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Vortex lines in films: Fields and interactions
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General expressions are given for the magnetic field and energy of arbitrary arrangements of straight and
curved vortices in an anisotropic superconductor film of finite thickness within anisotropic London theory. As
examples we consider the magnetic field and interaction of straight perpendicular vortex lines in films of finite
thickness.
ll
r
a

-

te
l-

tro

ex
i
m

al
c
ry

m
r
ld
lm

n

er
lay
o
-
s

ld
ex
de
w
g
e

ly

om
nts
de-

and
rti-

ral

the
eal
ate
two
he
ow
is

ow-
and
re-

this
oss
ion

e
of
r. A

en-

t at
a

ddi-

a-
e

le
I. INTRODUCTION

The magnetic field and energy of arrangements of para
or curved Abrikosov vortices in type-II superconductors a
conveniently calculated by the London theory. This line
theory has the advantage that the magnetic fieldb(r ) and
current densityj „r … are sums of individual vortex contribu
tions, and the energy is a quadratic expression ofb and j
which may be written as a double sum over the vor
positions.1 In addition, the London theory is easily genera
ized to anisotropic superconductors by replacing the iso
pic penetration depthl by three penetration depthsla , lb ,
andlc , wherela5lb5lab in uniaxial symmetry. London
theory assumes all vortex cores~of radius'j, the coherence
length! to be well separated and the Ginzburg-Landau~GL!
parameterk5l/j@1 to be large.

The general solution of London theory for arbitrary vort
arrangements that have been given so far, apply only to
finitely large superconductors, or to vortices far away fro
the specimen surface. In the present paper we gener
these expressions to the presence of two parallel surfa
i.e., to infinite superconductor films or plates of arbitra
thicknessd.

The problem of perpendicular vortices in a very thin fil
(d!l) was solved first by Pearl2 for vortices perpendicula
to the film. Such vortices interact mainly via their stray fie
which extends far into the vacuum and which in the fi
causes a current densityj that decreases as 1/r at large dis-
tancesr. The force between two such Pearl vortices with o
quantum of fluxF0 is unscreened and of long range,j F0d
}1/r . Pearl’s theory of ‘‘pancake vortices’’ has been gen
alized to arrangements of parallel thin superconducting
ers by Clem,3 who presented an elegant description
strongly anisotropic layered superconductors, e.g., highTc
superconductors. The interaction between straight vortice
films of finite thickness was calculated in Refs. 4 and 5.

The stray field outside a film containing vortices shou
be known for comparison with data obtained by various
perimental methods. In Ref. 6 the magnetic field and or
parameter of one vortex in a superconducting half space
calculated from GL theory for comparison with scannin
tunneling-microscopy data, but the contribution of the inn
stray field ~see below! was overlooked in that work. In a
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recent paper7 the magnetic field of a vortex inside a high
anisotropic superconductor with a surface parallel to theac
plane and perpendicular to the vortex line, was derived fr
anisotropic London theory and compared with experime
using a scanning superconducting quantum interference
vice microscope.

In the present paper we calculate the magnetic field
energy of arbitrary arrangements of curved or straight vo
ces in a superconductor film of finite thicknessd from aniso-
tropic London theory. To do this we shall use the gene
recipe described in Ref. 8.

First, the boundary condition that no current leaves
surface is satisfied by adding to the magnetic field of the r
vortices inside the film, the field generated by appropri
image vortices located outside the film. The sum of these
fields inside the film satisfies the London equation with t
correct vortex singularities, its currents at the surface fl
parallel to the surface, and its parallel field component
zero at the surface. The perpendicular field component, h
ever, is discontinuous at the surface since the vortex
image fields are valid only inside the superconductor. The
fore, one has to add a third field, which compensates
discontinuity and makes the magnetic field continuous acr
the surface. This third field satisfies the Laplace equat
¹2b50 outside the superconductor~outer stray field! and the
homogeneous London equation¹2b5l22b inside the super-
conductor~inner stray field!. One may say that outside th
film this third field is the stray field caused by a layer
magnetic monopoles on the surface of the superconducto
general expression for this ‘‘magnetic surface charge’’ d
sity is given in Sec. III.

This stray field in general has also a parallel componen
the surface, which causes the vortex field to widen like
trumpet when it approaches the surface, see Fig. 1. In a
tion, there may be a widening also of the vortex core~the
tube of suppressed superconducting order parameter!, which
was calculated from GL theory in Ref. 6. But for largek
@1 this core widening only changes the cutoff of the log
rithmic singularity of the vortex field and should thus b
difficult to observe at distances larger than severalj from the
surface.

To fix ideas, we give here the magnetic field of a sing
straight vortex centered on thez axis ~at x5y50) in a su-
6370 ©2000 The American Physical Society
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PRB 61 6371VORTEX LINES IN FILMS: FIELDS AND INTERACTIONS
perconducting half space~or very thick film! and in a film of
arbitrary thicknessd surrounded by vacuum. In this cylindr
cal geometry, the magnetic fieldb5“3A conveniently fol-
lows from a vector potential, which has only aw component,
A5ŵA(r ,z) @r 5Ax21y2, w5arctan(y/x)] yielding the two
field components

br~r ,z!52
]

]z
A, bz~r ,z!52

1

r

]

]r
~Ar !. ~1!

The vector potential inside the superconductor satisfies
modified London equation

¹3¹3A5l22S F0

2pr
ŵ2AD , ~2!

and ¹3¹3A50 in the vacuum. The current density, to
has only aw component,j5m0

21¹3b5ŵj (r ,z) with

j ~r ,z!5m0l22F F0

2pr
2A~r ,z!G . ~3!

For a superconductor filling the half spacez<0 and
vacuum atz.0, one finds by the method of Ref. 8,

FIG. 1. Magnetic field lines of a straight vortex in a superco
ducting half space. London theory,k520. The dashed lines give
the radial field lines of a magnetic charge of size 2F0 positioned on
the vortex axis at a depth2z05l ~left half, the far field! and
2z051.27l ~right half, a better fit to the near field!. The lower plot
enlarges the center of the upper plot.
e

A~r ,z!5F0E d2k

4p2

2 ik• r̂

k2

eik•r

11k2l2
f ~k,z!

5
F0

2pl2E
0

`

dk
J1~kr !

k21l22
f ~k,z!, ~4!

br~r ,z!5F0E d2k

4p2

2 ik• r̂

k2

eik•r

11k2l2
g~k,z!

5
F0

2pl2E
0

`

dk
J1~kr !

k21l22
g~k,z!, ~5!

bz~r ,z!5F0E d2k

4p2

eik•r

11k2l2
f ~k,z!

5
F0

2pl2E
0

`

dk
kJ0~kr !

k21l22
f ~k,z!, ~6!

with g(k,z)52] f (k,z)/]z and

f ~k,z!5
t

k1t
e2kz, z.0,

f ~k,z!512
k

k1t
etz, z<0, ~7!

wheret5Ak21l22 and J0(x) and J1(x) are Bessel func-
tions. In this section we use the notationr5(x,y), r̂5r /r ,
k5(kx ,ky), and k25kx

21ky
2 . The unity in Eq. ~7! stems

from the vortex and its image, which together yield the fie
of an infinite straight vortex. The other terms stem from t
outer and inner stray field. The finite vortex core may
considered by inserting a cutoff factor exp(2j2k2) in Eqs.
~4!–~6! ~Ref. 1! or, more accurately, by replacing the var
able r by Ar 212j2. This Clem model9 for the vortex core
was confirmed to be a very good approximation to the ex
numerical solution of the GL theory for periodic vorte
lattices.10 Various cutoffs are discussed in detail in Ref. 1

Figure 1 shows the magnetic field lines of this vort
inside and outside the superconductor, plotted as con
lines of rA(r ,z) with quadratic level spacing.12 The dashed
lines in the left half of Fig. 1 show the field of a magnet
monopole of strength 2F0 positioned atx5y50, z5z05
2l. This radial field,b52¹F(r ) with F5(F0/2p)@x2

1y21(z2z0)2#21/2, describes the field far above the supe
conductor, cf. Sec. III and Ref. 7. Interestingly, the fie
closer to the vortex tip is much better fitted by choosingz0
521.27l, see the dashed lines in the right half of Fig. 1

The same expressions~4!–~6! apply also to the vortex in a
thin film of finite thicknessd, filling the space2d<z<0,
but now one has~see Sec. III!

f ~k,z!5H c1e2kz, z.0

11c2etz1c3e2tz, 2d<z<0

c1ek(z1d), z,2d,

~8!

with

-
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FIG. 2. Magnetic field lines of
a straight vortex in superconduc
ing films of various thicknesses
d/l50.5, 1, 2, 4. London theory
k520. The film occupies the
space2d<z<0.
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c1~k!5@~k1t!etd1~k2t!e2td22k#
t

c4
,

c2~k!5@k2t2~k1t!etd#
k

c4
,

c3~k!5@2k2t1~k2t!e2td#
k

c4
,

c4~k!5~k1t!2etd2~k2t!2e2td. ~9!

One easily verifies that 11c21c35c1, as required by con-
tinuity of b at z50 and z52d, and that f (k,z)5 f (k,d
2z) as required by symmetry. Our Eqs.~8! and~9! are iden-
tical to the bulky Eqs.~4!–~11! of Ref. 5. The magnetic field
lines of this vortex are shown for films of various thickness
in Fig. 2.

II. GENERAL SOLUTION

In this section we derive general expressions for the m
netic field and energy of arbitrary arrangements of straigh
curved vortices in a superconducting film of thicknessd,
with planar surfaces parallel to each other and to thexy
plane, occupying the region2d<z<0. The superconducto
is assumed to be anisotropic, with thec axis alongz, and is
characterized by the penetration depthslab andlc for cur-
rents parallel and perpendicular to theab plane, respectively

Any configuration of vortex lines in the film is characte
ized by a vectorial vorticity distributionn(r ) or its Fourier
transformn(k) ~Ref. 13! defined as
s

g-
r

n~k!5E d3re2 ik•rn~r !. ~10!

Since vortex lines form closed loops or lines that begin a
terminate at the film surfaces one has“•n(r )50 or k
•n(k)50. For vortex lines with vanishing core diamete
n(k) is given by a sum of line integrals along the vortice

n~k!5(
j

R dl je
ik•r j . ~11!

Inside the film the magnetic fieldbfilm(r ) satisfies the aniso
tropic London equation,

¹3@L~¹3bfilm!#1bfilm5f0n, ~12!

where the tensorL is given by Lab5Ladab (a,b
5x,y,z) with Lx5Ly5lab

2 andLz5lc
2 . Outside the film,

assuming vacuum, the magnetic field can be derived fro
scalar potential that satisfies the Laplace equation, that i

bvac52¹F, ¹2F50. ~13!

The boundary conditions at the surfaces between the su
conductor and the vacuum (z50 andz52d) are that the
perpendicular component of the current vanishes and tha
magnetic field is continuous.

We solve the London equation, Eq.~12!, by the method of
images introduced in Ref. 8. First a vortex distributionnvi(r )
is defined in all space (2`,z,`) such that the curren
generated by it does not cross the film surfaces and
inside the film the vorticity is prescribed. As shown in Re
8, nvi consists of the vortex distributionn and its specular
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PRB 61 6373VORTEX LINES IN FILMS: FIELDS AND INTERACTIONS
images. For our film this distribution is periodic in thez
direction with period 2d, see Fig. 3. For the basic interva
2d<z<d one has

nvi~r !5n~r !, 2d<z<0,

n'
vi~x,y,z!52n'~x,y,2z!, 0<z<d,

nz
vi~x,y,z!5nz~x,y,2z!,0<z<d, ~14!

where' stands for the vector component parallel to thexy
plane. The magnetic field inside the film is then

bfilm5bvi1bstray. ~15!

Herebvi is the field produced by the vortex distribution an
its images and is obtained by solving London equation in
space withnvi(r ) as the field source. The stray field insid
the film, bstray, is a solution of the homogeneous Londo
equation. As shown in Ref. 8,bstray is required to makebfilm

continuous at the film surfaces.
The field bvi is more conveniently expressed in terms

Fourier transforms.1 Sincenvi(r ) is periodic in thez direction
with period 2d, so is the field produced by it,bvi. Thus, its
Fourier transform, defined as in Eq.~10!, is nonvanishing
only for discrete values ofkz5km[mp/d, m50,61,
62, . . . . TheFourier transform ofnvi(r ) is given by

nvi~k' ,km!5E d2r'e2 ik'•r'E
2d

d

dze2 ikmznvi~r' ,z!.

~16!

Using Eqs.~14!, n'
vi(k' ,km) can be expressed in terms of th

vortex distribution inside the film as

n'
vi~k' ,km!5E d2r'e2 ik'•r'E

2d

0

dz

~22i !sin~kmz!n'~r' ,z!,

nz
vi~k' ,km!5E d2r'e2 ik'•r'E

2d

0

dz

2cos~kmz!nz~r' ,z!. ~17!

The fieldbvi is then given by

bl
vi~k' ,km!5gl~k' ,km!n l

vi~k' ,km!,

FIG. 3. Periodic arrangement of a distorted vortex line~solid
line! and its images~dashed lines! for a film. Two periods are
shown for this example.
ll

f

bt
vi~k' ,km!5gt~k' ,km!n t

vi~k' ,km!,

bz
vi~k' ,km!5gl~k' ,km!nz

vi~k' ,km!, ~18!

where we have defined longitudinal and transverse com
nents

bl
vi~k!5kxbx

vi~k!1kyby
vi~k!52kzbz

vi~k!,

bt
vi~k!5kxby

vi~k!2kybx
vi~k!, ~19!

and similarly forn l
vi andn t

vi . Theg functions in Eqs.~18! are
given by

gl~k!5
f0

11k2lab
2

, ~20!

gt~k' ,kz!5
f0

11k'
2 lc

21kz
2lab

2
. ~21!

To obtain the fieldsbstray and bvac ~the inner and outer
stray fields! in terms of the vortex distribution we solve
respectively, the homogeneous London equation and Lap
equation and require that the magnetic field is continuou
the film surfaces. The results are

b'
stray~r !5E d2k'

4p2
eik'•r'ik'@g1etz1g2e2tz#,

bz
stray~r !5E d2k'

4p2
eik'•r'

k'
2

t
@g1etz2g2e2tz#, ~22!

where2d<z<0 andt5Ak'
2 1lab

22, and

bvac~r !5E d2k'

4p2
eik'•r'@ ik'2k'ẑ#f1e2k'z,

z>0,

bvac~r !5E d2k'

4p2
eik'•r'@ ik'1k'ẑ#f2ek'z,

z<2d. ~23!

The coefficientsg andf are

g2~k'!5
t@A~k'2t!e2td2B~k'1t!#

k'C ,

g1~k'!5
t@A~k'1t!etd2B~k'2t!#

k'C , ~24!

f1~k'!5~t/k'C!

3$22k'B1@~k'1t!etd1~k'2t!e2td#A%,

f2~k'!5~2tek'd/k'C!

3$22k'A1@~k'1t!etd1~k'2t!e2td#B%,

~25!
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where

C~k'!5e2td~k'2t!22etd~k'1t!2 ~26!

@cf. Eq. ~9!# andA andB are given by

A~k'!5
1

2d (
m

gl~k' ,km!nz
vi~k' ,km!, ~27!

B~k'!5
1

2d (
m

e2 ikmdgl~k' ,km!nz
vi~k' ,km!. ~28!

According to Eqs.~18! and ~19!, A andB are, respectively,
the Fourier transforms ofbz

vi(r ) at the surfacesz50 andz
52d. These functions describe two surface layers of m
netic monopoles, or magnetic surface charges, which ge
ate the inner and outer stray fields. Note that because okm
5mp/d one has in Eq.~28! exp(2ikmd)5(21)m.

The total energy of the vortex distribution can be writt
as

E5Efilm1Evac, ~29!

whereEfilm is the sum of the kinetic energy of the supercu
rents and of the magnetic field within the film, andEvac is the
energy of the magnetic stray field in the vacuum,

Efilm5
1

2m0
E d2r'E

2d

0

dz

@~“3bfilm!L~“3bfilm!1~bfilm!2#,

Evac5
1

2m0
E d2r'F E

0

`

dz~bvac!21E
2`

2d

dz~bvac!2G .
~30!

Inserting Eq.~15! in Eq. ~30!, and using the boundary con
ditions it follows that, as shown in Ref. 8, the cross ter
~containing bothbvi andbstray) vanish andEfilm can be writ-
ten as

Efilm5Evi1Estray, ~31!

whereEvi is the energy of vortex-vortex and vortex-imag
interactions andEstray is the London energy of the stray fiel
within the film and its currents. Using Eqs.~18!, ~22!, and
~23! we find that

Evi5
f0

2

4m0
E d2k'

4p2

1

2d (
m

(
a

Ga~k' ,km!una
vi~k' ,km!u2,

~32!

wherea5x,y,z and

Gx~k!5Gy~k!5
1

11k'
2 lc

21kz
2lab

2
,

Gz~k!5
11k2lc

2

~11k2lab
2 !~11k'

2 lc
21kz

2lab
2 !

, ~33!
-
r-

-

s

Estray5
1

2m0
E d2k'

4p2

k'
2

t

3@~12e22td!ug1u21~e2td21!ug2u2#, ~34!

and

Evac5
1

2m0
E d2k'

4p2
k'~e22k'duf2u21uf1u2!. ~35!

III. STRAIGHT VORTEX LINES

As an application of the general results discussed ab
we consider straight vortex lines perpendicular to the fi
surfaces. For any distribution of such lines, the vortic
nvi(r ) has only az component and is independent ofz. Thus,
according to Eq.~14!,

nz
vi~k' ,km!52ddK~km!E d2r'e2 ik'•r'nz~r'!, ~36!

wheredK denotes the Kronecker delta function. The field
these vortex lines and of their images has only az compo-
nent, is independent ofz, and is related tonz

vi by Eq. ~18!.
According to Eq.~28!, the coefficientsA and B are equal
since only the termkm50 contributes. In this caseg andf
from Eqs.~24! and ~25! reduce to

g152etdg2, g25
f1

12etd
, f252ek'df1,

f15At
~k'1t!etd1~k'2t!e2td22k'

k'C . ~37!

The expressions for the energiesEvi , Estray, and Evac sim-
plify considerably in this case:Evi is just the total energy
~per thicknessd) of the vortex-line distribution calculated a
if the lines were infinite, andEstray andEvac read

Estray5
1

m0
E d2k'

4p2

k'
2 coth~td/2!

t
uf1u2,

Evac5
1

m0
E d2k'

4p2
k'uf1u2. ~38!

Next we calculate the magnetic field of a single vort
line passing through the origin. In this case one has

nz
vi~k' ,km!52ddK~km!, ~39!

and

bz
vi~k' ,km!52ddK~km!

f0

11k'
2 lab

2
,

A5
f0

11k'
2 lab

2
. ~40!

The magnetic fieldbz
vi is just that of an infinite vortex line.

The stray fields inside the film and in the vacuum follo
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from Eqs.~22! and ~23!, using Eqs.~37! and Eqs.~40!. The
expressions thus obtained are presented in Eqs.~4!–~6! and
~8! and are in agreement with the results of Ref. 5.

Now we consider the multipole expansion ofbvac(r ),
which is useful at large distances from the film. We write

F~r !5
Q0

r
1Q2

z

r 3
1Q4

3z22r 2

r 5
, ~41!

wherer 5(x21y21z2)1/2 is the distance from the origin an
Q0 , Q2 andQ4 are, respectively, the monopole, dipole a
quadrupole moments. To show this and to obtain the m
ments we proceed as follows. According to Eqs.~23!, the
vacuum stray field forz.0 is given by

bvac52“F,

F~r !52E d2k'

4p2
eik'•r'f1e2k'z, z>0. ~42!

First we expandf1 in Eq. ~42! for small k' . Using Eqs.
~37!, ~40!, and~26! we find

f1~k'!52
2p

k'

~Q01Q2k'1Q4k'
2 1••• !, ~43!

with

Q05
f0

2p
,

Q252
f0lab

2p
coth~d/2lab!,

Q452
f0l2

2p
@12coth~d/lab!coth~d/2lab!#. ~44!

Next we insert in Eq.~42! the identities

k'
n e2k'z5~21!n

]ne2k'z

]zn
, ~45!

E d2k'

~2p!2

eik'•r'2k'z

k'

52E d3k

~2p!3

eik•r

k2
5

1

2pr
. ~46!

Carrying out the derivatives with respect toz we obtain Eq.
~41!.

The multipole expansion converges rapidly forr @l in
films that are not too thin (d<l) and for r @l2/d in thin
films. For bulk samples (d@l) containing one vortex at the
origin, the multipole moments areQ05f0/2p, Q25
2f0l/2p andQ450. This result is similar to that obtaine
in Ref. 7 for the vacuum stray field of a vortex line term
nating at the surface parallel to theac plane. An identical
field exists in the vacuum forz,2d, with r interpreted as
the distance to the vortex core emerging atz52d.

This result means that at large distances from a thick fi
containing one vortex, the magnetic field looks as if it wou
originate from a magnetic monopole located inside the
perconductor at a depthuQ2 /Q0u5l, see Fig. 1. The
strength of this monopole~or magnetic charge! is 2F0 ~two
-

-

quanta of flux! as can be seen from Eqs.~41! and~44! yield-
ing a potentialF(r )5(2F0/4pr )(12zl/r 2). The factor 2
in 2F0 comes from the fact that the magnetic field lines o
vortex emerging at a planar surface and carrying a fluxF0,
can spread only into thehalf space above the superco
ductor, i.e., over a solid angle of 2p. As opposed to this, the
field lines of a‘‘free’’ magnetic monopole realized at the t
of a long thin coil or a ferromagnetic whisker, can spre
over thefull solid angle of 4p.

The vacuum stray field can also be thought as resul
from a surface density of magnetic charge. It follows fro
Eqs.~42! and from the identity Eq.~46! that the charge den
sity at thez50 surface is the Fourier transform ofs1(k')
5k'f1(k')/2p. This result is not restricted to a singl
straight vortex line, but is valid for any distribution of vort
ces in the film. A similar surface charge density exists on
z52d surface withf1 replaced byf2.

Next we calculate the energy of interaction of a pair
straight vortex lines perpendicular to the film surfaces, on
the origin and the other one displaced from it by a vectorR
along thexy plane. In this case the vorticity contains tw
terms,

nz
vi~k' ,km!52dK~km!~11e2 ik'•R!, ~47!

yielding

A5
f0

11k'
2 lab

2 ~11e2 ik'•R!. ~48!

The contribution to the interaction energy fromEvi is just
that of two infinite vortex lines, namely,

Evi
int5

f0
2d

2pl2m0

K0~R/l!. ~49!

The interaction energies from the stray field and curren
the film and from the vacuum stray field are given, resp
tively, by theR-dependent part of Eqs.~34! and ~35!, using
Eqs.~48! andA5B. We find that the large-distance behavi
of these quantities can also be expressed in terms of
multipole moments of a single vortex as

Estray
int 52

4p

m0

2lQ0Q2

R3
,

Evac
int 5

4p

m0
S Q0

2

R
2

l2Q0
212Q0Q4

R3 D . ~50!

The monopole contribution inEvac
int is just the classical resul

obtained by Pearl.2

IV. CONCLUSIONS

In conclusion, we derived general expressions for
magnetic field and energy of arbitrary arrangements of v
tices in a superconducting film or plate of thicknessd satis-
fying the uniaxially anisotropic London theory with thec
axis perpendicular to the film. This general solution is co
posed of contributions of the vortices and their images and



c
m

a
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n
k-
a
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an inner and outer stray field, which is caused by the surfa
of the film. The energies of the vortex and stray field ter
contribute separately, i.e., there are no mixed terms. As
example, we consider straight vortices perpendicular to
film and present figures of the magnetic field lines of o
straight vortex inside and outside films of various thic
nesses. The magnetic field far from the film and the inter
.

s.
es
s
n
e

e

c-

tion between two vortices may be expressed in terms of
monopole, dipole, and quadrupole moments of each vort
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