PHYSICAL REVIEW B VOLUME 61, NUMBER 10 1 MARCH 2000-II

Landau theory of structures in tetragonal-orthorhombic ferroelastics
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A Landau expansion of the elastic energy in the strains is used to study two-dimensional structures in
tetragonal-orthorhombic ferroelastics with constraints. Local energy minima are found with respect to the
components of the displacement and so the strains satisfy the compatibility relation; this interdependence of the
strains, combined with the constraints, can give rise to a subtle frustration. Extraordinarily, a complex energy
surface with many bulk metastable states results purely from boundary conditions, without bulk inhomogene-
ities (such as impuritiesof any sort. Some settings require twin walls in only one set of tetragonal 110-type
planes; only two variants appear, and the dilatational and shear strains are localized near the surface. Tip
splitting can occur when twin walls collide with fixed boundaries. Other settings require both 110 and 11
walls and so all four variants appear. The structures resulting from collisions of the two twin families are so
complex that the ground state of a large system cannot be found with confidence. Strange walls appear between
variants with identical deviatoric strain. The dilatational and shear strains are large also in the bulk. Walls
wobble, bow, and bend counterintuitively, and pairs sometimes pinch in. Study of the rotation is shown to be
essential for understanding some aspects of the structures, particularly collisions of orthogonal twin bands. The
ferroelastic-ferromagnet analogy is found to be misleading in important respects. Tip splitting, pinching-in,
wall wobbling, and other phenomena are seen in electron microscopy ofC(B@; _ s and other materials.

[. INTRODUCTION origin, they reduce the shape change otherwise generated by
a uniform distortion, just as domains in ferromagnets reduce
Ferroelastic transformations are diffusionless, first-orderthe field energy otherwise generated by a uniform magneti-
shape-changing, phase changes in the solid Sfdtecubic-  zation. Though responsible for the very name ferroeldstic,
tetragonal C-T) systemglike Nb;Sn,V;Si, In-Tl, and Fe-Pd  the analogy with ferromagnets is however often taken far too
alloys), for example, the cubic unit cell elongatésr con-  seriously, as seen below.
tract9 along one of three axes to form a tetragonal unit cell; The theory of the morphology of ferromagnets is mature
below the transition temperatufie. there are three possible both analytically and numerically, say to find the domain
homogeneous productsariantg differing only in orienta-  structure that minimizes the global energy. The theory of
tion. The name ferroelastic is best reserved for materials ifierroelastics deals with the analogous ‘“accommodation
which the strain energy dominates the morphology and th@roblem,” the puzzle of how to assemble variants so as to
kinetics, giving elastic hysteresis, defects stable on laboraminimize the energy, in the presence of constraints; this
tory time scales, slow relaxation, glassy behavior, thetheory isin its infancy. The analogy is formally correct at the
“tweed” structure, the shape-memory effect, and like phe-Landau-theory level, but it fails at the next step, a point not
nomena. One speaks of ferroelastic transformations, not tramways appreciated. The magnetic energy is expanded in the
sitions (on cooling, the product often first appears at a tem-magnetizatiorm (and derivatives and must be minimized
perature much higher than that where the parent disappearsvith respect tom. The elastic energy is expanded in the
Although the walls cost energy, ferroelastics beldw  strainse, (and derivatives but mustnot be minimized with
almost always contain multiple variants, likely most oftenrespect to theg, in inhomogeneous situations, because the
due to constraints. For example, grains in a polycrystallinesecond derivatives of the, are not independent. The result
material prevent their neighbors from distorting by moreis a subtle frustration absent from the theory of ferromagnets.
than a few times 10'' m, much less than required by a  The “nucleation problem” in ferroelastics is a mystery.
typical strain of 104 in a grain of typical width 104 m, Classical (dropley nucleation theory fails completely, an-
and so a homogeneous product would require huge stressegher failure of the analogy; because the transition is first
The multiple goals ofa) gaining the transformation energy, order, the product-parent interface generates prohibitively
(b) maintaining the external shape, aic) relieving the large dilatational and shear energies, whether the nucleation
stresses are achieved by transformation to an inhomogeneoissheterogeneous or homogeneous. The nucleus must instead
product. Most of the sample transforms fully, but a portioncontain several productgerhaps incompletely developed
forms walls separating the variants; the displacements frorarranged in some mannéperhaps twinnedto give small
the different variants alternate in sign, much reducing thelisplacement at the interface. Studies of constrained systems,
displacement at the surface and thereby relieving thdike those reported below, may then advance our understand-
stresses. Multiple variants may result also from separatang of ferroelastic nucleation.
nucleation events, or from the growth of the nucleus; or they When the strain is the primary order parameter, the Lan-
may be relics of the nucleation process itself. Whatever theidau theory is a relatively simple expansion in the strains and
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their derivatives. But in most cases the strain is induced, asther family. Many metastable structures are found, so many
in YBa,Cu;O,_ 5 where the tetragonal-orthorhombi€-O)  that the ground state of a large system cannot be found with
transition results from oxygen ordering in the chains. If theconfidence.
strain energy dominates, however, a theory including only (3) When a twin band collides at 90° with an obstacle
strain termg(with appropriate coefficients, perhapsiepen- ~ (such as a grain boundary or walls of the other twin fajpily
deny should describe adequately the ferroelastic propertieglternate pairs of twin walls in the first band pinch in at a
Or it may be possible to eliminate the primary order param-trange wall between two variants with identical deviatoric
eter and get a strain-only energjy. strain. The same phenomenon is seen also for 110-type
The first applicatiohof Landau theory to inhomogeneous grains. A Landau-level understanding of the pinching-in re-
ferroelastics treated the one-dimensiofidd) problem, with  quires study of the rotation, done in Sec. lIl for the first time.
a scalar displacement and one strain. The discGvefyan (4) When pairs of twin walls retract through an orthogo-
analytical solution for the product-product soliton of the C-T nal wall (and obviously in the reverse procgssarrow tips
transformation was a pivotal contribution, not so much bebecome broad andice versa
cause of the correct prediction that the wall is parallel to (5) Tip splitting can occur when twin walls collide with a
cubic 110-type planegnuch was known then about domain- grain boundary at 45°.
wall orientations in ferroelasti®s but rather because it  (6) The transformation front between T parent and
showed how the power and insight of Landau theory can b&vinned O productin, for example, a temperature gradient
brought to bear on inhomogeneous ferroelastics. Althougli parallel to 100-type planes, as in Ref. 12; that is, the front
the solution applies at only one temperature, and although ndoes not zigzag by forming T-O walls.
C-T analytical solution exists at any oth&r Ref. 5 opened The 90° bends, the pinching-in, the bowing and wobbling,
the way for understanding many aspects of ferroelastics. and the tip splitting(the last with differencgsare observed
But the 1D problem lacks essential physics, and the 3Dn Pby(PQ,), and YBgCu;O;_; for example, as in Figs.
problem requires massive computational resources for fur?.9, 7.16, and 7.17 of Ref. 2 and Figs. 2 of Refs. 17 and 18.
ther progress. The 2D T-O problérhas the right stuff for These effectg¢save perhaps the 90° bendsve no parallel
understanding the morphology, namely the hidden frustratiofn anisotropic ferromagnets, another failure of the analogy.
(lacking in 1D) from the interdependence of the strains, and The complexity of the energy surface is remarkaBitr
it has been used in most advances since Ref. 5. It has direiétis a bulk effect whose sole cause is a bounding surface,
application to important physical systems like without impurities or bulk inhomogeneities of any kind. Of
YBa,Cu;0;_5. It allows analytical solutio® for the  course it has long been known that strains have long-range
product-product wall at all, and the parent-product wall at effects, but this seems nevertheless an extraordinary result. It
T=T,. It allows numerical studi€s**which have explained is not known how the number of metastable states scales
various phenomena including the tweed structure observedith the size of the system; neither is anything known theo-
by a variety of techniques in a host of materiat§the entry  retically about the dynamics of constrained systems. The is-
of twin walls to relieve stresses due to boundarysue, which seems important for the interpretation of experi-
conditionst! and why ferroelastic transformations are typi- ments and also in principle, is whether glassy behavior is
cally spread over a temperature inter¥alt allows fascinat-  intrinsic to constrained ferroelastics or whether it requires
ing studie$>*3of the dynamics, especially the formation and inhomogeneities like impurities. Simulations might answer
growth of a twinned square-rectangular nucleus. Finally, it ighe interesting question: can a surface alone produce glassy
a preliminary to understanding C-T ferroelastics, though C-Tbehavior in the bulk?
numerical studies will likely provide major surprises.

Of course other approacH&s® have been used to study Il. ELASTIC ENERGY
the statics and dynamics of ferroelastics, including the tweed ) )
structure, as described in Ref. 10; see also Ref. 16. The highT (paren} state is tetragonal, and the Iolv-

This paper continues the Landau-theory study of statiéProduct state orthorhombic. The 3 axis of the body coordi-
structures in T-O ferroelastics. Section Il sets up the expregiate system lies along the fourfold axis of the T state; the 1
sion for the elastic energy, and Sec. Ill presents results oand 2 axes are twofold axes, and the 1-3 and 2-3 planes are
tained by numerical minimization of the energy for severalmirror planes. The displacement field us=x" —x wherex
physical settings. andx’ are the coordinates of a material point in the unde-

(1) For square-columnar grains with fixed boundaries parformed and deformed states, respectively. Computational re-
allel to T 100-type planes, the ground state contains a set gfources limit the study to structures uniform in the 3 direc-
twin walls parallel to T 110-type planéwhich are optimgt  tion (and so 90° twist grain boundaries are omiltesh the
only two of the four variants appear and the dilatational andPther hand, the 2D structures are those most easily studied
shear strains are large only near the boundaries. Structur€¥perimentally. Themu lies in the 1-2 plane, it depends on
with higher energy(and with walls of both 110 typgsare ~ Only X, andx,, and so three strains vanish identically.
found, however, and are more common in larger systems. ~ The three remaining strairtall of which vanish in the T

(2) For square-columnar grains with fixed boundaries parstatg are obtained from the displacementhrough the sym-
allel to 110-type planes, both 110 and@ twin families are ~ Metric strain tensow:
required, giving collisions between them; the dilatational and
shear strains are large at the 90° wall bends, and all four e1=(7ut 7/22)/\/51 (2.1a
variants appear. The walls often deviate from 110-type
planes, and they bow and wobble strangely near walls of the e=(n1— 7722)/\/5, (2.1b
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€= 712, (2.10 Without it, a constraint of zero overall displacement can be
satisfied by microtwinning, an unphysical subdivision on ar-
bitrarily fine scales.

1
7ij =5 (Uj j+Uj i+ Up iUy ), (2.2) The total densityF= Fs+ F¢4 can then be written as the
2 sumF=Fi[e;]+ Fy[e,]+ Fgl €] of three uncoupled densi-
in the Lagrangian descriptidfl. Here i,j,k=1 or 2, u; ; ties, each a functionah polynomial plus a squared gradigent

= g;u;=au;/3x;, and repeated indices are summed. MoreOf a single strain. In homogeneous problea8 strain gra-
reasonable definitions fa, ande, would have denomina- dients =0), the energy is correctly minimized b§F/ e,
tors 2, noty2. These are called the dilatational, deviatoric, =0+ 91ViNg€;= * €5, €;=es=0. Ininhomogeneous prob-

and shear strains, respectively, thowgtis simply related to  |€MS, on the other hand, it is entirely wrong to minimize the
the true dilatational straig, only in the limit of infinitesimal ~ €N€rgy with respect to the strains. The energy must instead

strains; it is the strai®, which is nonzero below the transi- tie minimized with respect to the displacememi(5u;
tion. To understand some aspects of the structures, one mugt0): Even when the densities are uncoupled, the strain gra-

study also the fourth combination of tie; , the rotation ients are coupled by the compatibility relatiomecessary
) and sufficient conditions that the strains be derivable from

1 the displacemeintIn two dimensions there is only one rela-
w3:§(u1,2_ Uz1); (2.3  tion,

explicitly, for a uniform rotation by an anglé about the 3 N11.20F 2211~ 2712,17~=0 (2.69
axis, wzg=sin¢ and all ; =0.

The elastic energ¥ is the integral of the densit§ over
the undeformed spaok

in terms of the strain tensor and

€111t €100~ V8 €612 €111 €225=0 (2.6b

sz Fdxgdx,. (24 in terms of the strains, both for the linearized strain
A tensorr223 The energy function of inhomogeneous ferroelas-
Clearly F can depend on andws only through their deriva- tics then contains a subtle frustratigabviously absent in
tives. To leading orderF is the sumF=Fde}+ Fo4le i} 1D) which is par_tially responsible for the complexity of the
of separate contributions from the strains and their derivastructures described below.

tives. The energy must be minimized numerically in genéaal
For the strain terms itF, the simplest expression consis- i Ref. 11, but some analytical solutions exist.Equation
tent with the requirements is (2.6b shows that solutions with;=e;=0 are possible i&,

satisfies the wave equation, so tleatis a function of either
1 1 1 1 1 X1+ X, Or X;—X, (but of course not a sum of the twahe
2 2 4 6 2 : . .
Flel= §A1e1+ §A2e2+ 2 B,oes+ €C2e2+ §A6e6 reduction to a 1D problem fa, was discussed also in Refs.
(2.59 5and 7-11. The point is that the T 110 andOlfilanes are
optimal for walls; other orientations are possible, of course
relative to the T staté.At high T, the terms%Akeﬁ are the  (they just cost more energy
usual contributions for a linear, homogeneous, elastic me- The O-J soliton (a twin wall) has a standard form for a
dium, and the coefficient®\, are all positive; in Voigt first-order transition:
notation?® A;=C;;+Cyp, A;=Cy;—Cyp andAg=4Cyy.
In Landau theory, however, the coefficielj depends ol _ ; 112
asA,=a(T—T,) (with a>0) and so the T state is unstable e2(X) =exsinh(X/£)/[cosit(X/£) + ] (2.7
at low T; for a first-order transitior,<0 and the term ire5 whereX= (X, £x,)/\2, a=(—By+2y)/(By+4y), and &
(with C,>0) is needed for stability. The transition tempera- =e,}(d,/y)2is the wall thickness parametef;decreases
ture T¢ (which is >To) is found fronf' A,=3B3/(16C;).  with T, with ¢=1/J/A, at low T. This solution links the two
The homogeneous O statith e;=es=0) is twofold de- yariants, but it also rotates them by an angleas shown in
generate; a square with sides parallel to the T 100 and T 01845 5,7,8; from EqQ(A2) below, ws(X) = =+ e,(X)/\2 and
axes deforms to a rectangle with long side parallel to th - ; .
first (e,=+e,) or the second €= —e,), where ey, %gr(iint?%/vi\t/g];?] more detail, walls of the 110 family join
X o Lo Ve g sides at- ¢ and m/2+ ¢ to the T 100
=[(=2BoH7)/C,]™ and y=(2B3—A,C;)™ The trans- s and walls of the 1 family join the other two. In twin
formation energy is the energy of the homogeneous O statg, 5|5 then,ws>0 in one variant=<0 in the other, and=0 in
with density Fo= %A2e§0+ #Boet $Coe5. . the centerfmoduloa global rotation
The strain-gradient part of is (from Appendix A In the presence of both wall families, all four variants
appear, creating two new kinds of wall. One separates vari-
ants with opposite, and identicakws; the angle between the
long axes isw/2 (rather thanw/2—2¢ as for twin walls.
The other separates variants with identiealand opposite
The termid,(Ve,)? is crucial, for it gives walls a positive ws3; the angle between the long axes i6.2The analogy fails
energy and sets their length scqbes in Eq.(2.7) below].  yet again; in ferromagnets, domain walls do not increase the

1 =, 1 =, 1 =,
7:sg{ei,j}:§d1(vel) +§d2(vez) +§d3(Vee) . (2.5b
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number of variants, and the strange %vall has no counter-
part. If the microscope is sensitive only to the deviatoric
strain, then the first kind looks like a twin wall and the sec-
ond is invisible. Both require dilatational and shear strains
(unlike twin wallg. If taken literally, they are high-energy
configurations; in fact, their energy increases faster than lin-
early with the length. Section Il finds that the necessary
relaxation occurs by variant narrowing, combined with inho-
mogeneous rotation.

The Landau approach is expected to be especially good
for ferroelasticybecause of the long-range effect of strajns
but it has weak points. First, Eq2.5 contains too many
unmeasured parameters to attempt a quantitative description
of a particular material, even though it omits many terms of
the same order as those retained; only a qualitative descrip-
tion can be attempted. Second, the Landau theory is limited
to T=T.; for example, the homogeneous straig does not
saturate aé\, decreases. A mean-field theory would be pref-
erable atT<T,, but this requires a specific model. Third, FIG. 1. Grayscale contour plot of the _devigtori(? strejrfor the
using gradients to represent the energy of inhomogeneodgound state of a square-columnar grain Wlth sides pa[egllel toT
states implicitly assumes that the strains vary slowly over-00-typPe E"3a“65' The blackwhite range is —2.20<10™"—
atomic distances; the high-resolution images of Ref-ig. +2.20<10°%.

8.6) and Refs. 17 and 18 show however that walls are only a

few atomic separations wide. The counter to all three objec- One hundred quenches fr=20 (andh=0.1) found 46

) ) o S . . istinct structures; energies ranged from 82 to 78% of the
tions is that a qualitative understanding is what is required a’(tijransformation energy gvith strt?ctures concentrated at the
present. '

lower energies. Of the 46, 25 were found only once, with

most of these at higher energies; likely many other solutions
Ill. STRUCTURES remain undiscovered even in this small system. Figure 2

shows the deviatoric strain for the lowest-energy stitend
Appendix B gives the values of the Landau parametersiy times and believed to be the ground statiee walls form

and details of the numerics. The side lenfgtbf all figures is 90° bends and they bow away from the 110 and® Planes.
L=20. The domain configurations for this and the other 45 struc-
tures are quite unlike those in ferromagnets. Large dilata-
A. Square-columnar grain with 100-type boundaries tional and shear strains appear in the bulk as well as near the

. . . oundaries, especially near the bends; for the structure of
The displacement vanishes on and outside a square cgl-

e . ig. 2, the maximum and minimum values are3.17
umn with sides pargllel to T 100-type planes, as in Ref. 11>< 103 for e, and + 2.05x 10~ for e,, both comparable to
The structures, which are up to 16-fold degenerate undeé; ~219x 103
symmetry operations, were found by quenches from random?® '
starting states.

Ten quenches fdr =20 (with grid sizeh=0.1) gave four
structures with energies ranging from 79% to 77% of the
transformation energy; a few more structures may exist. Fig-
ure 1 gives a contour plot of the deviatoric strain for the
ground statéfound six time$. The product-product walls are
parallel to one set of T 110-type planes, though bent toward
the corners. The strain is odd about one main diagonal; along
a vertical (or horizontal through the center of the square
then, the net displacement is obviously zero to first order in
e,. The dilatational and shear straifrsot shown are large
only near the boundaries, as in Ref. 11.

Ten quenches for larger graing €40 with h=0.2) all
gave distinct structures. The lowest-energy structure, be-
lieved to be the ground state, contained a set of parallel walls ; |
(as in Fig. 3, but with some bowing. |
L ’

FIG. 2. Grayscale contour plot of the deviatoric strejrfor the
The same introductory comments apply here, except thajround state of a square-columnar grain with sides parallel to T

the sides are parallel to T 110-type planes. This setting ret10-type planes. The black- white range is—2.21x10 3—
quires both twin families and so collisions between them. +2.20x10° 3.

B. Square-columnar grain with 110-type boundaries
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Thirty quenches for larget. (L=40 with h=0.2) all This demonstration that the constrictions aré @valls
gave distinct structures, with patterns more complicated thaagrees nicely with Refs. 17 and 18; note the high-resolution
in the smaller systems; the be&timost certainly not the electron microscope picturés®®and the moirgattern'® But
ground statghad 89% of the transformation energy. There isthe broad ends are shown above tod#@ walls deformed by
no room for doubt here: the walls are bulk defects, and theyotation, not twin walls”*® Observation of the difference
are produced by the boundary conditions and the frustratiofyguid bolster the Landau theoryXws| across a deformed

A few quenches for smaller systems found multiple struc-_> \wall would be about half that across a twin wall

tures forl as small as 5. Similar narrowing in evolving structures is seen in Fig. 2
_ _ _ of Ref. 15 and Fig. 5 of Ref. 12, but that in Fig. 4 of Ref. 13
C. Comments on structures in grain settings seems differen{the deviatoric strain varies rapidly at the

The Landau theory explains qualitatively the counterintui-interface. The narrowing discussed above requirgs\galls
tive wall bending, bowing, and wobbling seen in experimentand so it is unrelated to the needlenticulay twins treated
The theoretical energy surface is complex for both grain setanalytically in Ref. 3. The latter are seen in Fig. 2 of Ref. 3
tings (though less so for 100-type grajrand it will clearly  and they appear also in some simulatiéh$® they were not
be complex whatever the shape of the grain. The observedbserved here, likely because of the fine scale of the figures.
pattern$!’'8suggest a complex energy surface, but they are
far less contorted than found theoretically; they are domi-
nated by large bands of parallel twin walls, suggesting het- E. Wall motion
erogeneous nucleation, whereas the numerical procedure fa-
vors homogeneous nucleation. More ordered startin
configurations for the model quenches might produce patt "%~ 7 . ,
terns more like those seen experimentally. Perhaps quicﬂual.'tat'vely’ slow processes like the yvall mq'uon below.
cooling to low T would favor homogeneous nucleation and . _Flgurgs 43)-4(c) show twin walls W|thdraW|ng from col-
produce structures more like those found theoretically. ThdiSion with orthogonal walls, rather than staying near the
appearance of different structures on repeated cooling woul{fa"iant at the leftas in Fig. 3. The parameters and boundary
provide strong evidence for a complex energy surface,cond't'ons are as in the previous subsection, except that four

shape-memory materials seem unsuitable for this purposé/@!ls enter, nor'ﬁ tvvlo;fthe same rr]esults were foundfer0 on
for in them the domain patterns are reproducible almost bjd outside the left edge. The conjugate-gradient process
definition. as started with all four walls penetrating to one grid point

from the left edge. After relaxing rapidlyover ~600
conjugate-gradient stepfom this high-energy state, the en-
ergy then decreased almost linearly as the walls withdrew. At
The termination of one twin band by an orthogonal band1000 steps, with the walls still near the left edge, the variants
is often observed:"8 strangely, alternate variants of the have narrowed and broadened as in Figp).3At 3150 steps,
impinging band narrow and broadéas seen in many struc- the black variantgwith e,<<0) have joined, separating the
tures of 110-type grains abovd he following shows that an white variants; the narrow tips are now/2 walls, and so
understanding of the effect requires study of the rotatiorthey broaden as the twin walls withdraw. At 5000 steps, the
(which is not immediately available in theorté$>'2*®  tips of the white variants are again the wider. The later stages
which push the analogy with ferromagnets and deal largelyf the relaxation(lasting ~ another 17000 stepsre unin-
or exclusively with the deviatoric strain teresting(they are severely affected by the right boundary
Figure 3a) shows schematically the unrelaxed configura-conditions, which prevent complete withdrayval
tion for a pair of twin walls colliding with an orthogonal The main point is that the white tips are first narrow and
band; in all parts of Fig. 3, periodic boundary conditions arelater broad; in effect, twin walls change partners as they
used top and bottom for the displacemenfThe upper and  withdraw through an orthogonal wall. This process has not
lower variants entering from the right terminate#i2 and  been noted in simulations. The narrowing-broadening effect
2¢ walls, respectively; the deviatoric stra@ vanishes in  should decrease with increasing distance from the orthogonal
the 77/2 wall and the rotationvy= %(ul,z—uzyj) vanishes in  wall, as the inhomogeneous rotation has more room to oper-
the 2¢ wall (both vanish in twin walls Figures 8b) and  ate. As described above, variants are obsév&do narrow
3(c) give contour plots fore, and w4 in the fully relaxed and broaden alternately on colliding with the orthogonal
state. On and outside the right edgeyas fixed at values for family. The exchange process explains why entry of an ad-
parallel twin walls normal to the edge and separated. £y  ditional twin pair gives the same pattern, regardless of
the values ofi (with zero averagewere found by solution of whether the pair enters a variant terminated ky/2 wall or
the ordinary differential equation fa,. The same solution by a 2¢ wall. Figures 4d) and 4e) show conjectured early
was used on and outside the left edge, except that the wallnd final stages in the penetration of two twin pdissth
are parallel to the edge; the latter lies at the center of @aerminating in twin wall; the other twin walls terminate
variant, with a twin wall at_/4 to its left. The system deals some distance from the orthogonal wall at the bottom, form-
with the 77/2 and 2 walls very differently. It bends the twin ing eitherw/2 or 2¢ walls. The left(right) pair collides with
walls away from the optimal 110-type walls to shorten thea w/2 (2¢) wall, adding a wall of each type; twin walls of
2¢ wall and to lengthen ther/2 wall, and then compensates the right pair switch partners, while those of the left do not.
for the latter by twisting the medium, in this way almost The process differs significantly from that shown in Fig. 1 of
converting ther/2 wall to a twin wall of much lower energy. Ref. 3 (which did not discuss the® and =/2 walls).

Of course the conjugate-gradient process cannot describe
roperly most dynamical phenomena, but it should describe,

D. Variant narrowing
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(a) F. Tip splitting
/// Figure 5 shows the deviatoric strain for the lowest-energy
w2 _ /// state for twin walls colliding with a fixed boundary at 45°;
wll the parameters are standappendix B except thatA;
=As=50. On and outside the right boundartyjs fixed at
2 the solution for a chain of twin walls parallel to T 110-type
wall planes; periodic boundary conditions are used top and bot-
tom; the left boundary is fixed, with=0 on and outside it.
2 @3 The interesting feature is that both tips split at the fixed
boundary(this does not happen f@; = Ag=10). Two other
(b) : e : )
states were found; only one tip splits in the intermediate-
energy state, while both tips split very slightly in the highest-
energy state. The interpretation is that tip splitting relieves
stress locally without the large energy c@gtear in the size
of the systemof introducing two more walls; the other side
of the coin is that a tip, once split, likely nucleates penetra-
tion of the bulk by a pair of twin walls. Figures 8 and 11 of
Ref. 12 also show tip splitting in comparable settings, but it
seems only transiently, as part of the wall multiplication pro-
cess. In contrast, the results described above show that the
splitting occurs statically and also that it reduces the energy.
The tip splitting observed® in electron microscopy of
YBa,Cu;0;_ 5 is different again; it appears at the collision
of two twin families, in conjunction with the narrowing dis-
cussed above. The differences are not understood, but clearly
the phrase “tip splitting” requires some caution.

G. Transformation front

() The transformation likely proceeds by penetration of
twinned product into parent material, thus avoiding a macro-
scopic displacement. Figure 6 shows the front, stabilized by
a temperature gradient. The parameter values are as given in
Appendix B, except thaf\, decreases linearly from left to
right; the other boundary conditions are as for Fig. 5. The
interface is parallel to 100-type walls; that is, one does not
see the zigzag structure resulting from alternating T-O walls.
Smaller gradients favor T-O walls, but then the structure is
not so sharp; no zigzags were seen either foelA5=0.5.

A dynamical simulatioff (with uniform T) found the same

P structure for the interface.
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FIG. 3. Variant narrowing and broadening at the collison of a APPENDIX A: STRAIN-GRADIENT ENERGY

twin pair with the orthogonal family. The sides of the figures are

parallel to T 110-type planes. Two twin walls impinge from the ~ Equation(2.5b for the gradient energy was used in Ref.
right onto a variant from the orthogonal set of otherwise identical7; it is rotationally invariant(contrary to the statement in
walls, forming a 26 wall and an/2 wall which then relax. Par®) Ref. 24, but it omits three mixed terms of the same ortfef:
shows the unrelaxed configuration; the deviatoric stegiland the

rotationwy are positivelnegative in the unhatchedhatchedl areas. da(€1 185 1— €1 £, ) +ds(€] 185 2+ €1 L6 1)
Parts(b) and(c) give the fully relaxed configurations fe, andws, T T T T
respectively; the first is a grayscale contour plot, while the second +dg(€,186 2~ €2 £56.1)- (A1)

gives the zero lines of; (the border is just a frame, not a zero ] o . .
line). The 24 wall shortens, forming the constriction; the inhomo- The six coefficientsd; to dg are independentRef. 24 dis-

geneous rotation deforms thg2 wall almost into a twin wall. The agrees The ds anddg terms can, however, be omitted in
black — white range fore, is —2.22x10 3— +2.23x10 3, w4 leading ordef The coefficientd, is not measured experi-

ranges from—3.73x 103 to +2.16x 10 3. mentally, even its sign; this term performs no known impor-
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(a) (c)

HIAWl

(e)

FIG. 4. Partda)—(c): Stages in the withdrawal of four twin walls from collision with the orthogonal family. Grayscale contours of the
deviatoric straire, are plotted after 1000, 3150, and 5000 conjugate-gradient steps. The walls change partners as they withdraw, the white
tips first narrowing and then broadening. Pddsand(e): Conjectured early and final stages in the entry of two twin pairs. The solid lines
are twin walls, the dashed lines/’2 walls, and the dots @ walls. The sides are parallel to T 110-type planes in all five parts.

tant role, it complicates matters, it even confuses issues, and . 1 - 1 . .
so it should be omitted at this level. (Vag)?=— 5(V91)2+ E(Ve2)2+(Ve6)2
The derivatives otv; do not appear explicitly in the gra-
dient part of the energy density because they are easily ex- +surface termsr - - (A3a)

i f th [ ivatives:
pressed in terms of the strain derivativés with the help of Eqs(A4) and(A6) of Ref. 8; a form for the

surface terms is

dy(€1+€5) =12 91 (eg+ wg)+ - - -, (A2a)
31(Uq 1Ug 15— Ug 25 o) + do(Ug 1Up o= Ug 1U3 19)- (A3b)

Equation (2.5b can, it seems, be simplified further by
keeping only the ‘{7e2)2 term; the compatibility relation
) ~ seems to provide sufficient coupling between the gradients.
where the dots represent higher-order terms; these relationReasonable results were found this way in unconstrained
seldom discussed, arise from the same considerations as tbﬁbblemsl,o*lz but constraints generate large dilatational and
compatibility relations. For example, the diagonal invariantshear strains, and a separate investigation seemed necessary.
(Vw3)? becomes Ten quenches were made for 100-type square grains and ten

d1(e1— €)= 2 dp(eg— wg)+ - - -, (A2b)
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1. Strain tensor and Landau parameters

For finite strains, the nonlinear term in the strain tensor is
required so that a mere rotation of the space axes leaves the
strain tensor, the strains, and the energy unchanged. The next
subsection shows that finite-strain effects are a murky matter,
best avoided at present, and so | assume infinitesimal strains
(a common approximation—they are usually less than
1073). The computational effort is much reduced if the
strain tensor is linearized. In most Landau theories, three
parameters can be set by scaling the energy, the coefficient
of the derivative term, and the order parameter; of course the
other parameters change also. For the strain energy, in con-
trast, the scaling of the order parameter is possible only if the
strains are small and if the tensor is linearized.

The standard parameter set was chosen after some experi-
mentation, partly to reduce the computational effort and to
reveal detailgsuch as wall structuje The valuesB,=—

FIG. 5. Tip splitting at the collision of twin walls with a fixed X 10° and C,= 3 10'? were chosen so that the T-O transi-

boundary at 45°. The figure gives a grayscale contour plot of théion occurs atA,=1, and the deviatoric strain there és,

- -3 : : C
deviatoric straire, for the ground state; the edges are parallel to T=10"", both quite arbitrary values. The Cho'dﬁ—_l sets
100-type planes. the unit of length; | setl;=dz;=1 as well. The straim,, is

much larger than the value (18) at T, if A, is too negative,

. . and the order parameter is too softAp~—1 [the O-O’
more for 110-type square grains, using the standard Paranizail thickness diverges & (Refs. 26 and )J1. The value

eter set except thad,;=d;=0. No important differences A,=—50 (where e,,=2.19X 10" 3) was used for the most
were found; reasonably, the structoures were more compleXart o that the wall width was much smaller than a typical
than withd;=d;=1 (with more 90° bends and the con- \riant (though not as small as in experimenResults at
tours were more ragge@ finer grid would likely fix thig. A,=—10 were not qualitatively different.
The dilatational and shear stiffnesses Afeand A4 at all
T. For T>T,, where the deviatoric stiffness &,, Ref. 10
APPENDIX B argues forA; andAg both> A, (deviatoric soft, others hayd
For T<T., the deviatoric stiffness isA,=A,+3Bye3,
The following collects details regarding the strain tensor,+ 5C,e3,; some values aré,=4, 11, 22, 61, and 240 at
the Landau parameters, finite-strain theory, and the numerja\z:l—, 0, —2, —10, and—50, respectively. The values
cal procedure. A;=Ags=10 (deviatoric hard, others sofivere used in most
cases; structures were too fine at much larger values, and
ill-defined at much smaller ones.

2. Finite-strain theory

In finite-strain theoryg, is no longer simply proportional
to the true dilatational straigg(x)=A(Xx)—1; hereA(x) is
the local ratio of the final to initial volumes, the Jacobian of
the tranformatiorx’ =x+u. In two dimensionsA(x)=[(1
+2e,)?—2e3—4e2]*2 Then, even though, =0, the vol-
ume decreasefy an amount of ordeeg), even for the
homogeneous statand of course also for the O‘@vall and
a periodic array of walls Correspondingly, the
displacemeriP® acquires a term proportional to{* x,)(1
—A). This term can be eliminate@r at least markedly re-
duced by using the extended Landau theory of Ref. 8 and
adjusting the coefficient of the additional teEreleg so that
no volume change occurs in the O state, or even a volume

FIG. 6. Transformation front between tetragonal parent andCréase as usually observed. But tregr-0, and so other
twinned orthorhombic product. The figure gives a grayscale contoulin€ar terms are generated, corresponding to an overall shear,
plot of the deviatoric strail,; the edges are parallel to T 100-type @S seen from Eqs6.2) and(6.5) of Ref. 8. It seems inescap-
planes. The temperature decreases linearly from kft=(52) to  able that periodic boundary conditions, the natural choice to
right (A,= —50), withT=T, (A,=1) midway between; the other describe a chain of O-Osolitons, generate dilatational and
boundary conditions are given in the text. The dilatational and sheaghear strains once one deals with finite strains. These com-
strains are at most (&%, in magnitude. plications seem not worth facing for some time.
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3. Numerical determination of the displacement field U=10 3); the root-mean-square gradieff/u; of the en-
Solution of the Euler-Lagrange equatiofisvo fourth- gtrgr){ t%eggi?/zfdegzetyp'ca”y 10 orders of magnitude from
order partial differential equations for the comppngui}? ~In most Lan?jau th.eories the boundary conditions are ap-
was not attempted. Rather, the energy was minimized W'ﬂﬂ)li '

. ) ed to the order parameter; the analogy breaks down here
respect to thlelz (?Ofr?pon%nl& A_grld of 201x 2|(|)1 golmts_ Was s well: for ferroelastics they must be applied to the displace-
set UP(USU‘? y; the grid spacing was usually .1, gVing & menty, not to the strains. The proper boundary conditions
square of side length=20. The strains and their derivatives 5.6 gpvious for grainsu=0 on and outside the boundary

were expressed in terms of the displacement by means gj,t they may not be so obvious for other physical settings,
centered, fourth-order, finite-difference approximatiths, and it may not be so easy to devise low-energy starting con-
thereby trivially satisfying the compatibility equatid@.6). figurations.

Application of the boundary conditions then gave the energy References 12,13 use a very different procedure, express-
as a function of the components at the grid points. The ing the energy solely in terms ef, though at the expense of
minimization, done by a conjugate-gradient method, wasntroducing a nonlocal interaction; the oscillatory, aniso-
continued until numerical errors prevented further reductiortropic and long-range nature of the interactibtt3likely

of the energy; the number of iterations required was usuallgxplains qualitatively the bending, bowing, and wobbling of
much fewer than the=8x 10* independent variables. The the walls and also the narrowing and broadening found here,
displacement components for random starting states werough the interaction needs modification to account for the
chosen from a uniform distributioq { U,U), usually with  constraints.
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