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Free energy and magnetic penetration depth of ad-wave superconductor in the Meissner state
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We investigate the free energy and the penetration depth of a quasi-two-dimensionald-wave superconductor
in the presence of a weak magnetic field by taking account of thermal, nonlocal, and nonlinear effects. In an
approximation in which the superfluid velocityvs is assumed to be slowly varying, the free energy is calculated
and compared with available results in several limiting cases. It is shown that either nonlocal or nonlinear
effects may cut off the linear-T dependence of both the free energy and the penetration depth in all the
experimental geometries. At extremely lowT, the nonlocal effects will also generically modify the linearH
dependence of the penetration depth~‘‘nonlinear Meissner effect’’! in most experimental geometries, but for
supercurrents oriented along the nodal directions, the effect may be recovered. We compare our predictions
with existing experiments on the cuprate superconductors.
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I. INTRODUCTION

Many unusual aspects of the unconventional superc
ductivity in the cuprate and heavy fermion materials are
lated to the existence of nodes in the energy gap. Altho
intensely discussed in the 1980s and 1990s, most of th
phenomena were already known much earlier to student
the unconventional superfluid3He, which exhibits severa
phases, some with gap nodes and accompanying low-en
fermionic excitations. For example, power laws in spec
heat, transport properties, and NMR were predicted and m
sured in the anisotropic, high-pressure ‘‘A’’ phase, along
with singular responses to impurities, unusual vortex pha
and even anomalous Josephson currents.1 From this perspec-
tive, the one important difference between the new superc
ductors and the3He system is that they are charged; unco
ventional superconductivity can be uniquely probed
studying the response of the system to an applied elec
magnetic field.

Even the simplest such phenomenon, the expulsion
weak applied magnetic field, or Meissner effect, is still t
subject of intense discussion today in the context of unc
ventional superconductivity. The new materials are stro
type-II superconductors, with large values of the Lond
penetration depthl0 and small coherence lengthsj0, such
that the conditionl0@j0 is expected to hold. It was there
fore anticipated in the earliest theories of the Meissner ef
in unconventional superconductors2 that the electrodynamic
of the system could be treated aslocal, i.e., as though the
Cooper pairs were point objects, neglecting the spatial va
tion of the electromagnetic wave over the extent of the p
Under this rather plausible assumption, the simple an
tropic extension of the BCS theory is expected to hold,
PRB 610163-1829/2000/61~1!/648~15!/$15.00
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where the quasiparticle spectrum isEk5Ajk
21Dk

2, jk is the
normal-state electron band,Dk is the momentum-dependen
order parameter,f is the Fermi function,k̂i is the direction of
the supercurrent, and̂•••&FS represents a Fermi surface a
erage. The London penetration depth atT50 is given by
l0[Amc2/(4pne2), and is typically one to several thou
sand Angstro¨m in the new materials.

At low temperatures, the local penetration depth cal
lated from Eq.~1! may be shown2 to vary as a power law of
temperature,l(T)2l0;(T/D0)a, where D0 is the gap
maximum and the exponenta depends on dimensionality
nodal topology, and the rate at which the gap goes to z
near a nodal wave vectorkn . For line nodes in a three
dimensional~3D! system~or point nodes in a 2D system!
like the dx22y2 state thought to characterize the cuprate
perconductors,a is found to be 1. Thus when Hardyet al.3

measured a linear temperature dependence in
YBa2Cu3O6.95 ~YBCO! system down to a few degrees K,
was dramatic evidence in favor of line order parameter no
and possible unconventional pairing.

Recently, Kosztin and Leggett4 questioned the theoretica
basis for this identification, pointing out that the approxim
tion of local electrodynamics used to derive Eq.~1! is not
valid for the quasiparticle states near the nodes whose o
pation determines the asymptotic low-temperature behav
The coherence lengthj0[vF /pD0 determines the scale o
order-parameter variations, as in the usual BCS theory,
an effective coherence lengthj0k[vF /pDk appears in the
electromagnetic response, as noted in Ref. 5. The diverge
of j0k at the nodes means that quasiparticle states nea
648 ©2000 The American Physical Society
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nodes must always be treated nonlocally.6 A full nonlocal
calculation gives a crossover from adl;T regime for
Enonloc!T!D0 to a dl;T2 for T!Enonloc. In the YBCO
system, this crossover scaleEnonloc.D0j0 /l0 is about 1 K,
and thus the identification of thed-wave state on the basis o
the local theory is not really in question; measurements
the purest YBCO crystals down to 1 K or sohave seen no
deviation from the linear behavior.7 Quadratic dependence
dl;T2 measured in some samples are more likely due
impurity effects,2,8,9 which also produce aT→T2 crossover.

An interesting perspective on the question of the lineaT
dependence of the penetration depth was provided rece
by Schopohl and Dolgov,10 who observed thatif the d-wave
penetration depth temperature dependence were to re
linear down toT50, one would be unable to satisfy the thi
law of thermodynamics~Nernst’s theorem!. In the frame-
work of linear-response theory, they expressed the chang
the free energy in the presence of the magnetic field~for
fixed external current source! as a functional of the penetra
tion depth,

DF (SD)52
1

8pE d3q

~2p!3 Fq21
1

l2~q,T!
G uAq~T!u2, ~2!

whereAq(T) is the Fourier component of the magnetic ve
tor potential. The resulting entropy is

S(SD)~T!52
1

8pE d3q

~2p!3

]

]T F 1

l2~q,T!
G uAq~T!u2. ~3!

The Nernst theorem requiresS to be 0 whenT→0, incon-
sistent withl(T);T.

Schopohl and Dolgov speculated that this result mi
imply the instability of a pured-wave state within BCS
theory at sufficiently low temperatures. It was pointed out
Ref. 11, however, that the extra magnetic-field-induced q
siparticles that deplete the shielding current, leading t
magnetic-field-dependent penetration depth known as
nonlinear Meissner effect,12,13 were neglected in this analy
sis. Several authors have recently considered the effec
these nonlinear terms in the supercurrent on transverse m
netization measurements14 and on the structure of the vorte
lattice.15,16 The basic idea is that, like impurity effects, th
magnetic field itself may serve as a Cooper pair breaker
creates nodal quasiparticles, leading to a temperature de
dent penetration depthdl(T).T2 at temperatures below th
scale for nonlinear electrodynamics,Enonlin.vskF with vs a
typical supercurrent velocity andkF the Fermi wave vector
The current authors17 then provided a synthesis of the var
ous arguments given above, pointing out that for any exp
mental geometry with given disorder, external current dis
bution, and Ginzburg-Landau parameterk, a sample of
d-wave superconductor would inevitably avoid the violati
of the Nernst theorem by creating aT2 term in its penetration
depth through a competition of nonlinear, nonlocal, and
purity effects.

Although this issue of principle has been resolved,
important prediction of thed-wave model for the electrody
namics of high-Tc superconductors~HTS! has not yet been
confirmed. In the early discussion of the symmetry of t
HTS order parameter, Yip and Sauls proposed that the a
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lar position of the gap nodes could be probed by a meas
ment of the magnetic field dependence of the penetra
depth. In the local limit and forT→0, they predicted that the
nonlinear effect induces alinear-H term in the penetration
depth,

dl~H !

l~0!
5

l~H !2l~0!

l~0!
.H H/H0 vsinode

1

A2
H/H0 vsiantinode,

~4!

whereH is the applied magnetic field at the surface and

H05
3F0

p2j0l0
~5!

is of order the thermodynamic critical field of the syste
with F0 the flux quantum. The prefactor of the linearH term
in Eq. ~4! depends generally on the angleu that the super-
current makes with the crystallineâ axis and is independen
of T ~the T dependence appears in theH2 term as discussed
recently by Dahm and Scalapino38!. Several experimenta
groups tried to verify the prediction of Yip and Sauls, b
failed to identify a linearH term which scaled with the tem
perature according to the theory.18–20

There are three relevant energy scales in the low-ene
sector in the Meissner state:T, Enonlin , and Enonloc. The
first two are experimentally controlled parameters while
last is an intrinsic one. Obviously,l(T);T behavior should
be expected atT@Enonloc,Enonlin . But in the opposite limit,
i.e., at extremely lowT, either nonlinear or nonlocal effect
may play a crucial role in modifying the linearT behavior.
Thus a full study including both nonlinear and nonlocal e
fects in the Meissner state is necessary. A similar invest
tion has been performed by Amin, Affleck, and Franz15 in
the mixed state whereH>Hc1, the lower critical field. It was
found in this numerical study that the nonlinear and nonlo
corrections were of the same order. This result is not surp
ing: in the mixed state the nonlinear energy scale and
nonlocal one are not independent, since typical spatial va
tions take place on a scale of the magnetic length or in
vortex distance, fixed by the fluxoid quantization.

In this paper, we perform a full study of a quasi-tw
dimensional~2D! d-wave superconductor in the presence
a weak magnetic field. We start from a phenomenologi
BCS Hamiltonian with a quasiparticle energy spectrum
the normal state,jk5ek2m (m is the chemical potential!
and adx22y2-wave order parameter,Dw5D0cos 2w (w is the
angle of k with the â axis!. Using the functional-integra
approach, we calculate the free energy and compare it w
that obtained in other theories. Our main approximation
that the supercurrent along the surface boundary is a slo
varying function of the distance to the surface. Thus we ta
vs5(e/mc)Aq50 as the supercurrent to which the quasip
ticles couple, leading to the Doppler shift in the energy sp
trum of particles and holes6Ek1k•vs , where Ek5@jk

2

1Dw
2 #1/2. The response of the quasiparticles to theAqÞ0

modes is treated perturbatively, and the resulting respo
function involves both the nonlinear and nonlocal effec
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From this response function we then calculate the pene
tion depth, and express it as a scaling function of the t
parametersEnonloc/T, Enonlin/T. We show explicitly that, be-
low a temperatureT* , the linearT behavior of the penetra
tion depth is always modified by either nonlinear or nonlo
effects to a quadratic function ofT, while the linearH be-
havior in the penetration depth is also cut off by the nonlo
effects whenH is below some characteristic critical fiel
H* , which is geometry dependent. For most geomet
H* .Hc1, implying the unobservability of the nonlinea
Meissner effect, as discussed in our recent paper on
subject.22 But for some special geometries, in which the s
percurrent is along nodal directions, the nonlinear Meiss
effect may be recovered. We also present a brief discus
on the geometry in which the magnetic field is along t
conduction plane, which presents some special features
to the highly layered nature of the cuprates. Finally, we
vestigate the consequence of the spatially varying natur
the supercurrent and find that this property does not influe
the qualitative behavior of the penetration depth.

The paper is organized as follows. In Sec. II, the mo
Hamiltonian and the partition function are obtained. In S
III, the expression of the free energy as well as its comp
son with various theories in several limiting cases is p
sented, and the supercurrent and the response function
discussed. Detailed study of the penetration depth in
presence of a constantvs is given in Sec. IV. Section V is
devoted to concluding remarks and comparison with exis
experiments. Finally, a discussion of the renormalization
the penetration depth due to space-dependentvs is included
in the Appendix.

II. MODEL HAMILTONIAN AND PARTITION FUNCTION

We start from a phenomenologicaldx22y2-wave BCS
mean-field Hamiltonian of a 2D system in the presence o
weak magnetic field:23
a-
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ĤMF5(
s

E d2rcs
†~r !H 1

2m F2 i¹W 2
e

c
A~r !G2

2mJ cs~r !

1E d2r d2r 8@D~r ,r 8!c↑
†~r !c↓

†~r 8!1H.c.#

1E d2r d2r 8V~r2r 8!ub~r ,r 8!u2, ~6!

where 2V(r2r 8),0 is the effective attraction betwee
electrons responsible for thedx22y2 pairing, D(r ,r 8)
52V(r2r 8)b(r ,r 8) is the dx22y2-wave pairing order pa-
rameter withb(r ,r 8)5^c↓(r 8)c↑(r )&, andA(r ) the magnetic
vector potential. It is well known that in the Meissner sta
the supercurrent formed by the Cooper pairs effectiv
screens the magnetic field from penetrating into the bulk
the sample. Within the penetration depth away from the s
face, both magnetic field and the supercurrent decay with
distance to the surface, and the pairing order parameter
quires, in principle, a spatially varying phase. As usual
write D(r ,r 8) as D̃(r2r 8)eif(R) with a real D̃(r2r 8) and
R5(r1r 8)/2. Note we neglect the supression of the mag
tude D̃ at surface of the sample, since we expect these
rections to the penetration depth will be small in the lim
l0@j0 of interest.

The partition function of Hamiltonian~6! is

Z5Z0E @Dd#@Dd* #

3expH 2E
0

1/T

dtF (
a,b51

2 E d2r d2r 8da* ~r !

3Mab~r ,r 8!db~r 8!G J , ~7!

where

Z05expF2
1

T S Nse
2

2mc2E d2r A2~r !1
NsD0

2

V0
D G , ~8!

with Ns the total number of superconducting electron
d1(r )5c↑(r ), d2(r )5c↓* (r ), andMab(r ,r 8) is a matrix el-
ement of the 232 matrix M̂ in the Nambu representation
M̂~r ,r 8!5S H ]t1
1

2m F i¹W 1
e

c
A~r !G2

2mJ d~r2r 8! D̃~r2r 8!eif(R)

D̃~r2r 8!e2 if(R) H ]t2
1

2m F i¹Q 1
e

c
A~r !G2

1mJ d~r 82r !
D . ~9!

The use of a unitary transformation

Û~r ,r 8!5S eif(R)/2 0

0 e2 if(R)/2D ~10!

to M̂ is made for eliminating the phase factor ofD(r ,r 8), leading to
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M̂̃~r ,r 8!5Û†~r ,r 8!M̂~r ,r 8!Û~r ,r 8!

5S H ]t1F ~ i¹W !2

2m
2mG1vs~r !• i¹W 1

1

2
mvs

2~r !J d~r2r 8! D̃~r2r 8!

D̃~r2r 8! H ]t2F ~ i¹Q !2

2m
2mG2 i¹Q •vs~r !2

1

2
mvs

2~r !J d~r 82r !
D ,

~11!
e
-
tw
-
in
t

n

to
where

vs~r !5
eA~r !

mc
2

¹f~r !

2m
~12!

is the supercurrent velocity. In writing down Eq.~11! we
have used the relation¹W •vs(r )50 which corresponds to th
conservation of the supercurrent.vs(r ) should be gauge in
variant, which is guaranteed by the compensation of the
terms in the right-hand side of Eq.~12! under a gauge trans
formation. It is necessary to fix the gauge before proceed
In the Meissner state the most convenient gauge choice is
London gauge in which¹f(r )50, and hence

vs~r !5
eA~r !

mc
, ¹•A~r !50. ~13!

The partition functionZ in Eq. ~7! can be expressed i
momentum space as

Z5Z0expF(
n

Tr ln„Q̂(1)~ ivn!1Q̂(2)
…G , ~14!

wherevn is the fermion Matsubara frequency,

Q̂k,k8
(1)

~ ivn!

5S 2 ivn1jk1M k,k Dk

Dk 2 ivn2jk2M 2k,2k
D dkk8

52Ĝ21~ ivn ,k!dkk8 , ~15!

Q̂k,k8
(2)

5S M k,k8 0

0 2M 2k8,2k
D , ~16!

with Dk5*d2r D̃(r )exp(ik•r ).D0 cos 2w on the Fermi sur-
face, M k1 ,k2

52(e/mc)k2•Ak12k2
1(e2/2mc2)(pAp

•Ak12k22p with Ak the Fourier component ofdA(r )5A(r )

2Ā (Ā is the spatial average!, jk5ek2m is the energy
spectrum of an electron in the normal state, andĜ( ivn ,k) is
Green’s-function matrix in Nambu’s representation

Ĝ~ ivn ,k!52S ivn1jk1M 2k,2k

Wk

Dk

Wk

Dk

Wk

ivn2jk2M k,k

Wk

D .

~17!

Here
o

g.
he

Wk52~ ivn1k•vs!
21Ek

2 , ~18!

where

vs5
eĀ

mc
, ~19!

and Ek5$@jk1(e2/2mc2)*„d2p/(2p)2
…Ap

2#21Dk
2%1/2. In

Eq. ~14!, we have explicitly separated the contributions
the free energy from the homogeneous (q50) superflow and
those corresponding toqÞ0 components.

Z in Eq. ~14! can be written as

Z5Z0expH(
n

Tr ln Q̂(1)~ ivn!J
3expH(

n
Tr ln@12Ĝ~ ivn!Q̂(2)#J

5Z0•Z̃1•Z̃2 , ~20!

Z̃15expH(
n

Tr ln Q̂(1)~ ivn!J
5)

k
$11e2(k•vs1Ek)/T%•)

k
$11e2(k•vs2Ek)/T%.

~21!

Z̃2 may now be calculated by expanding in powers ofAqÞ0 .
To second order, we have

ln Z̃25(
n

Tr ln„12Ĝ~ ivn!Q̂(2)
…

.(
n

TrH 2Ĝ~ ivn!Q̂(2)2
1

2
@2Ĝ~ ivn!Q̂(2)#2J

52
e2

2m2c2 (
n
E d2k

~2p!2E d2q

~2p!2

3$G11~ ivn ,k1!G11~ ivn ,k2!~k2•Aq!~k1•A2q!

1G22~ ivn ,k1!G22~ ivn ,k2!~k1•Aq!~k2•A2q!

1G12~ ivn ,k1!G21~ ivn ,k2!~k1•Aq!~k1•A2q!

1G12~ ivn ,k1!G21~ ivn ,k2!~k2•Aq!~k2•A2q!%,

~22!
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wherek65k6q/2 . Note that only the paired electrons, i.e
the electrons near the Fermi surface, can produce a diam
netic effect. Thus we can replacek that couples toAq andvs
by kF . Adopting the London gaugeq•Aq50, we simplify
ln Z̃2 in Eq. ~22! as

ln Z̃2.2
e2

m2c2 (
n
E d2k

~2p!2

3E d2q

~2p!2

~ ivn1kF•vs!
21j1j21D1D2

W1W2

3~kF•Aq!~kF•A2q!, ~23!

wherej65jk6
, D65Dk6

andW65Wk6
.

III. FREE ENERGY, SUPERCURRENT, AND RESPONSE
FUNCTION

The total free-energy density of the superconductor in
Meissner stateF is now given by the sum of contribution
from both electrons and magnetic field, where the former
be calculated in terms of the partition function. We obtai

F52T ln Ẑ1
1

8pE d2r u¹3A~r !u25F11F2 , ~24!

where

F15
1

2
nmvs

22TE d2k

~2p!2
$ ln@11e2(kF•vs1Ek)/T#

1 ln@11e2(kF•vs2Ek)/T#%1
nD0

2

V0
, ~25!

F25
1

2cE d2q

~2p!2
K~q,vs ,T!Aq

2

1
1

8pE d2q

~2p!2
q2Aq

2 , ~26!
g-

e

n

with

K~q,vs ,T!5
ne2

mc S 11
2T

nm (
n
E d2k

~2p!2
~kF! i

2

3
~ ivn1kF•vs!

21j1j21D1D2

W1W2
D .

~27!

F1 describes the kinetic energy of the quasiparticles w
energy spectrum6Ek shifted bykF•vs . Formally, it is noth-
ing but theDoppler shift of the quasiparticle with prope
momentumk in the lab frame with local superfluid velocit
vs(r ).24

It is interesting to look atF2 in Eq. ~26!. In the linear
limit vs→0, K(q,vs ,T) in Eq. ~27! reduces to the usual lin
ear response function of a superconductor in the Meiss
state.25 The fact thatK(q,vs ,T) is indeed a response func
tion can be seen from minimization of the free energy w
respect toAq , ]F2 /]Aq50, which gives the Fourier com
ponent of the current inside the superconductor,

jSC~q!52K~q,vs ,T!Aq , for qÞ0. ~28!

Therefore Eqs.~24!–~27! describe the Bogoliubov quasipa
ticles with the Doppler-shifted energy spectrum respond
to a weakly spatially varying magnetic field. Note th
K(q,vs ,T) is obtained in an infinite sample. In the presen
of a surface boundary, an external currentjext(q) is intro-
duced to coincide with the real boundary condition~see dis-
cussion in Sec. IV!, leading to the total current as

j tot~q!5
c

4p
q2Aq5 jext~q!2K~q,vs ,T!Aq . ~29!

By summing over the Matsubara frequencies, Eq.~27!
becomes

K~q,vs ,T!5
c

4pl0
2

1dK~q,vs ,T!, ~30!
dK~q,vs ,T!522
c

4pl0
2K ~ k̂F! i

2E
0

`

dv Re
@ f ~v2vs•kF!2 f ~2v2vs•kF!#Dk

2

Av22Dk
2$Dk

21@~q•kF!/~2m!#22v2%
L

FS

~31!

52
c

4pl0
2 H 122K ~ k̂F! i

2

sinh21S q•kF

2mDk
D

@~q•kF!/~2mDk!#A11@~q•kF!/~2mDk!#2
L

FS

12K ~ k̂F! i
2E

0

`

dv Re
@ f ~v2kF•vs!1 f ~v1kF•vs!#Dk

2

Av22Dk
2$Dk

21@~q•kF!/~2m!#22v2%
L

FS

J , ~32!
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where f (x) is the Fermi function.dK(q,vs ,T) is geometry
dependent. The first two terms in Eq.~32! represent the non
local renormalization of theT50 response, while the third
represents the combined nonlocal and nonlinear correct
to the T dependence. For a real quasi-2D system, like
high-Tc compounds, with theab plane as the conductio
plane, we first consider the geometry where the magn
field is parallel to theĉ axis and thusvs and the penetration
directionq are in theab plane, and in general,vs makes an
angleu with the â axis. This geometry is shown in Fig. 1
Note that forvsi” antinode the possibility of the formation o
an Andreev bound state exists. Walteret al.27 have argued
that such states can have significant effects on the loT
penetration depth forvsi node. The effects on the field de
pendence of the penetration depth are beyond the scop
the current formalism, so results for these directions sho
be treated with caution. We will consider a different situ
tion, where the magnetic field is in theab plane, at the end
of Sec. IV.

An examination of Eq.~32! shows that the small region
around the four nodes give the main contribution wh
vskF ,T!D0. This reflects the low-energy quasiparticle e
citations near nodes. It is straightforward to integrate out
angle of the Fermi wave vector, leading to

dK~q,vs ,T!52
c

8pl0
2

T

D0
(

l 561
uu l

2 FlS auu,2 l

T
,
«uu l

T D ,

~33!

FIG. 1. Geometry of~010! surface case.
ns
e

ic

of
ld
-

n

e

wherea5qkF /(2A2m), «5vskF /A2, uu l5ucosu1l sinuu,
andFl(z1 ,z2) is a two-parameter scaling function:

Fl~z1 ,z2!5
p

4
z11@ ln~ez211!1 ln~e2z211!#

2E
0

z1
dxF 1

ex2z211
1

1

ex1z211
G F12S x

z1
D 2G1/2

.

~34!

Now we may study two limiting cases.

A. vskF!T

In this case we can expandF1 in Eq. ~25! up to the lead-
ing order ofvskF /T

F1.F BCS
(0) 1F1

2
nmvs

22
1

TE d2k

~2p!2
~kF•vs!

2
eEk

(0)/T

~11eEk
(0)/T!2G ,

~35!

whereEk
(0)5(jk

21Dk
2)1/2 andF BCS

(0) is the free energy density
of the superconductor in the absence of a magnetic field

F BCS
(0) 52TE d2k

~2p!2
@ ln~11e2Ek

(0)/T!1 ln~11eEk
(0)/T!#

1
nD0

2

V0
. ~36!

Inserting Eq.~19! into Eq. ~35! yields

F1.F BCS
(0) 1

1

2c
K~0,0,T!A0

2 , ~37!

with K(0,0,T)5c/4pl0
21dK(0,0,T) and

dK~0,0,T!52
c

4pl0
2 ~2 ln 2!

T

D0
. ~38!

As for F2 in Eq. ~26!, up to the leading order ofAq , the
response functionK(q,vs ,T) is simply replaced by
K(q,0,T), the usual nonlocal response function.25,4 It is
straightforward to see from Eqs.~33! and ~34! that
dK~q,0,T!5dK~0,0,T!2
c

8pl0
2 (

l 561
uu l

2 H p

4

auu,2 l

D0
2

1

D0
E

0

auu,2 l
dx f~x!F12

x2

a2uu,2 l
2 G 1/2J ~39!

.5 2
c

4pl0
2 ~2 ln 2!

T

D0
, auu,2 l!T, l 561

2
c

8pl0
2 (

l 561
uu l

2 S p

4

auu,2 l

D0
1

3

2
z~3!

T3

D0a2uu,2 l
2 D , auu,2 l@T, l 561,

~40!

a special case of which,u50, has been presented in Ref. 4. In Eq.~40! z(3).1.20 is Riemann’s zeta function.
Therefore the change of the free energy due to the presence of the magnetic field is
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DF5F2F BCS
(0) 5

1

8pE d2q

~2p!2 Fq21
4p

c
K (0)~q,0,T!GAq

2 .

~41!

Comparing Eq.~41! with Eq. ~2!, we seem to find a sign
discrepancy. However, notice that the free energy in Eq.~2!
is calculated ata fixed external currentand hence is the
Gibbs free energy, whereas that in Eq.~41! is the Helmholtz
free energy,DF~Helm!, since afixed Aq is assumed in the
calculation. It can be checked that these two kinds of f
energy are related to each other through the Legendre tr
formation

DF (SD)5DF (Helm)2
1

cE d2q

~2p!2
jext~q!•Aq

52
1

8pE d2q

~2p!2 Fq21
4p

c
K (0)~q,0,T!GAq

2 .

~42!

In the last equality, Eq.~29! was used.
The entropy can be calculated from the Helmholtz fr

energy in Eq.~41! with A fixed, which is easily shown to be
identical with that in Eq.~3!:

S~T!52
]DF (Helm)

]T U
f ixedA

5S(SD)~T!. ~43!

Equations~41! and ~38! imply that in the local limita
→0, DF}T. If this linear T behavior were to hold atT
→0, the third law of thermodynamics, the Nernst’s theore
would be violated as pointed out by Schopohl and Dolgov10

However, the intrinsic nonlocal effects may cut off the line
T term.4,17 Kosztin and Leggett showed, in the special geo
etry where u50, that the linearT behavior of dK(q,vs
→0,T) will be changed to a higher power ofT when T is
smaller thana. In the case of more generalu, the linearT
term is preserved untilT is smaller than bothauu l ,l 561.
For vs along any node,uu l50 for l 51 or 21. The nonlocal
effects thus disappear along this nodal direction. In this c
the linearT singularity may be cut off by another effect, th
nonlinear effect, which we now discuss.

B. vskF@T

Notice that in Eq.~33!, « is always accompanied byuu l ,
which, for u near any node, may be very small. We consid
e
ns-

e

,

r
-

e,

r

first the situation whereu is not close to any node, so tha
«uu l@T. The small perturbation parameter is no
T/(vskFuu l). The kinetic free energyF1 becomes

F15
1

2
nmvs

222TE
2`

`

dx N~x!ln@11e2x/T#2E d2k

~2p!2
Ek ,

~44!

where

N~x!5E d2k

~2p!2
d@x2~vs•kF1Ek!#

5
N0

2D0
(

l 561
~x1«uu l !q~x1«uu l !, ~45!

with q(y) the step function andN0 the density of states on
the Fermi surface in the normal state. Inserting Eq.~45! into
Eq. ~44! we get

F15F BCS
(0) 1

1

2
nmvs

22
1

3

zu

A2

nmkF

2D0
vs

3

2
p2

6

nm

D0kF
(

l 561
uu lvsT

2, ~46!

where

zu5
1

2 (
l 561

uu l
3 5

1

2
~ ucosu1sinuu31ucosu2sinuu3!.

~47!

The qualitative behavior ofF1 as a function of both,vs
andT, is consistent with that obtained by Volovik.11 Here we
see that the prefactors of both thevs

3 and vsT
2 terms areu

dependent.
The scaling functionFl(z1 ,z2) in Eq. ~34! has the fol-

lowing asymptotic behavior atz2@1:

Fl~z1 ,z2!.H z2 z1!z2

pz1

4
1

z2~z2
21p2!

6z1
2 z2!z1.

~48!

This may be inserted into Eq.~33! to find thatdK(q,vs ,T)
5( l 561dK ( l )(q,vs ,T), where
f
y,
dK ( l )~q,vs ,T!55 2
c

8pl0
2 uu l

3 «

D0
1O~Te2«/T!, auu,2 l!«uu l

2
c

8pl0
2 uu l

2 Fuu,2 lp

4

a

D0
1

uu l
3

6uu,2 l
2

«3

a2D0
1

p2uu l

6uu,2 l
2

«T2

a2D0
G , auu,2 l@«uu l .

~49!

It is clear from Eqs.~40! and ~49!, that the linearT term in dK(q,vs ,T), and hence inF2, is modified to a higher power o
T by either nonlinear or nonlocal effects. Combining this result withF1 in Eq. ~44!, we see that a thermodynamic instabilit
associated with the violation of the Nernst theorem, is avoided.
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For u near a nodal value,uu l.0 for l 51 or 21. This
means that those quasiparticles in nodal regions w
wavevectors nearly perpendicular tovs contribute negligibly
to the nonlinear effect such that the linearT singularity in the
free energy may not be cut off. These quasiparticles, h
ever, acquire large nonlocal effects sinceq'vs , which may
effectively modify the T dependence of the free energ
Similarly, it follows that the quasiparticles which generate
small nonlocal effect produce much larger nonlinear effe

With the expression for the free energy, we can ea
obtain the supercurrent. The part of the supercurrent ari
from the kinetic free energyF1 in Eq. ~46! is given by

j sc
(kin)52

e

m

]F1

]vs
52envs1en

vskF

2D0

3S zu

A2
vs1

1

3A2

]zu

]u
ẑ3vsD , ~50!

where ẑi ĉ. It is clear that due to the nonlinear correctio
j sc
(kin) is not parallel tovs except forvsi node or antinode in

the case of which we recover the Yip-Sauls nonlinear sup
current form,12,13

j sc
(kin)55 2envsS 12

vskF

2D0
D vsinode

2envsS 12
1

A2

vskF

2D0
D vsiantinode.

~51!

The fact thatj sc
(kin) is not parallel tovs for generalu leads to

the interesting magnetic torque phenomenon that has b
discussed in Ref. 13.

j (q) can be obtained from Eqs.~28!, ~30!, and~49!. It is
nontrivial to examine the supercurrent in the local limit

j ~q→0!55 2
c

4pl0
2 S 12

vskF

D0
DAq→0 vsinode

2
c

4pl0
2 S 12

1

A2

vskF

D0
D Aq→0 vsiantinode.

~52!

If we simply take (e/mc)Aq→0 asvs , we find thatj (q→0)
is of the same structure as inj sc

(kin) in Eq. ~51!, but with an
extra prefactor 2 in the nonlinear correction term. Note t
j (q50) in the present theory is not equivalent toj sc

(kin) , but
instead,

j ~q50!52
e

m

]F
]vs

5 j sc
(kin)2

e

2mcE d2q

~2p!2

]K~q,vs ,T!

]vs
Aq

2.

~53!

If K(q,vs ,T) can be replaced by its local-limit value, E
~53! becomes
h

-

s.
y
g

r-

en

t

j ~q50!.5 2
c

4pl0
2 S 12

vskF

D0
D mc

e
vs , vsinode

2
c

4pl0
2 S 12

1

A2

vskF

D0
D mc

e
vs , vsiantinode.

~54!

We conclude that the nonlinear correction we have
tained from theq→0 mode is formally two times that in
Yip-Sauls theory. The reason for this discrepency is that
treat the response of the superconductor toAqÞ0 modes per-
turbatively, while the nonlinear term (vs

3 term in the free
energy! coming from the Doppler shift is not a perturbativ
result. To see this clearly, we make a naive perturbation
culation of the response of the superconductor to aconstant
vs . The partition function is~compare with Eq. 14!

Z5expH(
n

Tr ln@ P̂(1)~ ivn!1 P̂(2)#J
5expH(

n
Tr ln@ P̂(1)~ ivn!#J

3expH(
n

Tr ln@11 P̂(1)21~ ivn!P̂(2)#J , ~55!

where

P̂(1)~ ivn!5S 2 ivn1jk Dk

Dk 2 ivn2jk
D ,

P̂(2)5kF•vsS 1 0

0 1D , ~56!

with P̂(2) assumed small. The free energy is

F52T ln Z52T(
n

Tr ln@ P̂(1)~ ivn!#

2T(
n

Tr ln@11 P̂(1)21~ ivn!P̂(2)#. ~57!

The vs
3 term of present interest is expected to arise from

2T(
n

TrH 1

3
@ P̂(1)21~ ivn!P̂(2)#3J

52
1

3
T(

n
Tr~vs•kF!3

3S 2 ivn2jk

~ ivn!22jk
22Dk

2

2Dk

~ ivn!22jk
22Dk

2

2Dk

~ ivn!22jk
22Dk

2

2 ivn1jk

~ ivn!22jk
22Dk

2

D 3

50.

~58!

A nonlinear term}vs
3 cannot be obtained from the perturb
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tion theory, since the perturbation calculation impliesvs•kF

!Dk , while the nonlinearvs
3 term comes from thosek

points near nodes on the Fermi surface satisfyingDk,vs
•kF . Therefore the crucial step of taking (e/mc)Aq→0 asvs
in obtaining Eq.~54! is an approximation since the coupling
of the quasiparticles toAqÞ0 are treated perturbatively. Nev
ertheless we expect that the qualitative scaling behavior
be correctly reproduced with the present formalism. T
renormalizations of the naive results to be expected fr
treating the magnetic field in a fully self-consistent mann
are discussed in the Appendix.

IV. PENETRATION DEPTH

The penetration depth for a half infinite system may
defined as

l5
1

HE
0

`

H~y!dy, ~59!

where H is the magnetic field at the surface. Aspecular
scattering surface boundary condition on the quasipart
wave functions is assumed, which replaces the surface w
current sheet of the form

jext~y!52
c

2p
Hd~y!x̂ ~60!

in an infinite system.26
-
r

-

he

e
of
c

ill
e

r

e

le
a

A. Penetration depth at a constantvs

As a first step, in this subsection, we study the penetra
depth in the system characterized by an electromagnetic
sponse function calculated in the presence of a constantvs .
Since the true, self-consistently determined superfluid ve
ity decays with distance from the surface, this procedure
troduces errors in the nonlinear terms, which we discuss
low and estimate in some detail in the Appendix. For t
moment, we consider Maxwell’s Eq.

¹2A52
4p

c
~ jext1 j sc! ~61!

and the London Eq.~28!, obtaining

lspec5
2

pE0

` dq

4pK~q,vs ,T!/c1q2

.l02
8

cE0

`

dq
dK~q,vs ,T!

~l0
221q2!2

. ~62!

Here vs is now to be understood as its value at the surfa
vs5vs(y50)5el0H/mc as given by the solution to the lin
ear, local electrodynamics problem. Obviously,lspec in-
cludes both the nonlocal and nonlinear effects. It is expec
to reduce exactly to the nonlocal expression of Kosztin a
Leggett4 if the vs dependence is neglected, and~qualita-
tively! to the nonlinear expression of Yip and Sauls12 if the q
dependence is neglected. We first go over these two limi
cases.

For the linear limitvs→0, the qualitative behavior of the
penetration depth depends on two effective nonlocal ene
scales,Enonloc

(1) 5vFuu l 1
/l0 and Enonloc

(2) 5vFuu l 2
/l0 for l 1 ,l 2

561 anduu l 1
>uu l 2

. It is shown that
dlspec
(lin)

l0
.5

1

2
~ ln 2! (

l 561
uu l

2 T

D0
, Enonloc

(1) ,Enonloc
(2) !T

1

2
~ ln 2!uu l 1

2 T

D0
1

p

16A2
k21uu l 1

uu l 2
2 , Enonloc

(2) !T!Enonloc
(1)

p

16A2
k21 (

l 561
uu,2 luu l

2 10.80kS T

D0
D 2

(
l 561

uu l
2

uu,2 l
, T!Enonloc

(1) ,Enonloc
(2) .

~63!
the
un-

r

For u;0, Enonloc
(2) .Enonloc

(1) and there is no intermediate pa
rameter regionEnonloc

(2) !T!Enonloc
(1) . In this case, we recove

Kosztin and Leggett’s result.4 However, foru near any node,
Enonloc

(2) disappears, and the linearT behavior of the penetra
tion depth is preserved even atT!vF /l0, but with a re-
duced prefactor. We conclude that in the linear limit t
nonlocal effects fail to cut off the linearT dependence of the
penetration depth whenvs is along nodal directions. On th
other hand, it is precisely in this limit that the effects
Andreev bound states on the penetration depth are expe
 ted

to be largest. Although the influence of these states on
field dependence has not yet been calculated, it appears
likely that the naive Yip-Sauls result can apply.

For the local limitq→0, Eq. ~62! becomes

lspec
(loc)5S c

4pK~q→0,vs ,T! D
1/2

. ~64!

Again, for a generalu, there are two effective nonlinea
energy scales,Enonlin

(1) 5vskFuu l 1
and Enonlin

(2) 5vskFuu l 2
. One

gets
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dlspec
(loc)

l0
.5

1

2
~ ln 2! (

l 561
uu l

2 T

D0
, Enonlin

(1) ,Enonlin
(2) !T

1

2
~ ln 2!uu l 2

2 T

D0
1

uu l 1
3

2A2

vskF

2D0
, Enonlin

(2) !T!Enonlin
(1)

zu

A2

vskF

2D0
1O~Te2vskF /A2T!, T!Enonlin

(1) ,Enonlin
(2) .

~65!
pt
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tra-
Now we are in the position to study the penetration de
with both nonlocal and nonlinear effects. We are basica
interested in the case ofT!vskF . Inserting Eqs.~33! and
~48! into Eq. ~62! leads to

dlspec

l0
5 (

l 561

dlspec
( l )

l0
, ~66!

where

dlspec
( l )

l0
.

kFuu,2 l
3

8A2pm3l0
3D0vs

2
h1~hu l !

1
T2uu,2 l

3

4A2pm3l0
3D0vs

4kFuu l
2

h2~hu l !, ~67!

with

h1~x!54x3F 2x

114x2
1arctan~2x!G

1
x2@3p116x2196x4248x3~114x2!arctan~1/2x!#

6~114x2!
,

h2~x!5
4p2x4@2112x226x~114x2!arctan~1/2x!#

3~114x2!
,

~68!

and

hu l5
uu l

uu,2 l
h, h5ml0vs5

3

p
k

H

H0
, ~69!

defining the competition between the nonlinear and nonlo
effects, withH0 as defined in Eq.~5!. It is straightforward to
get the asymptotic behavior of the penetration depth:

dlspec
( l )

l0
.

p

4A2
uu l

3 k21h1cu l1k21
1

h2

1cu l2k
1

h4

T2

D0
2 , hu l@1, ~70!

where the nonlinear effect dominates, withcu l1

50.0082uu,2 l
3 andcu l250.0059uu,2 l

3 /uu l
2 , and
h
y

al

dlspec
( l )

l0
.

p

8A2
du l1k211du l2k21h21du l3k

T2

D0
2 , hu l!1,

~71!

where the nonlocal effects dominate, withdu l1

50.50uu l
2 uu,2 l , du l251.09uu l

4 /uu,2 l , and du l3

50.47uu l
2 /uu,2 l . In the local,H→0 limit, the result reduces

to

dlspec

l0
.

3

2A2
zu

H

H0
, ~72!

which is apparently a factor of 3/2 larger than the result~4!.
In fact, the comparison is a bit more subtle, as we have ta
a definition of the penetration depth which differs slight
from that of Yip and Sauls.12 This comparison is discusse
further in the Appendix.

From Eqs.~70! and ~71! one now sees clearly that th
linearH dependence ofdlspec

( l ) at hu l@1 is modified to anH2

dependence whenhu l!1, implying that the nonlinear effec
may be cut off by the nonlocal effects. The crossover fi
for this to happen is defined byhu l;1. For mostu, uu l and
uu,2 l are order of unity and the crossover field is simp
defined byh;1, i.e.,H* .pk21H0/3.Hc1, the lower criti-
cal field. Since atH>Hc1 the Meissner state is unstable
the Abrikosov vortex state, the nonlinear Meissner effec
effectively unobservable due to the nonlocal effect in t
geometry.22 In Fig. 2, we display the magnetic-field depe
dence of the penetration depth foru50. It is clear that in
this case the predicted linear behavior inH is only recovered
well aboveHc1. On the other hand, foru very close to a
node, min(hu l);0, meaning that the crossover field can
so small that the nonlinear effect cannot be cut off by

FIG. 2. Magnetic-field dependence of the normalized pene
tion depth correctiondl(H,T)/l0 for u50. k5100 is assumed
and henceHc1 /H050.01.
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nonlocal one.22 The physical interpretation of this is that on
those quasiparticle excitations near node regions can re
the shielding current. Whenvs is along a nodal direction
those quasiparticles near this node acquire a large nonli
energy shift, but on the contrary a negligible nonlocal eff
sincevs is perpendicular toq. This result suggests that th
best chance for experimentalists to see the nonlinear Me
ner effect is in~110! surface geometry. We again cautio
however, that for this geometry, we do not take accoun
the anomalous Meissner currents27 carried by the Andreev
surface bound state.28 In Fig. 3 we show theu dependence o
the normalized penetration depth correction atT50.

Examining theT dependence ofdl in Eqs.~70! and~71!
we find that for bothhu l@1 and!1 the leadingT term is
quadratic. In Fig. 4~a!, we plot theT dependence of the pen
etration depth at fixedH/H0 to show explicitly this feature.
We also display@l(H,T)2l(0,T)#/l0 in Fig. 4~b! as a
function ofT in comparison. Note in particular that the ma
nitude of the field dependencedecreaseswith increasing
temperature, as is to be expected for any effect which
pends on the sharpness of thed-wave nodes. While the siz
of this decrease is diminished by the nonlocal correctio
there is never anincreasein field dependence with increas
ing temperature, as observed in experiment~see discussion
below!.

B. Penetration depth in „001… surface case

Up to now, we have discussed in detail the penetrat
depth when the field is along theĉ-axis direction. In that
case, all the interesting physics is in the 2Dab plane and it
is implied that the possible interlayer transport kinetic ene
is absorbed into the normal-state energy spectrum. Howe
one may also consider the special situation in the quasi

FIG. 3. u dependence of the normalized penetration depth c
rectiondl(H)/l0 for T50. k is the same as in Fig. 2.
ce

ar
t

s-

f

e-

s,

n

y
er,
D

cuprates in which the experimental configuration is char
terized by a~001! surface withHiab. In this case,A andvs
are still in theab plane ~perpendicular toH) forming an
angleu with the â axis. The nonlinear effect that has bee
discussed in the previous sections remains the same. H
ever, the normal of the surface, and hence the penetra
directionq, is perpendicular to theab plane. If the quasipar-
ticles are confined rigorously to theab plane, they will not
contribute to the nonlocal effects. But on the other hand,
magnetic field in this case is not screened (l→`).29 In a
real system, an interlayer coupling exists, leading to a n
vanishingEnonloc

(ab) .17 Here we confine ourselves to the situ

tion of coherent transport along theĉ direction. This may be
a reasonable model at least for the YBCO material. To av
confusing notation, we keepk as a 2D vector in theab

plane, while we usekc as the momentum along theĉ direc-
tion. The energy spectrum of the quasiparticles in the sup
conducting state in the absence of the magnetic field
Ek,kc

8 5Ajk,kc
82 1Dk

2, where

jk,kc
8 5

k2

2m
1

kc
2

2M
2m ~73!

with M@m the effective mass along theĉ direction. We
have assumed that the pairing order parameter has nkc
dependence. Now a parallel calculation for the penetra
depth can be done. It is shown that the momentumq picks
out kc so as to replace the first argument of the scaling fu
tion Fl in Eq. ~33! by qkFc/2MT. Thus the nonlocal energy
scale becomesEnonloc

(ab) .kFc /Ml0.j0cD0 /l0 which is no
longeru dependent. One immediately sees that the main
sults presented forHic case remain: the available nonloc
effects in ~001! surface case serve to cut off the linearT
singularity and modify theT dependence of the penetratio
depth to a quadratic one; at extremely lowT, they cut off the
linear H dependence when the field is below a crosso
critical field H* (ab) which is found to be H* (ab)

.(j0c /j0)H* . H* (ab) is much smaller thanH* since the
ĉ-axis coherence length isj0c.3 Å as opposed to the in
plane coherence length ofj0.15 Å. On the other hand, the
lower critical field is also much smaller for this geometr
Hc1

(ab).(F0/4pl0l0c)lnk̄,30 where l0c is the penetration

depth for supercurrents along theĉ axis, andk̄5Akk0c with
k0c the ĉ-axis Ginzburg-Landau parameter. Usingl0c
. 0.5213104 Å, we find a large crossover fieldH* (ab)

.Hc1
(ab) , making it still impossible from a practical point o

view to extract a linear-H term.31

r-
h

r-
FIG. 4. T dependence of~a!
the normalized penetration dept
correction dl(H,T)/l0; ~b! the
normalized penetration depth co
rection @l(H,T)2l(0,T)#/l0 . k
is the same as in Fig. 2.
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For highly anisotropic samples like BSCCO system,
above argument might not apply. A full treatment of th
problem awaits a generally accepted theory of the~incoher-
ent! ĉ-axis transport in the normal state. In addition, it
possible that surface-barrier effects render the field of fi
flux penetration much larger than we have estimated, leav
a large range of fields where the nonlocal effects can
neglected for this geometry. We discuss this situation bel

V. DISCUSSION

We first summarize our results. In this paper, we ha
investigated a clean~quasi-! 2D dx22y2-wave superconducto
in the Meissner state based on the weak-coupling B
theory. The existence of nodes on the Fermi surface lead
several important effects at low energy that have nontriv
consequences on the free energy and the penetration d
In addition to the thermal excitations of quasiparticles w
typical energy scaleT, there are also nonlocal effects, wi
energy scaleEnonloc, due to the divergent effective size o
Cooper pairs along nodal directions, and nonlinear effe
with energy scaleEnonlin, arising from the magnetic field
induced quasiparticle excitations. Taking the approximat
of a slow varying supercurrent in space, we have formula
the Helmholtz free energy for the description of Bogoliub
quasiparticles with Doppler-shifted energy spectrum, and
the response of these quasiparticles to a weakly spat
varying magnetic field. The free energy is shown, afte
Legendre transformation, to reduce to Schopohl-Dolgo
free energy atEnonlin!T, and to Volovik’s singular free en
ergy form atEnonlin@T. The resulting response function in
cludes both nonlocal and nonlinear effects, from which
two-parameter scaling function of the penetration de
dl(H;T).F(Enonlin /T,Enonloc/T) is obtained. The well-
known linear T dependence ofdl is obtained only atT
@Enonlin,Enonloc, and will be renormalized toT2 whenever
Enonloc or Enonlin is larger thanT. The linearH dependence o
dl predicted by Yip and Sauls, the so-called nonline
Meissner effect, is recovered forEnonlin@T,Enonloc, but is
typically changed toH2 if Enonlin is smaller than eitherT or
Enonloc. At extremely lowT, the nonlocal effects cutoff the
nonlinear effect atEnonlin,Enonloc. This happens whenH
,H* . Both Enonlin and Enonloc turn out to be geometry de
pendent. When the magnetic field is along theĉ axis and the
angleu that the supercurrent makes with theâ axis is not
near a nodal value,H* .Hc1, leading to the unobservability
of the nonlinear Meissner effect. Whenu is near a nodal
value,Enonloc is so small that the nonlinear Meissner effe
may be recovered. However the effects onl(H,T) of An-
dreev bound states, neglected in this work, need to be b
understood before this conclusion can be taken seriously

Are any of the above predictions supported by expe
ment? While the linear-T temperature dependence in th
penetration depth measurements above 1 K in clean samples
of cuprate superconductors has been observed for se
years, nonlinear and nonlocal consequences of the sim
d-wave theory of electromagnetic response in the Meiss
state have proven more difficult to confirm. In zero exter
field, any low-T dl;T2 behavior observed until now oc
curs in an experimental situation where the result can m
e
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plausibly be attributed to impurities. Recent high-resoluti
resonant coil measurements have indeed identified lin
field dependencesdl.bH with coefficientsb at tempera-
turesT.1 K not too different from the predictions of th
local, nonlinear theory. However, the temperature dep
dence in such cases is opposite to that predicted, and
linear field dependence is not always observed. This sugg
that earlier reports of the observation of the nonlinear Me
ner effect displaying larger linear-H terms in lower resolu-
tion experiments must be treated with skepticism. Ot
manifestations of the nonlinear Meissner effect, e.g., the
transverse magnetization measurements of Bhattach
et al.21 have also failed to observe the predicted angu
harmonics,14,33 and it is tempting to conclude that a sing
mechanism is responsible for the null result obtained by
types of experiments.

What is the nature of this mechanism? Our proposal t
the linear field dependence must generically be supresse
fields H.Hc1 clearly doesnot provide a complete explana
tion for the failure to observe the nonlinear Meissner effe
as noH2 dependence has been reported in any sample. T
appear to us to be two classes of explanation for the exis
data ondl(H) and transverse magnetization. First, as s
gested by Carringtonet al.,19 a few vortices trapped in the
surface layer can give rise to a ‘‘spurious’’ contribution
dl(H) due to the microwave excitations of these vortices
their pinning potentials ~Campbell pinning penetration
depth!.37 Depending on the size of the pinning force, this c
give a result,}H, of roughly the correct magnitude. It is no
clear whether the transverse magnetization experiments
be quantitatively explained by such a contribution.

The second possible explanation for the disagreemen
the experiments with both the local and nonlocald-wave
theories was put forward by Bhattacharyaet al.,21 who sug-
gested the existence of a smallbulk subdominant order pa
rameter component, e.g., ofs symmetry, which condenses i
a statep/2 out of phase with the dominantd component.
Such a state has a true ‘‘minigap’’ of order the size of ths
component. The authors of Ref. 21 estimated that a mini
of a few degreesK would be sufficient to eliminate the non
linear signal in their experiments on YBCO. In such a sc
nario, any experiment which depends on the existence
quasiparticles well below the minigap scale must repor
null result. Several other experimentshavereported signifi-
cant quasiparticle densities well below this temperature
particular, the thermal conductivity measurements
Taillefer et al.36 reveal the existence of a normal-fluid de
sity in both the YBCO and BSCCO systems down to at le
50 mK. We therefore do not believe this proposal is tenab

An argument against the importance of nonlocal effects
recent experiments withHiab which may provide a clue to
the origins of the spurious signal has been given recently
Bhattacharya et al.32 These authors point out that the field
first flux entry,Hc1* .250–300 Oe, appears to be an order
magnitude larger than the Ginzburg-Landau lower criti
field Hc1.30–50 Oe, of order the crossover field betwe
nonlocal and local field dependence for YBCO in this geo
etry. There should therefore, according to these authors,
rather large intermediate field region before flux penetra
the sample where the local theory applies and the nonlin
Meissner effect should be observable. This argument, w
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intriguing, begs the question of why the observed field
first flux penetration is so different from the Ginzbur
LandauHc1.34 The obvious explanation is a geometrical su
face barrier effect of the type discussed by Bean and Livi
ston, and by De Gennes.35 Vortices which nucleate in the
surface layer in the intermediate field range, while therm
dynamically stable in the bulk, are expelled by an ima
potential due to the surface. The intermediate field ‘‘Mei
ner’’ state is therefore thermodynamically unstable, and v
tices may be easily trapped at the sample corners or wi
the skin depth. Two recent high-resolution penetration de
measurements19,20 failed to measure the predicted intrins
~nonlinear! temperature dependence in this field range,
did observe a large linear-H field dependence most likel
attributable to trapped vortices. On the other hand, the l
of hysteresis observed by Bhattacharyaet al. when cycling
above Hc1* argues against a significant number of pinn
vortices. Nevertheless, the thermodynamic instability of
Meissner state suggests that the existence of a region of
fectly laminar surface flow withHc1,H,Hc1* where the
simple theories presented above apply may be too naive.
correct picture of the surface layer in such a situation may
one of fluctuating supercurrents whose time averaged e
on those quasiparticles present may be similar to tha
trapped vortices. These fluctuations would make the fi
penetration layer instantaneously highly nonuniform, pot
tially leading to a broadening and a redistribution of spec
weight of the predicted transverse magnetizat
harmonics.14 We believe the only field regime where one c
safely assume a true Meissner response is for fields be
the thermodynamicHc1, i.e., in the nonlocal response re
gime.

We propose two types of experiments which could h
clarify the present impasse regarding theoretical interpr
tion of experimental results. The first is a direct measurem
of the magnetization using a dc superconducting quan
interference device. This has not yet been performed a
function of applied magnetic field, to our knowledge. If th
requisite sensitivity can be obtained, such an experim
would have the advantage of eliminating the Campbell p
etration depth contributions, which may be dominating
signal in the resonant coil experiments.19,20 The second ex-
periment, to maximize the possiblity of seeing nonlocal
fects and eliminate the uncertainties in the analysis w
Huuab, would be a measurement with fieldHuuc on a long
cylindrical sample with geometrical axis coinciding with th
crystallineĉ axis. These may help to settle this long-stand
controversy.
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APPENDIX: RENORMALIZATION OF THE
PENETRATION DEPTH

In Sec. IV, we calculated the penetration depth in
presence of a constantvs . In a real system, however, thevs
f
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field of the screening current is varying in space. The corr
tion to the penetration depth due to the spatially vary
nature of vs needs to be examined in order to check t
validity of the qualitative conclusions we have reached. N
that the rigorous result can only be obtained through
solution of the full self-consistent magnetostatic proble
from which analytical information is difficult to obtain
However, we can improve our previous results by employ
better approximations. We may imagine the system to
subdivided into many layers, in each of whichvs is roughly
constant. Butvs in different layers is not the same. The r
sponse function in real space is now approximatedly defi
as

K~y,y8!.KFy2y8,vsS y1y8

2 D G . ~A1!

The only terms not included in this approximation involv
gradients of vs . However, in the regime whereEnonlin

@Enonloc, we estimate“vs /m!vs
2 and hence gradients o

vs are negligible where the nonlinear effect is important
all.

According toA5(mc/e)vs , Eq. ~61! can be rewritten in
an operator representation

vs52
4pe

mc2S ¹22
4p

c
K̂D 21

j ext . ~A2!

Using the expansion

4p

c
K̂.l0

221
4p

c
dK̂, ~A3!

we get

vs.2
4pe

mc2F ~¹22l0
22!21 j ext1~¹22l0

22!21

3S 4p

c
dK̂D ~¹22l0

22!21 j extG . ~A4!

In the coordinate representationvs takes the form of

vs~y!.vs
(0)~y!1vs

(1)~y!, ~A5!

vs
(0)~y!52

eH

mc
l0e2uyu/l0, ~A6!

vs
(1)~y!52

8eH

mc2E
2`

` dq1

2p

eiq1y

q1
21l0

22

3E
2`

`

dRE
2`

`

dq2

ei2R(q22q1)

~2q22q1!21l0
22

3dK~q2 ,vs~R!!. ~A7!

At this stage, theq andvs dependence ofdK can be approxi-
mately taken to be the same as what we got in Sec. II, w
the point kept in mind thatvs is a function of space which
needs to be solved self-consistently based on Eqs.~A5!-~A7!.
Using the definition in Eq.~59! and the relationH(y)
5(mc/e)@dvs(y)/dy#, we find
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lspec52
mc

eH
vs~0!, ~A8!

which turns out to be

lspec.l02
8

cE2`

` dq1

2p

1

q1
21l0

22

3E
2`

`

dRE
2`

`

dq2

ei2R(q22q1)

~2q22q1!21l0
22

dK„q2 ,vs~R!….

~A9!

It is easy to check that in the case of a constantvs , the
penetration depth in Eq.~A9! reduces exactly to that in Eq
~62!.

Now we insert Eqs.~33! and~48! into Eq. ~A9! to obtain
the normalized change in the penetration depth

dlspec

l0
5

T

pl0D0
(

l 561
uu l

2 E
2`

` dt1
2pE2`

`

dR
I u l~ t1 ,R!

t1
211

,

~A10!

I u l~ t1 ,R!5E
0

2uhu l (R)u
dt2F ei2(t22t1)R/l0

~2t22t1!211

1
ei2(t21t1)R/l0

~2t21t1!211
Gbu l uvs~R!u

1E
2uhu l (R)u

`

dt2F ei2(t22t1)R/l0

~2t22t1!211
1

ei2(t21t1)R/l0

~2t21t1!211
G

3Fp

4

au l t2

l0
1bu l uvs~R!ul0

2
bu l

2 vs
2~R!1p2

6au l
2 t2

2 G ,

~A11!

where au l5vFuu,2 l /(2A2T) and bu l5mvFuu l /(A2T).
Clearly the nonlinear and the nonlocal corrections to the p
etration depth are involved inI u l(t1 ,R).

For h@1 it is straightforward to find that the leading co
rection to the penetration depth is linear inH. It is given by
3

K

d

th
ee
to
.

n-

the first integral inI u l(t1 ,R) with vs(R) replaced byvs
(0)(R)

and the upper bound of the integral 2uhu l(R)u expanded to
`. After proceeding with this one gets

dlspec

l0
.

zu

A2

H

H0
5

pzu

3A2
k21h, hu l@1, l 561.

~A12!

Comparing with the first term in Eq.~72! we find that an
extra prefactor 2/3 is acquired through this renormalizat
scheme. When we compare this result with Yip-Sauls re
~4!, however, as we mentioned at the end of Sec. IV A,
note a different definition for the penetration depth is used
their paper, and an extra prefactor 2 should be expected.
is to say that if we use the definition of Yip-Sauls for th
penetration depth, we should find it 2 times as large as tha
Eq. ~A12!. The reason that the expected 2 is actually miss
here is again the consequence of the perturbation treatm
of the coupling of the quasiparticles to theAqÞ0 mode, the
detailed discussion of which has been presented in Sec.

For h!1, the leading correction to the penetration dep
is the contribution from the nonlocal effects and is indepe
dent of H. It can be obtained from the second integral
I u l(t1 ,R) by setting the lower bound 2hu l(R) to be 0. The
leading H-dependent correction to the penetration depth
found to be quadratic ofH. After some algebra we get

dlspec

l0
.

p

8A2
(

l 561
du l1k21

1c1l0h2k21 (
l 561

uu l
4

uu,2 l
, hu l!1, l 561.

~A13!

We find that the first term, i.e., the correction from th
nonlocal effects is exactly the same as the first term in
~71!. This means, as expected, that the nonlocal effects
not influenced by the spatial varying nature ofvs . The sec-
ond term coincides qualitatively with that in Eq.~71!, but
acquires an insignificant extra prefactor through the ren
malization scheme. If this expansion were continued, it
clear the result obtained would converge to the result of Y
and Sauls12 in the local limit.
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