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Error analysis of XAFS measurements
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We propose a method to analyze x-ray-absorption fine-structure data that avoids an arbitrary restriction of
the size of the model-parameter space. It starts witta griori guess of the model parameters which is
introduced into the fitting procedure by Bayesian arguments. Two different descriptions are discussed to
determine the relative impact of tleepriori and experimental information on the fit. The resulting algorithms
are tested by application to three simulated experiments at the;-Balge and to CiK-edge data.

I. INTRODUCTION with the wave number
Traditionally measured extended or near-edge Xx-ray- om
absorption fine-structurEXAFS or NEXAFS raw data are k=\/—(hv—Ey),
subject to various manipulations like Fourier filtering and h?

background subtraction, often on the basis of the individual

experience of the experimentalist. This makes it difficult towhere E, refers to the Fermi energy reckoned from the
follow the error propagation from the measured input data tanuffin-tin potential zero. In Eq(l) w(k) is the measured
the output of the data analysis in a systematic, quantitativelgbsorption signal. The background absorptign.(k) is as-
reliable way. Furthermore, the effects of systematic errorsumed to contain all known systematic disturbing contribu-
resulting from shortcomings of the many-body solid-statetions to the absorption, like tails of nearbyandL edges of
theory used in EXAFS are difficult to quantify. We feel, other atoms, signals from photons scattered in the monochro-
therefore, that a more systematic investigation of the reliabilmator or the target, and other errors to be determined in
ity of EXAFS data analyses would be worthwhile. This re- principle by appropriate reference measurements, and in
quires reliable estimates of both the errors of the XAFS meag‘(actice often by the Victoreen proceddrBemaining errors

surements as well as those connected with the theoretic .
> L he diff k) — k heref
model on which the data analysis is based. Although botfy the difference (k) ~ upac(k) are therefore supposed to

i £ errors are not alw. known with the desirable r have numerous, statistically independent errors of compa-
YPES Of errors are not always kno € desirabie e:aple size. By virtue of the central limit theorem they are
liability, it may be useful to show what could be gained by a

more dependable error estimate of the input data than avai\l—Jmp(ad together in a Gaussian distribution with width

able at present, in order to motivate a careful analysis of th@“(k)' The absorption coefficientq(k) of the absorbing

various sources of systematic errors in future work on XAFSAOM, with no other atoms present in the lattice, is an artifi-
data. cial quantity to be obtained from theory. The same holds for

In the following we shall try to identify and quantify the the effective curved-wave backscattering amplitdelé, x)
various sources of statistical and systematic errors enteringnd the net phase shid;(k,x), connected with théth shell
the data processing. Using well-defined statistical procedure®f neighboring atoms. Thi-component vectox stands for
the effect of these input errors on the resulting fit is deterthe half-path length&; and coordination numbeis; , to be
mined. As in most high-precision data analyses, Bayesiadetermined by the fit. Also the mean free paitk) and the
arguments will be used. Special effort is made not to com*many-body” amplitude reduction—factc@é are in principle
promise the genuine information content in the dataaby obtained from an approximate treatment of the many-
priori assumptions. The algorithm is tested by application tcelectron system surrounding the absorbing atom. Finally, the
four sets of data: the coppé-edge data of Newvilleand  temperature-dependent and angular-averaged variarfiagis

three sets of computer-generated tantalgredge data. the atomic positions in thith shell with respect to the ab-
sorbing atom can be calculated from the optical branch of the
Il. FORMULATION OF THE PROBLEM phonon spectrum or, if the latter is not available, approxi-

The following discussion will be based on the standargmately from the spring constants between neighboring pairs
formula for x-ray absorption on a polycrystalline or amor- of atoms. It should be noted that all cumulants of the peaks
phous sampfe® in the pair-distribution function above the second one are

neglected in Eq(1).

p(K) = ppacd K) = o(K) The quantitieSupack o, |fi(R)], ¢, N, S5, o, and

Mo(K) E, are represented by thd component vectoy(k,x). Be-
cause of the practical difficulty to account exhaustively for
all contributions toup,e @nd the limitations in the theory of
the electronic many-body system in a solid, all components
of y are subject to systematic errors. In order to achieve a
Xsin 2kR + ¢i(k) ] (1)  quantitative error analysis, it is obviously necessary to quan-

2 f.(k,R;
:X(k):% 2 NiM

e—2k20i2—2Ri IN(K)
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tify one’s confidence ir! evaluating these .q_uantiti_es.. Fo.r this (B" ™= mo(k) ok )2y -
purpose we shall introduce probability distributions , . ,
P, (y)dy; to find the valuey; of thejth component of to lie The total uncertainty due to systematic errors is then

betweeny; andy;+dy; when the other components have M
valuesyq, ... .Yj-1,¥Yj+1s - - - Ym- We shall not discuss p ' V)=P / P.(V).
here how these—in general non-normal—distributions can 55l 9":Y) = Prmogel 9 )j];[l i)

be obtainedfor instance, by performing calculations in more

reliable, but more expensive approximation schemés It may pe desirable to determine some of the components
stead, the functionB; will be treated as an input of Gaussian Of y by fitting the data, rather than relying on model calcu-
shape. It is often difficult enough to obtain an estimate for dations. In this case they have to be added to the vector
width Ay; in addition to a mean valug” . Given these two  thus increasing the dimension of the space of model param-
numbers, a Gaussian is the most probable distribution func@ters. In general it cannot be expected that a given set of
tion from the point of view of maximizing the information- Measured data allows the determination of vectassth too
theoretical entropy. For the sake of simplicity we assumenany components. However, it is not easy to know in ad-

that the errors for different componentsyofre statistically ~vance what the maximal admissible number of components
independent. Therefore, of x is that can reliably be determined by a given set of data.

In fact, due to cross correlations between the errors in the

M o ) components ok, one expects that the data determine the fit
M NH — 172y -y ))ZlAy-dM .
P(y)d y=~1l e i) id"%y. (20 only in some subspace of the whole parameter space, the
= complementary subspace being “drowned” in the combined
In the following it is convenient to rewrite Eql) as noise of the data and the systematic erroyone, there-

fore, needs a general algorithm to determine these subspaces.
w(K)=g(k;x,y(k,x)),

the “model” being defined by the functiog. The observ-

able u(k) is assumed to be measured at thevalues It is inconceivable that a precision measurement is done
ki, ... k_ of its argument. We order the terms in the sum ofon a sample whose structure is totally unknown. In a typical
Eq. (1) according to decreasing average amplitude and truncase some estimate of the components isfknowna priori

cate the sum after thith term. Calling the truncated sum although, perhaps, with large uncertaintgalling this esti-

IIl. EXTENDED x2 FIT

xi(k), the model function matex(?), the aim of the fit procedure is to find the probabil-
_ ity distribution for the relative differences x{

9(K) = tpac(K) + mo(K) + mo(K) xi(K), —x®)/Ax,, n=1,... N, on the basis of the information
therefore, contains a truncation error. It is useful togained by the measurement. The order of magnitude of the
consider the differencesX;(k,)=x;i(k)—xi(k) for i  range over which one expects thg to differ from x) is
=1, ... lmax If Imaxis chosen sulfficiently large to accumu- called Ax,. To simplify the notation the symbot shall in

late reasonable statistics, the numbéik,) at each fixedk;,  the following be used to represent these relative differences.
turn out to have roughly a Gaussian distribution. We maydust as one knowa priori an estimate(?), one may model

then define average values one’s uncertainty of this guess by a Gaussian probability
distribution
1 Imax
= . _ 2
X(ka) | max 21 Xi(ki) Pprior(x): Npriore (M2)xprior ) )
and a correlation matrix with the normalization factoN,,, and the quadratic form
N
E/:Xkar_Xk'Xk/.
I (k)Xki-) (ki) -X(kar) Xgrior(x): E Ann'XnXn - (4)
We found for all examples investigated so far that nn'=1

—2 This ansatz can also be obtained from the requirement
2=X(k) o 1=1,. L that P should maximize the information-theoretical en-
We, therefore, model the truncation error, i.e., the distribuiroPY J PprioX)In Py X)dm(x) under the constraint that
tion of the stochastic vecta’ with components 1
<X>prior:O and <ann’>prior:A
9’ (k) =9g(k)) + poX(k),

by the distribution

nn’’

and that the probability measure xnspace is given by

N
pmode(g')me—(l/Z)xiode(g,g’); dm(x)= nﬂl dax, .
here, in matrix notation, Note that by itself the maximum-entropy principle neither
2 TR (e yields x(©), nor the metrical tensoh,,, or the metricm(x).
B . nn X
Xmose= (9" ~0) B'(0'~0) Conditions for a reasonable choice of the quadratic form
in terms of a symmetric matri8’ whose inverse is given by A, shall be discussed in the next section.
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There are often good reasons to modify the ansatZ&q.
There exist, e.g., lower and upper limits for the distariges
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which is valid for any symmetrit¢. X L matrix A possessing
an inverseA !, andL-dimensional vectors andb, the g’

beyond which no result of a fit would be acceptable, nointegration in Eq(7) yields

matter how well it fits the data. Therefore, thgriori prob-
ability Eqg. (3) may be substituted by the cutoff Gaussian

2
- Xln) Q) (Xﬁ - Xn) e (llz)xprior'

prlorH O(x

where® is the step functionN,,, is @ new normalization
factor and

©)

prlor

n=1,... N,

defines the permissible range of model parameters.
After the measurement, experimental valueg,

=u(k), | . L are known, with normal-distributed

errorsAu| at wave vectorg,, determined with errordk; ,

Pcono(ﬂ|x):f e_(llz)xﬁner_1/2(y_y(0))TD(y—y(o))dMy 9

in terms of the dlagonal matri®0 with componentsD;,
ij 25” (J M) and
Xoier=— (1T +0'B)(1+B) (p+ Bg>+gTBg+,J,L(.
10

Here we have assumed Gaussian distributions foPthend
disregarded the cutoff factors in E@). Keeping only terms
up to linear order irB~! gives

Xorer=0'(1-B Hg—2p"(1-B g+ u'(1-B Y.

which we assume to be also normal distributed and statisti- According to Bayes’ theorem th& posteriori probability

cally independent. Then the conditional probability to figad
onceg’ is given is

L

_ _ 2
P(Mlg,)zlljl (27TA,LL|2) 2= (Y2)Xeyp
with
L , 5
2 _ mi—9' (k)
XeXp_lzl{ Ap
and
' 2
A,U«|2=Alulr2+ aK kk|Ak|) _ 6)

to find x is given by’

Ppost: J'

This theorem expresses the modification of ¢hpriori ex-
pectation of the model parameteras a result of the experi-
ment.

Traditionally one first determineg, ¢ by fitting the pre-
edge spectrum to a Victoreen function, then one determines
Mo by passing a smoothing spline through the data above the
edge, finally one fixeg&,, thus constructing the EXAFS sig-
nal x(k) which is then Fourier transformed to obtain tRe
andN; from peak positions and zero moments of the peaks,
respectlvely In contrast, we have proposed above to calcu-

prlor( X)Pcond l-"| X)

priOF( X) Peond l"| X) d"x

(11)

To account also for the systematic errors, this function musigte the various fit parameters in B@) in onestep. This is

be weighted withP

Pcono(ﬂ|x)=J Psys(g’,y;g(x,y))P(nlg’)dMyd'—g’
(7
To perform the integrations in Eq7) it is convenient to
introduce the rescaled vectgus g, andg’ with components

mlApy, 9k % y(k X))/ Apy, and g'(k)/Ap, respec-
tively, and the matriX8 ! with components

(B" Hy
Ap(kp)Au(kr)

In terms of these rescaled quantities we have

_ oK) peo(kr)
A,LL(k|) A,L,L(k|/)

(B~ Y=

” !’ .
Xoxp= (=9 (n—0')
and
Xorodei™ Xoxg=0'T(1+B)g' —2(u"+9'B)g' +g'Bg+ p' .
Using the formul&

20 L11/2 B
f e—(1/2)XTAx+bTdeX:[;e(;)} e(1/2)bTA 1b’ (8)

done with the purpose of keeping control of the correlations
between their errors.

Our approach is basicallylaspace fit. It may be useful to
compare it withR-space fits which are frequently used in
various variants to analyze XAFS data.glifk) is measured
at L=2L,+1 equidistant valueg; in the intervalk,i;=<k
<Kmax ON€ may represemty(k) in this interval by the Fou-
rier series

(K +ko)x(K' +ko)= 2 c,e"

with ¢,=c* ,, the midpointky= 3 (Kmaxt Kmin) and k=k’
+ko, where 6r =27/ (Kmax— Kmin) 1S the optical resolution.
The expansion coefficients, are given by

or [mler —ivark’
CV—Z 7w/5r(k +ko)X(k +ko)e dk
—ivér(k —kp) =
2Lk+1|2 kix(ki)e . v=0. (12

The c, are a discrete representation of the EXAFS signal in
r spaceF[kx(K);r], with r=vér, v=0.
Rewriting Eq.(1) as
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= —y(®
k()= A, sin2kR + ;) 9(X,y)=got Gx+T(y—y™).
) This expansion is substituted into EG0) and they inte-
gration in Eqg.(9) is performed using again Ed8). The
conditional probability is then Gaussian i, Pcong
cexp(—1/2x2,,0 With

and neglecting thé dependence of the amplitudés and
phasesp;, insertion into Eq(12) yields
SiN(2R;—vér)ml ér]

ZR] —vor ’

c, =3 A gi2koRj+a;—2)
Ej: J )(gond= XTQX_ZbTX+(M_ gO)TC(I‘_ Jo)

in terms of the information matri®Q, the vectorb”, and the
L XL matrix C,

The last factor on the right-hand si¢idas) of this equation is
strongly peaked at=2R;/ér if R;(Kmax—Kmin)>1. There-
fore,|c,|? peaks strongly at thesevalues, which allows one

to obtain theR; (andA?) from thec, . But since the phases Q=G'CgG, (159
and amplitudes are actually dependent, angky(k) may T T
have Fourier components in the EXAFS regime, such an b'=(m—go) CG, (15b)

analysis can only yield a first estimate of tRe. A set of

empirical rule§ was introduced to correct the number, posi-
tion, and width of the peaks of the Fourier-transformed EX-
AFS signal for thes& dependences. A systematic analysis of

error _propagation under these rules would require still more f the systematic errors described by the matrBes and
empirical rules. One may therefore wonder whether the Foup ~1 gre small compared to the experimental ergoys , the

rier technique is really the adequate tool for a high-precisionygckets in Eq(15¢ may be expanded in powers of these
analysis of EXAFS data. Furthermore, one is often interestedystrices. To linear order i8~* and D! one obtainsC

only in a couple of number®; and integer coordination _—1_pg-1_Tp~—17T or to the same order

C={1-(1+B H M[D+TN(1+B H 1] 11T}

X(1+B H L (159

numbersN;, rather than in the whole continuous function of
r F[kx(k);r]. To extract this information out of the signal in
k space more specific ways thariteuncated Fourier trans-
form appear to be preferable.

IV. LINEAR MODELING

The simplest case arises wheiis a linear function ok,
i.e., when the initial guess(® is sufficiently close to the

final solution to justify the linear expansion
N
9(kixy) =9(k;0,y(k0)+ X gn(kiy)xn, (13
with
a9 M ag ayi(k,x)
(k=5 2 o |
Nix=0 ! I y=y(k,0); x=0 N Ix=0

In this approximatiorp(ﬁXp becomes a quadratic form af

To simplify the situation further we shall assume that our

ability to determine the components pffrom many-body
theory is sufficiently advanced that the systematic erfgrs
are small and allow an expansiong(k;x,y) to linear order
in v—yv©
iny—y%,

M
a9
a(k;x,y) =g(k;x,y@)+ > —

i~y (14
& oy, (yj=y; ). (14

In terms of the rectangular matrices

Gln:gn(kl)/A/*LIa n:11"'1N1 |:11-"1L1
1 dg(k

|J:_M ’ j:11"'1M1 Izly -1L!
App 3y, y=y(0) x=0

and the vectogy=g(0,y?)) we have, again, in matrix nota-
tion

C=(1+B '+TD'TH L

If, in addition, one neglects the off-diagonal matrix elements
of C;;,, one arrives at the rather simple expression

12

L — ‘% y(©)
2~ | 9k Xy
Xcond_lzl Tleﬁ (16)
with
effy 2 2 ‘ o9k ;0y*) |2 2
(A= (Am)?+ 2, | =00y | +uo(k)?Zu,
= J |

which generalizes the usual expression)té[p to the case of
a model with intrinsic uncertainties.

The a posteriori distribution Eq. (11) becomesP

<exXp(- hfen) with

sz)ost: sz)rior+ Xgond: XT(A+ Q)x— 2b™x+ (= gO)TC
X(m—do). 17)
The a posterioriexpectation value of the model parameters,

X::<X>post:f prosﬂx)dNX.
follows from the normal equations

2
ax post

X,

0, n=1,...N. (19)

More explicitly, one obtains the set of linear equations

N
E (Qnn A )Xy =by, (19
n'=1

and thea posteriorivariance matrix is given by
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Y vy _ -1 Note that this system of equations is nonlinear since(E8).
(00 =0) Ot =) post=( Qo + Anr) = (20 is nonlinear. It is to be solved by an appropriate iteration
scheme.

The meaning of Eq(23) becomes more transparent by
noticing that from

The interpretation of Eq(19) is particularly transparent
whenA,,,, commutes withQ,,,, which, in particular, is the
case wherA,, is proportional to the unit matrix. This is in
fact the choice most frequently made. Denoting the eigenval-
ues ofQ andA by g, anda,, respectively, and the compo-  (xZ, {X)) pos— Xeond X) = > Qun ((XenXn ) = XpXn1),
nents ofx andb in the eigenrepresentation @ by x andb, n.n’

respectively, the linear system of equati¢h8) decouples in  one obtains with Eqg20) and (23)
this representation,
Q

2 (ol
(gn+a)%,=b,, n=1,...N. (21) XeondX) =L~

(24)

The eigenvalues), may be ordered in decreasing size, If [Q,A]=0, the rhs of Eq.(24) can be written in the
|0nl=|an+1]. The condition number of the matrix form
Q. d:/0gy, increases with the siZ¢ of the model-parameter N
space and reaches values betweeh ditd 16° in the ex- L=L-3 an
e

amples to be discussed later. Since the model parameters A=1 Onta’
are finite, theb,, also have to decrease with increasing

roughly in parallel withg,,. However, theb,, are subject to
“noise,” because they depend throughon the observables
i . Since there is no reason why the noise level should als
decrease, the solution of E21) becomes meaningless for
sufficiently largen unless the eigenvalues, prevent the sum
g, +a, from becoming too small. The matri&therefore has
to be bounded from below to serve this purpose. The preci
value of the bound shall be determined below. At this poin
we only want to point out that the priori probability is seen
to introduce the matrid into Eq.(21), which formally regu-
larizes the ill-posed inversion proble@x="b in the sense of
Tikhonov?®

Those directions in model-parameter space for whijgh
=a, are defined to span the subsp&ge Its orthogonal
complement is called®. So the data dominate the fit iR,

Instead of Eq.(23) the more convenient expression Eg.
(24) will be used together with Eq(19) to determine the

golutionx* =x anda* = . In R space the terms in the sum
are approximately equal to unity, and they are approximately
zero inP. The trace therefore measures roughly the dimen-
sion of R. The expression on the rhs of E@4) thus extends
S@e concept of the number of degrees of freedomN in
tWeII—posed inversion problems to the present case of an ill-
posed problem. We, therefore, call this expresdigp, the
effective number of degrees of freedom.

There is an alternative interpretation of Turchin’s condi-
tion which is also valid whe® andA do not commute. All
pointsx in model-parameter space for whiq‘fﬁom(x)sLeﬁ
form an ellipsoid. All of them are compatible with the data
within one standard deviation and must therefore be consid-
and thea priori assumptions are dominanth The simplest ereq as indisting%ishable on the basis of_ th_e measu_remgnt. If
case arises when the eigenvalueQalecrease in size by an thg |n.|t|.al guessc®) does not happen to lie inside ?hls ellip-
order of magnitude going from one eigenvalue to the next inSO'.d’ itis easy to show that qu_.g) and(23) d(_atermme that
the relevant range of eigenvalues defining the boundari qlr!tx*_ on the surfage c_)f the eII|p$0|d V\.’h'Ch IS closgst tothe

rigin, i.e., to thea priori assumption, distances being mea-

betweerk andP spaces, sured with the metrié\,, .*>*3In fact, minimization of the
q>a, in R, (228 d|§tance2nn,Ann,xnxn/ with the constraint Eq(24) may be
written as

an<a, in P. (22h) Iy [ Xbrio )+ Axond )]=0,

This is frequently observed in fit problems involving model 1 are A is a Lagrange multiplier. In view of E 18
spaces of dimension larger than 8 hen Eqs(22) can be 4(19) x=xi grang . Ip th" i q.lfhlz)i( );1
satisfied by the choicA,, = a8, . The overall weight fac- and(19), x=x is seen to solve this equation wif=1, an

tor a controls the impact of tha priori information on the ~ Ed. (24) is satisfied forx=x*. The determination ot by
fit compared to the experimental information. Turchin’s condition therefore ensures that the information

Two methods will be discussed in the following to deter- contained in the data is not distorted &yriori assumptions
mine a. Both were proposed by Turclifitt with the inten-  Sincex™ still belongs to the one-standard-deviation ellipsoid.
tion not to compromise the information in the data by tooBut Of all the points of the ellipsoid the one closest to &he

stronga priori conditions. In the first method the parameter Priori guess is selected.

« is determined in the fitting procedure by imposing Our procedure is closely related to a treatment of ¥he
Turchin’s conditiori* fit by the singular-value-decomposition method with a sub-

stitution of the small singular values of the mati@x by
(X%n Ppos=L- (23)  infinitely large ones? This amounts to an exact projection of
the model space onto the spake What might appear there
This equation is to be added to the linear equatid® to  as a mathematical trick is seen in our stochastic interpreta-
determine théN model parameters, and a simultaneously. tion of the regularization to lead to a straightforward deter-



PRB 61 ERROR ANALYSIS OF XAFS MEASUREMENTS 6601

mination of the cutoff parameter*, independent of the nu- _ N2l by(Q+al) tby, 1
merical accuracy of the inversion algorithm used in the P(alg)=consta™e o e [detQ+al)]
calculation. (26)

When the sequence of eigenvaluesdloes not decrease |t represents an estimate of the most probable value of the
as fast as assumed above, it is not desirable to deéfine reqylarization parameter inferred from the data in a Baye-

essentially as a projector onfo space. In fact, the boundary sjan sense. The zero of the logarithmic derivative of @)
betweenR andP spaces is then somewhat blurred and oneyith respect toa is given by

needs a smoother onset of the regularizing effecA.ofn-

stead of formal recipes to construktit is advisable in this 1 ) .

case to incorporate as much intuitive understanding of the doINP=5—— §|X(a)| —5MQ+al) "=0. (27
physical system under consideration as possible in construct- ) ) . )
ing the a priori error correlation-matrixA,, in model pa-  We shall call the solution of this equatierf* . The meaning
rameter space. One should then normalizey extracting ©Of the function Eq(26) implies thate"* < a*.

the largest eigenvalue as a factor. Writing
V. NONLINEAR INVERSION PROBLEMS

A=ah’, (25 If the a posteriorierrors inx andy are not so large that
the largest eigenvalue &f' is defined to be unity. Once one they lead out of the range of validity of the linear expansions
has assumed some reasonable formAfothe overall weight ~ (13) and(14), and if the higher cumulants in the distributions
factor @ can again be determined from EQ@4). This pre-  Pprior andP; are negligible in the vicinity of the solutiox”,
vents the information in the experimental data to be seriousl§he initial guess<® may still be outside the range of validity

distorted. Only the details of the smooth transition frimo ~ ©f Ed. (13). In this case the guesé® has first to be im-
P spaces depend on the choiceAdf proved before the formalism of the last section can be ap-

It is important to stress that the posteriori probability ~ Plied. The most convenient, but not necessarily convergent,
does not imply a statement about the closeness of the solféthod for this purpose is Newton's algorithm. Since the
tion x* to the true solution. Instead it is the probability that Normal equations in each iteration step are likely to be ill-
the a priori model parameters®® have to be modified as a conditioned, a regularization of the matrix inversion at each
consequence of the information gained by the experimentait€p is necessary. Again the matfix- @A’ can be used for
data. If, for examplex(® would be so close to the true so- thiS purpose with a parameter typically several orders of
lution thatyZ,,{0)=L, a* could be chosen infinitely large Magnitude larger than the optimal satisfying Turchin's
and E o Ghk condition Eq.(24).1? In the resulting iteration scheme the

. gs.(19 gnd (24 cpu!d be satisfied withx* =0, Le., X 1) : ) i
without changing the priori model parameters at all. In this 5,°|U“(()J)1 vectorx is obtained from the preceding solu
case the variance matrixQt+ o*)~ ! becomes infinitely tion X'’ by solving the regularized linear equations
small. This does not mean that the solutidn=0 is particu- N
larly accurate, but that there is no need to modify any com- }* [Q(”’,(X(V“)—x(v))n,+A(V),x(’f+1)]=bE,V), x0=0.
ponent of thea priori vectorx(® as a consequence of the =1 e
information gained by the experimental data. (28

It is us_eful ‘to compare this_conce_pt of_ anpo;t_eriori The matrixQ™ and the vectob® are given by Eq(15), in
error matrix Wlth the error matrix o_bta|r_1ed in traditiongd terms of the vectog™ with components
fits. In such a fit one decides priori which of the compo-
nents ofx one considers to be determined completely by the 9k XM y(ky, x) ]
data, e.g., besidﬁ andE, the first three half-path lengths 9"= Au
R;, Ry, andR; and the corresponding Debye-Waller param- _
eters o2, o2, and o2, resulting in the eight-dimensional instead ofg, and the rectangular matrices
spaceR spanned by these parameters. The rest of the model 1 ag(ky)
parameters are treated as undetermined by the data. In our Tl(v_)z_L
terminology this amounts to a choice of the regularization T Ap dy;
matrix A,y as a projector onto the spade of the well-
determined model parameters. In general, the informatioRnd
matrix Q does not commute with such a projector. The pro-
jection of thea posteriori error matrix Q+A) ! onto the G =
spaceR would then be the error matrix in the traditiongd L
fit. Uncertainties of the model, which are included in our
definition of Q, are not considered in the standard fit. M ag(ky)

The regularization parametes* which satisfies Eq(23) +2 v ] /
represents the strongest regularization still compatible with =19 x=x(*)
the data. As we shall see, there are situations in which one A
would like to decrease the effect of theriori choice of the K-
model parameters® on the fit. For such situations Turchin This scheme is just the Levenberg-Marquardt algoritfi.
suggestetito use instead ofi* the maximum of the follow- necessary, its convergence properties may be improved by
ing function of a: the under-relaxation technique.

y=y(k; . x(*)),x=x(*)

ag(k)
X,

x=x(¥)

) &y](kl ,X)
ax,

y=y(k; . x(");x=x()
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A strategy is required to decrease the regularization pa- 1.0000
rametera during the iteration. We shall use below the fol- \
lowing scheme: Starting with a value of the order of magni- 0.1000 !
tude of the largest eigenvalue of the matr, « is = o
decreased in each step of the iteration by the same factor. At : 0.0100
the end of the Levenberg-Marquardt regime the condition < i
number of the regularized matrQ+ «A’ shall still be well 0.0010
above the rounding limit of the computer. |
The iteration schem&8) can be rather cumbersome nu- oooo1 [ ., ., . . . .
merically when the matrix dimensiond or L are large. 02406 8101214161820
Three simplifications of the scheme have, therefore, been k [&7]

tested in several examples and have been found to lead to
acceptable resulti) Except for the last step in the iteration
scheme, where Eq24) or (27) are to be satisfied, the rather
complicated form ofy?2,,4 in terms of the matrixC, Eq.
(150, has been simplified to the expressi@tb); (i) the
partial derivativesyy;(k, ,X)/ 9X,|x—x» have been substituted
by the derivatives taken at=x{®’=0, and the derivatives
with respect to ther> components ok are taken to be zero;
(iii ) the truncation errok,;» has been calculated only once at
the start of the iteration at=0, and the differenceX; have
been defined with respect to a change of 0.1% in the curve
wave amplitudes.

Thea posteriorierrors depend on the combined statistical
and systematic errors and in addition on tn@riori prob-
ability. This is unavoidable for an ill-posed inversion prob-
lem. But nevertheless it is an undesirable feature ofahe

posteriori distribution that different researchers may havestant 3.61496 A, valid at 291 K and Debye-Waller pa-

different opinions abou® i, and, therefore, obtain different :
results from fitting the same data. Although the options in therameters from the correlated Debye modefat291 K with

_ 17 P 2
choice ofA are reduced by determining from Eq.(23), the HD‘f’ye_ 315 Kl's ’jf initial k\]/alues ;grEq and Sobwe took
choice ofx(? still contains an element of considerable arbi- Eo=8979 eV,” $3=0.9. The coordination numbefs; are

trariness. However, as we have seerRirspace it is essen- NOt included in the fit, however the half-path leng®sare
tially the data which determine the result of the fit. For gVvaried independently and not just via the lattice constant. To
function F(Px(x)) depending only on the projectid®y, of calculate the XAFS signal from the model-parameter set, the

the model space on the subsp&ke errors can be defined FeFF7code’ s used_with 7.8 pathg included in the sum of Eq.

which depend only on the experimental and systematic er_(—l)' ordered_ according _to increasing path length and accc_)unt—

rors. One, therefore, expects ing for multiple scattering paths. Thgy correspond' toa filter
of the curved wave-amplitude ratio FEFF7 of 4% within a

— prefixed cluster radius of 8 A. The largest half-path length

F=1im (F)post in this set iSRy=7.7 A.

«0 The truncation erroi,;, is determined as described in
Sec. Il withl =78, | 2= 1000. The square roots of its diag-
onal matrix elements\ ys =3, are plotted in Fig. 1 to-
gether with the experimental errafsy,,,. The vectory has
the 157 components, |f1(Ry)|, b1, . . .|f78(R7g)|, #75. The

FIG. 1. The total erroA y.; (solid line) as function ofk, the
experimental error xe,, (dashed ling the truncation errol xs
=3, (dash-dotted ling and the systematic errax Xsyst (dotted
line) for the Cu data.

As an example for the algorithm described in this section
we analyze the&k-edge copper data from Ref. 1 obtained at
10 K for k values between 0.05 and 24.95 A in steps of
0.05 A~ We use thesge, k) data in thek range from
CP_.l to 19.9 A ! and assign an absolute statistical error of
A Xexp=0.001 to these data, which is consistent with the rms
value of F[ xe(K);r] between 20 and 25 A . In this test
calculation we do not analyze the procedures used in Ref. 1
to obtain y(k) from the observablew(k). As the a priori
model-parameter set we intentionally choose incorrect lattice
parametersR; values of an ideal fcc lattice with lattice con-

and

AF=(lim ((F=F)?)pos) ™

a—0

to exist, which then are tha priori-independent average
value and error of, respectively.

If, however, thea posteriorierrors are so large that the
fluctuations around the solutiot lead out of the range of
the linear expansion Ed13), or if a possible skewness or
kurtosis of the distribution®; plays a role, analytical meth-
ods are rather useless and thposterioridistribution has to
be constructed by Monte Carlo simulations using E@s,

(4) or (5), (11), and(25). It is not clear how to generalize Eq. a0l
(23) to obtain the optimak in this case. However, it is clear 02 4 6 8101214161820
that a condition like Eq(23) or Eq.(27) is needed to deter- k [§7]

mine the relative weight of tha priori information com-
pared to the experimental information entering the fitting FIG. 2. EXAFS oscillations of the experimentgd,{k) (dots
procedure. and thea priori xpriol ki) (line) for the 10 K Cu data.
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FIG. 3. Regularization parameter (dashed ling and x2.q

(solid line) of the first five iteration steps for the Cu data. FIG. 5. Components of the solution vectdfa™) for the half-

path lengthsR; of the Cu data together with the one-standard-
deviationa posteriori error-band(lower par}. The corresponding
lengthss; of the projection of the components %t into the space
‘R are shown in the upper part.

errors associated with them are assumed to Ae/\
=10%, Af;/f;=7%, andA ¢;=0.07 rad. The resulting ef-
fective error

= parameter space the data do not influence the fit. These num-

ax(k;;y) 2 bers are smaller than the “number of independent data
AXT(k) = \/ Axexd k)2 + 2 | ———Ay; | +3 points” traditionally used in Fourier analysisNg
=1 % ~(2/m)AKAR=55, with Ak=Kpa— Kmin=16.8 A~1 and

(29 AR=Rp,—R;=5.1 A, where the effective narrowing of

is represented by a solid curve in Fig. 1. Superimposed ofhe bandwidthAk due to the large extra priori error for
the curve’s general falloff with increasirigare rapid oscil- smallk values has been taken into account. The larger size of
lations. They are mainly due to the derivativei,x(&yj)z. Ny is not surprising since according to information thebiy
All of them contain terms of the form=;[a;sin(kR) represents the number of items that can be encoded on the
+b, cos(XR)]. The square of this expression gives rise to allbandwidthAk if the information is ideally packed. In gen-
sum and difference frequencies contained in the EXAFS sigeral, however, it is not ideally packed.
nal Eq.(1). Another systematic erraishort dashed lineis One may expect to obtain a qualitative estimate for the
added to this quantity to account for deficiencies of thedegree to which thath component of the solution vectgf
theory for smallk, in particular for the truncation in space  is modified by the data by taking a unit vector in the direc-
at8 A, and for uncertainties ip,,cat smallk values. We  tion n and calculating the lengtt, of its projection into the
found that without this extra error the fitting procedure yieldsSpaceR. In terms of the components,; of theith eigenvec-
a considerable number of half-path lengtRs which are tor of the matrixQ,, + a* 8,, one finds
shifted towards larger values than thepriori distances. In N N i
Fig. 2 the quantitykx(k), calculated from thea priori pa- 2 > Ui -1 2
rameter set is shown as full line and compared with the ex- sn=i21 uﬂiq_+a* - 21 Q““’(Q”La*l)n’n%;1 Uni»
perimental data. ' "o

In the Levenberg-Marquardt regime of the iterationwhere iy is the number of eigenvalueg; for which g;
scheme the regularization parameieis decreased as shown >a*. Note that the determination af*, «'*, x*, ands
in Fig. 3. The corresponding decrease of the functiorrequires only the inversion of the regularized ma@x A,
X2ondX") is displayed as well. The eigenvalues of the 158and not its diagonalization. The latter was introduced here
dimensional information matriQ are plotted in Fig. 4. Also only for illustrative purposes. Values f, close to unity
indicated are the values* and a’* of the regularization indicate parameters which are in this sense well determined

parameter which satisfy conditiori®4) and (27), respec-

tively. The correspondingR spaces have dimensions of 21 7 LOj ‘ ‘ ‘
and 40. In the remaining subspacés of the model- g 05 |
mb
I i Ll
] O ULl ol Dl [ Lu Lo
e O\ o i )
10T —— a 30 .
® \ - ] +.+ LA \ ++ . §
E -4 o _1'__%7___‘_4+74___'74
= 0 ] 2 . l
?ﬂ -8 0 20 40 60 80
g 10 ¢ 1 .
Path Number i
-12 .
10 0 20 80 120 160 FIG. 6. Components of the solution vecidqi*) for the Debye-
Eigenvalue Number n Waller parameterScri2 of the Cu data together with the one-

standard-deviatioma posteriorierror-band(lower pary. The corre-
FIG. 4. Eigenvaluesy, of the information matrixQ(x*) (dot9 sponding lengths; of the projection of the components ®¥ into
for the Cu data plotted with the cutoff lines=a* anda=a'*. the spacer are shown in the upper part.
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by the data. The quantitiesﬁ are plotted in Figs. 5 and 6.
One sees that large values sﬁf for certainR; go together
with large values o‘sﬁ for the corresponding Debye-Waller
parameteroiz. Somewhat surprisingly, thei2 seem to be
better determined than the correspondi)g

The components of the solution vectot are shown in
the lower frame of Figs. 5 and 6 together with theiposte-
riori errors. The scaling factorsx,, of the components of
are defined using the estimata$;=0.1 andAEy,=2 eV.
The values ofAR; were set equal to the difference of the
half-path lengths corresponding to the lattice constants for
temperature of 291 Kg=3.61496 A) and of 10 K 4
=3.6032 A)" Similarly theAo? values were taken as dif-
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FIG. 7. Components of the solution vectfa’*) for the Cu

data together with the one-standard-deviat@rposteriori error-

ferences of the results obtained from the correlated Deby@alnGI (lower pan. The lengthss, of the projection of the

model at 291 and 10 K. Using these scaling factorsxhe
values forn>2 should be—1 within thea posteriorierror
margin, if the data would actually determine R} and aiz,

components ofx’* into the spaceR are shown in the upper
part. The parameter sequence

S%, Eg, Ry,...Ryg, o3, ..

starting with=1 is

2
.0%g.

and if their values would be those of the ideal fcc lattice withnearest-neighbor distance of 2.5479 A in the fcc lattice with

lattice constant a=3.6032 A and of the correlated
Debye model at 10 K. Actually only the fitted
values of R, and R, and of o?

o?  with |

a=3.6032 A. Since thea priori assumption was even
larger than this distance, the result of the fit is certainly not
due to thea priori input. It is, however, subject to the appro-

=1, 2, 6, 11, 12, 14, 24, 34, 44, 45, 47, 60, 70, dif- priateness of theerF7code and our assumptions on the size
fer by more than two standard deviations from theof its systematic errors.

a priori assumptions. Note that the numbers

=1, 2, 6, 9, 24, 44, 63 label single scattering paths,
=11 marks a focusing double scattering path,12 a path

with four atoms in a row. Surprisingly, thei2 seem to be
somewhat more sensitive to the experimeftather than the
a priori) input of the fit than theR; . It is remarkable that the
fit yields R;=2.5450+0.0016 A for the first half-path

The regularization parametei was determined from the
condition that the solution should be as close todhgriori
parameter set as compatible with the data. A smaller weight
is given to thea priori input when the “most probable”
regularization parameter’* is used. The components of the
solution vectorx’* corresponding tax=«'* are displayed
in Fig. 7. Since the dimension of tHe space is larger now,

length, which is by two standard deviations smaller than thehe s, are generally larger than in Figs. 5 and 6. Sinceahe

TABLE I. Scattering-path features of tleepriori Ta crystal strucure. For each scattering patiee component numbers; andn,2 are
given in columns 2 and 3, where the correspondiii"lgmdcri2 are located, respectively, in the vectorThe fourth column shows the values
of R, (in A) for the ideal lattice and the fifth column gives the vertex angles for each scattering path

i ng n,2 R; Angles i Ng n,2 R; Angles

1 3 44 2.858 180, 180 22 24 65 5.815 151, 55, 155

2 4 45 3.300 180, 180 23 25 66 6.158 180, 55, 180, 55
3 5 46 4.508 125, 125, 109 24 26 67 6.158 125, 55, 125, 55
4 6 47 4.508 125, 109, 125 25 27 68 6.158 55, 180, 55, 180
5 7 48 4.667 180, 180 26 28 69 6.158 55, 180, 55, 180
6 8 49 5.191 145, 145, 71 27 29 70 6.158 180, 125, 180, 125
7 9 50 5.191 145, 71, 145 28 30 71 6.158 55, 125, 55, 125
8 10 51 5.472 180, 180 29 31 72 6.158 90, 125, 71, 125
9 11 52 5.633 135, 90, 135 30 32 73 6.499 149, 121, 90
10 12 53 5.716 180, 180 31 33 74 6.499 149, 90, 121
11 13 54 5.716 180, 180, 0 32 34 75 6.499 121, 90, 149
12 14 55 5.716 180, 0, 180 33 35 76 6.600 180, 180

13 15 56 5.716 180, 0, 180, 0 34 36 77 6.600 180, 180, 0
14 16 57 5.716 180, 180, 180, 180 35 37 78 6.600 180, 0, 180
15 17 58 5.716 0, 180, 0, 180 36 38 79 6.600 180, 0, 180, 0
16 18 59 5.716 109, 180, 109, 180 37 39 80 6.600 0, 180, 0, 180
17 19 60 5.716 71, 180, 71, 180 38 40 81 6.841 90, 125, 0, 145
18 20 61 5.716 109, 71, 109, 71 39 41 82 6.841 145, 0, 125, 90
19 21 62 5.716 71, 109, 71, 109 40 42 83 6.841 90, 145, 0, 125
20 22 63 5.815 155, 151, 55 41 43 84 6.841 135, 55, 109, 90
21 23 64 5.815 155, 55, 151
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k [8] FIG. 10. Radial distribution of the absolute value of the Fourier
coefficientc, of kxexd(ki) normalized to its maximum valughin
FIG. 8. The total erroiA . (solid line) as function ofk, the  line) compared to the relative amplitudes of the next-neighbor
experimental erroid x,,, (dashed ling and the truncation error shells(thick bars.

Axs=/3, (dash-dotted lingfor the first computer experiment.

fdistributed random numbers with widthuf™ are added to

the u; . The resulting “pseudoexperimentali, are used as
input for the fit procedure and it is checked how accurately
the original model parametex§™® are reproduced. Also the

a posteriori distribution of the fitted model parameters is
obtained, which allows one to decide whether the required
VI. EXPERIMENT DESIGN accuracy can be achieved with the assumed experimental set-

Before an experiment starts, a number of decisions hav%ng and with the estimated systematic errors.

to be made. There is the trivial question to optimixe,
since according to Eq6) choosing smaller valuesk, i.e., a A. Computer experiment 1
narrower slit setting, means reduced statistics under the con-
straint of constant beam time for edcbalue, thus increasing W
Ap/ . The optimal choice depends aig(k;x,y)/dk. Then

posteriori errors are also larger in this case, many more o
theR; and aiz are compatible with the expectation for the fcc
lattice at 10 K. HowevenrR; is still smaller by more than one
standard deviation.

As an example for the procedure proposed in this paper
e simulate an experiment on tantalum with a bcc lattice.

. It X 1) We assume that the lattice is actually strongly distorted, but
there is the less trivial question how to distribute ¥)@p- ot thea priori guess corresponds to the distanéesand
timally and to find the optimal,, again under the constraint ., gination number, of the ideal lattice. In order to show

of constant total beam time. Further one needs to know g, v stness of the iteration procedure we shall assume that
which extent it is desirable to reduce thegy, in view of the also the first two components of the veciorE,, andS(z) and

assumed systematic errors, which limit the value of the me he Debye-Waller parametezsz are actually, in our com-

surement anyhow. Finally, one may want to achieve a certain i
uter example, very far away from their standard values.

minimal accuracy for at least some model parameters an ecifically. thea briori vector of model parameterd® has
therefore the question arises whether this accuracy can b ){ £ —8881 V. thel. ed P ¢ tantal 5
achieved at all in view of the systematic errors and, if it can®OMponents:to= eV, thel; edge of tantalumS

be achieved, what the minimal beam time is, assurhingd ~ — +» &l half-path length&; are computed for the ideal bce
A, to be already optimized. lattice with lattice constant 3.3 A and aﬂz are assumed to
Since most of these optimization problems are nonlinear®® 0-003 A, Fozr the actual, distorted system we assume
Monte Carlo simulations, preceding the experiment, are modeo=9879 eV, $§=0.8, the lattice constant is reduced by
appropriate. They all follow the same strategy: Using a supl% compared to the ideal lattice values, andcllare as-
posedly true<"® for the model parameters and the mogel sumed to be 0.001 A We shall refer to this set of model
valuesy (k) are calculated at prescribed valugs Based on ~ parameters in the following as the “true” parameter €&t
the simplified version fo?2,,4given by Eq.(16) Gaussian- It describes a strongly compressed system, rarely met in
practice. But here we want to find out whether the procedure
06— finds an acceptable solution even in an extreme situation,
where thea priori guessx(?) is far from the true solution.
The coordination numbersl; shall be always those of the
ideal lattice and are therefore not included in the fit and in
the parameter set
To calculate scattering amplitudes and phases we use the
FEFF7codé’ for a Ta cluster with radius 7 A , and select the
41 paths of single and multiple scattering with an average
: contribution of more than 4% to the sum in E{.). The
0 2 4 6 8 10121416 18 20 vector x then consists of the N=84 quantities
K [37] S5,E0.R1, .. .Ra1,02, .. .03, where the half-path lengths
R; are assumed to be arranged in increasing order. The larg-
FIG. 9. EXAFS oscillations of the “experimental’yexfk|) estR; is 6.84 A . Table | shows for these 41 paths the com-
(dotg and thea priori xpriol ki) (line). ponent numbers of the vectorx for the correspondingg,

T 0.3

0.0

-0.3
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2 : 0

and o’ together with the half-path lengtti{®) and the ver-  assumed to be absorbedS . Our choice for the small size
tex angles of the scattering paths: a single scattering path is& the errorsa xi andAx¢™ was motivated by an attempt to
single line traversed back and forth and has the two vertey equally far away from the twétrivial) limiting cases
angles 180, 180; a stretched double scattering _path h3%here either the® or theR space exhausts the whole model
angles 180, 0, 180, and so on. The vegtdas theM =83 35 meter space. The scaling veator is chosen in such a
components,,[f1(Ry)[, 1, . . .|f41(Rap)|, bar. A first com- way that all components of the scaled vectdrave the same
puter experiment 1S defl?ed by thé window Kmin  gjze:x.=—1 for 1=i=<84. With x© as inputrerF7 yields
=0.1 A7, Kpar= 12-9 Ab , and L =397, i.e., measure- ho ExAFS signal for the undisturbed lattiqgio(ki). The
ments are assumed to be done kawvalues in steps of functions xexg(ki) and xpio(ki) are shown in Fig. 9. It

71 . .
0.05 A" We do not consider the reduction of the observ-ghoyid be pointed out that for our example the experimental

able (k) 10 x(k) in this example. data are well described by tleepriori parameters within the
Using x™¢ as input for therEFF7 code, we calculate | range 3 A-!<k=11 A~L. An EXAFS analysis based
“true” values xyudki), 1=1,...397 to which Gaussian- p his limited data range would yield false structure infor-

distributed errors with widthA x*" are added at random re- mations.

sulting in “experimental” xex(ki). To obtain the width From Eq.(12) the Fourier transforne, of K xex(k;) is
Axf" of Eq. (29) we assume in this example “experimental” obtained and its absolute value is plottedris Fig. 10, in
errors Ay, of 107* at eachk, and model uncertainties which also the input valueR; are indicated by the thick bars.
Ay;ly; of 0.3% for the mean free path, for all amplitudes  Their length is proportional td\;. The highest peak at
If(Ri)f, and for all the phaseg; . The truncation erro; =267 A is identified with the first shell radiug,. It is
was determined from comparimgrF7results received from  shifted with respect to the true value due to kidependence
a curved wave amplitude filter of 4% with a sequence ofof the phasep,. Note that the peak of the Fourier transform
results between the path numbler 41 and the maximum at 2.3 A is not connected with any of the half-path lengths
path numbet .,,= 1000. These errors are plotted in Fig. 8. R, | but is known to result from thé& dependence of the
Fork<2 A ~!the errorAx*" is seen to be dominated by amplitudeA,. We do not try to identify any of the othe
the truncation error. In theerF7code thek dependence &,  with the peaks in Fig. 10 beyond=2.67 A . Also no at-
for small k is neglected. The corresponding uncertainty istempt was made here to “improve” the Fourier transform by
using as input somk™-weightedy with n>1, instead oky.

600 With our initial valuesx(®) we start an iteration as de-
T 400 e scribed in Sec. V. The regularization parameieandxégnd .
oS etf are shown in Fig. 11 along the sequence of the first five
200 1
0
3
~ 50 .
=}
5 0
=
SO il g
0.1 1.0 10.0 100.0 1000.0
& Parameter Number n
FIG. 12. Upper partxﬁono(;) (solid line) and the effective num- FIG. 14. Components of the solution vectafs*) (upper part

ber of degrees of freedorh.; (dashed ling as function of the andx(a’*) (lower par} together with the one-standard-deviat®n
regularization parameter. Lower part: Logarithmic derivative of posteriorierror-band. The parameter sequence starting mtt is
Eq. (26) with respect to. S%, Eg, Ry,...Ru, 03, ...0%.
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FIG. 15. Relative deviatio,, between the components of the
true model-parameter vectaf'® and the solution vectat* (lower
pard. The lengthss, of the projection of the components xf into
the spaceR are shown in the upper part. The parameter sequence
starting withn=1 is So, Ey, Ry, -

FIG. 17. Correlation betwees), andz, for the solution vectors
X(a*) (upper partandx(a'*) (lower par.

2 2
R41, 01, ...0y3-

fraction of the 84-dimensional model space with which we
started. We chose its dimension so large on purpose in order
iterations. In Fig. 12 we ploj;o{X) as function of the to demonstrate the ability of the method to always identify
regularization parametet. It shows the result of iterating the relevant parameter subspate
with respect tox for fixed «. The iteration is stopped when In Fig. 14 we show the components of the solution vec-
the average value of(x**Y—x");| is less than 10° or  tors x* corresponding tax* and toa’*, together with the
when a local minimum is reached. Also plotted as functionone-standard-deviatioa posteriori error band which, at
of a is the rhs of Eq(24). The point of intersection yields =qa* is smaller than the dot size. In Figs. 15 and 16 we

=130. Fora<100 convergence of the iteration deterio- present fora* and a'* the ratiosz,=|(x}* —x5"9)/x"4,
rates and requires increasingly larger under-relaxation of th@hich measure the degree to which the data allowed one to
step size. In the lower frame of Fig. 12 the Ihs of E2[7) is  correct the “error” in thea priori assumption. It is seen that
shown as function ofe. The zero point of this function the first twoR; are rather well determined by the data and so
yields a'* =0.7. As expected*>a'*. are Ey, o3, and o3. Note thatR; corresponds to the first

In Fig. 13 the eigenvalues, of the information matrix  double-scattering path as can be seen from Table I. The path
Q(x) are plotted together with the cutoff lines=a* and  lengthsRs andRg belong to single scattering paths. They are
a=a'*. The eigenspaces belonging to the eigenvaluesairly well determined together withZ and 3. In compari-
above these lines span the spa@sn which the “data”  son with neighboring paths};,, and Rss are fairly repro-
determine the fit in these two cases. Their dimensignare  duced as well. They correspond to multiple scattering paths
seen to be 17 and 42. It may be compared with the “numbewith three Ta atoms in a line. The same holds Ry and
of independent data points'Ng~(2/m)AKAR=50. As R,,representing multiple scattering with four Ta atoms in a

could be expected, even with the very small experimentaline. Compared withE, the many-body factoS} is obvi-
and systematic errors used, tiespace consists of only a ously somewhat more difficult to reproduce.

R R o o’ 0.002
¢H 37 ‘LB i/S?
{\ fs 15 35 Zzs ‘1215 jas o.001
s 1.0 ' '
=" 0.5 ]
—_ 0 il ’l' | fREI ‘H
* El « R =~ | T
S 1F ’ . :
N 3 ]
oo PHGAIALAEIN
H l } | l ’ | i
0 30 60 90

Parameter Number n ) ) . )
FIG. 18. Matrix elements of the regularized variance matrix

(Q+a*1),}; diagonal elements are suppressed. Parameter se-
quence starting from=0: S5, Eg, Ry, ..

FIG. 16. Same as Fig. 15 for the solution vectd which

corresponds to the regularization parametera’* .

2 2
'R4ll 01, ...0y1.
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06 o
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= * 05] ]
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= 1k ]
* N= 3 3
= 0.01 ¢ 1
06l . o ' | | | ’ ||
0 2 46 8101214161820 0 2 4 6 8 10 12 14
k [1&“] Parameter Number n

FIG. 21. Same as Fig. 16 for the simulated experiment
2a. Parameter sequence starting from n=1:
S5, Eo, Ry, ...Rs, 0%, ...0%

FIG. 19. EXAFS oscillations of the “experimental¥qx(k))
(thick line) and thea priori xyrio(k|) (thin line) of the simulated
experiment 2a.

In an actual experiment the quantitiesare of course not ~ "elation between neighborirf§ and neighboringr leads to
available sinced™® is not known in that case. Always avail- the rugged mountain region in the diagonal direction. In ad-
able, however, are thg,, which are shown in Figs. 15 and dition, correlations betweeR; and ajz with i~| give rise to
16. Note that the sequence of model parameters still i§he “side bands” in this figure.

Eo, S5, Ry, ... Ra, 02,...,04,. Although 1-s? is

not exactly equal t@,, these quantities, nevertheless, have B. Computer experiment 2

in general a rather similar behavior when the regularization
parameter™ is used. In the upper part of Fig. 17 we show
the correlation betwees, andz,. This is less obvious for
the regularization parametes*, as shown in the lower part

Naturally one would like to see whether in the limit of

vanishing errors\ y; the true model-parameter set could al-
ways be recovered, irrespective of the choice ofahmiori

. x©_ In the framework of the first computer experiment this
of Fig. 17. is unfortunately not possible because finite grid-size limita-

H H i * % 2
Sinceir is smaller fora™ than fora’™, more of t?ées_n tions in thererF7 code do not allow one to go withy; to
come close to one when the regularization parametéris oo Furthermore, the minimal step size in thepace of

used as seen by comparing Fig. 16 with Fig. 15. In particulap o5 A -1 tyms out to be not sufficient to fully resolve the
the f2|rst foug smgle2 scattering path  parametersgyctyre ofy(k) in this computer experiment. We, therefore,
Ri, 01, Ry, 03, _RS',35' Rg, g are fairly well deter-  gefine a second computer experiment in which only the
mined by the fit witha'. Although thez, are in general  sjngle scattering pathR, , . . . ,Rs of the first five shells are
smaller in Fig. 16 thgn in Fig. 15, t_here are a few exceptionsyaken into account. The model-parameter vestarow has
€g. Ifhe focusing scattering path — parametergny 12 components, corresponding to the quantities
Rz, 02,, Rys, o3, even though the correspondiagare 2, Eo, Ry, ... Rs, 02, ... 0% The grid in thek space
still close to unity. One should, however, be aware thatthe 54 the errors are the same as befakey =104 for |
posteriori errors, plotted together with the fited model- —q 397 The vectory consists of the 11 components
parameter values, in Fig. 14, are much larger for the ty, ¢1,...ts, ¢ and the errorsAy,/y; are again
smaller regularization parameter, and so are the error corrgy 394, in each component. Since we consider just the first five
lations. The fitted model parameters are therefore sometlm§r19|e scattering paths, we ha®,,=0. This would, of

. o . ; .
more accurately determined with'™*, but with smaller reli- o rse, not be possible when actually measured data were to

ability. , , , _be analyzed. The choice of the priori vector x(?) is the
The matrix elements of the regularized variance matrix
(Q+A);nl, are plotted in Fig. 18 foww= o*, where the di- 0.000% -
agonal matrix elements have been suppressed. A strong cor ¢ .
g 0.000
|
105 2 0.0000
o .. +
. 10°} T ] o
= .. ~—
= o
51
o 10 1
[e3
ot
0 2 4 6 8 10 12 14
Eigenvalue Number n
FIG. 20. Eigenvaluegy, of the information matrixQ(x'*) FIG. 22. Same as Fig. 18 for the simulated experiment
(dot9 plotted with the cutoff linesy=a* anda=a'* of the simu-  2a. Parameter sequence starting from n=0:

lated experiment 2a. S%, Eg, Ry,...Rs, o2,...0%
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=} .. o

o 10°! : " 05¢ 7

= o

g ~ 0

: ! :

& 107 - 1 3 1t ]

= o w® L 1
oo 1111111

0O 3 6 9 12 15 18 \

Eigenvalue Number n 0 3 6 9 1r2 15 18

. . . . Parameter Number n
FIG. 23. Eigenvaluegy, of the information matrixQ(x'*)

(dot9 plotted with the cutoff linesy=o* anda=a’* of the simu- FIG. 24. Same as Fig. 21 for the simulated experiment
lated experiment 2b. 2b. Parameter sequence starting from n=1:
Eo, Ry, ...Rs, 02,...0%, N, ...Ns.

same as before, i.e., it corresponds to the ideal lattice, and
x"U® describes again the compressed system.

Figure 19 showsy.,,, Which is essentiallyyy, in this  about the model is introduced through Bayes' theorem.
case, angy(k) calculated with thea priori model-parameter Turchin’s conditions were used to ensure that the informa-
set. Comparing with Fig. 9 it is clear that now the highesttion contained in the data is not distorted &ypriori input
frequency oscillations are missing. Figure 20 indicates thainto the fitting procedure. Besides the statistical errors in the
o* anda'* are smaller than all 12 eigenvalugs of Q so  data, a reliability estimate of the model was introduced. To-
that the data determine the fit in the whole model-parametegether with thea priori assumptions and the errors of the
space. This finding is confirmed by the behavior of the quandata this estimate determines theposteriori error of the
tities sﬁ shown in the upper part of Fig. 21. That the true deduced best model parameters. Ehposteriorierror is a
solution was actually found can be seen from the behavior ofneasure of the probability with which the data require a
the z, displayed in the lower part of Fig. 21. The largest modification of thea priori parameter set. The method does
deviations of about 10% occur fo;trE0 andel, correspond- not require ana priori restriction of the dimension of the
ing to deviations ofAE,=0.22 eV andAR,=0.0025 A. model-parameter space to the size one expects to be deter-
Due to the small amount of well-determined model param Mined by the data. Instead, the fitting procedure itself allows
eters taken in this example the error correlation matrixon€ to calculate the subspace of the model-parameter space
shown in Fig. 22(diagonal matrix elements again sup- IN Which the data affect the outcome of the fit. It can, in
pressegihas very small matrix elements compared to the firsfarticular, simulate a model-independent data analysis to any
computer experiment shown in Fig. 18. desired degree of accuracy by choosing the model space suf-

It is instructive to consider a variant of this second com-ficiently large. One also obtains for each model parameter
puter experiment where also the five coordination numberé1® degree to which the data, rather trampriori assump-

N; are included in the model-parameter veotpwhich then  tions, contribute to its fitted value.

has 17 components. Foi™™® we choose again the com- The method has been applied to Cu data measured at a
pressed system, where, in addition, we assume that one atdgfmperature of 10 K. To demonstrate the robustness of the
is missing in each shell. In this example one eigenvalue ofnalysis we used 158 fit parameters starting frometpeiori

the information matrixQ becomes zero, which reflects the data set appropriate for a temperature of 291 K. The dimen-
fact thatS2 andN; are not linear independent variables in the Sions of the model-parameter subspace in which the data
model equation(1). We, therefore, takes, equal to the

“true” value of 0.8 and drop it from the list of model pa- 0.

rameters. There are then 16 remaining model parameters. All °-° /

16 eigenvalues of the matriQ are again larger than'* (see & 0.005¢ o “ 4
Fig. 23, i.e., the problem is well posed. Therefore, s T ook ""A“‘“"“‘“‘,’/A
shown in the upper part of Fig. 24, are close to unity. Nev- <t ©: .“W"A\‘
ertheless, all of th&l; are not very well determined as is seen + 005 “"‘““““““-"‘4
from the rather large values af, to z;¢ in the lower part of =3 -

Fig. 24. As shown in Fig. 25 there are strong error correla-
tions between these components of thgosteriori error-
correlation matrix. In Table I, we display the numerical val-

ues of the 16 model parameters in their initial units for éhe
priori, thea posteriorj and the “true” set.

VIl. SUMMARY _ _ _
FIG. 25. Same as Fig. 22 for the simulated experiment

We have presented a method to analyze EXAFS data iab. Parameter sequence starting from n=0:
terms of model parameters in which priori knowledge E,, Ry,...Rs, o2, ...08, Ni,...Ns.
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TABLE II. A priori, a posteriorj and “true” parameter values
of the simulated Ta experiment 2a. The component numbeare
given in column 1, the corresponding parameter naraegriori
parameters, fitted parameter values including theposteriorier-
rors, and the “true” parameter values are shown in columns 2, 3, 4
and 5, respectively.

n Name  a priori a posteriori “True”

1 Eo 9881 eV 9878.810.01 eV 9879 eV
2 R, 2.8579 A 2.8275%:0.0005 A 2.8293 A
3 R, 3.3000 A 3.2656:0.0006 A 3.2670 A
4 Rs 4.6669 A 4.6186:0.0009 A 4.6202 A
5 R, 5.4724 A 5.41590.0009 A 5.4177 A
6 Rs 5.7158 A 5.65670.0022 A 5.6586 A
7 o, 0.003 £ 0.0010%0.00001 & 0.001 &
8 oy 0.003 &  0.00096:0.00003 & 0.001 &
9 o3 0.003 &  0.00106:0.00003 & 0.001 &
10 o4 0.003 &  0.00107:0.00002 &  0.001 &
11 o5 0.003 &  0.00130:0.00008 & 0.001 &
12 N, 8 7.02+0.04 7

13 N, 6 4.97+0.04 5

14 Nj 12 11.20-0.10 11

15 N,y 24 23.50-0.20 23

16 N 8 7.78+0.18 7

H. H. ROSSNER PRB 61

dominate the fit werdz(a*)=21 andiz(a’'*)=40, de-
pending on the assumed weight of thgriori assumptions.
These numbers are smaller than the “number of independent
data points” Ny~ (2/7r)AkAR=55, traditionally used in
Fourier analysis. The example further showed that only a
few half-path lengths and Debye-Waller parameters were de-
termined by the data indicating the locality of the EXAFS
method.

We have also shown how the computer simulation of a
planned experiment can be used to find out whether a given
size and accuracy of the expected data allow the determina-
tion of any model parameter within a given error margin. We
gave a few examples for estimates of the uncertainties con-
nected with theeeErFcode. However, we are aware that much
more needs to be done in this direction. The same holds for
an estimate of the errors jy and inup,c. More extensive
applications of the fitting procedure to real data and addi-
tional efforts to estimate the errors of the model parameters
are needed to improve the present situation.
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