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Vortex lines in films: Fields and interactions
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General expressions are given for the magnetic field and energy of arbitrary arrangements of straight and
curved vortices in an anisotropic superconductor film of finite thickness within anisotropic London theory. As
examples we consider the magnetic field and interaction of straight perpendicular vortex lines in films of finite
thickness.

[. INTRODUCTION recent papé€rthe magnetic field of a vortex inside a highly
anisotropic superconductor with a surface parallel toahe
The magnetic field and energy of arrangements of parallgblane and perpendicular to the vortex line, was derived from
or curved Abrikosov vortices in type-Il superconductors areanisotropic London theory and compared with experiments
conveniently calculated by the London theory. This linearusing a scanning superconducting quantum interference de-
theory has the advantage that the magnetic fi€ld and  vice microscope.
current densityj(r) are sums of individual vortex contribu- In the present paper we calculate the magnetic field and
tions, and the energy is a quadratic expressiot @nd j energy of arbitrary arrangements of curved or straight vorti-
which may be written as a double sum over the vortexces in a superconductor film of finite thicknes&om aniso-
positions! In addition, the London theory is easily general- tropic London theory. To do this we shall use the general
ized to anisotropic superconductors by replacing the isotrorecipe described in Ref. 8.
pic penetration depth by three penetration depths,, Ay, First, the boundary condition that no current leaves the
and\., where\,=\p=\,p in uniaxial symmetry. London surface is satisfied by adding to the magnetic field of the real
theory assumes all vortex cor@sf radius~ &, the coherence vortices inside the film, the field generated by appropriate
length to be well separated and the Ginzburg-Land@i.) image vortices located outside the film. The sum of these two
parameterc=2\/{>1 to be large. fields inside the film satisfies the London equation with the
The general solution of London theory for arbitrary vortex correct vortex singularities, its currents at the surface flow
arrangements that have been given so far, apply only to inparallel to the surface, and its parallel field component is
finitely large superconductors, or to vortices far away fromzero at the surface. The perpendicular field component, how-
the specimen surface. In the present paper we generaliayer, is discontinuous at the surface since the vortex and
these expressions to the presence of two parallel surfaceispage fields are valid only inside the superconductor. There-
i.e., to infinite superconductor films or plates of arbitraryfore, one has to add a third field, which compensates this
thicknessd. discontinuity and makes the magnetic field continuous across
The problem of perpendicular vortices in a very thin film the surface. This third field satisfies the Laplace equation
(d<\) was solved first by Pedrfor vortices perpendicular V2b=0 outside the superconduct@uter stray fieliland the
to the film. Such vortices interact mainly via their stray field, homogeneous London equatiSib=\ ~2b inside the super-
which extends far into the vacuum and which in the film conductor(inner stray fielgdh One may say that outside the
causes a current densitythat decreases asrlat large dis- film this third field is the stray field caused by a layer of
tances. The force between two such Pearl vortices with onemagnetic monopoles on the surface of the superconductor. A
quantum of flux®, is unscreened and of long randgeh,d  general expression for this “magnetic surface charge” den-
«1/r. Pearl’'s theory of “pancake vortices” has been gener-sity is given in Sec. Ill.
alized to arrangements of parallel thin superconducting lay- This stray field in general has also a parallel component at
ers by Clent who presented an elegant description ofthe surface, which causes the vortex field to widen like a
strongly anisotropic layered superconductors, e.g., fiigh- trumpet when it approaches the surface, see Fig. 1. In addi-
superconductors. The interaction between straight vortices ition, there may be a widening also of the vortex ctie
films of finite thickness was calculated in Refs. 4 and 5.  tube of suppressed superconducting order paraimetaich
The stray field outside a film containing vortices shouldwas calculated from GL theory in Ref. 6. But for large
be known for comparison with data obtained by various ex=>1 this core widening only changes the cutoff of the loga-
perimental methods. In Ref. 6 the magnetic field and orderithmic singularity of the vortex field and should thus be
parameter of one vortex in a superconducting half space wadifficult to observe at distances larger than sevérabm the
calculated from GL theory for comparison with scanning-surface.
tunneling-microscopy data, but the contribution of the inner To fix ideas, we give here the magnetic field of a single
stray field (see below was overlooked in that work. In a straight vortex centered on tleaxis (at x=y=0) in a su-
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with g(k,z) = —df(k,z)/9z and

f(k2)=——e™¥, 750
(k)= e 20,

k
_1_ 7Z
f(k,2)=1 . =0, (7)

where 7= Jk?+ X2 and Jo(x) andJ;(x) are Bessel func-
FIG. 1. Magnetic field lines of a straight vortex in a supercon-tions. In this section we use the notatiom (x,y), r=rlr,
ducting half space. London theory=20. The dashed lines give k:(kkay), and k2:k§+ kf,. The unity in Eq.(7) stems
the radial field lines of a magnetic charge of size2positioned on  from the vortex and its image, which together yield the field
the vortex axis at a depth-zo=\ (left half, the far field and  of an infinite straight vortex. The other terms stem from the
—2zp=1.27 (right half, a better fit to the near figldThe lower plot 5 ter and inner stray field. The finite vortex core may be
enlarges the center of the upper plot. considered by inserting a cutoff factor expk?) in Egs.
(4)—(6) (Ref. 1) or, more accurately, by replacing the vari-
abler by \r?+2&2. This Clem modél for the vortex core
was confirmed to be a very good approximation to the exact
numerical solution of the GL theory for periodic vortex
lattices?® Various cutoffs are discussed in detail in Ref. 11.
Figure 1 shows the magnetic field lines of this vortex
inside and outside the superconductor, plotted as contour
lines of rA(r,z) with quadratic level spacintf. The dashed
(1) lines in the left half of Fig. 1 show the field of a magnetic
monopole of strength @, positioned atx=y=0, z=z,=
\. This radial field,b=—V®(r) with &=(dq/27)[x>
y2+(z—20)%] Y2, describes the field far above the super-
conductor, cf. Sec. Ill and Ref. 7. Interestingly, the field
closer to the vortex tip is much better fitted by chooszg
=—1.27\, see the dashed lines in the right half of Fig. 1.
The same expressiof¥)—(6) apply also to the vortex in a
and VX VXA=0 in the vacuum. The current density, too, thin film of finite thicknessd, filling the space—d=<z<0,

has only ap component;j =,u51V>< b={oj(r,z) with but now one hassee Sec. Il

perconducting half spader very thick film) and in a film of
arbitrary thicknessl surrounded by vacuum. In this cylindri-
cal geometry, the magnetic fielo=V X A conveniently fol-
lows from a vector potential, which has onlysacomponent,
A=A(r,2) [r=X2+Yy? @=arctany/x)] yielding the two
field components

J 190
b,(r,z)=——=A, Dby(r,z)=- T a—r(Ar).

0z

The vector potential inside the superconductor satisfies th§r
modified London equation

P

V><V><A=7\‘2(
2r

&a—A), (2)

ce ¥, z>0
1+ce™+cqe” ™,
Clek(z+ d)

g
. _ -2 o
](rlz)_MO)\ |:27Tr A(r,Z)

. (3

f(k,z)= —d=z=<0 (8)

z<—d,
For a superconductor filling the half spaee<O and

vacuum atz>0, one finds by the method of Ref. 8, with
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FIG. 2. Magnetic field lines of
a straight vortex in superconduct-
ing films of various thicknesses
d/A=0.5, 1, 2, 4. London theory,
xk=20. The film occupies the
space—d=<z=<0.
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cl(k):[(k+T)e7d+(k—r)e—fd—2k]c—, v(k)=fd3re""‘rv(r). (10)

4
Since vortex lines form closed loops or lines that begin and
terminate at the film surfaces one h&s »(r)=0 or k
-v(k)=0. For vortex lines with vanishing core diameter,

v(K) is given by a sum of line integrals along the vortices,

k
Cao(k)=[k—7—(k+ T)efd]c—,
4

k
C3(k):[—k—7+(k—7’)677d]cf4, V(k)=z jg dl.elk T
- ] '
J

(11)

ca(k)=(k+7)%e™— (k—7)%e" ™ (9)

Inside the film the magnetic field™™(r) satisfies the aniso-

. . ) tropic London equation,
One easily verifies that-tc,+c3=c,, as required by con-

tinuity of b at z=0 and z=—d, and thatf(k,z)=f(k,d

—Z2) as required by symmetry. Our Ed8) and(9) are iden-

tical to the bulky Eqs(4)—(11) of Ref. 5. The magnetic field where the tensorA is given by Ap=AN,b,5 (a,B

lines of this vortex are shown for films of various thicknesses=x,y,z) with A,=A 7)\2b and A, >\2 Outside the film,

in Fig. 2. assuming vacuum, the magnetic fleld can be derived from a
scalar potential that satisfies the Laplace equation, that is

VX[A(Vbeilm)]+bfilm:(;501/, (12)

Il. GENERAL SOLUTION
b= —V®d, V2d=0. (13

In this section we derive general expressions for the mag-
netic field and energy of arbitrary arrangements of straight ofhe boundary conditions at the surfaces between the super-

curved vortices in a superconducting film of thicknets
with planar surfaces parallel to each other and to xlge
plane, occupying the region d<z=<0. The superconductor
is assumed to be anisotropic, with tbexis alongz, and is
characterized by the penetration depthg and\ . for cur-
rents parallel and perpendicular to tk plane, respectively.

Any configuration of vortex lines in the film is character-
ized by a vectorial vorticity distributiomn(r) or its Fourier
transformp(k) (Ref. 13 defined as

conductor and the vacuunz€0 andz=—d) are that the
perpendicular component of the current vanishes and that the
magnetic field is continuous.

We solve the London equation, Ed.2), by the method of
images introduced in Ref. 8. First a vortex distributigt(r)
is defined in all space{x<z<®) such that the current
generated by it does not cross the film surfaces and that
inside the film the vorticity is prescribed. As shown in Ref.
8, v"' consists of the vortex distributiom and its specular
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2dl : 07k, km) = Ge(Ko oK) 27 (K ki),
2 Ty by(k. k) =gi(ke k)Y (K, k), (18)
’ where we have defined longitudinal and transverse compo-
d 1 nents
{‘\~ . . . .
0 > by" (k) =kyby (k) + kyby'(k) = —kb3'(k),
_ |// film Vi _ Vi _ Vi
d by (k) =kyby (k) —kyb, (k), (19

FIG. 3. Periodic arrangement of a distorted vortex ligelid ~ and similarly fory" and»}". Theg functions in Eqs(18) are
line) and its images(dashed linesfor a film. Two periods are given by
shown for this example.

$o

images. For our film this distribution is periodic in ttze 9i(k)= 1+K2\2, (20
direction with period 2, see Fig. 3. For the basic interval ab
—d=<z=d one has &
_ 0
]}Vi(r):l/(r), _dgzgoy gt(kj_!kz)_ 1+kf}\§+k§)\§b (21)

vf(x,y,z)z -y, (xy,—2), 0=z=d,

P(X,y,2)=ry(x,y,—z),0=z<d,

(14

To obtain the field'® and b¥2¢ (the inner and outer
stray field$ in terms of the vortex distribution we solve,
respectively, the homogeneous London equation and Laplace
equation and require that the magnetic field is continuous at

where L stands for the vector component parallel to ¥  the film surfaces. The results are
plane. The magnetic field inside the film is then
2

pfim = pVi 4 pstray (15) bitray(r): f jﬂ; ik kK. [y e?+y e ™,

Hereb"' is the field produced by the vortex distribution and

its images and is obtained by solving London equation in all

space with#"'(r) as the field source. The stray field inside bi"ay(r)zf
the film, b, is a solution of the homogeneous London

equation. As shown in Ref. ¥ s required to maké&"'™
continuous at the film surfaces.

The fieldb" is more conveniently expressed in terms of 42K
Fourier transform$ Sincer"'(r) is periodic in thez direction bvaqr) = f —le”‘iﬂ[ikl—kli]qﬁe*kﬂ,
with period 2, so is the field produced by ib"'. Thus, its 4m?

Fourier transform, defined as in EQL0), is nonvanishing
only for discrete values ofk,=kp,=mn/d, m=0,~1, z=0,
+2,.... TheFourier transform of"'(r) is given by

d%k, . K
elkL-rLT[,ereTZ_,y*e*TZ], (22)

2k
472
where —d=<z=<0 andr= \k?>+\,Z, and

val dsz— ik, T 51 40—k Z
b¥aqr)= py e ilik, +k, z]p e’

) : d : i
v"'(kL,km)=ferLe"kL’ij dze *m?pVi(r, 2). 2

(16) z<—d. (23)
Using Eqs(14), »/'(k, k) can be expressed in terms of the The coefficientsy and ¢ are
vortex distribution inside the film as

oy A = e - Bk, +7)]
¥ (k)= < ,

. : 0
vf(kl,km)=f dzrie"krﬂf_ddz

[A(k, +7)e™=B(k,—7)]
(—2i)sin(km2) v, (1, ,2), 7+(kl)=7 - Tklc SERLEY (24

V\zli(ki ,km):f erLe*ikLrl‘[O dz ¢+(kl):(T/le)
- X {—2k, B+[(k, +7)e™+(k, — r)e” 1A},

2c08Kmz) v,(r, ,2). 17
The fieldb" is then given by

¢ (k)=(— Tekid/klc)
X{—2k, A+[(k, + 7)™+ (k, — )e”™M]B},
by'(k, . km)=0i(k; ,km) )" (K km), (25)
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where 1 d2k, kf
—d 2_ ard 2 Esray=5 0 2 7
C(k)=e ™(k, —7m)*—e™(k +7) (26) Mol 4m® T
[cf. Eq.(9)] and.A and B are given by X[(1—e 2™)|y* 2+ (e~ 1|y |?], (34
and
1 Vi
Alk) =55 2 itk km vk, k), (27)

1 (d%k,
E :—f k (e” 29 p 12+ |p"|?). (35
v~ g | a2 1 ( ¢~ [>+]107]%). (35

1 4 .
Bky) =55 2 e "nlgi(ky k) vy (ky kp).  (28)
m lIl. STRAIGHT VORTEX LINES

According to Eqs(18) and(19), A and B are, respectively, As an application of the general results discussed above
the Fourier transforms db)'(r) at the surfaceg=0 andz  we consider straight vortex lines perpendicular to the film
=—d. These functions describe two surface layers of magsurfaces. For any distribution of such lines, the vorticity
netic monopoles, or magnetic surface charges, which gener'(r) has only az component and is independentzfThus,
ate the inner and outer stray fields. Note that becauseg,of according to Eq(14),
=ma/d one has in Eq(28) exp(—ik,d)=(—1)"

The total energy of the vortex distribution can be written

as V(K ) =20k [ @7 €% ur,), (30

where 5 denotes the Kronecker delta function. The field of
these vortex lines and of their images has only @mpo-

whereEg, is the sum of the kinetic energy of the supercur-nent, is independent o, and is related toy by Eq.(18).
rents and of the magnetic field within the film, agl.is the ~ According to Eq.(28), the coefficientsA and 5 are equal

E=Efim+ Evac (29)

energy of the magnetic stray field in the vacuum, since only the ternk,=0 contributes. In this casg and ¢
from Egs.(24) and (25) reduce to
1 0
Eﬂ :_f dzrlf dZ +
iim 2/.L0 —d ,y+=_e7'd,y7, 'y7= ¢ ¢7=—ede¢+,

1_e7d’

befilm A befilm + bfilm)2 ,

L A a ] N (k, +7)e™+(k, —7)e” -2k,
¢ =Ar k.C .

The expressions for the energig;, Egyay, andE, ;e Sim-
(30)  plify considerably in this caseE,; is just the total energy
(per thicknessl) of the vortex-line distribution calculated as
if the lines were infinite, and ., andE, . read

(37

1 ® —d
Evaczz—luof d’r, fo dz(b"a§2+fwdz(b"a°)2}.

Inserting Eq.(15) in Eq. (30), and using the boundary con-
ditions it follows that, as shown in Ref. 8, the cross terms
(containing bothbY' andbs'™) vanish andEg,, can be writ-

1 ( d%, k%coth 7d/2)
ten as stray:_f : |6" 2,
Mot A T
Efim=Euit Estraya (31 )
1 (dk
whereE,; is the energy of vortex-vortex and vortex-image Eyacm— f ;kl| b2 (38)
interactions andE,, is the London energy of the stray field HoJ A
within the film and its currents. Using Egél8), (22), and L )
(23) we find that Next we calculate the magnetic field of a single vortex
line passing through the origin. In this case one has
#5 [ d%k, 1 4 vi _
| S 55 S S Gutk, kel ik, Kl V2 (Ko k) =200 (k). 39
32 and
wherea=x,y,z and i $o
o (K, ki) = 208y () — o,
1+KINSp
Gy(k)=Gy(K)= ————5—,
=G 0= e, %o

= . 40)
I (
1+k2\2

(33 The magnetic field)gi is just that of an infinite vortex line.

Ga(k)= 2y 2 232 1,2y 2 ' ) Lz . .
(1+KNZp) (L+KING+KAS) The stray fields inside the film and in the vacuum follow
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from Eqgs.(22) and(23), using Eqs(37) and Eqs(40). The
expressions thus obtained are presented in &js(6) and
(8) and are in agreement with the results of Ref. 5.

Now we consider the multipole expansion bf2{r),
which is useful at large distances from the film. We write

z 3z°—
‘D(r)—%+Q2_3+Q4 5

(41)

wherer = (x>+y?+ z%) 12 is the distance from the origin and
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guanta of flux as can be seen from Eq4.1) and(44) yield-
ing a potential® (r)=(2®y/4mr)(1—2z\/r?). The factor 2
in 2d, comes from the fact that the magnetic field lines of a
vortex emerging at a planar surface and carrying a dhyx
can spread only into théalf space above the supercon-
ductor, i.e., over a solid angle of2 As opposed to this, the
field lines of a“free” magnetic monopole realized at the tip
of a long thin coil or a ferromagnetic whisker, can spread
over thefull solid angle of 4r.

The vacuum stray field can also be thought as resulting

Qo. Q2 andQ, are, respectively, the monopole, dipole andfrom a surface density of magnetic charge. It follows from
quadrupole moments. To show this and to obtain the moEgs.(42) and from the identity Eq(46) that the charge den-

ments we proceed as follows. According to E¢(33), the
vacuum stray field foz>0 is given by

bVa= -V o,
d’k,
(D(r)z—f ;e'kNiqS*e*kﬂ, z=0. (42
4
First we expandg ™ in Eq. (42) for smallk, . Using Egs.
(37), (40), and(26) we find
+ 27 2
¢(kl)=—E(Qo+szL+Q4kL+'~-), (43
with
o
QO 27
boNap
Q= ——coth(d/2x4)
o\
Q= ) COd/2Ngp) ] (44)
Next we insert in Eq(42) the identities
O',nekaz
n—kz_/__
Kle ti=(-1)"———, (45
j del eikl-rikaZ d3k eik~r 1
=2f = . (46
(2m)? ki (2m)® k& 2w 49

Carrying out the derivatives with respectzave obtain Eq.
(41).

The multipole expansion converges rapidly for\ in
films that are not too thind=<\) and forr>\?/d in thin

films. For bulk samplesd>\) containing one vortex at the

origin, the multipole moments ar€g,= ¢o/27m, Q,=
—-¢0k/2ﬂ'and(?4

nating at the surface parallel to tleec plane. An identical
field exists in the vacuum faz<<—d, with r interpreted as
the distance to the vortex core emergingzat—d.

0. This result is similar to that obtained ©
in Ref. 7 for the vacuum stray field of a vortex line termi-

sity at thez=0 surface is the Fourier transform of* (k,)
=k, ¢"(k,)/2m. This result is not restricted to a single
straight vortex line, but is valid for any distribution of vorti-
ces in the film. A similar surface charge density exists on the
z=—d surface with¢" replaced byg .

Next we calculate the energy of interaction of a pair of
straight vortex lines perpendicular to the film surfaces, one at
the origin and the other one displaced from it by a ve®or
along thexy plane. In this case the vorticity contains two
terms,

V?(kL!

k) =28k (k) (1+e7 "0 R), (47)

yielding

¢ —ik, ‘R

LR, 48
Ty K2A2, e, ) 49
The contribution to the interaction energy froR,; is just
that of two infinite vortex lines, namely,

Eint_ ¢%d

= Ko(R/N).
Vi 277)\2/1«0 0( )

(49)

The interaction energies from the stray field and current in
the film and from the vacuum stray field are given, respec-
tively, by the R-dependent part of Eq$34) and (35), using
Eqgs.(48) and. A= B. We find that the large-distance behavior
of these quantities can also be expressed in terms of the
multipole moments of a single vortex as

4772A(?d32
Mo R®

e 47 Q3 N\?Q5+2Q0Qq

vac_m R - R3 (50
The monopole contribution iE",

btained by Peaf.

is just the classical result

IV. CONCLUSIONS

In conclusion, we derived general expressions for the

This result means that at large distances from a thick filnmagnetic field and energy of arbitrary arrangements of vor-
containing one vortex, the magnetic field looks as if it wouldtices in a superconducting film or plate of thicknessatis-
originate from a magnetic monopole located inside the sufying the uniaxially anisotropic London theory with the

perconductor at a depthQ,/Qo|=\, see Fig. 1. The
strength of this monopolér magnetic chargds 2, (two

axis perpendicular to the film. This general solution is com-
posed of contributions of the vortices and their images and of
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an inner and outer stray field, which is caused by the surfacefon between two vortices may be expressed in terms of the
of the film. The energies of the vortex and stray field termsmonopole, dipole, and quadrupole moments of each vortex.
contribute separately, i.e., there are no mixed terms. As an
example, we consider straight vortices perpendicular to the
film and present figures of the magnetic field lines of one
straight vortex inside and outside films of various thick- This work was supported in part by CNPq-BiasiBra-
nesses. The magnetic field far from the film and the interaczil, and by DAAD-Bonn, Germany.
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