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Magnetic flux shielding in superconducting strip arrays
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Meissner shielding in arrays composed of parallel diamagnetic strips has been studied when the field is
applied normally to the wide face of strips. The numerical solution of the Laplace equation has been found
using a commercially available finite-element code for electrical and magnetic analysis. First, the code appli-
cation has been tested on simple structures such as a single ellipsoid or rectangular strip in a transverse field.
Then, a regular two-dimensional array of parallel strips has been considered. The results of the computation
can be approximated by simple empirical formulas for the magnetic susceptibility of such an array. As the last
step, typical filament configurations of two real BiSrCaCuO-2223 multifilamentary tapes have been studied and
the susceptibilities in the Meissner state calculated. We found that the regularity in filament distribution can
dramatically influence the magnetic properties and consequently the magnetic ac losses in the tape.
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I. INTRODUCTION

The technology of superconducting Ag/Bi2223 multifil
mentary tapes has made much significant progress at th
dustrial level that they are more and more becoming co
mercially available for a wide class of applications. In th
framework, the modeling of the electromagnetic propert
of the tape in an applied field~dc or ac! is of basic impor-
tance. As a first approximation, one can represent the m
tifilamentary tape as an array of strips with a rectangu
cross section. The aspect ratio of these strips is typic
greater than 10; therefore, the models worked out for a i
nite slab in a parallel field can be naturally applied on
when the external field is parallel to the tape wide face.
this parallel configuration the ‘‘end effects’’ related to th
lost of translational symmetry near the sample ends are c
monly neglected. The situation with the external field appl
perpendicularly to the tape is much more complicated. T
can be illustrated by the results for a disk,1 strip,2 and infinite
array.5 However, the arrangement with a finite number
strips in the array, which at best corresponds to a multifi
mentary tape, remains unsolved yet. The main difficulty
treating the perpendicular configuration is related to the
that the end effects become prevalent in such a way that
can hardly distinguish them from the intrinsic properties
the superconductor. One possible way of separating
shape effects from the behavior of the superconducting
terial itself is to express the measured susceptibility
evaluated in the same way as for the parallel configura
and called the external susceptibilityxext—as a product of
the internal susceptibilityx and a constantx0 : xext
5x0x. In the internal susceptibilityx, the response of super
conductor to changes of, e.g., temperature or magnetic
is included. Therefore, this quantity can change from 0 in
normal state to21 in the case when a sample with dime
sions much larger than the London penetration depth is c
pletely shielded. Thus in the Meissner statexext52x0 and
this indicates that the constantx0 can be found both experi
PRB 610163-1829/2000/61~9!/6413~9!/$15.00
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mentally~at low temperature! and theoretically~by calculat-
ing the field distribution in body with ideal diamagnet
properties!. The calculation ofx0 strongly affects the ac los
evaluation. This is because the experimental calibration
valid only for samples with identical shapes. For this reas
distinguishing between external and internal susceptibi
has important practical consequences: the measured
ceptibility data can be scaled to the internal susceptibi
span from 0 to21, and then multiplied byx0 to determine
xext. Fromx9, the imaginary part of the ac susceptibility, th
loss volume density,1 is obtained through

qm5px9x0

Ba
2

m0
, ~1!

whereBa is the ac field amplitude. Crucial at this point
knowledge ofx0 . A mistake in the determination of thi
quantity can induce large errors in the ac loss evalua
from the susceptibility data. The situation is further comp
cated in the case of multifilamentary tape, when in an
magnetic field the currents flowing across the matrix c
contribute to sample magnetization. In certain circumstan
these currents prevail and one can consider the whole
mentary zone~see Fig. 1! with dimensions 2L3d as a su-

FIG. 1. Filamentary zone.
6413 ©2000 The American Physical Society
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6414 PRB 61FABBRICATORE, FARINON, INNOCENTI, AND GÖMÖRY
perconducting bulk. Then, the model of a superconduc
strip in a perpendicular field2 can be used andx05pL/2d.
On the other hand, very often the interfilament currents w
found to be negligible in ac susceptibility experiment3

Then, the tape must be considered as an array of individ
superconducting strips, where an interaction between scr
ing currents in different strips takes place.

In the present paper we have studied the possibility
applying a standard numerical technique to this kind of pr
lems. In particular the use of the commercially availab
finite-element~FE! code ANSYS ~Ref. 4! has been investi-
gated. As the first step the current and field distribution i
simple diamagnetic body~disk, strip! in a transverse field ha
been solved and compared with the classical magnetos
solution. As the second step, an infinite stack of strips
been considered and compared with existing theories
transverse field penetration.5 As the third step, regular array
of strips have been analyzed. As the last step, the real
ment configuration of the superconducting strips compos
a multifilamentary BiSrCaCuO-2223 tape has been stud
and the external susceptibility computed.

II. APPLICATION OF THE FE CODE ANSYS TO
MEISSNER SHIELDING PROBLEMS

Generally speaking, the Meissner shielding in superc
ductors is given by surface currents flowing in a surface la
of a given London depthl. From the magnetostatic point o
view, this situation can be studied solving the Lapla
equation6 Df50, for the magnetic scalar potentialf, de-
fined asH5“f, with suitable boundary conditions. Th
can be easily done in some cases involving the simple ge
etry derived from that of an ellipsoid, as we will see in t
next section. For more complex geometrical shapes, an
lytical solution could not be found. We can take advantage
the fact that codes exist to solve the Laplace equation for
geometrical arrangement of magnetic materials. Tho
these codes were developed for high-magnetic-permeab
material~such as iron!, we can try to apply them in shieldin
problems assuming that the magnetic permeability in the
terial is m r50, so thatB50 inside the material for any ap
plied fieldHa . In making this simplification of the problem
we have to stress two points

~i! The local field generated by the shielding currents c
be so high as to exceedHC1 , so that we have a local pen
etration of the magnetic flux. In the present paper, we
sume that the external field is so low that it never exce
HC1 .

~ii ! For ferromagnetic materials, the magnetization is p
duced by microscopic currents, while for superconduct
the shielding currents have a different nature. They are m
roscopic and can generate a fieldHi inside the materials, so
the magnetization is found as the difference between inte
field Hi and external fieldHe , the latter being defined a
Ha@1/(12D)# ~whereD is the demagnetizing factor!. How-
ever, for our aim, this only means that in using finite-elem
codes made for ferromagnetic materials, we have to take
that the dimensions of the considered superconducting s
tures are much larger than the London penetration depth

Provided that the two above points are taken into con
g
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eration, let us proceed to discuss the approach with the fin
element codes.

Generally speaking, we deal with a diamagnetic body
given dimensions and very low permeability (m r;10210)
immersed in a uniform magnetic fieldHa5Haz/z. We are
interested in information about the shielding current distrib
tion, field distribution, and magnetic susceptibility. As w
will see in the practical examples shown in the followin
sections, through a finite-element code we can obtainH
5H(r ) in a given network~nodes!. From knowledge of the
field on the body surface, we can compute the surface shi
ing currentJ(r ) using Ampère’s law. The magnetic momen
tum is then obtainable asm5 1

2 *r3J(r )dV, from which the
magnetic susceptibility is derived dividing it by the bod
volume and the applied field. In applying this process,
must pay attention to the problem symmetry. While for tw
dimensional~2D! axis-symmetric cases~disks, rotational el-
lipsoids! the magnetic momentum is completely determin
by the computedJ(r ) distribution, for a striplike geometry
analyzed with a 2D approach, we obtain only one-half of
true magnetic momentum and therefore multiply the o
tained magnetic momentum by a factor of 2. This is beca
the currents flowing at the far-away ends of the strip are
considered in our 2D calculation.

A self-consistency check here is done computing the
ergy of the system, which is a simple task when using
finite-element code. Actually, we can consider the ene
variation when a body of magnetic permeabilitym r is intro-
duced in a medium of magnetic permeabilitym0 immersed in
a uniform magnetic fieldHa . This energy variation is given
by6

DW52
1

2m0
E

VS

M•HadV, ~2!

whereVS is the volume occupied by the sample. Since in t
case of perfect shielding the magnetization of the body
constant, Eq.~2! can be rewritten as

DW52
1

2m0
MHaVS , ~3!

from which x0 can be calculated as

x052
M

Ha
5

DW

~1/2m0!Ha
2VS

5
DW

WS
. ~4!

We found that the values of the magnetic susceptibility c
culated using Eq.~4! and from the magnetic momentum
agree perfectly; thus, in the following sections, we do n
specify which of these two methods has been adopted.

III. DISK AND STRIP IN A TRANSVERSE FIELD

With the aim of finding how a transverse magnetic field
shielded by real multifilamentary tapes, we start analyzin
simple structure like disks and strips.

All the current theories about transverse field penetrat
in tapes are based on the Landau approach.7 The shielding
current distribution is calculated for an ellipsoid in the lim
of extremely thin thickness (R@d, where R and d/2 are,
respectively, the major and minor semiaxes!. For a diamag-
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netic disk placed in a uniform transverse magnetic fieldHa
5Haz/z, the current distribution averaged over the thickne
of the disk is

J~r,R!52
4

pd
Ha

r

AR22r2
, ~5!

and thez component of the field in thez50 plane is1

H~r.R!5HaH 11
2

p F 1

A~r/R!221
2sin21S R

r D G J . ~6!

Using Eq.~5!, one can find an expression of the magneti
tion and susceptibility:

M5
mz

4
3 pR2d/2

52
4

p
Ha

R

d
, x052

M

Ha
5

4

p

R

d
. ~7!

The current and field distribution given by Eqs.~5! and~6! is
valid also for a diamagnetic disk with a rectangular cro
section~radiusR and constant thicknessd!. Because of dif-
ferent sample volumes, we obtain now

M5
mz

pR2d
52

8

3p
Ha

R

d
, x052

M

Ha
5

8

3p

R

d
. ~8!

We have verified these expressions through theANSYS code
computingx0 and comparing with the values given in Eq
~7! and ~8! for different ratiosR/d, as shown in Fig. 2.
Though the agreement is quite good, for the disk we h
found some differences coming from the current paths.
fact, there are two contributions to the magnetic momen
m: one comes from the currents flowing on the upper a
lower surfaces of the disk (JUL) and a second one comin
from the side currents (JS). Starting from the field computed
by ANSYS, we have calculated the two current distributio
which the analytical solution, based on thin ellipsoid, can
take into account separately. Actually, even for the thinn
disks with a rectangular cross section, bothJUL and JS do
contribute to the magnetization. Figure 3 showsJUL , JS ,
andJE , the latter being the current density coming from E

FIG. 2. Comparison ofx0 analytically and numerically calcu
lated for a disk with an elliptical~major semiaxisR, minor semiaxis
d/2) and rectangular~radiusR, thicknessd! section as a function o
R/d.
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~5!, as a function of the polar angleu. It is striking that in
spite of such a difference in the distribution pattern the u
approximation gave reasonable results forx0 .

As the next step, let us consider a diamagnetic strip
infinite length in they direction and an ellipsoidal cross se
tion ~semiaxes L and d/2) in the xz plane, x2/L2

1z2/(d/2)251. A constant fieldHa is applied alongz. As
the first step, we have found the general analytical exp
sions for the current density and the magnetic field of
strip. Following the approach proposed by Landau a
Lifshitz7 for a rotational ellipsoid, the current distributio
averaged over the thickness of the strip can be found as

J~x,L !52
2a

d
Ha

x

Ak22x2
, ~9!

where

a5A11d/2L

12d/2L
and k25

L2

12~d/2L !2 .

We have also found an approximated expression
H(x.k):

H~x.k!511
2a

p F2arctanS 2L2

kd D
1

x

Ax22k2
arctanS 2L2

kd

Ax22k2

x D G . ~10!

Repeating the procedure outlined in calculating the susce
bility of disk, for a strip with a current distribution given b
Eq. ~9! one obtains the external magnetic susceptibility

x05
2aL

d
. ~11!

In the limit of a thin strip (d/2L→0, i.e.,a→1 andk→L)
this expression coincides with the solution used by Bran2

FIG. 3. Enlargement in the corner region of the current densi
JE , JUL , andJS as a function of the polar angleu. JE is the current
density of the rotational ellipsoid;JUL andJS are, respectively, the
upper~or lower! and side current densities of the rectangular cr
section disk.
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J~x,L !52
2

d
Ha

x

AL22x2
, ~12!

with the corresponding field distribution

H~x.L !5Ha

x

Ax22L2
~13!

and magnetic susceptibility:

x05
2L

d
. ~14!

Similarly as for the disks, we can extend the results obtai
for a thin elliptical strip to a rectangular one~width 2L and
constant thicknessd!. In this case

x05
p

2

L

d
. ~15!

A comparison of numerically and analytically calculatedx0
for elliptical and rectangular strips is given in Fig. 4. As f
disks, good agreement is found for the elliptical strip, wh
the slight difference in the rectangular strip case is again
to the fact that the magnetization is given by the two con
butions of surface and side currents.

IV. z STACK OF STRIPS

As a conclusion of the previous sections, we found thatx0
determined in a numerical way byANSYS for a strip or a disk
coincides with the corresponding analytical expression~8! or
~15!. This result allows us to apply the same approach t
set of striplike filaments. Let us consider az stack of strips as
shown in Fig. 5. Mawatari5 has given an elegant formulatio
of this problem in case of az stack made by an infinite
number of strips. In the following, we compare our nume
cal approach with his analytical results:

J~x,L !52
2

d
Ha

sinh~px/D !

Asinh2~pL/D !2sinh2~px/D !
, ~16!

FIG. 4. Comparison ofx0 analytically and numerically calcu
lated for rectangular and elliptical cross section strips as a func
of L/d.
d

e
-

a

-

H~x.L !5Ha

sinh~px/D !

Asinh2~px/D !2sinh2~pL/D !
, ~17!

from which x0 is calculated as

x05
D2

pLd
lnFcoshS pL

D D G . ~18!

These formulas are not valid for a finite number of strips
the stack. We can take advantage of our numerical appro
which allows calculating the magnetization for a stack co
sisting of an arbitrary number of strips. Differently from a
infinite stack, the magnetization now is not uniform, b
changes with respect to the position of strip in the sta
Representative values can be calculated either by avera
on all the strips (Mave) or for the central strip of the stac
(M cen). The latter should approach the result for an infin
stack by increasing the number of strips. This means
also for x0 we can obtain two different results:x0ave
52Mave/Ha andx0cen52M cen/Ha . For two different ge-
ometries, the dependence of numerically calculatedx0 on the
number of strips in the stack is given in Figs. 6~a! and 6~b!
together with the analytical formula for an infinite stack. A
expected,x0cen approaches the result for an infinite sta
when increasing the number of strips, whilex0ave represents
the real value of the magnetic susceptibility of the finitez
stack as a function of the strip number.

In order to compare different values ofx0aveas a function
of the geometrical parameters~L, d, and D!, it is useful to
normalize it in the range 0–1:

X0ave5
x0ave2x0~`!

x0~1!2x0~`!
, ~19!

wherex0(1) andx0(`) are, respectively, the magnetic su
ceptibility of one strip@Eq. ~15!# and of an infinite number of
strips@Eq. ~18!#. From a very general point of view, pilingn
strips with no gap in between (D5d), the susceptibility is
simply given by

x05
p

2

L

d

1

n
. ~20!

For this reason, it is not surprising to find that the normaliz
magnetic susceptibilityX0ave as a function of the number o
stripsn, is well fitted by a decreasing exponential:

n

FIG. 5. Arrangement of strip lines in az stack.



a

at
f

a

n
ach
istri-
of
on
in
-

ber
nts
t
ur-
the
nts

id
h.
t
o be
iza-

rips
es

n

n

PRB 61 6417MAGNETIC FLUX SHIELDING IN SUPERCONDUCTING . . .
X0ave5
1

na , ~21!

wherea should be close to unity. We have found that for re
conductors, whereL/d.5 andL/(D2d).20, a assumes a
constant value of about 0.8. Finally, it is possible to estim
the magnetic susceptibility of az stack when the number o
strips is greater than 1, but much less than infinity:

x0ave~n!'x0~`!1
x0~1!2x0~`!

n0.8 . ~22!

V. x ARRAY OF STRIPS

Let us now consider a plane array of diamagnetic strips
shown in Fig. 7. Following Mawatari’s approach,5 the cur-
rent density and magnetic field of an infinitex array are,
respectively,

FIG. 6. Dependence of a numerically calculatedx0 on the num-
ber of strips in thez stack together with an analytical formula for a
infinite stack for two different geometries:~a! L5100mm, d
510mm, D515mm; ~b! L5100mm, d52 mm, D520mm.

FIG. 7. Arrangement of strip lines in anx array.
l

e

s

J~x,L !52
2

d
Ha

sin~px/D !

Asin2~pL/D !2sin2~px/D !
, ~23!

H~x.L !5Ha

sin~px/D !

Asin2~px/D !2sin2~pL/D !
, ~24!

from which x0 is calculated as

x052
D2

pLd
lnFcosS pL

D D G . ~25!

For an x array consisting of a finite number of strips, a
analytical solution does not exist and a numerical appro
has to be used. One expects that the current and field d
bution will no longer be periodic. Then, the magnetization
the central strip will differ from the averaged magnetizati
of all the array, resulting in a corresponding difference
averaged susceptibilityx0ave and that calculated for the cen
tral strip,x0cen.

As is clear from Fig. 8,x0ave of an x array does not ap-
proach Mawatari’s expression when increasing the num
of strips. We think that this discrepancy is due to the curre
flowing at the strip sides (JS). In thex array each strip mus
shield the applied field plus the field generated by the c
rents in neighbor strips. The most efficient way to shield
extra field generated by the neighbor strips is by the curre
at strip sides. This causes the current distributionJ(u) to be
significantly different from the one derived for an ellipso
~with d→0) and put in the base of Mawatari’s approac
This problem was not found in thez stack because in tha
case the currents in neighbor strips decrease the field t
shielded and consequently the contribution to the magnet
tion of the currents flowing at the strip sides (JS) is de-
creased too.

As a consequence, we do not knowa priori the limit of
the averaged magnetic susceptibility for the number of st
which tends to infinity. In order to compare different valu

FIG. 8. Dependence of numerically calculatedx0 on the number
of strips in thex array together with an analytical formula for a
infinite stack, for a strip of dimensionsL550mm, d52 mm, D
5105mm.
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6418 PRB 61FABBRICATORE, FARINON, INNOCENTI, AND GÖMÖRY
of x0ave as a function of the geometrical parameters~L, d,
andD!, we can anyway normalize it to the magnetic susc
tibility of one strip x0(1):

X0ave5
x0ave

x0~1!
. ~26!

The functionX0ave should have the following behavior:

X0ave511
2

p
~b21! f ~n!, ~27!

where b represents the asymptotic value of the avera
magnetic susceptibility and could be calculated starting fr
Mawatari’s limit @Eq. ~25!# as

b'
x0~`!

x0~1!
, ~28!

and f (n) is a function ranging from 0 top/2 as n ranges
from 1 to `.

In Fig. 9,X0aveas a function of the number of strips,n, is
shown for different values ofL, d, andD. As expected, we
found that it is very well fitted by an expression similar
Eq. ~27!, at least for a reasonable number of strips:

X0ave511
2

p
~b21!arcsecS n1n* 21

n* D . ~29!

Nevertheless, the parameterb is different from Eq.~28!. We
have to take into account that Mawatari’s approach is va
in the limit d→0 and (D22L)→0. The first limit d→0 is
obvious and comes directly from the thin ellipsoid appro
mation. The second one (D22L)→0 comes from the con
sideration that the magnetic susceptibility of an infinitex
array should be much higher than that of a single strip:

2
D2

pLd
ln cos

pL

D
@

p

2

L

D
, with 0,

pL

D
<

p

2
. ~30!

That is true only ifpL/D'p/2, i.e.,D'2L.
This leads us to modify Eq.~28! to the empirical expres

sion

FIG. 9. Behavior of the normalized magnetic susceptibility of
x array as a function of the number of strips, for different st
geometries.
-

d

d

-

b5
x0~`!

x0~1!

D

2L

d1~D22L !

~D22L !
. ~31!

The functionf (n) is well represented by an arc secant fun
tion; in Eq.~29!, the parametern* gives information on how
fast the function converges to the asymptote. Surprisin
we have found thatn* is related tob, i.e., n* ;5b.

The fair agreement allows one to estimate the avera
magnetic susceptibility of anx array composed of a finite
number of strips.

VI. xz ARRAY

It is now interesting to apply the previous empirical rul
to a regular matrix of strips as shown in Fig. 10. Starti
from the magnetic susceptibility of one strip and by applyi
subsequently the reducing factor due to the stacking in thz
direction and the increasing factor due to the repeating in
x direction, we can suppose that the resulting magnetic s
ceptibility of the matrix is

x05x0~1!
f x

f z
, ~32!

where

f x511
2

p
~b21!arcsecS nx1n* 21

n* D ,

~33!

f z5
x0~1!

x0~`!1@x0~1!2x0~`!#/nz
0.8;

with nx the number of strips in thex direction andnz the
number of strips in thez direction,n* 55b, x0(1), x0(`),
andb as described, respectively, by Eqs.~15!, ~18!, and~31!.
Some results are summarized in Table I. We found tha
Dz2d&d and Dx22L&2L, the differences betweenx0
calculated byANSYS or using Eq.~32! are well under 10%.
For comparison, Table I includes also the magnetic susc
tibility calculated applying Eq.~15! to the overall dimensions
L̃ and d̃ of the strip array:

x0,ov5
p

2

L̃

d̃
5

p

2

~nx21!Dx12L

~nz21!Dz1d
. ~34!

It is clear that this last method applied to regular arrays
strips induces very large errors in the evaluation ofx0 .

VII. REAL MULTIFILAMENTARY TAPES

As the next step, let us consider two real multifilamenta
tapes with cross section shown in Fig. 11~a! ~36-filament

FIG. 10. Arrangement of a regular matrix of strips.
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tape8! and~b! ~19-filament tape9!. Modeling the filaments as
strips with a rectangular cross section, the current and fi
distributions have been calculated usingANSYS. In Figs.
12~a! and 12~b! the resulting flux lines are shown. The ca
culated~ANSYS! values for the susceptibility arex057.5 for
the 36-filament tape andx0534.6 for the 19-filament tape
The empirical rule in Eq.~32! can only be applied to the
36-filament tape, having a regular rectangularx-z array of
filaments, resulting inx054.0. Two main consideration
come from these results.

~i! A regular x-z array of filaments allows the field to
penetrate into the tape structure, causing relatively low v
ues of the magnetic susceptibility. This helps in limiting t
effect of the demagnetizing field and consequently the
losses. The 36-filament tape is a good example in

TABLE I. Comparison ofx0 calculated in different way for a
regular array of strips.

Geometry f x f z

x0

calculated
from

Eq. ~32!

x0

calculated
by ANSYS

x0

calculated
from

Eq. ~34!

L5100mm 1.599 2.599 4.832 4.651 18.326
d520mm

Dx5300mm
Dz525mm

nx55
nz55

L5100mm 2.324 2.917 12.515 13.182 23.338
d510mm

Dx5210mm
Dz515mm

nx55
nz55

L550mm 1.961 3.203 24.043 25.767 45.379
d52 mm

Dx5105mm
Dz54 mm

nx55
nz55

L5100mm 1.599 1.987 6.320 6.098 31.416
d520mm

Dx5300mm
Dz525mm

nx55
nz53

FIG. 11. Optical micrographs of two axially rolled 36-filame
(0.2232.0 mm2! ~a! and flat rolled 19-filament (0.14
32.5 mm2!, ~b! tape.
ld

l-

c
is

sense: in each 6-filamentz stack,x0 is decreased, compen
sating the increase ofx0 due to thex-array distribution. A
hexagonal filament structure or a disordered structure~where
no z stack is present as in 19-filament tape! constitutes a
barrier to field penetration, causing a dramatic increase of
magnetic susceptibility.

~ii ! Though the 36-filament tape has anx-z array struc-

FIG. 12. Flux lines of the two real conductors, 36-filament ta
~a! and 19-filament tape~b!.
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ture, we cannot apply Eq.~32! to predict with good accuracy
the value ofx0 , due to the irregularities of the array. In th
case we have to use the finite-element approach.

VIII. ac LOSSES

From a practical point of view, the regime of diamagne
shielding has not attracted great attention because it is
evant at very small magnetic fields only. In applicatio
counting on a high-current-carrying capacity of type-II s
perconductors with pinning, the critical state model10 ex-
plains well the fundamental electromagnetic properties
cluding ac loss. Systematic efforts lead to the derivation
ac loss formulas for the shapes that are close to the
sample: disk and strip.1,2 The ac loss density can be dete
mined according to Eq.~1! from the ac susceptibility:

x tape9 5
4

p

Bp

Ba
gS Bp

Ba
D , ~35!

xdisk9 5
2

p E
0

pF2SS Ba

Bp
D

1~12cosq!SS Ba

2Bp
~12cosq! D Gsinq dq,

~36!

whereBa is the peak applied field,Bp is the field at which
we have the full penetration of the sample,g(x)
5(2/x)ln coshx2tanhx, and

S~x!5
1

2x Fcos21S 1

coshxD1
sinhx

cosh2 xG .
Bp is defined as a function of the bulk critical current dens
Jc :

Br,disk5
m0Jcd

2
, Bp,strip5

m0Jcd

p
. ~37!

Often, the experimental data can be well fitted to these
mulas also in the case of real tape with a certain distribu
of filaments.11 Then, instead of trying to calculate the critic
state in a general multifilamentary tape, one can think
model it by an ‘‘effective’’ filament or disk. Then, for a
loss, we use one of these models with an appropriate pro
tionality constant for ac loss evaluation,x0 . According to
the tape complexity, the calculation ofx0 represents a dif-
ferent level of complications. Real dimensions of the sup
conducting core are to be put in the formulas forx0 in the
case of monocore tape. For a multifilamentary tape, the
tent of the magnetic coupling between individual filame
has to be established. In the case the filaments are uncou
the dimensions of one filament seem to be representative
,

s

l-

-

-
f
pe

r-
n

o

r-

r-

x-
s
ed,
n

the other hand, in the case of a strong magnetic interac
between filaments, the ‘‘effective’’ strip or disk should coin
cide with the dimensions and shape of the whole filament
zone. There is no model available to calculate the magn
coupling between filaments in a critical state. Then, we
as a valuable approximation the situation of diamagne
shielding. The external susceptibilityx0 is an integral char-
acteristic that reflects both dimensions and interfilament c
pling. In this paper, we demonstrated the importance of to
to compute the external susceptibility that scales the
losses and, as we have seen, can get very high values~35 for
the 19-filament tape!.

Concluding, though the analysis of the shielding curre
cannot be used to calculate the losses coming from b
current, it gives the much more important scaling factor
the losses.

IX. CONCLUSIONS

We have demonstrated that commercially available fin
element codes for magnetostatic problems can be applied
predicting the shielding in superconductors. This appro
has been checked in the shapes derived from a rotati
ellipsoid, for which analytical solutions are available. T
study of field shielding in a single strip of rectangular cro
section and by array of such strips in transverse field
shown the following.

~i! The shielding current distribution is different than
an ellipsoid. There is an important contribution to the ma
netization of current flowing at the sides of the strip. Ho
ever, the magnetic momentum calculated using the sur
and side currents in the strip~or the disk! is equal to the
momentum obtained considering the strip~disk! as an ex-
tremely thin ellipsoid.

~ii ! The approximation of thin ellipsoid fails when consid
ering anx array of strips, because of the large role of t
shielding currents flowing at the strips sides.

~iii ! Empirical formulas describing the magnetic suscep
bility of finite z stacks andx arrays of strips have been found
These formulas have been composed for predictingx0 of an
x-z array, giving in a simple way results that are within 10
of the values obtained by finite-element analysis.

~iv! Analysis of the shielding current and field distributio
in real multifilamentary tapes showed thatx0 grows consid-
erably when the filament structure does not form a regu
array.

~v! The external susceptibilityx0 scales the ac losses wit
a large factor~up to 35 in one of our tapes!. It can be com-
puted only through finite-element analysis when we hav
complex system like multifilamentary tapes. This factor is
important as the inner susceptibilityx9, for which several
good theoretical approaches, based on the critical s
model, exist.
s
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