PHYSICAL REVIEW B VOLUME 61, NUMBER 9 1 MARCH 2000-I

Magnetic flux shielding in superconducting strip arrays
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Meissner shielding in arrays composed of parallel diamagnetic strips has been studied when the field is
applied normally to the wide face of strips. The numerical solution of the Laplace equation has been found
using a commercially available finite-element code for electrical and magnetic analysis. First, the code appli-
cation has been tested on simple structures such as a single ellipsoid or rectangular strip in a transverse field.
Then, a regular two-dimensional array of parallel strips has been considered. The results of the computation
can be approximated by simple empirical formulas for the magnetic susceptibility of such an array. As the last
step, typical filament configurations of two real BiSrCaCu0O-2223 multifilamentary tapes have been studied and
the susceptibilities in the Meissner state calculated. We found that the regularity in filament distribution can
dramatically influence the magnetic properties and consequently the magnetic ac losses in the tape.

[. INTRODUCTION mentally (at low temperatuneand theoreticallyby calculat-
ing the field distribution in body with ideal diamagnetic
The technology of superconducting Ag/Bi2223 multifila- properties. The calculation ofyo strongly affects the ac loss
mentary tapes has made much significant progress at the igvaluation. This is because the experimental calibration is
dustrial level that they are more and more becoming comvalid only for samples with identical shapes. For this reason,
mercially available for a wide class of applications. In thisdistinguishing between external and internal susceptibility
framework, the modeling of the electromagnetic propertied1as important practical consequences: the measured sus-
of the tape in an applied fieltic or ag is of basic impor- ~ ceptibility data can be scaled to the internal susceptibility
tance. As a first approximation, one can represent the muspan from 0 to—1, and then multiplied by to determine
tiflamentary tape as an array of strips with a rectangularex. Fromy”, the imaginary part of the ac susceptibility, the
cross section. The aspect ratio of these strips is typicalljoss volume density,is obtained through
greater than 10; therefore, the models worked out for a infi-
nite slab in a parallel field can be naturally applied only Bg
when the external field is parallel to the tape wide face. In Qm:WX"XoM—, (1)
this parallel configuration the “end effects” related to the 0

lost of translational symmetry near the sample ends are conjghere B, is the ac field amplitude. Crucial at this point is
monly neglected. The situation with the external f!eld app“e.dknowledge ofxo. A mistake in the determination of this
perpendicularly to the tape is much more_cgmpllqat_eql. Thigiuantity can induce large errors in the ac loss evaluation
can be illustrated by the results for a distrip and infinite  from the susceptibility data. The situation is further compli-
array” However, the arrangement with a finite number of cateq in the case of multifilamentary tape, when in an ac
strips in the array, which at best corresponds to a multifilaynagnetic field the currents flowing across the matrix can
mentary tape, remains unsolved yet. The main difficulty incontribute to sample magnetization. In certain circumstances
treating the perpendicular configuration is related to the facfhese currents prevail and one can consider the whole fila-

that the end effects become prevalent in such a way that ONBentary zongsee Fig. 1 with dimensions 2Xd as a su-
can hardly distinguish them from the intrinsic properties of

the superconductor. One possible way of separating the
shape effects from the behavior of the superconducting ma- 2L
terial itself is to express the measured susceptibility—
evaluated in the same way as for the parallel configuration
and called the external susceptibiligg,—as a product of
the internal susceptibilityy and a constantyp: Xext

= xox- In the internal susceptibility, the response of super-
conductor to changes of, e.g., temperature or magnetic field ,
is included. Therefore, this quantity can change from 0 in the

7 0 7

normal state to-1 in the case when a sample with dimen- N\ Superconducting filament

sions much larger than the London penetration depth is com- D Silver matrix

pletely shielded. Thus in the Meissner statg;= — xo and

this indicates that the constagg can be found both experi- FIG. 1. Filamentary zone.
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perconducting bulk. Then, the model of a superconductingration, let us proceed to discuss the approach with the finite-
strip in a perpendicular fiefdcan be used ang,= L/2d. element codes.
On the other hand, very often the interfilament currents were Generally speaking, we deal with a diamagnetic body of
found to be negligible in ac susceptibility experimehts. given dimensions and very low permeability.(~10~'9)
Then, the tape must be considered as an array of individudmmersed in a uniform magnetic field,=H,z/z. We are
superconducting strips, where an interaction between screehterested in information about the shielding current distribu-
ing currents in different strips takes place. tion, field distribution, and magnetic susceptibility. As we
In the present paper we have studied the possibility owvill see in the practlc_al_ examples shown in the followlng
applying a standard numerical technique to this kind of probS€ctions, through a finite-element code we can obtdin

lems. In particular the use of the commercially available=H(r) in a given networknodes. From knowledge of the

finite-element(FE) code ANSYS (Ref. 4 has been investi- field on the body surface, we can compute the surface shield-

gated. As the first step the current and field distribution in gng c_urrre]ntJ(rg u_singl Ampieel’s Iz;t(vg. Tr:jevm:\gneti%mﬁﬂen-
simple diamagnetic bodigisk, strip in a transverse field has tum is then obtainable a.ﬂ_if.r (r) 'V, from which the
been solved and compared with the classical magnetostatmagnet'c susceptlblll_ty IS derived d|V|d|ng it by the body
solution. As the second step, an infinite stack of strips hagolume an? thg aptpllfhd f'eldt')l In applying thl\s;vﬁ_rlocfess, we
been considered and compared with existing theories 1‘0(?;USt pgyat;rglon to the problem syr:jmektry. e ?r tIWO'
transverse field penetratidras the third step, regular arrays _|me_n5|onal( ) axis-symmetric cgse( ISks, rotational el-

of strips have been analyzed. As the last step, the real fil ipsoids the magnetic momentum IS comple_tely determined
ment configuration of the superconducting strips composin y the computed(r) distribution, for a striplike geometry,

a multifilamentary BiSrCaCuO-2223 tape has been studiegnalyzed with a 2D approach, we obtain only one-half of the
and the external susceptibility computed. true magnetic momentum and therefore multiply the ob-

tained magnetic momentum by a factor of 2. This is because

the currents flowing at the far-away ends of the strip are not

considered in our 2D calculation.

I AP;I‘EIEASE(E)S SI-'IZII;—FDEII\'IZ(IBE gsgBELE?/'I\'SSYS O A self-consistency ch_eck _here i_s done computing th_e en-
ergy of the system, which is a simple task when using a

Generally speaking, the Meissner shielding in superconfinite-element code. Actually, we can consider the energy
ductors is given by surface currents flowing in a surface layerariation when a body of magnetic permeability is intro-
of a given London depth. From the magnetostatic point of duced in a medium of magnetic permeability immersed in
view, this situation can be studied solving the Laplacea uniform magnetic fieldd,. This energy variation is given
equatiof A¢=0, for the magnetic scalar potentia, de-  by®
fined asH=V ¢, with suitable boundary conditions. This
can be easily done in some cases involving the simple geom- AW= — i M-H.dV )

. . . . . a I

etry derived from that of an ellipsoid, as we will see in the 210 Jvg
next section. For more complex geometrical shapes, an ana- ) ) ) )
lytical solution could not be found. We can take advantage of'h€reVsis the volume occupied by the sample. Since in the
the fact that codes exist to solve the Laplace equation for an§@S€ Of perfect shielding the magnetization of the body is
geometrical arrangement of magnetic materials. Thougl©nstant, Eq(2) can be rewritten as
these codes were developed for high-magnetic-permeability 1
material(such as iron we can try to apply them in shielding AW=— =—— MH,Vs, 3
problems assuming that the magnetic permeability in the ma- 2u0
terial is u, =0, so thatB=0 inside the material for any ap-
plied fieldH,. In making this simplification of the problem,
we(r;avr(]a t? strlefssléwo pointsd C the <hield M AW AW

i) The local field generated by the shielding currents can X0O=— T = s oo = oo
be so high as to excedd.;, so that we have a local pen- Ha  (1/2u0)HaVs  Ws
etration of the magnetic flux. In the present paper, we asye found that the values of the magnetic susceptibility cal-
sume that the external field is so low that it never exceedgylated using Eq(4) and from the magnetic momentum
Hea. agree perfectly; thus, in the following sections, we do not

(ii) For ferromagnetic materials, the magnetization is Prospecify which of these two methods has been adopted.
duced by microscopic currents, while for superconductors

the shielding currents have a different nature. They are mac-
roscopic and can generate a fiéld inside the materials, so
the magnetization is found as the difference between internal With the aim of finding how a transverse magnetic field is
field H; and external fieldH., the latter being defined as shielded by real multiflamentary tapes, we start analyzing a
H.[1/(1-D)] (whereD is the demagnetizing factorHow-  simple structure like disks and strips.
ever, for our aim, this only means that in using finite-element  All the current theories about transverse field penetration
codes made for ferromagnetic materials, we have to take caig tapes are based on the Landau apprdathe shielding
that the dimensions of the considered superconducting strucurrent distribution is calculated for an ellipsoid in the limit
tures are much larger than the London penetration depth. of extremely thin thicknessR>d, where R and d/2 are,
Provided that the two above points are taken into considrespectively, the major and minor semiaxdsor a diamag-

from which y, can be calculated as

4

Ill. DISK AND STRIP IN A TRANSVERSE FIELD
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Je, JuL, andJs as a function of the polar angke Jg is the current
density of the rotational ellipsoidl,, andJg are, respectively, the
upper(or lowen and side current densities of the rectangular cross
section disk.

FIG. 2. Comparison ofyy analytically and numerically calcu-
lated for a disk with an ellipticalmajor semiaxidR, minor semiaxis
d/2) and rectangulafradiusR, thicknessd) section as a function of
R/d.

netic disk placed in a uniform transverse magnetic fid|d (5, as a function of the polar angie It is striking that in
—H.27/7 the current distribution averaged over the thiCkneSSspite of such a difference in the distribution pattern the used
gf tr?e disk i 9 approximation gave reasonable results fgr
As the next step, let us consider a diamagnetic strip of
4 infinite length in they direction and an ellipsoidal cross sec-
Jp<R)=— — H.P 5) tion (semiaxesL and d/2) in the xz plane, x?/L?
(P<R)=— —Ha=—. 5 ) in the xz
™ R°—p +2%/(d/2)?>=1. A constant fieldH, is applied alongz. As
the first step, we have found the general analytical expres-

and thez component of the field in the=0 plane is sions for the current density and the magnetic field of the

2 1 R strip. Following the approach proposed by Landau and
H(p> R):Ha{l'l'_ —————"5 -1 —) } (6)  Lifshitz’ for a rotational ellipsoid, the current distribution
TN(p/R)*—1 p averaged over the thickness of the strip can be found as
Using Eq.(5), one can find an expression of the magnetiza-
X o 2 X
tion and susceptibility: Ix<L)=— FaHa R )
_om 4R M 4R Ko=x
S 4gR22 m o od’ XoOmTH, wd where
The current and field distribution given by EqS) and(6) is 1+d/2L L2
valid also for a diamagnetic disk with a rectangular cross a= \/m an kz:l—(d/ZL) .

section(radiusR and constant thicknes. Because of dif-

ferent sample volumes, we obtain now . )
We have also found an approximated expression for

M = m, 8HR M 8R H(x>k):
TR 3medr XTTH, 3md i
2 2L

We have verified these expressions throughakgys code H(x>k)=1+ « —arctar( W)
computingyx, and comparing with the values given in Egs. m
(7) and (8) for different ratiosR/d, as shown in Fig. 2. 2 22
Though the agreement is quite good, for the disk we have + arctarEi =K ) . (10
found some differences coming from the current paths. In N kd X

fact, there are two contributions to the magnetic momentu-

m: one comes from the currents flowing on the upper andRepeating the procedure outlined in calculating the suscepti-
lower surfaces of the disk](;,) and a second one coming bility of disk, for a strip with a current distribution given by
from the side currents)g). Starting from the field computed EQ. (9) one obtains the external magnetic susceptibility

by ANSYs, we have calculated the two current distributions

which the analytical solution, based on thin ellipsoid, cannot 2al

take into account separately. Actually, even for the thinnest Xo=7q - (11
disks with a rectangular cross section, bdth andJg do

contribute to the magnetization. Figure 3 shodyg , Js, In the limit of a thin strip @/2L—0, i.e.,a—1 andk—L)
andJg, the latter being the current density coming from Eq.this expression coincides with the solution used by Brandt:
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FIG. 4. Comparison ofy, analytically and numerically calcu- H(x>L)=H sinf(7x/D) (17)

lated for rectangular and elliptical cross section strips as a function a\/sinhz(ﬂ-x/D) — sinhZ(ﬂ-L/D) '

of L/d.
from which y is calculated as
2 X 2
IX<L)=—~Hy s, 12 D ml

( ) d a\/rz_—xz ( ) XO:?TLdIn COS)’(F”. (18)

with the corresponding field distribution These formulas are not valid for a finite number of strips in

the stack. We can take advantage of our numerical approach,
H(x>L)=H X vyhiph allows calpulating the magne_tizatiop for a stack con-
am sisting of an arbitrary number of strips. Differently from an
infinite stack, the magnetization now is not uniform, but
and magnetic susceptibility: changes with respect to the position of strip in the stack.
Representative values can be calculated either by averaging
on all the strips M ,,9 or for the central strip of the stack
(Mcep. The latter should approach the result for an infinite

. ) . stack by increasing the number of strips. This means that
Similarly as for the disks, we can extend the results obtained g for Yo We can obtain two different results:y,
K ave

for a thin elliptical strip to a rectangular orferidth 2L and
constant thicknesd). In this case

13

—2L 14
XO_F- (14

=—M_e/Ha and xgceri= —Mcen/Ha . For two different ge-
ometries, the dependence of numerically calculgigdn the
oL number of strips in the stack is given in Figgapand &b)
Yo== —. (15  together with the analytical formula for an infinite stack. As
2d expected,xocen @pproaches the result for an infinite stack
when increasing the number of strips, whilg,,. represents

A comparison of numerically and analytically calcula : LA o
b y y y tesl the real value of the magnetic susceptibility of the finite

for elliptical and rectangular strips is given in Fig. 4. As for . .
disks, good agreement is found for the elliptical strip, whiIeStaCk as a function of th? strip number. .
the slight difference in the rectangular strip case is again due In order to compare different values ,an\,?a_s a function
to the fact that the magnetization is given by the two contri-Of the geo_m_etncal paramete(s, d, andD), it is useful to
butions of surface and side currents. normalize it in the range 0-1:

Xoave— Xo(*)

IV. z STACK OF STRIPS Xoave= —ae
%2 Xo(1) = xo(*)

(19

As a conclusion of the previous sections, we found jhat ) )
determined in a numerical way lysys for a strip or a disk  Wher€xo(1) andxo(x) are, respectively, the magnetic sus-
coincides with the corresponding analytical expres¢®ror ~ CePtibility of one strifEq. (15)] and of an infinite number of
(15). This result allows us to apply the same approach to &1PS[EQ. (18)]. From a very general point of view, piling
set of striplike filaments. Let us considez atack of strips as  SUIPS With no gap in betweerD=d), the susceptibility is
shown in Fig. 5. Mawatatihas given an elegant formulation SIMPIy given by
of this problem in case of @ stack made by an infinite
number of strips. In the following, we compare our numeri- ¥ _T E E (20)
cal approach with his analytical results: © 2dn

. D For this reason, it is not surprising to find that the normalized
. sinh(7x/D) , magnetic susceptibilityyae as a function of the number of
Vsink(wL/D) —sink(7x/D) stripsn, is well fitted by a decreasing exponential:

2
J(x<L)=-SH
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: FIG. 8. Dependence of numerically calculajggdon the number
3 of strips in thex array together with an analytical formula for an
infinite stack, for a strip of dimensions=50um, d=2 um, D
=105um.
3L 2 ’ sin(ax/D) 23
: x<L)=—= ,
d" " sir’(wL/D)—sir?(wx/D)
Hx>L)=H sin(wx/D) (24
f X>L)=Ha—= - )
S S N D D D B B Vsir?(mx/D) —sir?(7L/D)
1 3 5 7 9 1m 1315 17
number of strips from which y, is calculated as
FIG. 6. Dependence of a numerically calculajgdon the num- D2 L
ber of strips in thez stack together with an analytical formula for an Yo=— In CO{ 77_) (25)
infinite stack for two different geometriega) L=100um, d 0 7Ld D /|
=10um, D=15um; (b) L=100pum, d=2 um, D=20um.
For anx array consisting of a finite number of strips, an
1 analytical solution does not exist and a numerical approach
XOave:F' (2D has to be used. One expects that the current and field distri-

bution will no longer be periodic. Then, the magnetization of
wherea should be close to unity. We have found that for realthe central strip will differ from the averaged magnetization
conductors, wheré/d>5 andL/(D—d)>20, « assumes a of all the array, resulting in a corresponding difference in
constant value of about 0.8. Fina”y, itis pOSSible to eStimat%\/eraged Susceptib”itXOa\le and that calculated for the cen-
the magnetic susceptibility of astack when the number of tra| strip, yocen:

StripS is greater than 1, but much less than |nf|n|ty As is clear from F|g SXOave of an x array does not ap-
proach Mawatari’'s expression when increasing the number
~ Xo(1) = xo(*) 59  Of strips. We think that this discrepancy is due to the currents
Xoavd N) =~ Xo(®) + 08 . (22 . L .
n flowing at the strip sidesJg). In thex array each strip must

shield the applied field plus the field generated by the cur-
rents in neighbor strips. The most efficient way to shield the
extra field generated by the neighbor strips is by the currents

Let us now consider a plane array of diamagnetic strips aat strip sides. This causes the current distribuflo) to be
shown in Fig. 7. Following Mawatari's approachhe cur- significantly different from the one derived for an ellipsoid
rent density and magnetic field of an infinikearray are, (with d—0) and put in the base of Mawatari’s approach.
respectively, This problem was not found in the stack because in that
case the currents in neighbor strips decrease the field to be
shielded and consequently the contribution to the magnetiza-
tion of the currents flowing at the strip sidedg) is de-
| ; creased too.
| As a consequence, we do not knaapriori the limit of

the averaged magnetic susceptibility for the number of strips

FIG. 7. Arrangement of strip lines in anarray. which tends to infinity. In order to compare different values

V. x ARRAY OF STRIPS
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FIG. 10. Arrangement of a regular matrix of strips.

_ Xo(*) D d+(D-2L)
~ xo(1) 2L (D-2L)

(31)

The functionf(n) is well represented by an arc secant func-
number of strips tion; in Eq.(29), the parameten* gives information on how
fast the function converges to the asymptote. Surprisingly,
we have found than* is related tog, i.e.,n* ~58.

The fair agreement allows one to estimate the averaged
magnetic susceptibility of am array composed of a finite
number of strips.

FIG. 9. Behavior of the normalized magnetic susceptibility of an
x array as a function of the number of strips, for different strip
geometries.

of xoave @S a function of the geometrical parametérsd,

andD), we can anyway normalize it to the magnetic suscep-
tibility of one strip xo(1): VI xz ARRAY

It is now interesting to apply the previous empirical rules

N Xoave (26) to a regular matrix of strips as shown in Fig. 10. Starting

Oave™ (1) from the magnetic susceptibility of one strip and by applying

subsequently the reducing factor due to the stacking irzthe
direction and the increasing factor due to the repeating in the
x direction, we can suppose that the resulting magnetic sus-

The functionXg,,e should have the following behavior:

2 S S
Xoave= 1+ ;(13_ 1)f(n), (27)  ceptibility of the matrix is
f

whereg represeqt;_the asymptotic value of the a_veraged XO:XO(l)f_Xv (32
magnetic susceptibility and could be calculated starting from z
Mawatari’s limit[Eq. (25)] as where

Xo(%®) 2 n,+n*—1

B~ o) (28) fy,=1+ ;(ﬁ—l)arcseén—* ,
and f(n) is a function ranging from 0 tar/2 asn ranges xo(1) (33
from 1 toe. f,= > 0%
In Fig. 9, Xoaveas a function of the number of strips, is Xo(%) +[xo0(1) = xo(=)]/n;

shown for different values of, d, andD. As expected, we yjth n, the number of strips in the direction andn, the
found that it is very well fitted by an expression similar to nymper of strips in the direction,n* =58, xo(1), xo(%),

Eq. (27), at least for a reasonable number of strips: andg as described, respectively, by E¢ES), (18), and(31).
5 R Some results are summarized in Table I. We found that, if
n+n* — ;
_ D,—d=<d and D,—2L=<2L, the differences betweey
Xoave= 1+ —(B—1)arcsec———5—|. 29 z X ! 0
Oave e % n* ) @9 calculated byansys or using Eq.(32) are well under 10%.

. For comparison, Table | includes also the magnetic suscep-
Nevertheless’. the paramef@is different from Eq(28). We ibility calculated applying Eq(15) to the overall dimensions
have to take into account that Mawatari's approach is valu{ ~ . ]

in the limit d—0 and O — 2L)—0. The first limitd—0 is - andd of the strip array:

obvious and comes directly from the thin ellipsoid approxi- -

mation. The second onéd(-2L)—0 comes from the con- L 7 (n-1)D,+2L
sideration that the magnetic susceptibility of an infinite Xoov™, 3 2 (n~1)D,+d
array should be much higher than that of a single strip:

(34

It is clear that this last method applied to regular arrays of

D? mL w7 L L strips induces very large errors in the evaluationygf

- S I <—
In cos with 0 D

ar
+Ld D> 2D <7 (0

. . . VIl. REAL MULTIFILAMENTARY TAPES
That is true only if7L/D~ /2, i.e.,D~2L.
This leads us to modify Eq28) to the empirical expres- As the next step, let us consider two real multifilamentary
sion tapes with cross section shown in Fig.(81(36-flament
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TABLE |. Comparison ofy, calculated in different way for a
regular array of strips.

Xo Xo
calculated Xo calculated

from calculated  from
Geometry fy f, Eq. (320 byansys Eq.(34)

L=100um 1.599 2.599 4.832 4.651 18.326
d=20um
D,=300um

D,=25um

n,=5

n,=5

L=100pum 2.324 2917 12.515 13.182 23.338
d=10um
D,=210um

D,=15um

n,=5

n,=5

L=50um 1.961 3.203 24.043 25.767 45.379
d=2um

D,=105um

D,=4 um

n,=5

n,=5

L=100pum 1.599 1.987 6.320 6.098 31.416
d=20um

D,=300um

D,=25um

n,=5

n,=3

tapé) and (b) (19-filament tapd. Modeling the filaments as
strips with a rectangular cross section, the current and field
distributions have been calculated usiagsys. In Figs.
12(a) and 12b) the resulting flux lines are shown. The cal-
culated(ansys) values for the susceptibility ang,=7.5 for

the 36-filament tape anglo=34.6 for the 19-filament tape.
The empirical rule in Eq(32) can only be applied to the
36-filament tape, having a regular rectangutaz array of
filaments, resulting inyo=4.0. Two main considerations
come from these results.

(i) A regular x-z array of filaments allows the field to
penetrate into the tape structure, causing relatively low val-
ues of the magnetic susceptibility. This helps in limiting the
effect of the demagnetizing field and consequently the ac
losses. The 36-filament tape is a good example in this

FIG. 12. Flux lines of the two real conductors, 36-filament tape

(a) and 19-filament tapé&b).

sense: in each 6-filamentstack,y, is decreased, compen-
sating the increase of, due to thex-array distribution. A
hexagonal filament structure or a disordered strudwhere
no z stack is present as in 19-filament tapmnstitutes a

FIG. 11. Optical micrographs of two axially rolled 36-filament barrier to field penetration, causing a dramatic increase of the
(0.22x2.0 mnf) (@ and flat rolled 19-flament (0.14 magnetic susceptibility.

X 2.5 mn?), (b) tape.

(i) Though the 36-filament tape has afz array struc-
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ture, we cannot apply E¢32) to predict with good accuracy the other hand, in the case of a strong magnetic interaction
the value ofy,, due to the irregularities of the array. In this between filaments, the “effective” strip or disk should coin-

case we have to use the finite-element approach. cide with the dimensions and shape of the whole filamentary
zone. There is no model available to calculate the magnetic
VIIl. ac LOSSES coupling between filaments in a critical state. Then, we see

_ ) ) ) ) ~as a valuable approximation the situation of diamagnetic
From a practical point of view, the regime of diamagneticshielding. The external susceptibilify, is an integral char-
shielding has not attracted great attention because it is relicteristic that reflects both dimensions and interfilament cou-
evant at very small magnetic fields only. In applicationspjing. |n this paper, we demonstrated the importance of tools
counting on a high-current-carrying capacity of type-ll su-t5 compute the external susceptibility that scales the ac
perconductors with pinning, the critical state mddesx- losses and, as we have seen, can get very high vé3aeer
plains well the fundamental electromagnetic properties inthe 19-fi|an’1ent tape ’
cluding ac loss. Systematic efforts lead to the derivation of Concluding, though the analysis of the shielding current
ac loss formulas for the shapes that are close to the tap&nnot be used to calculate the losses coming from bulk

sample: disk and strip” The ac loss density can be deter- cyrrent, it gives the much more important scaling factor for
mined according to Eq1) from the ac susceptibility: the losses.

n
tape ; B_a g

Ba

4B, (B,
= , (35 IX. CONCLUSIONS

We have demonstrated that commercially available finite-
v :E f”[ —S(%) element codes for magnetostatic problems can be applied for
disk™ 77 By predicting the shielding in superconductors. This approach
has been checked in the shapes derived from a rotational

Ba . ellipsoid, for which analytical solutions are available. The
+(1 COS@)S(ZBP(1 COSﬁ)) sin® dd, study of field shielding in a single strip of rectangular cross
section and by array of such strips in transverse field has
(36) i
shown the following.
whereB, is the peak applied field3, is the field at which (i) The shielding current distribution is different than in
we have the full penetration of the sampleg(x) an ellipsoid. There is an important contribution to the mag-
= (2/x)In coshx—tanhx, and netization of current flowing at the sides of the strip. How-
. ever, the magnetic momentum calculated using the surface
S(x)= 1 Cos—l( 1 )+ sinhx and side currents in the strir the disk is equal to the
2X coshx/ cosH x|’ momentum obtained considering the stfgisk) as an ex-

tremely thin ellipsoid.
(ii) The approximation of thin ellipsoid fails when consid-
ering anx array of strips, because of the large role of the
wodod wodd shielding currents flowing at the strips sides. .
Bp,disk=T, Bplsmp=T. (37 (iii) Empirical formulas describing the magnetic suscepti-
bility of finite z stacks anc arrays of strips have been found.
Often, the experimental data can be well fitted to these forThese formulas have been composed for predictingf an
mulas also in the case of real tape with a certain distributiorx-z array, giving in a simple way results that are within 10%
of filaments!! Then, instead of trying to calculate the critical of the values obtained by finite-element analysis.
state in a general multiflamentary tape, one can think to (iv) Analysis of the shielding current and field distribution
model it by an “effective” filament or disk. Then, for ac in real multiflamentary tapes showed thaf grows consid-
loss, we use one of these models with an appropriate propoerably when the filament structure does not form a regular
tionality constant for ac loss evaluatiogg. According to  array.
the tape complexity, the calculation gf represents a dif- (v) The external susceptibility, scales the ac losses with
ferent level of complications. Real dimensions of the supera large factoup to 35 in one of our tapeslt can be com-
conducting core are to be put in the formulas ferin the  puted only through finite-element analysis when we have a
case of monocore tape. For a multifilamentary tape, the exsomplex system like multifilamentary tapes. This factor is as
tent of the magnetic coupling between individual filamentsimportant as the inner susceptibility’, for which several
has to be established. In the case the filaments are uncouplamhod theoretical approaches, based on the critical state
the dimensions of one filament seem to be representative. Gnodel, exist.

B, is defined as a function of the bulk critical current density
N
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