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Phase separation and stripe formation in the two-dimensionalt-J model:
A comparison of numerical results
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~Received 31 August 1999!

We make a critical analysis of numerical results for and against phase separation and stripe formation in the
t-J model. We argue that the frustrated phase separation mechanism for stripe formation requires phase
separation at too high a doping for it to be consistent with existing numerical studies of thet-J model. We
compare variational energies for various methods, and conclude that the most accurate calculations for large
systems appear to be from the density-matrix renormalization group. These calculations imply that the ground
state of the dopedt-J model is striped, not phase separated.
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The recent discovery of stripes in the underdop
cuprates1 has brought renewed interest to the question of
existence of phase separation in thet-J and Hubbard models
Interest in this question began a decade ago, when evid
for phase separation in La2CuO41d was found.2 In particular,
Emery et al. argued that rather than stemming from t
chemistry of the mobile oxygen atoms in this material, t
phase separation reflected a universal tendency for do
holes in antiferromagnets to phase separate.3 They argued
that this phase separation is not seen in the absence of m
dopants because it is frustrated by the long-range Coulo
repulsion between holes. This led to a number of stud
using analytical arguments and numerical simulations to
out whether thet-J and Hubbard models~which do not have
long-range Coulomb interactions! exhibit phase separation4

and to the related question of the mechanism responsible
stripe formation in the cuprates.

There are, in fact, currently two main views regarding t
origin of stripes. In the first, stripes form because of a co
petition between kinetic and exchange energies in doped
tiferromagnets. In this approach, long range Coulomb inte
tions are not important. Indeed, a decade ago Hartree-F
solutions of the two-dimensional~2D! Hubbard model
showed that domain walls were present in mean field s
tions of the Hubbard model.5 However, the stripes in the
Hartree-Fock solution are characterized by a filling of o
hole per domain wall unit cell, while the incommensura
spin susceptibility peaks seen in experiments require a fil
of half this. Subsequently, numerical studies of thet-J model
by Prelovsek and co-workers6 showed that indeed, stripelik
correlations are an important ingredient in the ground stat
small t-J clusters. This work also made clear that stripes
as domain walls in Ne´el antiferromagnets. However, becau
of the limited size of the systems studied, only filled strip
were found. Recently, using density-matrix renormalizat
group methods~DMRG! ~Ref. 7! to study much larger sys
tems numerically, we have found evidence for striped grou
states for a wide range of dopings in thet-J model.8,9 Sig-
nificantly, we have found that stripes with a linear doping
one hole per two domain wall unit cells are the lowest ene
configurations at low doping.
PRB 610163-1829/2000/61~9!/6320~7!/$15.00
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The second approach starts with the assumption that w
out long-range Coulomb interactions, doped antiferrom
nets phase separate. Stripe formation arises in this appr
because the long-range Coulomb repulsion frustrates
phase separation, leading to an inhomogeneous charge
sity state.10 Thep phase shift characteristic of a domain wa
arises in this ‘‘frustrated phase separation’’ approach from
secondary effect, namely, from the same reduction of
transverse kinetic energy of hopping whichdrives domain
wall formation in the first approach. In support of this a
proach, studies of classical spin models of competing lo
and short range interactions have been shown to have a
riety of inhomogeneous ground states, including strip
states.11 Unfortunately, the difficulty associated with th
long-range Coulomb interactions has so far prevented m
realistic microscopic calculations. However, as a minimu
requirement for the viability of the frustrated phase sepa
tion scenario, one clearly must have phase separation in
evant models of doped antiferromagnets which lack the lo
range Coulomb interaction, such as thet-J or Hubbard
models. Extensive numerical studies of the Hubbard mo
have failed to find convincing evidence of phase separat4

and interest has shifted to thet-J model which does exhibit
phase separation in certain regions ofJ/t-doping parameter
space. In this case, the question becomes one of determ
whether the phase separation takes place in the physica
rameter range. More generally, the question becomes on
whether more elaborate models such as, for example, th
band models or models which include electron-phonon in
actions will exhibit phase separation in the physical region
parameter space. Here we will not address this more gen
question, but rather focus on thet-J model because it ha
often been used in the discussion of stripe formation.

The proposal that the dopedt-J model phase-separates
physically relevant parameter and doping regimes has b
supported by variational arguments,3 diagonalizations of
small clusters,3 Green’s function quantum Monte Carl
~QMC! calculations,12 and the recent analysis of the Casim
force arising from fluctuating spin waves in the antiferr
6320 ©2000 The American Physical Society
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magnetic regions separating widely spaced stripes.13 On the
other hand, a substantial body of other QMC calculation14

series expansions,15 exact diagonalizations,16 and our DMRG
calculations8,9 have yielded results contradicting the
claims. In this paper, we will review some of these calcu
tions and arguments. However, we will pose a slightly d
ferent, and easier question regarding phase separation
has generally been addressed in previous studies. Rather
asking, ‘‘does thet-J model phase separate at arbitrarily lo
doping?,’’ we will ask, ‘‘does thet-J model phase separat
at high enough doping to allow the frustrated phase sep
tion mechanism to yield stripes consistent with those fou
in the cuprates?’’ We will conclude that the answer to t
question is that it does not.

We will also compare the variational energies of seve
of the numerical approaches. In this comparison, we find
the DMRG calculations yield energies in excellent agr
ment with exact diagonalization, but can be extended
much larger systems. On the other hand, we find that the
Green’s function QMC calculations to date are sligh
higher in energy, and that this energy difference is close
the stabilization energy of stripes over pairs. Our DMR
calculations give striped ground states directly, without lo
range Coulomb interactions included in the model and w
out phase separation. Note that formation of a uniform ar
of stripes isnot phase separation.

Most of the numerical work on doped antiferromagn
has centered on thet-J model, with a Hamiltonian given by

H52t (
^ i j &s

~cis
† cjs1H.c.!1J(̂

i j &
S Si•Sj2

ninj

4 D , ~1!

where doubly occupied sites are explicitly excluded from
Hilbert space. Herêi j & are near-neighbor sites,s is a spin
index, SW i and ci ,s

† are electron spin and creation operato
andni5ci↑

† ci↑1ci↓
† ci↓ . The near-neighbor hopping and e

change interactions aret andJ. We measure energies in uni
of t.

We begin with a review of previous arguments and n
merical data concerning phase separation. Emery, Kivel
and Lin3 used a combination of variational arguments
large and smallJ/t and exact diagonalization for modera
values ofJ/t to argue for the occurence of phase separa
at all values ofJ/t. The variational arguments show that f
small enoughJ/t ~roughlyJ/t,1022), and low enough dop-
ing, a uniform paramagnetic phase of independent holes
higher energy than a phase-separated state in which the
rich state is ferromagnetic. Emeryet al. pointed out that this
variational argument would not rule out other phas
separated states which might have even lower energy an
more physical than the ferromagnetic state. However, th
hypothetical states might also be uniform.15 In particular,
Putikka et al. suggested15,17 that a uniform ferrimagnetic
state might have lower energy than the phase-separated
romagnetic state. In any case, the ‘‘Nagaoka-like’’ ferroma
netic state which was shown to have low energy is of limi
relevance to the cuprates.

The exact diagonalization of Emeryet al. showed, atJ/t
50.1 and 0.4, that two holes on a 434 system bind into a
pair, but that two pairs do not bind. Emeryet al. argued that
the pair formation was a sign of phase separation at
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doping. However, others argued that the binding of t
pairs, rather than pair formation, signals the onset of ph
separation.18 The possibility of striped ground states mak
even the binding of two pairs an unreliable indicator of pha
separation: the two pairs may form a short ‘‘stripe,’’ but
stripes do not attract, there is no phase separation.

Larger systems have subsequently been studied using
eral different types of QMC and related techniques. Alm
all of these studies concluded that there was no phase s
ration in the parameter regimes relevant to t
cuprates.14,15,18–20. In contrast, using Green’s function Mont
Carlo, Hellberg and Manousakis~HM! ~Ref. 12! concluded
that phase separation occurs at all values ofJ/t at low
enough doping, and in particular that forJ/t50.3 it occurs
for hole-doping levels less than aboutx;0.12. Although in
these various studies the possibility of striped ground sta
was usually not considered, and thus was not specific
excluded, the results obtained were generally uniform. O
DMRG calculations represent a third possibility, namely th
stripes form in thet-J model, without any phase separatio
into uniform hole-rich and undoped regions, and without t
need to add long-range Coulomb terms. Consequently, t
are three broad possibilities for the charge ordering of
ground state of the lightly-doped, puret-J model at J/t
'0.3: phase separated, uniform, or striped.

The question of what happens in the limit of very lo
doping is quite difficult for numerical methods, requiring in
creasingly larger systems as the doping is reduced. Mos
the controversy has centered on the very low doping ran
Fortunately, if one is interested in the mechanism of str
formation at dopingsx relevant to the cuprates, say, fro
0.07<x<0.25, one need not be concerned with extrem
low doping. The frustrated phase separation scenario, in f
appears to put rather strong constraints on the dopings
quired to produce phase separation. First, note that accor
to this scenario, phase separation must occur at all doping
which stripes are found. Furthermore, note that the lo
range part of the Coulomb interaction between holes ma
the hole density distribution more uniform. Consider, the
fore, as in Ref. 3, a phase-separated system, in the absen
long-range Coulomb forces, which has all of the holes in o
region at a densityxps and no holes in the other region. The
turning on the Coulomb interaction will tend to drive th
holes apart, possibly elongating the hole-rich regions i
stripes, if the long-range repulsion is not too weak and
too strong. Under these circumstances, the local hole den
in the stripesxs is lower or, at most, the same, as the origin
hole densityxps: xs<xps. If this is true, then the known
lower limits for xs from experiments imply lower limits on
xps. Note thatxps is simply the critical doping at which phas
separation first occurs, for any particular value ofJ/t.

Neutron scattering shows that the hole doping per u
length of the stripes forx<0.125 is about 0.5. The neutro
scattering experiments currently cannot determine whe
the stripes are centered on copper sites~site-centered! or on
the oxygen sites between them~bond centered!. If one as-
sumes the stripes are site-centered, with nominal width 1
the t-J model, then the local dopingwithin a stripe isxs
50.5. If one takes them as bond centered, with nomi
width 2, then the doping within a stripe isxs50.25. Of
course, the hole density is not strictly zero in the antifer
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magnetic regions between stripes. On the other hand, t
are some signs of stripes well abovex50.125, and one
would expect some suppression ofxs relative toxps. Further-
more, if stripes are necessary for superconductivity, one
tainly needs them for the whole superconducting dop
range. Therefore, for the sake of argument, we will assu
that experiments requirexps*0.25. However, our conclu
sions would not change if a somewhat smaller limit~say
xps*0.2) were used.

Although there is disagreement about the behavior
smaller doping, there is general agreement among the v
ous approaches on the lack of phase separation atx50.25.
For example, HM report the critical doping level forJ/t
50.3 to be about 0.12~2!, implying the density of the hole
rich regions is also 0.12(2), far from x50.25. Kivelsonet al.
interpreted the lack of binding of two pairs in Ref. 3
indicating the critical doping was less thanx53/16
50.1875.21 We are not aware of any interpretations of qua
titative numerical calculations finding phase separat
above this value. What value ofJ/t can give phase separa
tion nearx50.25? According to HM, one would needJ/t
;0.9. Other calculations find higher values ofJ/t. For ex-
ample, Calandra, Becca, and Sorella findJ/t;1.0, and series
expansion techniques produce an even higher valuec oJ/t
;1.5.

Although the calculations seem in reasonable agreem
regarding the lack of phase separation nearx50.25, it is still
important to compare them carefully in order to assess t
descriptions of the ground states, as well as possibly put e
lower limits on the possible dopings having phase separat

In Fig. 1~a!, we show DMRG results for the energy p

FIG. 1. ~a! Energy per site inL36 t-J systems, withJ/t
50.35 for a variety of lengthsL up toL519. Cylindrical boundary
conditions were used, along with extrapolation to reach zero tr
cation error.~b! Energy per holeeh(x) for the same systems as i
~a!.
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site, as a function of overall doping, forL36 t-J lattices,
with J/t50.35 for a variety of lengthsL up to L519. Note
the near linearity of the data forx<0.12. If our uncertainties
were much larger, we might have been tempted to cla
phase separation based on this data. This near linearity o
data illustrates the numerical difficulty of the problem—
precise linearity in an exact calculation in the thermod
namic limit is an indication of phase separation, where
deviations may be finite size effects, numerical errors,
they may indicate the absence of phase separation. In
case, as we will discuss, the near linearity reflects the w
repulsion of the four-hole domain walls which form in the
lattices, wrapping around theL36 cylinder. With DMRG,
we are able to resolve the energy quite precisely and relia
on theseL36 systems. The major constraint for DMRG
the system’s width—the accuracy falls off rapidly for wid
systems. Green’s function Monte Carlo can treat wider s
tems, but the presence of the fermion sign problem ma
the result depend, perhaps strongly, on a trial or guid
wavefunction which is usually chosen to have uniform ho
density. Thus it is essential to assess the relative importa
of finite size effects versus the approximations used to c
trol the fermion sign problem.

In Fig. 1~b! we show the same data plotted as the ene
per holeeh(x) ~following Ref. 3!, relative to the undoped
system

eh~x!5
E~Nh!2E~0!

Nh
, ~2!

whereNh is the number of holes, andE(N) is the energy of
the system withN holes. In this case, phase separation wo
be seen as a minimum away fromx50. We see no evidence
for such a minimum, but the results are far from conclus
for x<0.1. At x;0.25, however, the results clearly indica
the absence of phase separation. The energy per hole is a
0.25t higher atx;0.25 than at smallx. As we discuss below
this energy difference is about an order of magnitude hig
than typical finite size effects at this width. Therefore, w
conclude, in agreement with other simulations, that there
no phase separation nearx;0.25.

In fact, the systems shown in Fig. 1 withx,0.25 are
striped, with four-hole stripes wrapping around the cylind
cal systems. In Fig. 2 we show the average hole density
site as a function of thex coordinate on a 2536 system with
12 holes. For comparison, so that one can judge the effec

-

FIG. 2. Density of holes per site as a function of thex coordi-
nate l x in a 2536 t-J system~filled circles!, with 12 holes, com-
pared with the hole density in a 2531 system, with 3 holes~open
squares!.
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the open boundary conditions, we show a 2531 system with
3 holes. In the case of a single chain, the charge den
oscillations decay as a power law away from the open en
but in the thermodynamic limit the system is uniform. In t
case of theL36 systems, however, the amplitude of t
oscillations is much larger and much more anharmonic
this doping. Using DMRG, we have found evidence f
striped ground states for a wide range of dopings in thet-J
model.8,9 Importantly, we have found that stripes with a lin
ear doping near 1/2 on long domain walls are the low
energy configurations at low doping.

The striped nature of the ground state tells us why
energy shown in Fig. 1~a! is so nearly linear: adjacent stripe
repel, but only very weakly at large distances. The repuls
appears to be due to overlap of the hole densities in
adjacent stripes, and falls off roughly exponentially with t
separation at short to intermediate distances. Thus, the
tem at low doping becomes almost infinitely compressib
making the energy per site as a function of doping nea
linear, and suggesting phase separation.

As mentioned above, our results showing the presenc
stripes disagree with most Green’s function Monte Ca
work. This may be because the uniform trial wave functio
used to date in these calculations bias the calculations
wards uniform states. Note also that all that is necessar
generate false signals of phase separation is that one’s
wave function be substantially worse for low doping than
high doping. Fortunately, it is possible to compare the va
ous calculations because most are variational—if a trial w
function is poor, it will produce a higher energy result than
should. Even in cases where the calculation is not va
tional, a poor calculation will often result in an energy abo
the true ground state energy. In the case of DMRG, t
results are available: a variational energy, and a more a
rate but nonvariational energy coming from extrapolating
truncation error to zero. However, we find that the shift
energy in DMRG coming from this extrapolation is sma
compared to the differences in energies between diffe
methods.

In Fig. 3, we compare the energies per hole from DMR
and exact diagonalization calculations for a number of s
tems with J/t50.5. We see that the DMRG results agr
nicely with exact diagonalization,22 within finite size effects.
Note that perhaps the largest finite size effect in the ene
per hole comes from how the reference undoped ene
E(0) is defined. For theN520 andN526 lattices studied
with the Lanczos method, the undoped Heisenberg syste
unfrustrated, and the ground state energy per site is lo
than in an infinite system. This results in a higher energy
hole ~Lanczos-I! than if one uses the infinite-system ener
per site21.16944(4)J ~Ref. 23! as reference~Lanczos-II!.
This effect is much less pronounced on the largerN526 site
system. However, the corresponding doped systems are
necessarily unfrustrated. In particular, formation of a sin
stripe would be frustrated by these boundary conditions. T
would make it very difficult to draw any conclusions abo
stripe stability from the Lanczos data alone. However,
Lanczos data provide an important check on the accurac
the calculations on larger systems. For the DMRG with
lindrical boundary conditions, one cannot use the infini
system reference energy, so the same undoped syste
ity
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used. Using the same system as reference results in a ca
lation of exchange energies associated with the open si
reducing the finite size effects. Note that with cylindric
boundary conditions, striping is not frustrated.

In Fig. 4, we compare DMRG and Green’s functio
Monte Carlo results. The results of Hellberg and Manousa
are based on unpublished data24 which was summarized in
Ref. 12. The points shown are a representative subset o
results used in Ref. 12. A fit to all the data, showing a mi
mum nearx50.14, was the basis for the conclusion of pha
separation atJ/t50.5 in Ref. 12. For the 636 system with 4
holes and the 737 system with 7 holes, the results of HM
and Calandraet al.25 are in fairly good agreement. Th
DMRG energy on a 1236 system is lower. We attribute thi
energy difference to the energy associated with the forma
of stripes. Note that the 636 system with 4 holes would be
frustrated if the holes formed a single stripe. To study
similar, frustrated 636 system with DMRG, we have ap
plied frustrating staggered magnetic fields to the open e
of a 636 system with cylindrical BCs. The points labele
‘‘AF’’ have this field, which would favor Ne´el order, but
frustrate thep phase shift of a stripe. Two field strength
were used,h50.1 ~the lower energy point! andh50.2. The
calculation labeledp had ap phase shift~with h50.1) fa-
voring a stripe in the applied staggered fields. As refere
energies, the equivalent undoped, unfrustrated Heisen
system was used in all cases. Application of the frustat
fields brings the energy of the 636 system very close to the
QMC results. We interpret this to mean that the stabilizat
energy of the stripe is nearly balanced by the frustration
the boundary conditions. Thus the QMC energy of Calan
et al.25 on the 636 system may be quite accurate, even if
does not have a stripe.~We note that their results for theN

FIG. 3. Energy per holeeh , in units of t, using DMRG and
exact diagonalizations. The points labeled DMRG-Var are fr
DMRG calculations performed with cylindrical boundary cond
tions on 1236 systems, and are variational. The points labe
DMRG-Extrap are extrapolated to zero truncation error. Here,
energies are defined relative to the DMRG energy of an undo
system on the same lattice. These calculations for undoped sys
are much more accurate than for the doped systems, and we ig
any errors in these energies in claiming that the DMRG-Var res
are variational. Two different types of exact diagonalization resu
are shown, for systems withN520 andN526 sites, with two or
four holes. For the points labeled Lanczos-I, the energy is defi
relative to the exact undoped energy on the same lattice. For
Lanczos-II points, we used as the undoped energy the energy
site for an infinite Heisenberg lattice, multiplied by the number
sites.
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526 sites system compare well with Lanczos.! On a 736
system with 4 holes~not shown! Calandraet al. obtain an
energy per hole of about21.26t, very close to their resul
for the 636 system. However, in this case, where a sin
stripe is not frustrated, we believe that the energy should
about the same as in the 1236 system near this doping
namely about21.31t. In general, onL36 systems which do
not frustrate stripes, we expect the QMC results to be
high by a stripe stabilization energy of;0.05t per hole near
x;0.1.

Measurements of the hole-hole correlation function
Calandraet al. in Ref. 20 were made using the less accur
fixed node approximation. Even in these measurements,
found some signs of incommensurate correlations indica
incipient fluctuating stripes.

The data point for the 838 system with four holes of HM
appears to be anomalously high. Our results with frustra
and nonfrustrating fields~all with h50.1) on the 838 sys-
tem give results very similar to those of the 636 system,
and with much lower energy than found by HM. The st
chastic reconfiguration result of Calandraet al. for the same
system is also much lower. The high energy on the 838
systems appears to have been important for the conclusio
phase separation nearx50.14 atJ/t50.5 of HM. The best
data of Calandraet al. also show a slight minimum nearx
50.14, but in Ref. 20 calculations on larger systems show
this to be only a finite size effect. Note that aside from t
small systems studied by Lanczos, and cases where issu
frustration arise, typical finite size effects are rather smal
the energy per hole. Systems with about 50 sites were fo
in Ref. 20 to have finite size effects of about 0.01t20.02t

FIG. 4. Energy per holeeh , in units oft, comparing DMRG and
Green’s function Monte Carlo data. The points labeled DMRG
36 are the DMRG-Extrap points from Fig. 3. The QMC points a
from a variety of periodic lattices, some of which are labeled.
this case, the energies are defined relative to the identical und
system, as in the Lanczos-I data. However, for the 737 system, the
undoped system would be frustrated, and therefore an extrapol
using the 636 and 838 undoped systems and the known finite s
dependence on system size was used to obtain a reference e
for this case. The points labeled QMC-CBS are variational fix
node quantum Monte Carlo calculations provided to us by Ca
dra, Becca, and Sorella. The points labeled QMC-CBS-II are fr
their stochastic reconfiguration method (p56), which is not varia-
tional. The points labeled QMC-HM are from the calculations
Hellberg and Manousakis, which use a released-node procedur
are not strictly variational. The DMRG-AF,p calculations are de-
scribed in the text. Where not shown, error bars are smaller than
symbols.
e
e

o

y
e
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g

g

-
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per hole, when compared to much larger systems. Sim
finite size effects were reported in Ref. 9. These finite s
effects may be important for the determination of pha
separation, but they are small enough to allow us to comp
the various methods on slightly different lattices. We a
find that the energy per hole is insensitive to the use of o
boundary conditions on the two short ends of ourL36 sys-
tems. For example, in comparing a 1236 system and the
central 1236 region of a 2436 system, keeping the dopin
constant, we find a difference of less than 0.01t in the energy
per hole.

A recent analysis26 of Casimir forces involving spin-wave
modes has found that in the limit of low doping, in the a
sence of Coulomb interactions, static stripes attract with
interaction decaying asr 22. One can also estimate the coe
ficients in front of the leading decay terms; for stripes, t
behavior is roughly 1022Jr22 per unit length, withr in lat-
tice spacings, for larger. At all length scales this force is a
small correction to Coulomb interactions, which decay
r 21 with a larger coefficient, assuming dielectric screenin
This means that the Casimir effect cannot have a role
frustrated phase separation. However, the Casimir forc
potentially relevant to the issue of phase separation in
pure t-J model, since it would induce an attraction betwe
stripes, causing an unusual form of true macroscopic ph
separation into regions having widely spaced stripes, and
gions without stripes.21 It is important to estimate at wha
dopings this force can come into play.

Our simulations automatically include the Casimir effec
as well as other short range effects. At distances betw
stripes in ourL36 systems of up to about 10–12 lattic
spacings, we have found only pure repulsion. We believe
is because the wave functions of the holes in the stri
extend beyond the stripe in exponentially decaying tails, a
the overlap of these tails apparently causes higher hole
netic energy. At larger separations the energies are too s
to resolve. This distance puts a limit on the maximum do
ing, for the Casimir effect to be important, of about 0.06. W
have also fit the short range repulsion inL36 striped sys-
tems to an exponential form;9 we find the potential is roughly
0.6t exp(2r/1.8) per unit length. If this repulsion is assume
the Casimir effect becomes dominant at distances of ab
r 520 between stripes, corresponding to dopings of less t
0.025. The temperature at which such small energies co
be relevant would be less than 1 K, assumingJ'1500 K.
Despite its limited applicable doping range, the Casimir
fect illustrates the extreme difficulty of resolving the issue
phase separation in thet-J model in the limit of small dop-
ing, using only numerical simulations. However, this que
tion is of very limited relevance physically.

These comparisons indicate that the DMRG calculatio
are quite reliable, at least in terms of the ground state e
gies. Based on this, we conclude that the short distance
havior and correlations of these systems, which affect
energy most strongly, are reliably determined by DMR
However, we would like to address the question of t
boundary conditions used by DMRG in somewhat more
tail. It has been suggested that the stripes we see with DM
may be due to the use of cylindrical boundary conditio
that they are artifacts which would not appear in ‘‘more r
alistic’’ periodic boundary conditions. We disagree with th
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position. In using finite size clusters to study models wh
may have broken-symmetry ground states, one often in
duces a symmetry-breaking field and then studies the lim
ing behavior by first letting the size of the system go
infinity and then letting the strength of the perturbation go
zero. We view the open end boundary conditions in
DMRG calculations in this way. Far from being artificia
they are important for understanding the physics. Of cou
at present we are unable to carry out a proper finite-s
scaling analysis to obtain the infinite size limit. Such a stu
would require very large lattices, since the domain wall sp
ing rather than the lattice spacing sets the lattice sizes
quired. Nevertheless, we have compared on numerous o
sions systems of different lengths, and not seen signific
reduction in the stripe amplitudes. Furthermore, while
have seen various arrangements of stripes depending
boundary conditions, we have beenunable to stabilize any
uniform states. In contrast, weare able to observe an esse
tially uniform ground state even with open boundary con
tions; they occur when a next-nearest neighbor hoppingt8 is
made large enough (t8;0.3t).27 The effect of this term is to
destabilize the domain walls28 and favor a gas of pairs.

As an illustration of the robustness of the striped state,
have made an effort to stabilizelongitudinal half-filled
stripes in L38 systems with cylindrical boundary cond
tions. This is somewhat difficult, because the transve
stripes appear to have slightly lower energy. Furthermo
we have found that domain walls do not like to end on op
boundaries, which seem to repel wall ends. However,
have found that we can stabilize the ends nicely by incre
ing the hopping slightly on a single edge link at which w
wish the domain wall to end. In Fig. 5 we show the hole a
spin densities in an 1838 system with two longitudina
stripes. We used a hopping of 1.2t on the second and sixt

FIG. 5. Hole density and spin moments showing longitudi
stripes on a 1838 t-J lattice with cylindrical boundary conditions
J/t50.35, and 20 holes. The diameter of the circles is proportio
to the hole density 12^ni& on the i th site and the length of the
arrows is proportional tôSi

z&, according to the scales shown. Di
ferently styled arrows are used to show the two different antife
magetic domains. This structure depends on the boundary co
tions as discussed in the text.
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vertical edge links on both the left and right edges, and
also applied staggered fields with ap phase shift built in on
sites~1,1!, ~1,4!, ~1,5!, and~1,8!, and the equivalent sites o
the right edge. To stabilize the stripe configuration it w
also necessary to apply pinning fields throughout the sys
during the warmup sweep and first several finite syst
sweeps. Because of the mapping of the sites in the 2D
tem onto an effective 1D chain in DMRG, during these fi
sweeps the system is much better equilibrated in they direc-
tion than thex direction, and the system is unstable to t
formation of transverse stripes. After these sweeps, all of
interior fields were turned off and about a dozen mo
sweeps were performed, with the final number of states k
per block equal to 1600. This calculation shows that w
pinning terms applied only at the edges, a rather long cy
der supports longitudinal stripes. These stripes cannot be
garded as simple charge density oscillations induced
boundaries, as one could argue one has in the single c
system shown in Fig. 2. Of course, on a long system the s
with longitudinal stripes might have higher energy than
state with the bulk having transverse stripes. DMRG is u
able to tunnel between two states which differ so much o
large length scales. However, we believe that DMRG wo
have no trouble making the system shown in Fig. 5 unifo
if the correct ground state was uniform, simply by smear
out the stripes in the central region.

Thus, while we are unable to carry out a rigorous fin
size scaling analysis, we believe our results imply that
pure 2Dt-J model, in the small-J/t regime most relevant to
the cuprates, and with dopings nearx;0.1, has a ground
state which is striped.29 By this, we mean that dynamica
spin and charge susceptibility measurements will show ei
divergences or sharp peaks characteristic of static or flu
ating stripes, respectively. Furthermore, we believe that th
are no low-lying states which do not have some signs of s
stripes. Specifically, forJ/t50.5 we estimate the lowest en
ergy stripeless states are about 0.05t per hole higher in en-
ergy than the ground state. We believe that if one tries
write down variational wave functions for the ground sta
and omits the striping behavior, one will not achieve a lo
energy state, even in cases where the stripes in the
ground state fluctuate. Finally, the energy scales invol
suggest that a proper description of superconductivity
quires taking these stripes into account.
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