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We investigate the free energy and the penetration depth of a quasi-two-dimesioamead superconductor
in the presence of a weak magnetic field by taking account of thermal, nonlocal, and nonlinear effects. In an
approximation in which the superfluid velocity is assumed to be slowly varying, the free energy is calculated
and compared with available results in several limiting cases. It is shown that either nonlocal or nonlinear
effects may cut off the lineaf- dependence of both the free energy and the penetration depth in all the
experimental geometries. At extremely I6ly the nonlocal effects will also generically modify the lingsr
dependence of the penetration defthonlinear Meissner effect) in most experimental geometries, but for
supercurrents oriented along the nodal directions, the effect may be recovered. We compare our predictions
with existing experiments on the cuprate superconductors.
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Many unusual aspects of the unconventional supercon-

ductivity in the cuprate and heavy fermion materials are re- N _ JE+ A2 .
lated to the existence of nodes in the energy gap. Althougli'here the quasiparticle spectrumBg= V& +Aj, & is the

intensely discussed in the 1980s and 1990s, most of thedirmal-state electron band, is the momentum-dependent
phenomena were already known much earlier to students &rder parametetf,is the Fermi functionk is the direction of
the unconventional superfluidHe, which exhibits several the supercurrent, and - - )es represents a Fermi surface av-
phases, some with gap nodes and accompanying low-ener§29€. The London penetration depthTatO0 is given by
fermionic excitations. For example, power laws in specificho= Jme /(47ne’), and is typically one to several thou-
heat, transport properties, and NMR were predicted and me£&nd Angstrm in the new materials.

sured in the anisotropic, high-pressuré\™ phase, along At low temperatures, the local penetration depth calcu-

with singular responses to impurities, unusual vortex phaseéated from Eq.(1) may be showhto vary as a power law of

and even anomalous Josephson curref®m this perspec- temperature, X (T) =Xo~(T/Aq), where A, is the gap

tive, the one important difference between the new supercoﬂ%qozxé?qt%moﬁ)nd t:‘i de)t(ﬁgr;gg gfaﬁ:gr? t?]r; dlgnencs)g);?(ljlt);em
ductors and théHe system is that they are charged; uncon- bology. 9ap 9

) o . near a nodal wave vectdt,. For line nodes in a three-
ventional superconductivity can be uniquely probed bydimensional(3D) system(or point nodes in a 2D system
studying the response of the system to an applied electr

J v Qike the dy2_,2 state thought to characterize the cuprate su-

magnetic field. , perconductorse is found to be 1. Thus when Harat al3

Even the simplest such phenomenon, the expulsion of gieasyred a linear temperature dependence in the
Weqk appll_ed magn_etlc f|e_ld, or Mel_ssner effect, is still theYBaZCugO&% (YBCO) system down to a few degrees K, it
subject of intense discussion today in the context of uncongas dramatic evidence in favor of line order parameter nodes
ventional superconductivity. The new materials are strongyng possible unconventional pairing.
type-1l superconductors, with large values of the London Recently, Kosztin and Legg&ttjuestioned the theoretical
penetration depth, and small coherence lengtldg, such basis for this identification, pointing out that the approxima-
that the conditiorh o> &, is expected to hold. It was there- tion of local electrodynamics used to derive Efj) is not
fore anticipated in the earliest theories of the Meissner effectalid for the quasiparticle states near the nodes whose occu-
in unconventional superconductbthat the electrodynamics pation determines the asymptotic low-temperature behavior.
of the system could be treated lsal, i.e., as though the The coherence lengtfy=vg/mAy determines the scale of
Cooper pairs were point objects, neglecting the spatial variaerder-parameter variations, as in the usual BCS theory, but
tion of the electromagnetic wave over the extent of the pairan effective coherence length=ve/7A, appears in the
Under this rather plausible assumption, the simple anisoelectromagnetic response, as noted in Ref. 5. The divergence
tropic extension of the BCS theory is expected to hold, of & at the nodes means that quasiparticle states near the
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nodes must always be treated nonlocAllé. full nonlocal  lar position of the gap nodes could be probed by a measure-
calculation gives a crossover from & ~T regime for ment of the magnetic field dependence of the penetration
Enonloc<T<Ag to a o\ ~T2 for T<Eonioc. IN the YBCO  depth. In the local limit and fof — 0, they predicted that the
system, this crossover scadg oc=Aoép/\p is about 1 K,  nonlinear effect induces Bnear-H term in the penetration
and thus the identification of ttlewave state on the basis of depth,

the local theory is not really in question; measurements on

the purest YBCO crystals dowm tL K or sohave seen no H/H v|node
deviation from the linear behaviérQuadratic dependences S\(H) A(H)—\(0) 0 s

S\~T? measured in some samples are more likely due to = = . (4)
impurity effects>®°which also produce @— T? crossover. A 0) A 0) —=H/H,  vdantinode,

An interesting perspective on the question of the linkar V2
dependence of the penetration depth was provided recently ) _ o
by Schopohl and Dolgot? who observed thait the d-wave whereH is the applied magnetic field at the surface and
penetration depth temperature dependence were to remain
linear down toT =0, one would be unable to satisfy the third 30,
law of thermodynamicgNernst's theorem In the frame- Ho:m (5
work of linear-response theory, they expressed the change of oo
the free energy in the presence of the magnetic fiébd
fixed external current sourtas a functional of the penetra-
tion depth,

is of order the thermodynamic critical field of the system
with @, the flux quantum. The prefactor of the lindditerm
in Eq. (4) depends generally on the anglethat the super-

1 d3q current makes with the crystallirﬁaaxis and is independent
AFED=— 8_J 2m)° P+ = |A((T)I?, (20 of T (the T dependence appears in thé term as discussed
7 7 A Q. T) recently by Dahm and Scalapitfa Several experimental
whereA(T) is the Fourier component of the magnetic vec-9roups tried to verify the prediction of Yip and Sauls, but
perature according to the thedf°

1 d3q 9 There are three relevant energy scales in the low-energy
SEO(T)=— 87) (2m3 aT| 2 |Aq(T)|2. (3)  sector in the Meissner stat&; E,oniin, andE,onioc. The
m ™ A (q,T) first two are experimentally controlled parameters while the

The Nernst theorem requir&to be 0 whenT—0, incon- last is an intrinsic one. Obviously,(T)~T behavior should
sistent withA (T) ~T. ' be expected aIl>E,,onioc, Enoniin- BUt in the opposite limit,

Schopohl and Dolgov speculated that this result mighﬂ-e-' at extremely lowT, e_ither ngn!inear or.nonlocal ef_fects
imply the instability of a pured-wave state within BCS May play a crumql role in modifying j[he linedr behavior.
theory at sufficiently low temperatures. It was pointed out in! "us @ full study including both nonlinear and nonlocal ef-
Ref. 11, however, that the extra magnetic-field-induced quaf__ects in the Meissner state is necessary. A similar investiga-
siparticles that deplete the shielding current, leading to 40N has been performed by Amin, Affleck, and Frathin
magnetic-field-dependent penetration depth known as th&'€ mixed state wherdd=H,, the lower critical field. It was
nonlinear Meissner effed?3were neglected in this analy- found in this numerical study that the n_onllnear _and nonloc_al
sis. Several authors have recently considered the effects §Prrections were of the same order. This result is not surpris-
these nonlinear terms in the supercurrent on transverse ma9: in the mixed state the nonlinear energy scale and the
netization measurementsand on the structure of the vortex nonlocal one are not independent, since typical spatial varia-
lattice 2526 The basic idea is that, like impurity effects, the tions take place on a scale of the magnetic length or inter-
magnetic field itself may serve as a Cooper pair breaker thafortex distance, fixed by the fluxoid quantization.
creates nodal quasiparticles, leading to a temperature depen- !N this paper, we perform a full study of a quasi-two-
dent penetration depthi (T)=T2 at temperatures below the dlmen5|onal(2D)_ d-vyave superconductor in the presence of
scale for nonlinear electrodynamid, onin=Vke withvea & weak magnetic f|¢|d. We start fr.om a phenomenologpal
typical supercurrent velocity ankk the Fermi wave vector. BCS Hamiltonian with a quaS|part|cIe energy spectru_m in
The current authof& then provided a synthesis of the vari- e normal statef,=e,—u (u is the chemical potential
ous arguments given above, pointing out that for any experidnd @,z ,>-wave order parameted,,=Aqcos 2 (¢ is the
mental geometry with given disorder, external current distri-angle ofk with the a axis). Using the functional-integral
bution, and Ginzburg-Landau parameter a sample of approach, we calculate the free energy and compare it with
d-wave superconductor would inevitably avoid the violationthat obtained in other theories. Our main approximation is
of the Nernst theorem by creatingla term in its penetration that the supercurrent along the surface boundary is a slowly
depth through a competition of nonlinear, nonlocal, and im-varying function of the distance to the surface. Thus we take
purity effects. vs=(e/mc)Ay- as the supercurrent to which the quasipar-

Although this issue of principle has been resolved, arficles couple, leading to the Doppler shift in the energy spec-
important prediction of the-wave model for the electrody- trum of particles and holes- E,+k-vg, where E,=[&2
namics of hight. superconductoréHTS) has not yet been +Ai]1’2. The response of the quasiparticles to #g.
confirmed. In the early discussion of the symmetry of themodes is treated perturbatively, and the resulting response
HTS order parameter, Yip and Sauls proposed that the angdunction involves both the nonlinear and nonlocal effects.



650 MEI-RONG LI, P. J. HIRSCHFELD, AND P. WOLFLE PRB 61

From this response function we then calculate the penetra- _ - 1 . e 2
tion depth, and express it as a scaling function of the two HMFZE f dre (N 5| ~IV= A | = Co(r)
parameters, onioc! T» Enoniin/ T- We show explicitly that, be-

low a temperaturd*, the linearT behavior of the penetra- +f d?r d?r'[A(r,r)el(nel(r)+H.c]
tion depth is always modified by either nonlinear or nonlocal
effects to a quadratic function &f, while the linearH be- f 2, 42,1 , N2
+ —
havior in the penetration depth is also cut off by the nonlocal d°r d*rV(r=r")[b(r,r[%, ©

effects whenH is below some characteristic critical field where —V(r—r')<0 is the effective attraction between
H*, which is geometry dependent. For most geometrieglectrons responsible for thel,. .2 pairing, A(r,r’)
H*=H.;, implying the unobservability of the nonlinear =—-V(r—r’)b(r,r’) is the dy2_y2-wave pairing order pa-
Meissner effect, as discussed in our recent paper on thimmeter withb(r,r')=(c(r")c;(r)), andA(r) the magnetic
subject?? But for some special geometries, in which the su-vector potential. It is well known that in the Meissner state
percurrent is along nodal directions, the nonlinear Meissnethe supercurrent formed by the Cooper pairs effectively

effect may be recovered. We also present a brief discussiopfreens the magnetic field from penetrating into the bulk of

on the geometry in which the magnetic field is along thethe sample. Within the penetration depth away from the sur-

conduction plane, which presents some special features ddace: Poth magnetic field and the supercurrent decay with the
istance to the surface, and the pairing order parameter ac-

to th_e highly layered nature of the cup_rates. F|r_1ally, We N-guires, in principle, a spatially varying phase. As usual we
vestigate the consequence of the spatially varying nature of .

i i i write A(r,r’) asA(r—r")e'*® with a realA(r—r’) and
the supercurrent and find that this property does not influencg _ |/ ; .
the qualitative behavior of the penetration depth. R=(r-+r")/2. Note we neglect the supression of the magni

The paper is organized as follows. In Sec. II, the modeFUdeA at surface of the sample, since we expect these cor-

o o . . rections to the penetration depth will be small in the limit
Hamiltonian and the partition function are obtained. In Sec.}\0>§O of interest.

I, the expression of the free energy as well as its compari- ~ 1o partition function of Hamiltoniax6) is
son with various theories in several limiting cases is pre-
sented, and the supercurrent and the response function are z-z j [Dd][Dd*]
discussed. Detailed study of the penetration depth in the 0
presence of a constawt is given in Sec. IV. Section V is T 2

Xexp{—fo dr[ > d?r d?r’d*(r)

devoted to concluding remarks and comparison with existing
a,B=1

experiments. Finally, a discussion of the renormalization of

the penetration depth due to space-dependegid included , ,
in the Appendix. X Mep(r,r)dg(r') |, )
where
A A3
II. MODEL HAMILTONIAN AND PARTITION FUNCTION Zo=expg — = —f dor A%(r)+ ) 8
T\2me Vo

We start from a phenomenological._y.-wave BCS With Ns the total number of superconducting electrons,
mean-field Hamiltonian of a 2D system in the presence of &l1(r)=c(r), do(r)=c}(r), andMs(r,r') is a matrix el-

weak magnetic field® ement of the X 2 matrix M in the Nambu representation,
|
oot iV A ’ s(r—r’ A(r—r")el*®
A Ao IV A —ppdr=r7) (r—=rhe
M(r,r’ — 2 - (9)
A(r—r")e ¢(R) d _ L i€+9A(r) +ufS(r'—r)
T 2m c

The use of a unitary transformation

O(r,r')=

el $(R)I2 0
SRS

0 e i6(R)2

to M is made for eliminating the phase factor ®fr,r’), leading to
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Mr,r)y=0%r, ey X, e Ocr,r)

(iv)? o 1 , <o
[aﬁr[ﬂ—# +v3(r)-|V+§mv§(r) o(r—r") A(r—r")
- - (V)2 . 1 ’
A(r—r’ o _ _ X _ = 2 r_
(r=r") [a, [—Zm p| =iV vy(r) = Smvg(n) [ 8(r' =r)
(11)
|
where W=~ (iwn+k-ve) 2+ EE, (18)
_eA(r)  Ve(r) where

V(N == (12) B

is the supercurrent velocity. In writing down E¢L1) we VS:% (19)
mc’

have used the relatioﬁ-vs(r)=0 which corresponds to the
conservation of the supercurrent(r) should be gauge in- and Ek={[§k+(e2/2mcz)f(dzp/(ZW)z)Az]erAE}”Z In
o .

variant, which is guaranteed by the compensation of the tw%q_ (14), we have explicitly separated the contributions to

terms in the right-hand side of E¢L2) under a gauge trans- the free energy from the homogeneogs=0) superflow and
formation. It is necessary to fix the gauge before proceeding[hose corresponding 10 components

In the Meissner state the most convenient gauge choice is the " :
London gauge in whiclV ¢(r)=0, and hence Zin Eq. (14) can be written as

v(r)= e/;(;) ., V-A(r)=0. (13 2= Zoexq' 2 Trin Q(”(iwn)]
The partition functionZ in Eq. (7) can be expressed in XeXI{E Trln[l—@(iwn)Q(Z)]}
momentum space as n
z=zoexp[2 TrIn(Q(l)(iwn)wLQ(z))}, (14) ~fo 21 22, 0
n
wherew, is the fermion Matsubara frequency, El=exp[ > Trin Q(l)(iwn)}
n
C (kllz’(I a)n) (k ) (k )/
, =1 {1+e &VTRIML ] {1+ (Vs BITY
("wn+§k+Mk,k Ay )5 1;[{ / 1;[{ ;
Ay —ion= &M i) (D)
=—G Hiwy .K) S, (15 Z, may now be calculated by expanding in powerd\gf..
M 0 To second order, we have
“k?zs( S ) ae .
—k'.—k INZ,=>, Trin(1—G(i w,) Q?®)
with A= [d?rA(r)exp(k-r)=A,cos 2 on the Fermi sur- "
face, My, k= —(e/mo)ky- Ay _ i +(€22mc) S A, R R 1. R
1:%2 17K - _ (i 2)_ 21— (i (2)72
-Ay, -k, p With A, the Fourier component afA(r) =A(r) —; T = G(iwn) Q™= 5[ = Gliwn) Q™]
—A (A is the spatial averageé,=e,—u is the energy ) P
spectrum of an electron in the normal state, gfidv,, k) is ___< f J 4a
Green's-function matrix in Nambu’s representation 2m?c? v ) (27)2) (2m)?
iwn+§k+M,k’,k Ak X{gll(iwn!k+)gll(iwn!k—)(k—'Aq)(k+'A—q)
Sl k)= — \;Vk | \;Vk y _ +Goiwn ki) Ganli wn k) (Ky - Ag) (K- -A_g)
o — b . :
Sk 1o~ Sk Mik + Gyl 0n K ) Garlion k) (K -Ag (K, -A_g)
W, W, _ .
(17) +Giliwg K )Gor(iwn K )(K_-Ag)(k_-A_g},

Here (22
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wherek.. =k=*q/2 . Note that only the paired electrons, i.e., with
the electrons near the Fermi surface, can produce a diamag-

netic effect. Thus we can replakethat couples td\; andvg
by ke . Adopting the London gaugg-A,=0, we simplify
InZ, in Eq. (22) as

d%k
(2m)?

xf d’q (iwn+ke ve)®+ 6 +ALAL
(2m)? W, W_

X (ke Ag)(Ke-A_y), (23

e?
In Zy=— m2c2 ; f

whereé.. = k. A= Aki andW.. =W,..

Ill. FREE ENERGY, SUPERCURRENT, AND RESPONSE
FUNCTION

The total free-energy density of the superconductor in the,

d?k

2 Zw)z(kﬁﬁ

ne 2T
K(q,vs,T)= m—c< 14— ; f

><(iwn+ Ke-Ve)?+ &, 6 +A A
W, W_ '

(27)

F, describes the kinetic energy of the quasiparticles with
energy spectrunt E, shifted bykg-vg. Formally, it is noth-
ing but the Doppler shift of the quasiparticle with proper
mom%Qtumk in the lab frame with local superfluid velocity
vg(r).

It is interesting to look atF, in Eqg. (26). In the linear
limit ve—0, K(q,vs,T) in Eq. (27) reduces to the usual lin-
ear response function of a superconductor in the Meissner
state?® The fact thatk’(q,vs,T) is indeed a response func-
tion can be seen from minimization of the free energy with
pect toA,, dF,/dAq=0, which gives the Fourier com-

Meissner stateF is now given by the sum of contributions ponent of the current inside the superconductor,
from both electrons and magnetic field, where the former can

be calculated in terms of the partition function. We obtain

.1
fz—T|nz+§f dr| VXA P=F+F,, (29
where

2

1
]-"1=—nmv§—Tf ( {In[1+ e (eVs+EIIT]

2 277)2

nA2
+in[1+e (ke vs BT 4 Vo (25
0

Fo= 1f il K(q,vs, T)A;
Z_Z (277_)2 (q,Vs, ) q

1 ( d%q

+
8 (27)?

2
o?A2, (26)

C ~ o
SK(q,vs, T)=—2—( (ke)f | dwRe
(Q,Vs,T) 477)\§<(F)|f0 O 0P = AZAZ+[(q k)l (2m) - )

L (kp)?
477)\5 F

jsda)=—K(q,vs, T)Aq, for

Therefore Eqs(24)—(27) describe the Bogoliubov quasipar-
ticles with the Doppler-shifted energy spectrum responding
to a weakly spatially varying magnetic field. Note that
K(q,vs,T) is obtained in an infinite sample. In the presence
of a surface boundary, an external curr¢gi(q) is intro-
duced to coincide with the real boundary conditisee dis-
cussion in Sec. 1Y leading to the total current as

q#0. (28)

. C .
Jol @) =7— PPAq=iex(@) ~K(QVs T)AG. (29

By summing over the Matsubara frequencies, E2ZV)
becomes

c
K(q,vs,T)= 5+ K(q,vs,T), (30
4mNg

[f(w_vs'kF)_f(_(U_VS'kF)]AE > (31)
FS

.. 9-ke
1
sinh (2 Ak)

[(a-ke)/(2mAYIVI+(a-Ke)/(2mA) ] g

[f(0— ke Ve) + F(@+Ke-vg) JAZ

+2( (kp)? “doRe , (32)
<( F fo \/wz—Azk{AﬁJr[(qkF)/(2m)]2—w2}>FS
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where a=qkg/(2y2m), e=vke /2, uy=|cosé+lsind,
andF,(z;,z,) is a two-parameter scaling function:

T
F\(z1,25)= Zzl-i-[ln(eZH— 1)+In(e %2+1)]

7 1 1 X 211/2
.................... - [ "ax ¥ - X
____________________ 0 e 2+1 ef2+1 Zy
-------------------- (34
FIG. 1. Geometry of010) surface case. Now we may study two limiting cases.

wheref(x) is the Fermi functionsK(q,vs,T) is geometry A VKe<T

dependent. The first two terms in E§2) represent the non- In this case we can expai§, in Eq. (25) up to the lead-

local renormalization of th@ =0 response, while the third ing order ofv kg /T

represents the combined nonlocal and nonlinear corrections ©

to the T dependence. For a real quasi-2D system, like the _ o (1 , 11 d% , eflm

high-T. compounds, with theab plane as the conduction F1=Fgcst ZNMVs— (Zw)z(kF'VS) (1+eEk(°5/T)2 ’

plane, we first consider the geometry where the magnetic (35)

field is parallel to thec axis and thus and the penetration
directionq are in theab plane, and in generalg makes an

angle 6 with the a axis. This geometry is shown in Fig. 1.

whereE(")= (&2+ A2)Y2 and F O is the free energy density
of the superconductor in the absence of a magnetic field,

Note that forvg| antinode the possibility of the formation of © 2 O o

an Andreev bound state exists. Waltral?’ have argued Fres= —Tf 5 SLn(1+e =) +In(1+e% )]
that such states can have significant effects on theTow- (2m)

penetration depth fovg| node. The effects on the field de- nAS

pendence of the penetration depth are beyond the scope of + V_o' (36)

the current formalism, so results for these directions should

be treated with caution. We will consider a different situa-Inserting Eq.(19) into Eq. (35) yields

tion, where the magnetic field is in tteb plane, at the end 1

of Sec. IV. Fi=Flls+ 5-K(0,0T)AG, (37)
An examination of Eq(32) shows that the small regions 2¢

around the four nodes give the main contribution whenwith x(0,0,T)=c/4m\3+ 8K(0,0T) and

Vvekp , T<<A,. This reflects the low-energy quasiparticle ex- T

citations near nodes. It is straightforward to integrate out the B c

angle of the Fermi wave vector, leading to oK(0,0.1) =~ 47-,)\07(2 In Z)A_O' (38)

u u As for 7, in Eq. (26), up to the leading order o, the

R T }\(m, & 9')' response functionK(q,vs,T) is simply replaced by

8mA3 Ao 1571 T T K(q,0,T), the usual nonlocal response functfod. It is
(33 straightforward to see from Eq&33) and(34) that

oK(q,vs,T)=—

2 1/2

5K(Q,0T) = SK(0,0T) - —— 3 w3 T e L [ axto0| 15— (39
8mA3 1571 4 Ay Aolo a?uj
c T
_477)\2(2|n2)A_0’ auy, | <T, I==*1
0

~ 40
c E S m™aug 3 3) T3 U ST [=+1 “0)

- u ={(3)————|, au,_>T, I==*1,

8777\(2)|::1 o 4 Ag 2 A0a2u0 | 0.~

a special case of whict)=0, has been presented in Ref. 4. In E40) {(3)=1.20 is Riemann’s zeta function.
Therefore the change of the free energy due to the presence of the magnetic field is
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A first the situation wherd is not close to any node, so that
q*+ —K©(q,0T)|A7. suy>T. The small perturbation parameter is now
¢ T/(vskeuy). The kinetic free energyr; becomes

1 [ d’q
AF=F-FRs= o—
BCS™ g (277)2

(41
Comparing Eq.(41) with Eqg. (2), we seem to find a sign 1 %
discrepancy. However, notice that the free energy in(Ex. f1=§an§—2Tf dx N(X)|n[1+ef"’T]—f SEi,
is calculated ata fixed external currentand hence is the o (2m)
Gibbs free energy, whereas that in E4jl) is the Helmholtz (44)
free energy AFHe™, since afixed A, is assumed in the \\here
calculation. It can be checked that these two kinds of free
energy are related to each other through the Legendre trans- 42K
formation NGO = [ =5 o0k (v + By
(2m)?
SD)_ Helm 1 d2q ; N
AFED=A F( )_EJ (Zw)zjext(q)'Aq = 2T00 2 (xteug)dxteun), (49
— i d’q 24 4—7TIC(°)( 0T)|A2 with J(y) the step function antl, the density of states on
(277)2 a C a5 the Fermi surface in the normal state. Inserting @§) into
Eq. (44) we get
(42)
In the last equality, Eq29) was used. 1 1¢,
The entropy can be calculated from the Helmholtz free Fi=FQ+ Enmvﬁ— §— §
energy in Eq(41) with A fixed, which is easily shown to be \/—
identical with that in Eq(3): 2 nm
= A, 2 UavsT? (46)
6 Agkr 1551
aA}—(Helm)
SM==—7— =SE(). 43 \here
fixedA

Equations(41) and (38) imply that in the local limita 1 1
—0, AF=T. If this linear T behavior were to hold aT §9=§ ?,=—(|cos¢9+sm 6|3+ |cosh—sing|®).
—0, the third law of thermodynamics, the Nernst's theorem,
would be violated as pointed out by Schopohl and Dolfbv.

However, the intrinsic nonlocal effects may cut off the linear L . .

T term*17 Kosztin and Leggett showed, in the special geom- The qualitative behavior of; as a function of bothyg

etry where §=0, that the linearT behavior of SK(q,v andT, is consistent with that obtained by VolovikHere we
] 1Vs

—.0,T) will be changed to a higher power GfwhenT is  S€€ that the prefactors of both mé andv¢T? terms ared
smaller thane. In the case of more generd the linearT ~ dependent. , _

term is preserved until is smaller than bothwu, ,|=+1. The scaling functiorF,(z,2;) in Eq. (34) has the fol-
For v, along any nodey, =0 forI=1 or —1. The nonlocal 0Wing asymptotic behavior a,>1:

effects thus disappear along this nodal direction. In this case,

the linearT singularity may be cut off by another effect, the Z 217
nonlinear effect, which we now discuss. Fo(21,2,)={ 721 2o(Z3+7?) (49)
4 677

(47)

B. vekp>T

Notice that in Eq(33), ¢ is always accompanied hy; , This may be inserted into E¢33) to find that5K(q,vs,T)
which, for # near any node, may be very small. We consider=3,_. ;6K "(q,vs,T), where

Cc
8 )\ZUGIAO—FO(TE SIT)y aU0’7|<8U5|

SKO(q,vs,T)=
(QVs.T) C Uy a u3| g3 N mUy eT?

- u + } ,
8mng M 4 A 6u’_, a’Ag 6u’ a?A

(49

au€’_|>8u€|.

It is clear from Eqs(40) and (49), that the lineaiT term in 5K(q,vs,T), and hence i, is modified to a higher power of
T by either nonlinear or nonlocal effects. Combining this result Within Eq. (44), we see that a thermodynamic instability,
associated with the violation of the Nernst theorem, is avoided.
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For # near a nodal valuey,=0 for =1 or —1. This c veke| me
means that those quasiparticles in nodal regions with T amZ\ T A, e Vs Vs[node
wavevectors nearly perpendicularvtgcontribute negligibly (q=0)= 0
to the nonlinear effect such that the lindasingularity in the 1 vke| mc .
free energy may not be cut off. These quasiparticles, how- - m( 1- E A_o) o Vs Ve antinode.

ever, acquire large nonlocal effects singev,, which may (54)

effectively modify theT dependence of the free energy.

Similarly, it follows that the quasiparticles which generate & \ye conclude that the nonlinear correction we have ob-

small nonlocal effect produce much larger nonlinear effeCtStained from theq—0 mode is formally two times that in
With the expression for the free energy, we can eas'Iinp-Sauls theory. The reason for this discrepency is that we

obtain the supercurrent. The part of the supercurrent arisingeat the response of the superconductohde, modes per-
from the kinetic free energy, in Eq. (46) is given by turbatively, while the nonlinear termvg term in the free

energy coming from the Doppler shift is not a perturbative

ki e IF; VeKe result. To see this clearly, we make a naive perturbation cal-
gcm)= = =—envsten;— culation of the response of the superconductor tm@astant
m dvg 2Aq o R .
V. The partition function iscompare with Eq. 14
Lo 1 98y
X| —=Ve+ —= —zX V|, (50 N .
(ﬁ 32907 F Z=exp‘; Tr IN[PW(iw,)+ P<2>]}

where Z|c. It is clear that due to the nonlinear correction o
j KM is not parallel tovs except forvg| node or antinode in :eXP[ ; Tr I[P )(lwn)]}
the case of which we recover the Yip-Sauls nonlinear super-

current formt213

X EXp[ > Tr In[1+PW-1( wn)IS(z)]} . (55)

k
—envy 1— Vste vg|node where
i 2A,
i (kin) — .
sc ) 1 VskF H o (51) ﬁ)(l)(i ) (—Iwn-i- §k Ak )
- - vg|antinode. w,) = . ,
eS| 2T 2 28, C " Ay —lop— &
 (kin) ~ 1 0
The.fact tha}l]SC is not.parallel tovg for generald leads to P@=kg-vg , (56)
the interesting magnetic torque phenomenon that has been 01

discussed in Ref. 13. e )
i(q) can be obtained from Eq&29), (30), and(49). Itis  With P*~ assumed small. The free energy is
nontrivial to examine the supercurrent in the local limit

F==TInZ=-T2, Tr n[PW(iw,)]
n

c VK
—a 1— Ay A4 o0 v¢|node X o
i(q—0)= 0 T Trin[1+ PO Yiw,)PP].  (57)
c 1 veke . "
———|1-—=——|A4.o Vslantinode.
477)\0( V2 Ao a-0 d The vg term of present interest is expected to arise from

(52

1. ~
— rpM-1; (2)73
If we simply take €/mc)A,_, asvs, we find thatj(q—0) T; T S[P (ion)P™]

is of the same structure as jE@"‘) in Eq. (51), but with an

extra prefactor 2 in the nonlinear correction term. Note that __ E E N
. _ . . . S (kin) T Tr(vs F)
j(g=0) in the present theory is not equivalentjfy™ , but 3 4
instead, 3

—loy— & — Ay

H 2 g2 A2 H 2 g2 A2
g CF i © f d’q_oK(avsT) | (e Tl i Qom=8=bi]
i(q=0)= mavs ¢ 2mc) (272 dvs a — Ay —lon+ &

(53 (i0))?— &~ AF (iwn)?—&—Af

58
If £(q,vs,T) can be replaced by its local-limit value, Eq. 8

(53) becomes A nonlinear termo<v§ cannot be obtained from the perturba-
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tion theory, since the perturbation calculation imphgskg A. Penetration depth at a constantv

<Ay, while the nonlinearvd term comes from thosé As a first step, in this subsection, we study the penetration
points near nodes on the Fermi surface satisfylyg<vs  depth in the system characterized by an electromagnetic re-
-kg . Therefore the crucial step of taking/(nc)A,_.o asvs  sponse function calculated in the presence of a constant

in obtaining Eq(54) is an approximation since the couplings Since the true, self-consistently determined superfluid veloc-
of the quasiparticles 8. are treated perturbatively. Nev- ity decays with distance from the surface, this procedure in-
ertheless we expect that the qualitative scaling behavior willroduces errors in the nonlinear terms, which we discuss be-
be correctly reproduced with the present formalism. Theow and estimate in some detail in the Appendix. For the
renormalizations of the naive results to be expected fronmoment, we consider Maxwell's Eq.

treating the magnetic field in a fully self-consistent manner
are discussed in the Appendix.

’ 47 )
VA= — T(Jext"']sc) (61)
IV. PENETRATION DEPTH and the London Eq.28), obtaining
The penetration depth for a half infinite system may be
defined as 2 (= dqg
spec _ >
mJo 4wkK(q,vs,T)/C+Q
1 (= 8f°c oK(q,vg,T)
- =N~ = | dg———5. (62)
A HJO H(y)dy1 (59) 0 cJo ()\02+q2)2

HerevS is now to be understood as its value at the surface

: L =v¢(y=0)=eNgH/mc as given by the solution to the lin-
where H is the magnetic field at the surface. gpecular ear, local electrodynamics problem. Obvioushyge, in-

scattering surface boundary condition on the qua&parhclaudes both the nonlocal and nonlinear effects. It is expected

wave functions is assumed, which replaces the surface Wltht% reduce exactly to the nonlocal expression of Kosztin and

current sheet of the form Leggetf if the v dependence is neglected, afgualita-
tively) to the nonlinear expression of Yip and Sd@i§the q
dependence is neglected. We first go over these two limiting
cases.

Jex(Y)=— —Ha‘(y)x (60) For the linear limitve— 0, the qualitative behavior of the

penetration depth depends on two effective nonlocal energy
scales,E{olio=VEUg, /ho and ESolin= Vel /\o for 14,1

in an infinite systenf® =+1 anduy =Uy,. Itis shown that
(1 T
E(In 2)|:2:1 U§| A_O, EgzrzlomEnonloc T
a1 1
)\s(:)ec < E('n 2)U9|1A_0 +EK 1U0|1U9|2, Enonlo<T< Enonloc (63
? Ui ) )
\ 16\/— o 2 Uy, *Iuﬁl'i_O 80(( AO) I=2il Ue,—I, T<Enonioc: Enonioc:

For 6~0, Enonloc Enomoc and there is no intermediate pa- to be largest. Although the influence of these states on the
rameter regiorE{ ), <T<E{(*) .. In this case, we recover field dependence has not yet been calculated, it appears un-
Kosztln and Leggett's resuftHowever, ford near any node, likely that the naive Yip-Sauls result can apply.

E() _disappears, and the linerbehavior of the penetra- O the local limitq—0, Eq.(62) becomes
tion depth is preserved even atvg/\g, but with a re- c 1/2
duced prefactor. We conclude that in the linear limit the Ao = 2

. . 7K(g—0Vs,T)

nonlocal effects fail to cut off the linedr dependence of the
penetration depth whew, is along nodal directions. On the Again, for a general¢9 there are two effective nonlinear
other hand, it is precisely in this limit that the effects of energy scalesE! )=V sKeug, and EC )=V sKeug,. One
Andreev bound states on the penetration depth are expecteets

(64)
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1 T
E(In 2)|—2+1 U§| A_O, E%;%Iin! Enonl|n<T
(loc) ud
—6);\3:8(:2 < (In 2)u0I2 T 2\/i \;:Z Enonl|n<T< Enonlm (65)
v
| jz ZSAE +O(Te_v ske /N 2T) T< Eg_grzlin'Enonlln
|
Now we are in the position to study the penetration depth g, () 2
with both nonlocal and nonlinear effects. We are basically — "~ ——d x4+ dgok h2+dgysk 3, hy<l,
interested in the case df<vg¢kg. Inserting Eqs(33) and Mo 812 Aj
(48) into Eq. (62) leads to (71
i) where , the nonlocal effec4ts dominate, withdy 4
5)\spec specl (66) =0.5(113|u(,,,| , d€|2:1.0910|/u,9.y,! ) and dgs
No 131 A =0.4g/uy ;. In the local,H—0 limit, the result reduces
to
where
5)\Spec 3 H
5)‘g|gec kru :;4 No 2\/— HH (72)
No 8\/—7Tm3)\3A0 2 7(ha) S
which is apparently a factor of 3/2 larger than the restjit
Tzu,, . In fact, the comparison is a bit more subtle, as we have taken
v ket 72(hg), (67)  a definition of the penetration depth which differs slightly
4\/—7Tm3)\voV KU from that of Yip and Saul$? This comparison is discussed
_ further in the Appendix.
with From Egs.(70) and (71) one now sees clearly that the
linearH dependence of\ {J.ath,>1 is modified to arH?
X dependence whelmy, <1, implying that the nonlinear effect
71(X) = 4x 2 +arctan2x) may be cut off by the nonlocal effects. The crossover field
for this to happen is defined by, ~1. For mostd, u, and
X[ 3+ 16x2+96x* —48x3(1+4x?) arctari1/2x) | Uy —, are order of unity and the crossover field is simply
5 ., defined byh~1, i.e.,H* =7k Hy/3=H,,, the lower criti-
6(1+4x%) cal field. Since aH=H,; the Meissner state is unstable to
the Abrikosov vortex state, the nonlinear Meissner effect is
472X 2+ 12x%— 6x(1+ 4x?)arctari1/2x) ] effectively unobservable due to the nonlocal effect in this
72(X) = 1A , geometry?? In Fig. 2, we display the magnetic-field depen-
( x7) 68) dence of the penetration depth fée=0. It is clear that in
this case the predicted linear behavioHns only recovered
and well aboveH.;. On the other hand, fo# very close to a
node, minf,)~0, meaning that the crossover field can be
U 3 so small that the nonlinear effect cannot be cut off by the
hg= h, h=m\ovg=—k— (69)

UH’,| o HO,

defining the competition between the nonlinear and nonlocal
effects, withHg as defined in Eq(5). It is straightforward to

get the asymptotic behavior of the penetration depth:

DN 1
_spec & .3 -1 -1
)\0 —4\/§U9|K h+C0|1K h2
T2
+C¢9|2KFA_(2)1 h0|>11 (70)
where the nonlinear effect dominates, witlty,

=0.008215 _, andcy,=0.0055 _/uj, and

0.016 T T T
0.012
j=1
S o.008 |
i AA&A o T/T_=0.02, nonlocal 1
0.004 = T/T.=0.02, local
’ [ Aanaad® A T/T =0, nonlocal
~ T/T =0, local
0.000 L . L
0.000 0.005 0.010 0.015 0.020
H/H,

FIG. 2. Magnetic-field dependence of the normalized penetra-
tion depth correctionSA(H,T)/\g for #=0. k=100 is assumed
and henceH, /H,=0.01.
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cuprates in which the experimental configuration is charac-
terized by a(001) surface withH|ab. In this caseA andvy

are still in theab plane (perpendicular toH) forming an
angle 6 with the a axis. The nonlinear effect that has been
discussed in the previous sections remains the same. How-
ever, the normal of the surface, and hence the penetration

directionq, is perpendicular to thab plane. If the quasipar-
ticles are confined rigorously to theb plane, they will not
contribute to the nonlocal effects. But on the other hand, the
magnetic field in this case is not screened<=).%° In a
real system, an interlayer coupling exists, leading to a non-

vanishinge(@),..1” Here we confine ourselves to the situa-

FIG. 3. # dependence of the normalized penetration depth cor{ion of coherent transport along tieedirection. This may be
rection S\ (H)/\q for T=0. « is the same as in Fig. 2. a reasonable model at least for the YBCO material. To avoid
) o _ o confusing notation, we keefg as a 2D vector in theb
nonlocal on.e’: The physical interpretation of this is that only pjane, while we usé, as the momentum along tiedirec-
those quasiparticle excitations near node regions can redug@n The energy spectrum of the quasiparticles in the super-

:Ee shielding ctgrlrent. Wh?h'?s is glong a.nodall directior;, conducting state in the absence of the magnetic field is
ose quasiparticles near this node acquire a large nonlinean ;
quasip q g ‘/gk?kch AZ, where

2 H/H,=0.01, nonlocal

0.005 |

0.004

0.003
0.0n

1.0n 157

0

0.5% 2.0m

energy shift, but on the contrary a negligible nonlocal effect <

sincevg is perpendicular t@. This result suggests that the 2K

best chance for experimentalists to see the nonlinear Meiss- £ =~ —C—,u (73)
ner effect is in(110 surface geometry. We again caution, kke " 2m~ 2M

however, that for this geometry, we do not take account of .

the anomalous Meissner currefitsarried by the Andreev With M>m the effective mass along the direction. We

surface bound stafé.In Fig. 3 we show the dependence of have assumed that the pairing order parameter hak.no

the normalized penetration depth correctiorTat0. dependence. Now a parallel calculation for the penetration
Examining theT dependence of\ in Egs.(70) and(71) depth can be done. It is shown that the momentupicks

we find that for bothh,>1 and<1 the leadingT term is  Out k. so as to replace the first argument of the scaling func-

quadratic. In Fig. &), we plot theT dependence of the pen- tion Fy in Eq. (33) by gkg/2MT. Thus the nonlocal energy

etration depth at fixedH/H, to show explicitly this feature. Scale become&@?  ~kg./MXo=£ocAq/No Which is no

We also display[\(H,T)—X\(0,T)]/\, in Fig. 4b) as a longer o dependent. One immediately sees that the main re-

function of T in comparison. Note in particular that the mag- sults presented fokr|c case remain: the available nonlocal

nitude of the field dependenagecreaseswith increasing effects in(001) surface case serve to cut off the linear

temperature, as is to be expected for any effect which desingularity and modify thel' dependence of the penetration

pends on the sharpness of ttievave nodes. While the size depth to a quadratic one; at extremely I&whey cut off the

of this decrease is diminished by the nonlocal correctionslinear H dependence when the field is below a crossover

there is never aincreasein field dependence with increas- critical field H*@® which is found to be H*@P

ing temperature, as observed in experim@ate discussion =(&./&)H*. H*@) is much smaller thami* since the

below). c-axis coherence length i&.=3 A as opposed to the in-

plane coherence length §=15 A. On the other hand, the

lower critical field is also much smaller for this geometry,

Up to now, we have discussed in detail the penetratioﬂ"gb):(CDO/"””‘O)\OC)'”K’30 where Aoc is the penetration
depth when the field is along the-axis direction. In that ~depth for supercurrents along theaxis, andi =y koc With
case, all the interesting physics is in the @b plane and it xoc the c-axis Ginzburg-Landau parameter. Using,
is implied that the possible interlayer transport kinetic energy= 0.5-1x10"* A, we find a large crossover field* (@
is absorbed into the normal-state energy spectrum. Howevers H&® , making it still impossible from a practical point of

one may also consider the special situation in the quasi-2Diew to extract a lineaH term3!

B. Penetration depth in (001) surface case

0.006 (b) H/H=0.01, local
<° : 4 H/H,=0.01, nonlocal
§° e ---- HIH,=0.005, local FIG. 4. T dependence ofa)
(fo % soos ., o H/H,=0.005, nonlocal the normalized penetration depth
A A r A .
= - & \ correction S\ (H,T)/\o; (b) the
§, 002 A:%l,:uon Inonllocal T normalized penetration depth cor-
< 0.005 LIt =0.01, local = N .
po ot o HiH,=0.006, nonlocal £ 0002 06 . rection[N(H, T)=N(0O,T)]/Nq. &
-=== H/H;=0.005, local © 0 S S emg is the same as in Fig. 2.
0.000 s s 0.000 Mifdsiiill i 2Tt
0.00 0.02 0.04 0.00 0.02 0.04
1T, T,
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For highly anisotropic samples like BSCCO system, theplausibly be attributed to impurities. Recent high-resolution
above argument might not apply. A full treatment of this resonant coil measurements have indeed identified linear
problem awaits a generally accepted theory of (heoher-  field dependences\=bH with coefficientsb at tempera-
end c-axis transport in the normal state. In addition, it isturesT=1 K not too different from the predictions of the
possible that surface-barrier effects render the field of firstocal, nonlinear theory. However, the temperature depen-
flux penetration much larger than we have estimated, leavindence in such cases is opposite to that predicted, and the
a large range of fields where the nonlocal effects can bédinear field dependence is not always observed. This suggests
neglected for this geometry. We discuss this situation belowthat earlier reports of the observation of the nonlinear Meiss-

ner effect displaying larger linea-terms in lower resolu-
tion experiments must be treated with skepticism. Other
V. DISCUSSION manifestations of the nonlinear Meissner effect, e.g., the ac

) . . ransverse magnetization m remen f Bh har
We first summarize our results. In this paper, we have'ansyerse magnetizatio easurements o attacharya

. : : et al?! have also failed to observe the predicted angular
investigated a cleafguasi) 2D d,z2-wave superconductor é]armonicsl“'% and it is tempting to conclude that a single
in the Meissner state based on the weak-coupling BC S . .
theory. The existence of nodes on the Fermi surface leads yggg%r;'zr;psriﬁi?sns'ble for the null resuit obtained by all
several important effects at low energy that have nontrivia . : . .

. What is the nature of this mechanism? Our proposal that
consequences on the free energy and the penetration d.ep{n'e linear field dependence must generically be supressed at
In addition to the thermal excitations of quasiparticles with

typical energy scald, there are also nonlocal effects with (S 75T fes LER Y CECT RE o B e
energy scaleE o0, due to the divergent effective size of ’

2 .
Cooper pairs along nodal directions, and nonlinear effectS noH® dependence has been reported in any sample. There

with energy scaleE, o, arising from the magnetic field- appear to us to be two classes of explanation for the existing

- - L : .. data oné\(H) and transverse magnetization. First, as sug-
induced quasiparticle excitations. Taking the approximation ested by Carringtoet al,™® a few vortices trapped in the

of a slow varying supercurrent in space, we have formulate surface layer can give rise to a “spurious” contribution to
the Helmholtz free energy for the description of Bogoliubov Y g _SP : :
N(H) due to the microwave excitations of these vortices in

guasiparticles with Doppler-shifted energy spectrum, and Og\eir pinning potentials (Campbell pinning _penetration
the response of these quasiparticles to a weakly spatiall epth).¥” Depending on the size of the pinning force, this can

varying magnetic field. The free energy is shown, after a. i :
Legendre transformation, to reduce to Schopohl—DoIgov’@'Ve aresultecH, of roughly the correqt m'agmtude..lt IS not
free energy aE, i <T, a,nd to Volovik's singular free en- clear whether the transverse magnetization experiments can

. .~ . be quantitatively explained by such a contribution.
ergy form atEnoni>>T. The resulting response function in- 'Ighe second )é)ossﬁble explgnation for the disagreement of
cludes both nonlocal and nonlinear effects, from which ath

two-parameter scaling function of the penetration dept e experiments with both the local and ncz)PloclaIvave
L ; . heories was put forward by Bhattachamial.,”> who sug-
SN(H;T)=F(Enoniin/ T.Enonioc/ T) is obtained. The well- X .
: : . gested the existence of a smhlilk subdominant order pa-
known linear T dependence ob\ is obtained only afT rameter component. e.d.. sEvmmetry. which condenses in
> Eoniin» Enonioe: @nd will be renormalized td@? whenever P » €9, OBy Y

EoneeOF Eoni is larger tharlT. The linearH dependence of a statew/2 out of phase with the dominamt component.

s predicted by Yip and Sauls, the so-called nonlinearSUCh a state has a true “minigap” of order the size of she
Meissner effect, is recovered o> T.Eporos bUL iS component. The authors of Ref. 21 estimated that a minigap

; 5 . X of a few degree& would be sufficient to eliminate the non-
typically changed tH* if Engnin IS Smaller than eitheT or linear signal in their experiments on YBCO. In such a sce-
E“O”'PC' At exiremely lowT, the nonlo_cal effects curtoff the nario, any experiment which depends on the existence of
nonlinear effect atE,,onin<Enonioc- ThiS happens whei y

" quasiparticles well below the minigap scale must report a
<H™. Both Enoniin and Enonio turn out to be geometry de-  regyit. Several other experimeritavereported signifi-

pendent. When the magnetic field is along thaxis and the  cant quasiparticle densities well below this temperature. In
angle 6 that the supercurrent makes with theaxis is not  particular, the thermal conductivity measurements of
near a nodal valuei* =H;, leading to the unobservability Taillefer et al3® reveal the existence of a normal-fluid den-
of the nonlinear Meissner effect. Whehis near a nodal sity in both the YBCO and BSCCO systems down to at least
value, Eonioc is S0 small that the nonlinear Meissner effect 50 mK. We therefore do not believe this proposal is tenable.
may be recovered. However the effectsofH,T) of An- An argument against the importance of nonlocal effects in
dreev bound states, neglected in this work, need to be betteecent experiments withi|ab which may provide a clue to
understood before this conclusion can be taken seriously. the origins of the spurious signal has been given recently by
Are any of the above predictions supported by experi-Bhattacharya et af These authors point out that the field of
ment? While the lineal- temperature dependence in the first flux entry,H%,=250-300 Oe, appears to be an order of
penetration depth measurements aba\K in clean samples magnitude larger than the Ginzburg-Landau lower critical
of cuprate superconductors has been observed for severfgld H.;=30-50 Oe, of order the crossover field between
years, nonlinear and nonlocal consequences of the simpleonlocal and local field dependence for YBCO in this geom-
d-wave theory of electromagnetic response in the Meissnegtry. There should therefore, according to these authors, be a
state have proven more difficult to confirm. In zero externalrather large intermediate field region before flux penetrates
field, any lowT S\~T2 behavior observed until now oc- the sample where the local theory applies and the nonlinear
curs in an experimental situation where the result can mor&leissner effect should be observable. This argument, while
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intriguing, begs the question of why the observed field offield of the screening current is varying in space. The correc-
first flux penetration is so different from the Ginzburg- tion to the penetration depth due to the spatially varying
LandauH;.3* The obvious explanation is a geometrical sur-nature of vy needs to be examined in order to check the
face barrier effect of the gpe discussed by Bean and Livingvalidity of the qualitative conclusions we have reached. Note
ston, and by De GennéS.Vortices which nucleate in the that the rigorous result can only be obtained through the
surface layer in the intermediate field range, while thermosop|ution of the full self-consistent magnetostatic problem,
dynamically stable in the bulk, are expelled by an imagefrom which analytical information is difficult to obtain.

potential d_ue to the surface. The int_ermediate field “MeiSS'However, we can improve our previous results by employing
ner” state is therefore thermodynamically unstable, and voryatiar approximations. We may imagine the system to be

tices may be easily trapped at the sample corners or withi o : - —
e S G, T 16t High Tesohion penekaion epthoees b oo e o e S0 .
H]I?Jﬁﬁﬁ;e(e\??emper:;lfre ttg)e;r)T(]eia:iselJnrceetine tﬁirse f;gg rgﬂggsfuﬁponse function in real space is now approximatedly defined
did observe a large linea- field dependence most likely

attributable to trapped vortices. On the other hand, the lack y+y’

of hysteresis observed by Bhattachastaal. when cycling K(y,y')=K ) )

above HY, argues against a significant number of pinned 2

vortices. Nevertheless, the thermodynamic instability of therpe only terms not included in this approximation involve
Meissner state suggests that t_he existence of a region of P&jfadients ofv,. However, in the regime Wher&, o
feptly Iammqr surface flow withH, <H<HZ; where f[he >E onioe WE estimaterS/m<v§ and hence gradients of
simple th_eones presented above apply may b_e too naive. Th\i are negligible where the nonlinear effect is important at
correct picture of the surface layer in such a situation may b

one of fluctuating supercurrents whose time averaged effect

on those quasiparticles present may be similar to that o

trapped vortices. These fluctuations would make the fiel

Y=y’ (A1)

According toA=(mcde)vs, Eq.(61) can be rewritten in
n operator representation

penetration layer instantaneously highly nonuniform, poten- Ame A \1

tially leading to a broadening and a redistribution of spectral Vg=— m_cz( v2— TK) Jext- (A2)

weight of the predicted transverse magnetization

harmonics-* We believe the only field regime where one can Using the expansion

safely assume a true Meissner response is for fields below

the thermodynamidi,, i.e., in the nonlocal response re- 4o, _, AT

gime. TICz)\O +T51C, (A3)
We propose two types of experiments which could help

clarify the present impasse regarding theoretical interpretawe get

tion of experimental results. The first is a direct measurement Ao

of the magnetization using a dc superconducting quantum __am 2\ —2y—1; 2y —2y-1

interference device. This has not yet been performed as a Vs= = @ (V20 ) et (ViR )

function of applied magnetic field, to our knowledge. If the 4o

requisite sensitivity can be obtained, such an experiment T 2\ —2y-1;

would have the advantage of eliminating the Campbell pen- “1 7 5IC)(V No®) e A4

etration depth contributions, which may be dominating the . .
signal in the resonant coil experimefts® The second ex- In the coordinate representatiog takes the form of
eriment, to maximize the possiblity of seeing nonlocal ef- _,(0 1

Pects and eliminate the unpcertainti)(/es in theganalysis with VS(y)_Vg )(y)+v§ ). (AS)

H||ab, would be a measurement with fieldl||c on a long eH

cylindrical sample with geometrical axis coinciding with the Vgo)(y): — _)\Oe*\yllko, (A6)

crystallinec axis. These may help to settle this long-standing me

controversy. 8eH + d a1y
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At this stage, the andvg dependence afXC can be approxi-
mately taken to be the same as what we got in Sec. Il, with
the point kept in mind that, is a function of space which
needs to be solved self-consistently based on &d9-(A7).

In Sec. IV, we calculated the penetration depth in theUsing the definition in Eqg.(59) and the relationH(y)
presence of a constant. In a real system, however, the =(mde)[dvg(y)/dy], we find

APPENDIX: RENORMALIZATION OF THE
PENETRATION DEPTH
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mc the first integral inl , (t;,R) with v(R) replaced by ?(R)
Nspec= ~ g Vs(0), (A8)  and the upper bound of the integralh2,(R)| expanded to
. After proceeding with this one gets

5>\specz oy H 7y

which turns out to be

27 27 -1 > =+
6 da 1 o 72 Ho 3\/§K h, hyg>1, I==*1.
Aspec=No— Ej_mﬁ W (A12)
Comparing with the first term in Eq.72) we find that an
w @ el 2R(dz2—dz) extra prefactor 2/3 is acquired through this renormalization
XJ dRJ’ da, >3 9K(d2,Vs(R)). scheme. When we compare this result with Yip-Sauls result
w7 —# (202791)7F Ao (4), however, as we mentioned at the end of Sec. IVA, we

(A9) note a different definition for the penetration depth is used in
their paper, and an extra prefactor 2 should be expected. This
is to say that if we use the definition of Yip-Sauls for the
penetration depth, we should find it 2 times as large as that in
Eqg.(A12). The reason that the expected 2 is actually missing
here is again the consequence of the perturbation treatment
of the coupling of the quasiparticles to i ., mode, the
S\ T “dty (= 1,(ty,R) detailed discussion of which has been presented in Sec. Ill.
Spec_ 2 uf"f _1f dRm;, For h<1, the leading correction to the penetration depth
Ao CONVAYE==S] —w 2 ) o t§+1 is the contribution from the nonlocal effects and is indepen-
(A10) dent of H. It can be obtained from the second integral in
, I 4(t1,R) by setting the lower boundt?,(R) to be 0. The
g'2(t2"tRMo leading H-dependent correction to the penetration depth is
m found to be quadratic dfl. After some algebra we get

It is easy to check that in the case of a constant the
penetration depth in EqA9) reduces exactly to that in Eq.
(62).

Now we insert Eqs(33) and(48) into Eq.(A9) to obtain
the normalized change in the penetration depth

2|hy (R
Iﬁl(tliR):fO dt2

ei2(tz+t)R/Ng

O\ T
Remee. T3 gyt

t———BalVd(R) N ~
26+t 1 Balvs(R)| 0 82 1551
4
o . u
_’_fm dtz e|2(t2 t1)R/\g . e|2(t2+t1)R/)\0 +C1)\0h2K_1 ;1 ueell’ h9|<1, |=+1.
2hg(R | (2t,—t)2+ 1 (2t,+t)%+1 I
, (A13)
R) + 72 . : : .
% Ia”_'t2+’3m|vs(R)|)\gM ’ We find that the first term, i.e., the correction from the
4 Ao 6a%ts nonlocal effects is exactly the same as the first term in Eq.

(71). This means, as expected, that the nonlocal effects are
(A11) : . .

not influenced by the spatial varying naturevaf. The sec-
where a0|:VFUQ',|/(2\/§T) and By=mveu,/(V2T). ond term coincides qualitatively with that in E¢71), but
Clearly the nonlinear and the nonlocal corrections to the penacquires an insignificant extra prefactor through the renor-
etration depth are involved ik, (t,,R). malization scheme. If this expansion were continued, it is

Forh>1 it is straightforward to find that the leading cor- clear the result obtained would converge to the result of Yip

rection to the penetration depth is linearHi It is given by  and Saul¥ in the local limit.
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