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Landau theory of structures in tetragonal-orthorhombic ferroelastics
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A Landau expansion of the elastic energy in the strains is used to study two-dimensional structures in
tetragonal-orthorhombic ferroelastics with constraints. Local energy minima are found with respect to the
components of the displacement and so the strains satisfy the compatibility relation; this interdependence of the
strains, combined with the constraints, can give rise to a subtle frustration. Extraordinarily, a complex energy
surface with many bulk metastable states results purely from boundary conditions, without bulk inhomogene-
ities ~such as impurities! of any sort. Some settings require twin walls in only one set of tetragonal 110-type
planes; only two variants appear, and the dilatational and shear strains are localized near the surface. Tip

splitting can occur when twin walls collide with fixed boundaries. Other settings require both 110 and 110̄
walls and so all four variants appear. The structures resulting from collisions of the two twin families are so
complex that the ground state of a large system cannot be found with confidence. Strange walls appear between
variants with identical deviatoric strain. The dilatational and shear strains are large also in the bulk. Walls
wobble, bow, and bend counterintuitively, and pairs sometimes pinch in. Study of the rotation is shown to be
essential for understanding some aspects of the structures, particularly collisions of orthogonal twin bands. The
ferroelastic-ferromagnet analogy is found to be misleading in important respects. Tip splitting, pinching-in,
wall wobbling, and other phenomena are seen in electron microscopy of YBa2Cu3O72d and other materials.
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I. INTRODUCTION

Ferroelastic transformations are diffusionless, first-ord
shape-changing, phase changes in the solid state.1,2 In cubic-
tetragonal~C-T! systems~like Nb3Sn,V3Si, In-Tl, and Fe-Pd
alloys!, for example, the cubic unit cell elongates~or con-
tracts! along one of three axes to form a tetragonal unit c
below the transition temperatureTc there are three possibl
homogeneous products~variants! differing only in orienta-
tion. The name ferroelastic is best reserved for material
which the strain energy dominates the morphology and
kinetics, giving elastic hysteresis, defects stable on lab
tory time scales, slow relaxation, glassy behavior,
‘‘tweed’’ structure, the shape-memory effect, and like ph
nomena. One speaks of ferroelastic transformations, not t
sitions ~on cooling, the product often first appears at a te
perature much higher than that where the parent disappe!.

Although the walls cost energy, ferroelastics belowTc
almost always contain multiple variants, likely most oft
due to constraints. For example, grains in a polycrystal
material prevent their neighbors from distorting by mo
than a few times 10211 m, much less than required by
typical strain of 1024 in a grain of typical width 1024 m,
and so a homogeneous product would require huge stre
The multiple goals of~a! gaining the transformation energy
~b! maintaining the external shape, and~c! relieving the
stresses are achieved by transformation to an inhomogen
product. Most of the sample transforms fully, but a porti
forms walls separating the variants; the displacements f
the different variants alternate in sign, much reducing
displacement at the surface and thereby relieving
stresses. Multiple variants may result also from sepa
nucleation events, or from the growth of the nucleus; or th
may be relics of the nucleation process itself. Whatever th
PRB 610163-1829/2000/61~10!/6587~9!/$15.00
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origin, they reduce the shape change otherwise generate
a uniform distortion, just as domains in ferromagnets red
the field energy otherwise generated by a uniform magn
zation. Though responsible for the very name ferroelast1

the analogy with ferromagnets is however often taken far
seriously, as seen below.

The theory of the morphology of ferromagnets is matu
both analytically and numerically, say to find the doma
structure that minimizes the global energy. The theory
ferroelastics deals with the analogous ‘‘accommodat
problem,’’ the puzzle of how to assemble variants so as
minimize the energy, in the presence of constraints; t
theory is in its infancy. The analogy is formally correct at t
Landau-theory level, but it fails at the next step, a point n
always appreciated. The magnetic energy is expanded in
magnetizationm ~and derivatives!, and must be minimized
with respect tom. The elastic energy is expanded in th
strainsek ~and derivatives!, but mustnot be minimized with
respect to theek in inhomogeneous situations, because
second derivatives of theek are not independent. The resu
is a subtle frustration absent from the theory of ferromagn

The ‘‘nucleation problem’’ in ferroelastics is a myster
Classical ~droplet! nucleation theory fails completely, an
other failure of the analogy; because the transition is fi
order, the product-parent interface generates prohibitiv
large dilatational and shear energies, whether the nuclea
is heterogeneous or homogeneous. The nucleus must ins
contain several products~perhaps incompletely developed!
arranged in some manner~perhaps twinned! to give small
displacement at the interface. Studies of constrained syst
like those reported below, may then advance our understa
ing of ferroelastic nucleation.

When the strain is the primary order parameter, the L
dau theory is a relatively simple expansion in the strains
6587 ©2000 The American Physical Society
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6588 PRB 61A. E. JACOBS
their derivatives. But in most cases the strain is induced
in YBa2Cu3O72d where the tetragonal-orthorhombic~T-O!
transition results from oxygen ordering in the chains. If t
strain energy dominates, however, a theory including o
strain terms~with appropriate coefficients, perhapsT depen-
dent! should describe adequately the ferroelastic propert
Or it may be possible to eliminate the primary order para
eter and get a strain-only energy.3

The first application4 of Landau theory to inhomogeneou
ferroelastics treated the one-dimensional~1D! problem, with
a scalar displacement and one strain. The discovery5 of an
analytical solution for the product-product soliton of the C
transformation was a pivotal contribution, not so much b
cause of the correct prediction that the wall is parallel
cubic 110-type planes~much was known then about domai
wall orientations in ferroelastics6!, but rather because i
showed how the power and insight of Landau theory can
brought to bear on inhomogeneous ferroelastics. Altho
the solution applies at only one temperature, and althoug
C-T analytical solution exists at any otherT, Ref. 5 opened
the way for understanding many aspects of ferroelastics

But the 1D problem lacks essential physics, and the
problem requires massive computational resources for
ther progress. The 2D T-O problem7 has the right stuff for
understanding the morphology, namely the hidden frustra
~lacking in 1D) from the interdependence of the strains, a
it has been used in most advances since Ref. 5. It has d
application to important physical systems lik
YBa2Cu3O72d . It allows analytical solutions7,8 for the
product-product wall at allT, and the parent-product wall a
T5Tc . It allows numerical studies9–11which have explained
various phenomena including the tweed structure obse
by a variety of techniques in a host of materials,9,10 the entry
of twin walls to relieve stresses due to bounda
conditions,11 and why ferroelastic transformations are typ
cally spread over a temperature interval.11 It allows fascinat-
ing studies12,13of the dynamics, especially the formation an
growth of a twinned square-rectangular nucleus. Finally, i
a preliminary to understanding C-T ferroelastics, though C
numerical studies will likely provide major surprises.

Of course other approaches14,15 have been used to stud
the statics and dynamics of ferroelastics, including the tw
structure, as described in Ref. 10; see also Ref. 16.

This paper continues the Landau-theory study of st
structures in T-O ferroelastics. Section II sets up the exp
sion for the elastic energy, and Sec. III presents results
tained by numerical minimization of the energy for seve
physical settings.

~1! For square-columnar grains with fixed boundaries p
allel to T 100-type planes, the ground state contains a se
twin walls parallel to T 110-type planes~which are optimal!;
only two of the four variants appear and the dilatational a
shear strains are large only near the boundaries. Struc
with higher energy~and with walls of both 110 types! are
found, however, and are more common in larger system

~2! For square-columnar grains with fixed boundaries p
allel to 110-type planes, both 110 and 110̄ twin families are
required, giving collisions between them; the dilatational a
shear strains are large at the 90° wall bends, and all
variants appear. The walls often deviate from 110-ty
planes, and they bow and wobble strangely near walls of
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other family. Many metastable structures are found, so m
that the ground state of a large system cannot be found
confidence.

~3! When a twin band collides at 90° with an obstac
~such as a grain boundary or walls of the other twin famil!,
alternate pairs of twin walls in the first band pinch in at
strange wall between two variants with identical deviato
strain. The same phenomenon is seen also for 110-
grains. A Landau-level understanding of the pinching-in
quires study of the rotation, done in Sec. III for the first tim

~4! When pairs of twin walls retract through an orthog
nal wall ~and obviously in the reverse process!, narrow tips
become broad andvice versa.

~5! Tip splitting can occur when twin walls collide with
grain boundary at 45°.

~6! The transformation front between T parent a
twinned O product~in, for example, a temperature gradien!
is parallel to 100-type planes, as in Ref. 12; that is, the fr
does not zigzag by forming T-O walls.

The 90° bends, the pinching-in, the bowing and wobblin
and the tip splitting~the last with differences! are observed
in Pb3(PO4)2 and YBa2Cu3O72d for example, as in Figs
7.9, 7.16, and 7.17 of Ref. 2 and Figs. 2 of Refs. 17 and
These effects~save perhaps the 90° bends! have no parallel
in anisotropic ferromagnets, another failure of the analog

The complexity of the energy surface is remarkable,19 for
it is a bulk effect whose sole cause is a bounding surfa
without impurities or bulk inhomogeneities of any kind. O
course it has long been known that strains have long-ra
effects, but this seems nevertheless an extraordinary resu
is not known how the number of metastable states sc
with the size of the system; neither is anything known the
retically about the dynamics of constrained systems. The
sue, which seems important for the interpretation of exp
ments and also in principle, is whether glassy behavio
intrinsic to constrained ferroelastics or whether it requi
inhomogeneities like impurities. Simulations might answ
the interesting question: can a surface alone produce gl
behavior in the bulk?

II. ELASTIC ENERGY

The high-T ~parent! state is tetragonal, and the low-T
~product! state orthorhombic. The 3 axis of the body coord
nate system lies along the fourfold axis of the T state; th
and 2 axes are twofold axes, and the 1-3 and 2-3 planes
mirror planes. The displacement field isu5x82x wherex
and x8 are the coordinates of a material point in the und
formed and deformed states, respectively. Computationa
sources limit the study to structures uniform in the 3 dire
tion ~and so 90° twist grain boundaries are omitted!; on the
other hand, the 2D structures are those most easily stu
experimentally. Thenu lies in the 1-2 plane, it depends o
only x1 andx2, and so three strains vanish identically.

The three remaining strains~all of which vanish in the T
state! are obtained from the displacementu through the sym-
metric strain tensorh:

e15~h111h22!/A2, ~2.1a!

e25~h112h22!/A2, ~2.1b!
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e65h12, ~2.1c!

h i j 5
1

2
~ui , j1uj ,i1uk,iuk, j !, ~2.2!

in the Lagrangian description.20 Here i , j ,k51 or 2, ui , j
5] jui5]ui /]xj , and repeated indices are summed. Mo
reasonable definitions fore1 and e2 would have denomina
tors 2, notA2. These are called the dilatational, deviator
and shear strains, respectively, thoughe1 is simply related to
the true dilatational straine0 only in the limit of infinitesimal
strains; it is the straine2 which is nonzero below the trans
tion. To understand some aspects of the structures, one
study also the fourth combination of theui , j , the rotation

v35
1

2
~u1,22u2,1!; ~2.3!

explicitly, for a uniform rotation by an anglef about the 3
axis,v35sinf and allh i j 50.

The elastic energyF is the integral of the densityF over
the undeformed spaceA:

F5E
A
F dx1 dx2 . ~2.4!

ClearlyF can depend onu andv3 only through their deriva-
tives. To leading order,F is the sumF5Fs$ei%1Fsg$ei , j%
of separate contributions from the strains and their der
tives.

For the strain terms inF, the simplest expression consi
tent with the requirements is

Fs$ei%5
1

2
A1e1

21
1

2
A2e2

21
1

4
B2e2

41
1

6
C2e2

61
1

2
A6e6

2

~2.5a!

relative to the T state.7 At high T, the terms1
2 Akek

2 are the
usual contributions for a linear, homogeneous, elastic
dium, and the coefficientsAk are all positive; in Voigt
notation,20 A15C111C12, A25C112C12, and A654 C44.
In Landau theory, however, the coefficientA2 depends onT
asA25a(T2T0) ~with a.0) and so the T state is unstab
at low T; for a first-order transition,B2,0 and the term ine2

6

~with C2.0) is needed for stability. The transition temper
ture Tc ~which is .T0) is found from21 A253B2

2/(16C2).
The homogeneous O state~with e15e650) is twofold de-
generate; a square with sides parallel to the T 100 and T
axes deforms to a rectangle with long side parallel to
first (e251e20) or the second (e252e20), where e20

5@(2 1
2 B21g)/C2#1/2 and g5( 1

4 B2
22A2C2)1/2. The trans-

formation energy is the energy of the homogeneous O s
with densityFO5 1

2 A2e20
2 1 1

4 B2e20
4 1 1

6 C2e20
6 .

The strain-gradient part ofF is ~from Appendix A!

Fsg$ei , j%5
1

2
d1~¹W e1!21

1

2
d2~¹W e2!21

1

2
d3~¹W e6!2. ~2.5b!

The term 1
2 d2(¹W e2)2 is crucial, for it gives walls a positive

energy and sets their length scale@as in Eq.~2.7! below#.
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Without it, a constraint of zero overall displacement can
satisfied by microtwinning, an unphysical subdivision on
bitrarily fine scales.

The total densityF5Fs1Fsg can then be written as th
sumF5F1@e1#1F2@e2#1F6@e6# of three uncoupled densi
ties, each a functional~a polynomial plus a squared gradien!
of a single strain. In homogeneous problems~all strain gra-
dients 50), the energy is correctly minimized bydF/dek
50, givinge256e20, e15e650. In inhomogeneous prob
lems, on the other hand, it is entirely wrong to minimize t
energy with respect to the strains. The energy must inst
be minimized with respect to the displacement (dF/dui
50). Even when the densities are uncoupled, the strain
dients are coupled by the compatibility relations~necessary
and sufficient conditions that the strains be derivable fr
the displacement!. In two dimensions there is only one rela
tion,

h11,221h22,1122h12,1250 ~2.6a!

in terms of the strain tensor and

e1,111e1,222A8 e6,122e2,111e2,2250 ~2.6b!

in terms of the strains, both for the linearized stra
tensor.22,23The energy function of inhomogeneous ferroela
tics then contains a subtle frustration~obviously absent in
1D! which is partially responsible for the complexity of th
structures described below.

The energy must be minimized numerically in general~as
in Ref. 11!, but some analytical solutions exist.7,8 Equation
~2.6b! shows that solutions withe1[e6[0 are possible ife2
satisfies the wave equation, so thate2 is a function of either
x11x2 or x12x2 ~but of course not a sum of the two!; the
reduction to a 1D problem fore2 was discussed also in Refs
5 and 7–11. The point is that the T 110 and 110̄ planes are
optimal for walls; other orientations are possible, of cou
~they just cost more energy!.

The O-O8 soliton ~a twin wall! has a standard form for a
first-order transition:

e2~X!5e20sinh~X/j!/@cosh2~X/j!1a#1/2, ~2.7!

whereX5(x16x2)/A2, a5(2B212g)/(B214g), and j
5e20

21(d2 /g)1/2 is the wall thickness parameter;j decreases
with T, with j}1/AA2 at low T. This solution links the two
variants, but it also rotates them by an anglef, as shown in
Refs. 5,7,8; from Eq.~A2! below, v3(X)56e2(X)/A2 and
so f'e20/A2. In more detail, walls of the 110 family join
variants with long sides at2f and p/21f to the T 100
axis, and walls of the 110̄ family join the other two. In twin
walls then,v3.0 in one variant,,0 in the other, and50 in
the center~moduloa global rotation!.

In the presence of both wall families, all four varian
appear, creating two new kinds of wall. One separates v
ants with oppositee2 and identicalv3; the angle between the
long axes isp/2 ~rather thanp/222f as for twin walls!.
The other separates variants with identicale2 and opposite
v3; the angle between the long axes is 2f. The analogy fails
yet again; in ferromagnets, domain walls do not increase
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6590 PRB 61A. E. JACOBS
number of variants, and the strange 2f wall has no counter-
part. If the microscope is sensitive only to the deviato
strain, then the first kind looks like a twin wall and the se
ond is invisible. Both require dilatational and shear stra
~unlike twin walls!. If taken literally, they are high-energ
configurations; in fact, their energy increases faster than
early with the length. Section III finds that the necess
relaxation occurs by variant narrowing, combined with inh
mogeneous rotation.

The Landau approach is expected to be especially g
for ferroelastics~because of the long-range effect of strain!,
but it has weak points. First, Eq.~2.5! contains too many
unmeasured parameters to attempt a quantitative descri
of a particular material, even though it omits many terms
the same order as those retained; only a qualitative des
tion can be attempted. Second, the Landau theory is lim
to T'Tc ; for example, the homogeneous straine20 does not
saturate asA2 decreases. A mean-field theory would be pr
erable atT!Tc , but this requires a specific model. Thir
using gradients to represent the energy of inhomogene
states implicitly assumes that the strains vary slowly o
atomic distances; the high-resolution images of Ref. 2~Fig.
8.6! and Refs. 17 and 18 show however that walls are on
few atomic separations wide. The counter to all three ob
tions is that a qualitative understanding is what is require
present.

III. STRUCTURES

Appendix B gives the values of the Landau paramet
and details of the numerics. The side lengthL of all figures is
L520.

A. Square-columnar grain with 100-type boundaries

The displacement vanishes on and outside a square
umn with sides parallel to T 100-type planes, as in Ref.
The structures, which are up to 16-fold degenerate un
symmetry operations, were found by quenches from rand
starting states.

Ten quenches forL520 ~with grid sizeh50.1) gave four
structures with energies ranging from 79% to 77% of
transformation energy; a few more structures may exist. F
ure 1 gives a contour plot of the deviatoric strain for t
ground state~found six times!. The product-product walls ar
parallel to one set of T 110-type planes, though bent tow
the corners. The strain is odd about one main diagonal; a
a vertical ~or horizontal! through the center of the squa
then, the net displacement is obviously zero to first orde
e2. The dilatational and shear strains~not shown! are large
only near the boundaries, as in Ref. 11.

Ten quenches for larger grains (L540 with h50.2) all
gave distinct structures. The lowest-energy structure,
lieved to be the ground state, contained a set of parallel w
~as in Fig. 1!, but with some bowing.

B. Square-columnar grain with 110-type boundaries

The same introductory comments apply here, except
the sides are parallel to T 110-type planes. This setting
quires both twin families and so collisions between them
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One hundred quenches forL520 ~andh50.1) found 46
distinct structures; energies ranged from 82 to 78% of
transformation energy, with structures concentrated at
lower energies. Of the 46, 25 were found only once, w
most of these at higher energies; likely many other soluti
remain undiscovered even in this small system. Figure
shows the deviatoric strain for the lowest-energy state~found
six times and believed to be the ground state!; the walls form
90° bends and they bow away from the 110 and 110̄ planes.
The domain configurations for this and the other 45 str
tures are quite unlike those in ferromagnets. Large dila
tional and shear strains appear in the bulk as well as nea
boundaries, especially near the bends; for the structure
Fig. 2, the maximum and minimum values are63.17
31023 for e1 and62.0531023 for e6, both comparable to
e20'2.1931023.

FIG. 1. Grayscale contour plot of the deviatoric straine2 for the
ground state of a square-columnar grain with sides parallel t
100-type planes. The black→white range is 22.2031023→
12.2031023.

FIG. 2. Grayscale contour plot of the deviatoric straine2 for the
ground state of a square-columnar grain with sides parallel t
110-type planes. The black→ white range is22.2131023→
12.2031023.
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Thirty quenches for largerL (L540 with h50.2) all
gave distinct structures, with patterns more complicated t
in the smaller systems; the best~almost certainly not the
ground state! had 89% of the transformation energy. There
no room for doubt here: the walls are bulk defects, and t
are produced by the boundary conditions and the frustrat

A few quenches for smaller systems found multiple str
tures forL as small as 5.

C. Comments on structures in grain settings

The Landau theory explains qualitatively the counterint
tive wall bending, bowing, and wobbling seen in experime
The theoretical energy surface is complex for both grain
tings ~though less so for 100-type grains! and it will clearly
be complex whatever the shape of the grain. The obse
patterns2,17,18suggest a complex energy surface, but they
far less contorted than found theoretically; they are do
nated by large bands of parallel twin walls, suggesting h
erogeneous nucleation, whereas the numerical procedur
vors homogeneous nucleation. More ordered star
configurations for the model quenches might produce p
terns more like those seen experimentally. Perhaps q
cooling to low T would favor homogeneous nucleation a
produce structures more like those found theoretically. T
appearance of different structures on repeated cooling w
provide strong evidence for a complex energy surfa
shape-memory materials seem unsuitable for this purp
for in them the domain patterns are reproducible almost
definition.

D. Variant narrowing

The termination of one twin band by an orthogonal ba
is often observed;2,17,18 strangely, alternate variants of th
impinging band narrow and broaden~as seen in many struc
tures of 110-type grains above!. The following shows that an
understanding of the effect requires study of the rotat
~which is not immediately available in theories14,15,12,13

which push the analogy with ferromagnets and deal larg
or exclusively with the deviatoric strain!.

Figure 3~a! shows schematically the unrelaxed configu
tion for a pair of twin walls colliding with an orthogona
band; in all parts of Fig. 3, periodic boundary conditions a
used top and bottom for the displacementu. The upper and
lower variants entering from the right terminate inp/2 and
2f walls, respectively; the deviatoric straine2 vanishes in
the p/2 wall and the rotationv35 1

2 (u1,22u2,1) vanishes in
the 2f wall ~both vanish in twin walls!. Figures 3~b! and
3~c! give contour plots fore2 and v3 in the fully relaxed
state. On and outside the right edge,u was fixed at values for
parallel twin walls normal to the edge and separated byL/2;
the values ofu ~with zero average! were found by solution of
the ordinary differential equation fore2. The same solution
was used on and outside the left edge, except that the w
are parallel to the edge; the latter lies at the center o
variant, with a twin wall atL/4 to its left. The system deal
with thep/2 and 2f walls very differently. It bends the twin
walls away from the optimal 110-type walls to shorten t
2f wall and to lengthen thep/2 wall, and then compensate
for the latter by twisting the medium, in this way almo
converting thep/2 wall to a twin wall of much lower energy
n
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This demonstration that the constrictions are 2f walls
agrees nicely with Refs. 17 and 18; note the high-resolut
electron microscope pictures17,18and the moire´ pattern.18 But
the broad ends are shown above to bep/2 walls deformed by
rotation, not twin walls.17,18 Observation of the difference
would bolster the Landau theory (uDv3u across a deformed
p/2 wall would be about half that across a twin wall!.

Similar narrowing in evolving structures is seen in Fig.
of Ref. 15 and Fig. 5 of Ref. 12, but that in Fig. 4 of Ref. 1
seems different~the deviatoric strain varies rapidly at th
interface!. The narrowing discussed above requires 2f walls
and so it is unrelated to the needle~lenticular! twins treated
analytically in Ref. 3. The latter are seen in Fig. 2 of Ref
and they appear also in some simulations;12,13 they were not
observed here, likely because of the fine scale of the figu

E. Wall motion

Of course the conjugate-gradient process cannot desc
properly most dynamical phenomena, but it should descr
qualitatively, slow processes like the wall motion below.

Figures 4~a!–4~c! show twin walls withdrawing from col-
lision with orthogonal walls, rather than staying near t
variant at the left~as in Fig. 3!. The parameters and bounda
conditions are as in the previous subsection, except that
walls enter, not two; the same results were found foru50 on
and outside the left edge. The conjugate-gradient proc
was started with all four walls penetrating to one grid po
from the left edge. After relaxing rapidly~over '600
conjugate-gradient steps! from this high-energy state, the en
ergy then decreased almost linearly as the walls withdrew
1000 steps, with the walls still near the left edge, the varia
have narrowed and broadened as in Fig. 3~b!. At 3150 steps,
the black variants~with e2,0) have joined, separating th
white variants; the narrow tips are nowp/2 walls, and so
they broaden as the twin walls withdraw. At 5000 steps,
tips of the white variants are again the wider. The later sta
of the relaxation~lasting ' another 17000 steps! are unin-
teresting~they are severely affected by the right bounda
conditions, which prevent complete withdrawal!.

The main point is that the white tips are first narrow a
later broad; in effect, twin walls change partners as th
withdraw through an orthogonal wall. This process has
been noted in simulations. The narrowing-broadening eff
should decrease with increasing distance from the orthog
wall, as the inhomogeneous rotation has more room to o
ate. As described above, variants are observed17,18 to narrow
and broaden alternately on colliding with the orthogon
family. The exchange process explains why entry of an
ditional twin pair gives the same pattern, regardless
whether the pair enters a variant terminated by ap/2 wall or
by a 2f wall. Figures 4~d! and 4~e! show conjectured early
and final stages in the penetration of two twin pairs~both
terminating in twin walls!; the other twin walls terminate
some distance from the orthogonal wall at the bottom, for
ing eitherp/2 or 2f walls. The left~right! pair collides with
a p/2 (2f) wall, adding a wall of each type; twin walls o
the right pair switch partners, while those of the left do n
The process differs significantly from that shown in Fig. 1
Ref. 3 ~which did not discuss the 2f andp/2 walls!.
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FIG. 3. Variant narrowing and broadening at the collison o
twin pair with the orthogonal family. The sides of the figures a
parallel to T 110-type planes. Two twin walls impinge from th
right onto a variant from the orthogonal set of otherwise identi
walls, forming a 2f wall and ap/2 wall which then relax. Part~a!
shows the unrelaxed configuration; the deviatoric straine2 and the
rotationv3 are positive~negative! in the unhatched~hatched! areas.
Parts~b! and~c! give the fully relaxed configurations fore2 andv3,
respectively; the first is a grayscale contour plot, while the sec
gives the zero lines ofv3 ~the border is just a frame, not a zer
line!. The 2f wall shortens, forming the constriction; the inhom
geneous rotation deforms thep/2 wall almost into a twin wall. The
black → white range fore2 is 22.2231023→12.2331023;v3

ranges from23.7331023 to 12.1631023.
F. Tip splitting

Figure 5 shows the deviatoric strain for the lowest-ene
state for twin walls colliding with a fixed boundary at 45°
the parameters are standard~Appendix B! except thatA1
5A6550. On and outside the right boundary,u is fixed at
the solution for a chain of twin walls parallel to T 110-typ
planes; periodic boundary conditions are used top and
tom; the left boundary is fixed, withu50 on and outside it.
The interesting feature is that both tips split at the fix
boundary~this does not happen forA15A6510). Two other
states were found; only one tip splits in the intermedia
energy state, while both tips split very slightly in the highe
energy state. The interpretation is that tip splitting reliev
stress locally without the large energy cost~linear in the size
of the system! of introducing two more walls; the other sid
of the coin is that a tip, once split, likely nucleates penet
tion of the bulk by a pair of twin walls. Figures 8 and 11
Ref. 12 also show tip splitting in comparable settings, bu
seems only transiently, as part of the wall multiplication pr
cess. In contrast, the results described above show tha
splitting occurs statically and also that it reduces the ene
The tip splitting observed17,18 in electron microscopy of
YBa2Cu3O72d is different again; it appears at the collisio
of two twin families, in conjunction with the narrowing dis
cussed above. The differences are not understood, but cle
the phrase ‘‘tip splitting’’ requires some caution.

G. Transformation front

The transformation likely proceeds by penetration
twinned product into parent material, thus avoiding a mac
scopic displacement. Figure 6 shows the front, stabilized
a temperature gradient. The parameter values are as giv
Appendix B, except thatA2 decreases linearly from left to
right; the other boundary conditions are as for Fig. 5. T
interface is parallel to 100-type walls; that is, one does
see the zigzag structure resulting from alternating T-O wa
Smaller gradients favor T-O walls, but then the structure
not so sharp; no zigzags were seen either for 1.5>A2>0.5.
A dynamical simulation12 ~with uniform T) found the same
structure for the interface.
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APPENDIX A: STRAIN-GRADIENT ENERGY

Equation~2.5b! for the gradient energy was used in Re
7; it is rotationally invariant~contrary to the statement in
Ref. 24!, but it omits three mixed terms of the same order:24,8

d4~e1,1e2,12e1,2e2,2!1d5~e1,1e6,21e1,2e6,1!

1d6~e2,1e6,22e2,2e6,1!. ~A1!

The six coefficientsd1 to d6 are independent~Ref. 24 dis-
agrees!. The d5 and d6 terms can, however, be omitted i
leading order.8 The coefficientd4 is not measured experi
mentally, even its sign; this term performs no known impo
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FIG. 4. Parts~a!–~c!: Stages in the withdrawal of four twin walls from collision with the orthogonal family. Grayscale contours o
deviatoric straine2 are plotted after 1000, 3150, and 5000 conjugate-gradient steps. The walls change partners as they withdraw,
tips first narrowing and then broadening. Parts~d! and~e!: Conjectured early and final stages in the entry of two twin pairs. The solid l
are twin walls, the dashed linesp/2 walls, and the dots 2f walls. The sides are parallel to T 110-type planes in all five parts.
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tant role, it complicates matters, it even confuses issues,
so it should be omitted at this level.

The derivatives ofv3 do not appear explicitly in the gra
dient part of the energy density because they are easily
pressed in terms of the strain derivatives:22

]2~e11e2!5A2 ]1~e61v3!1•••, ~A2a!

]1~e12e2!5A2 ]2~e62v3!1•••, ~A2b!

where the dots represent higher-order terms; these relat
seldom discussed, arise from the same considerations a
compatibility relations. For example, the diagonal invaria
(¹W v3)2 becomes
nd

x-

ns,
the
t

~¹W v3!252
1

2
~¹W e1!21

1

2
~¹W e2!21~¹W e6!2

1surface terms1 ••• ~A3a!

with the help of Eqs.~A4! and~A6! of Ref. 8; a form for the
surface terms is

]1~u1,1u2,122u1,22u2,2!1]2~u1,12u2,22u1,1u2,11!. ~A3b!

Equation ~2.5b! can, it seems, be simplified further b
keeping only the (¹W e2)2 term; the compatibility relation
seems to provide sufficient coupling between the gradie
Reasonable results were found this way in unconstrai
problems,10,12 but constraints generate large dilatational a
shear strains, and a separate investigation seemed nece
Ten quenches were made for 100-type square grains and
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more for 110-type square grains, using the standard par
eter set except thatd15d350. No important differences
were found; reasonably, the structures were more com
than with d15d351 ~with more 90° bends!, and the con-
tours were more ragged~a finer grid would likely fix this!.

APPENDIX B

The following collects details regarding the strain tens
the Landau parameters, finite-strain theory, and the num
cal procedure.

FIG. 5. Tip splitting at the collision of twin walls with a fixed
boundary at 45°. The figure gives a grayscale contour plot of
deviatoric straine2 for the ground state; the edges are parallel to
100-type planes.

FIG. 6. Transformation front between tetragonal parent a
twinned orthorhombic product. The figure gives a grayscale con
plot of the deviatoric straine2; the edges are parallel to T 100-typ
planes. The temperature decreases linearly from left (A2552) to
right (A25250), withT5Tc (A251) midway between; the othe
boundary conditions are given in the text. The dilatational and sh
strains are at most 0.3e20 in magnitude.
m-

ex

,
ri-

1. Strain tensor and Landau parameters

For finite strains, the nonlinear term in the strain tenso
required so that a mere rotation of the space axes leave
strain tensor, the strains, and the energy unchanged. The
subsection shows that finite-strain effects are a murky ma
best avoided at present, and so I assume infinitesimal str
~a common approximation—they are usually less th
1023). The computational effort is much reduced if th
strain tensor is linearized. In most Landau theories, th
parameters can be set by scaling the energy, the coeffic
of the derivative term, and the order parameter; of course
other parameters change also. For the strain energy, in
trast, the scaling of the order parameter is possible only if
strains are small and if the tensor is linearized.

The standard parameter set was chosen after some ex
mentation, partly to reduce the computational effort and
reveal details~such as wall structure!. The valuesB2524
3106 andC25331012 were chosen so that the T-O trans
tion occurs atA251, and the deviatoric strain there ise20
51023, both quite arbitrary values. The choiced251 sets
the unit of length; I setd15d351 as well. The straine20 is
much larger than the value (1023) at Tc if A2 is too negative,
and the order parameter is too soft ifA2'21 @the O-O8
wall thickness diverges atTc ~Refs. 26 and 7!#. The value
A25250 ~wheree2052.1931023) was used for the mos
part, so that the wall width was much smaller than a typi
variant ~though not as small as in experiment!. Results at
A25210 were not qualitatively different.

The dilatational and shear stiffnesses areA1 andA6 at all
T. For T.Tc , where the deviatoric stiffness isA2, Ref. 10
argues forA1 andA6 both@A2 ~deviatoric soft, others hard!.
For T,Tc , the deviatoric stiffness isA285A213B2e20

2

15C2e20
4 ; some values areA2854, 11, 22, 61, and 240 a

A2512, 0, 22, 210, and250, respectively. The value
A15A6510 ~deviatoric hard, others soft! were used in most
cases; structures were too fine at much larger values,
ill-defined at much smaller ones.

2. Finite-strain theory

In finite-strain theory,e1 is no longer simply proportiona
to the true dilatational straine0(x)5D(x)21; hereD(x) is
the local ratio of the final to initial volumes, the Jacobian
the tranformationx85x1u. In two dimensions,D(x)5@(1
1A2e1)222e2

224e6
2#1/2. Then, even thoughe150, the vol-

ume decreases~by an amount of ordere2
2), even for the

homogeneous state~and of course also for the O-O8 wall and
a periodic array of walls!. Correspondingly, the
displacement25,8 acquires a term proportional to (x16x2)^1
2D&. This term can be eliminated~or at least markedly re-
duced! by using the extended Landau theory of Ref. 8 a
adjusting the coefficient of the additional termEe1e2

2 so that
no volume change occurs in the O state, or even a volu
increase as usually observed. But thene1Þ0, and so other
linear terms are generated, corresponding to an overall sh
as seen from Eqs.~6.2! and~6.5! of Ref. 8. It seems inescap
able that periodic boundary conditions, the natural choice
describe a chain of O-O8 solitons, generate dilatational an
shear strains once one deals with finite strains. These c
plications seem not worth facing for some time.
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3. Numerical determination of the displacement field

Solution of the Euler-Lagrange equations~two fourth-
order partial differential equations for the componentsui)
was not attempted. Rather, the energy was minimized w
respect to the componentsui . A grid of 2013201 points was
set up~usually!; the grid spacing was usually 0.1, giving
square of side lengthL520. The strains and their derivative
were expressed in terms of the displacement by mean
centered, fourth-order, finite-difference approximations27

thereby trivially satisfying the compatibility equation~2.6!.
Application of the boundary conditions then gave the ene
as a function of the componentsui at the grid points. The
minimization, done by a conjugate-gradient method, w
continued until numerical errors prevented further reduct
of the energy; the number of iterations required was usu
much fewer than the'83104 independent variables. Th
displacement components for random starting states w
chosen from a uniform distribution (@2U,U), usually with
c

d

v

y

.

y

a

th

of

y

s
n
ly

re

U51023); the root-mean-square gradientdF/dui of the en-
ergy decreased by typically 10 orders of magnitude fr
start to convergence.

In most Landau theories, the boundary conditions are
plied to the order parameter; the analogy breaks down h
as well: for ferroelastics they must be applied to the displa
ment u, not to the strains. The proper boundary conditio
are obvious for grains (u50 on and outside the boundary!;
but they may not be so obvious for other physical settin
and it may not be so easy to devise low-energy starting c
figurations.

References 12,13 use a very different procedure, expr
ing the energy solely in terms ofe2, though at the expense o
introducing a nonlocal interaction; the oscillatory, anis
tropic and long-range nature of the interaction10,12,13 likely
explains qualitatively the bending, bowing, and wobbling
the walls and also the narrowing and broadening found h
though the interaction needs modification to account for
constraints.
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