~trivial! limiting cases
where either theP or theR space exhausts the whole mod
parameter space. The scaling vectorDx is chosen in such a
way that all components of the scaled vectorx have the same
size: xi521 for 1< i<84. With x(0) as inputFEFF7 yields
the EXAFS signal for the undisturbed latticexprior(kl). The
functions xexp(kl) and xprior(kl) are shown in Fig. 9. It
should be pointed out that for our example the experime
data are well described by thea priori parameters within the
k range 3 Å21<k<11 Å 21. An EXAFS analysis based
on this limited data range would yield false structure info
mations.

From Eq. ~12! the Fourier transformcn of klxexp(kl) is
obtained and its absolute value is plotted vsr in Fig. 10, in
which also the input valuesRi are indicated by the thick bars
Their length is proportional toNi . The highest peak atr
52.67 Å is identified with the first shell radiusR1. It is
shifted with respect to the true value due to thek dependence
of the phasef1. Note that the peak of the Fourier transfor
at 2.3 Å is not connected with any of the half-path lengt
Ri , but is known to result from thek dependence of the
amplitudeA1 . We do not try to identify any of the otherRi
with the peaks in Fig. 10 beyondr 52.67 Å . Also no at-
tempt was made here to ‘‘improve’’ the Fourier transform
using as input somekn-weightedx with n.1, instead ofkx.

With our initial valuesx(0) we start an iteration as de
scribed in Sec. V. The regularization parametera andxcond82

are shown in Fig. 11 along the sequence of the first fi

FIG. 13. Eigenvaluesqn of the information matrixQ(x* ) ~dots!
for the first computer experiment plotted with the cutoff linesa
5a* anda5a8* .

FIG. 14. Components of the solution vectorsx(a* ) ~upper part!
andx(a8* ) ~lower part! together with the one-standard-deviationa
posteriorierror-band. The parameter sequence starting withn51 is
S0

2 , E0 , R1 , . . .R41, s1
2 , . . .s41

2 .
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iterations. In Fig. 12 we plotxcond82 ( x̄) as function of the
regularization parametera. It shows the result of iterating
with respect tox for fixed a. The iteration is stopped whe
the average value ofu(x(n11)2xn) i u is less than 1026 or
when a local minimum is reached. Also plotted as funct
of a is the rhs of Eq.~24!. The point of intersection yields
a* 5130. Fora,100 convergence of the iteration deteri
rates and requires increasingly larger under-relaxation of
step size. In the lower frame of Fig. 12 the lhs of Eq.~27! is
shown as function ofa. The zero point of this function
yields a8* 50.7. As expecteda* .a8* .

In Fig. 13 the eigenvaluesqn of the information matrix
Q( x̄) are plotted together with the cutoff linesa5a* and
a5a8* . The eigenspaces belonging to the eigenval
above these lines span the spacesR in which the ‘‘data’’
determine the fit in these two cases. Their dimensionsi R are
seen to be 17 and 42. It may be compared with the ‘‘num
of independent data points’’Nd'(2/p)DkDR550. As
could be expected, even with the very small experimen
and systematic errors used, theR space consists of only

FIG. 15. Relative deviationzn between the components of th
true model-parameter vectorxtrue and the solution vectorx* ~lower
part!. The lengthssn of the projection of the components ofx* into
the spaceR are shown in the upper part. The parameter seque
starting withn51 is S0

2 , E0 , R1 , . . .R41, s1
2 , . . .s41

2 .

FIG. 16. Same as Fig. 15 for the solution vectorx8* which
corresponds to the regularization parametera5a8* .
n

e

s

r

al

fraction of the 84-dimensional model space with which w
started. We chose its dimension so large on purpose in o
to demonstrate the ability of the method to always ident
the relevant parameter subspaceR.

In Fig. 14 we show the components of the solution ve
tors x* corresponding toa* and toa8* , together with the
one-standard-deviationa posteriori error band which, ata
5a* is smaller than the dot size. In Figs. 15 and 16
present fora* and a8* the ratioszn5u(xn* 2xn

true)/xn
trueu,

which measure the degree to which the data allowed on
correct the ‘‘error’’ in thea priori assumption. It is seen tha
the first twoRi are rather well determined by the data and
are E0 , s1

2, and s2
2. Note thatR3 corresponds to the firs

double-scattering path as can be seen from Table I. The
lengthsR5 andR8 belong to single scattering paths. They a
fairly well determined together withs5

2 ands8
2. In compari-

son with neighboring paths,R12, and R35 are fairly repro-
duced as well. They correspond to multiple scattering pa
with three Ta atoms in a line. The same holds forR15 and
R37 representing multiple scattering with four Ta atoms in
line. Compared withE0 the many-body factorS0

2 is obvi-
ously somewhat more difficult to reproduce.

ce

FIG. 17. Correlation betweensn andzn for the solution vectors
x(a* ) ~upper part! andx(a8* ) ~lower part!.

FIG. 18. Matrix elements of the regularized variance mat
(Q1a* I )nm

21 ; diagonal elements are suppressed. Parameter
quence starting fromn50: S0

2 , E0 , R1 , . . .R41, s1
2 , . . .s41

2 .
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In an actual experiment the quantitieszn are of course not
available sincextrue is not known in that case. Always avai
able, however, are thesn , which are shown in Figs. 15 an
16. Note that the sequence of model parameters stil
E0 , S0

2 , R1 , . . . ,R41, s1
2 , . . . ,s41

2 . Although 12sn
2 is

not exactly equal tozn , these quantities, nevertheless, ha
in general a rather similar behavior when the regularizat
parametera* is used. In the upper part of Fig. 17 we sho
the correlation betweensn and zn . This is less obvious for
the regularization parametera8* , as shown in the lower par
of Fig. 17.

Since i R is smaller fora* than fora8* , more of thesn
2

come close to one when the regularization parametera8* is
used as seen by comparing Fig. 16 with Fig. 15. In particu
the first four single scattering path paramete
R1 , s1

2 , R2 , s2
2 , R5 , s5

2 , R8 , s8
2 are fairly well deter-

mined by the fit witha8* . Although thezn are in general
smaller in Fig. 16 than in Fig. 15, there are a few exceptio
e.g. the focusing scattering path paramet
R12, s12

2 , R15, s15
2 , even though the correspondingsn

2 are
still close to unity. One should, however, be aware that tha
posteriori errors, plotted together with the fitted mode
parameter valuesxn in Fig. 14, are much larger for th
smaller regularization parameter, and so are the error co
lations. The fitted model parameters are therefore someti
more accurately determined witha8* , but with smaller reli-
ability.

The matrix elements of the regularized variance ma
(Q1A)nn8

21 are plotted in Fig. 18 fora5a* , where the di-
agonal matrix elements have been suppressed. A strong

FIG. 19. EXAFS oscillations of the ‘‘experimental’’xexp(kl)
~thick line! and thea priori xprior(kl) ~thin line! of the simulated
experiment 2a.

FIG. 20. Eigenvaluesqn of the information matrixQ(x8* )
~dots! plotted with the cutoff linesa5a* anda5a8* of the simu-
lated experiment 2a.
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relation between neighboringRi and neighborings i
2 leads to

the rugged mountain region in the diagonal direction. In a
dition, correlations betweenRi ands j

2 with i' j give rise to
the ‘‘side bands’’ in this figure.

B. Computer experiment 2

Naturally one would like to see whether in the limit o
vanishing errorsDxl the true model-parameter set could a
ways be recovered, irrespective of the choice of thea priori
x(0). In the framework of the first computer experiment th
is unfortunately not possible because finite grid-size limi
tions in theFEFF7 code do not allow one to go withDyj to
zero. Furthermore, the minimal step size in thek space of
0.05 Å21 turns out to be not sufficient to fully resolve th
structure ofx(k) in this computer experiment. We, therefor
define a second computer experiment in which only
single scattering pathsR1 , . . . ,R5 of the first five shells are
taken into account. The model-parameter vectorx now has
only 12 components, corresponding to the quantit
S0

2 , E0 , R1 , . . . ,R5 , s1
2 , . . . ,s5

2. The grid in thek space
and the errors are the same as before:Dxl51024 for l
51, . . .397. The vectory consists of the 11 componen
l, t1 , f1 , . . . ,t5 , f5 and the errorsDyj /yj are again
0.3% in each component. Since we consider just the first
single scattering paths, we haveS l l 850. This would, of
course, not be possible when actually measured data we
be analyzed. The choice of thea priori vector x(0) is the

FIG. 21. Same as Fig. 16 for the simulated experim
2a. Parameter sequence starting from n51:
S0

2 , E0 , R1 , . . .R5 , s1
2 , . . .s5

2.

FIG. 22. Same as Fig. 18 for the simulated experim
2a. Parameter sequence starting from n50:
S0

2 , E0 , R1 , . . .R5 , s1
2 , . . .s5

2.
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same as before, i.e., it corresponds to the ideal lattice,
xtrue describes again the compressed system.

Figure 19 showsxexp, which is essentiallyxtrue in this
case, andx(k) calculated with thea priori model-parameter
set. Comparing with Fig. 9 it is clear that now the highe
frequency oscillations are missing. Figure 20 indicates t
a* anda8* are smaller than all 12 eigenvaluesqn of Q so
that the data determine the fit in the whole model-param
space. This finding is confirmed by the behavior of the qu
tities sn

2 shown in the upper part of Fig. 21. That the tr
solution was actually found can be seen from the behavio
the zn displayed in the lower part of Fig. 21. The large
deviations of about 10% occur forxE0

andxR1
, correspond-

ing to deviations ofDE050.22 eV andDR150.0025 Å .
Due to the small amount of well-determined model para
eters taken in this example the error correlation ma
shown in Fig. 22 ~diagonal matrix elements again su
pressed! has very small matrix elements compared to the fi
computer experiment shown in Fig. 18.

It is instructive to consider a variant of this second co
puter experiment where also the five coordination numb
Ni are included in the model-parameter vectorx, which then
has 17 components. Forxtrue we choose again the com
pressed system, where, in addition, we assume that one
is missing in each shell. In this example one eigenvalue
the information matrixQ becomes zero, which reflects th
fact thatS0

2 andNi are not linear independent variables in t
model equation~1!. We, therefore, takeS0 equal to the
‘‘true’’ value of 0.8 and drop it from the list of model pa
rameters. There are then 16 remaining model parameters
16 eigenvalues of the matrixQ are again larger thana8* ~see
Fig. 23!, i.e., the problem is well posed. Therefore, allsn
shown in the upper part of Fig. 24, are close to unity. Ne
ertheless, all of theNi are not very well determined as is se
from the rather large values ofz14 to z16 in the lower part of
Fig. 24. As shown in Fig. 25 there are strong error corre
tions between these components of thea posteriori error-
correlation matrix. In Table II, we display the numerical va
ues of the 16 model parameters in their initial units for thea
priori , thea posteriori, and the ‘‘true’’ set.

VII. SUMMARY

We have presented a method to analyze EXAFS dat
terms of model parameters in whicha priori knowledge

FIG. 23. Eigenvaluesqn of the information matrixQ(x8* )
~dots! plotted with the cutoff linesa5a* anda5a8* of the simu-
lated experiment 2b.
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about the model is introduced through Bayes’ theore
Turchin’s conditions were used to ensure that the inform
tion contained in the data is not distorted bya priori input
into the fitting procedure. Besides the statistical errors in
data, a reliability estimate of the model was introduced. T
gether with thea priori assumptions and the errors of th
data this estimate determines thea posteriori error of the
deduced best model parameters. Thea posteriori error is a
measure of the probability with which the data require
modification of thea priori parameter set. The method do
not require ana priori restriction of the dimension of the
model-parameter space to the size one expects to be d
mined by the data. Instead, the fitting procedure itself allo
one to calculate the subspace of the model-parameter s
in which the data affect the outcome of the fit. It can,
particular, simulate a model-independent data analysis to
desired degree of accuracy by choosing the model space
ficiently large. One also obtains for each model parame
the degree to which the data, rather thana priori assump-
tions, contribute to its fitted value.

The method has been applied to Cu data measured
temperature of 10 K. To demonstrate the robustness of
analysis we used 158 fit parameters starting from thea priori
data set appropriate for a temperature of 291 K. The dim
sions of the model-parameter subspace in which the d

FIG. 24. Same as Fig. 21 for the simulated experim
2b. Parameter sequence starting from n51:
E0 , R1 , . . .R5 , s1

2 , . . .s5
2 , N1 , . . .N5.

FIG. 25. Same as Fig. 22 for the simulated experim
2b. Parameter sequence starting from n50:
E0 , R1 , . . .R5 , s1

2 , . . .s5
2 , N1 , . . .N5.
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TABLE II. A priori, a posteriori, and ‘‘true’’ parameter values
of the simulated Ta experiment 2a. The component numbersn are
given in column 1, the corresponding parameter names,a priori
parameters, fitted parameter values including theira posteriori er-
rors, and the ‘‘true’’ parameter values are shown in columns 2, 3,
and 5, respectively.

n Name a priori a posteriori ‘‘True’’

1 E0 9881 eV 9878.8160.01 eV 9879 eV
2 R1 2.8579 Å 2.827560.0005 Å 2.8293 Å
3 R2 3.3000 Å 3.265060.0006 Å 3.2670 Å
4 R3 4.6669 Å 4.618060.0009 Å 4.6202 Å
5 R4 5.4724 Å 5.415960.0009 Å 5.4177 Å
6 R5 5.7158 Å 5.656760.0022 Å 5.6586 Å
7 s1 0.003 Å2 0.001 0160.000 01 Å2 0.001 Å2

8 s2 0.003 Å2 0.000 9660.000 03 Å2 0.001 Å2

9 s3 0.003 Å2 0.001 0660.000 03 Å2 0.001 Å2

10 s4 0.003 Å2 0.001 0760.000 02 Å2 0.001 Å2

11 s5 0.003 Å2 0.001 3060.000 08 Å2 0.001 Å2

12 N1 8 7.0260.04 7
13 N2 6 4.9760.04 5
14 N3 12 11.2060.10 11
15 N4 24 23.5060.20 23
16 N5 8 7.7860.18 7
er

r

ic
dominate the fit werei R(a* )521 and i R(a8* )540, de-
pending on the assumed weight of thea priori assumptions.
These numbers are smaller than the ‘‘number of independ
data points’’ Nd'(2/p)DkDR555, traditionally used in
Fourier analysis. The example further showed that onl
few half-path lengths and Debye-Waller parameters were
termined by the data indicating the locality of the EXAF
method.

We have also shown how the computer simulation o
planned experiment can be used to find out whether a g
size and accuracy of the expected data allow the determ
tion of any model parameter within a given error margin. W
gave a few examples for estimates of the uncertainties c
nected with theFEFFcode. However, we are aware that mu
more needs to be done in this direction. The same holds
an estimate of the errors inm0 and inmback. More extensive
applications of the fitting procedure to real data and ad
tional efforts to estimate the errors of the model parame
are needed to improve the present situation.
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