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We make a critical analysis of numerical results for and against phase separation and stripe formation in the
t-J model. We argue that the frustrated phase separation mechanism for stripe formation requires phase
separation at too high a doping for it to be consistent with existing numerical studies tfitheodel. We
compare variational energies for various methods, and conclude that the most accurate calculations for large
systems appear to be from the density-matrix renormalization group. These calculations imply that the ground
state of the dopettd model is striped, not phase separated.

The recent discovery of stripes in the underdoped The second approach starts with the assumption that with-
cuprate$ has brought renewed interest to the question of theut long-range Coulomb interactions, doped antiferromag-
existence of phase separation in theand Hubbard models. nets phase separate. Stripe formation arises in this approach
Interest in this question began a decade ago, when evidengRcause the long-range Coulomb repulsion frustrates the
for phase separation in b&UO, , , was found:. In particular, phase separation, leading to an inhomogeneous charge den-

Emery et al. argued that rather than stemming from the 0 ; ot i
chemistry of the mobile oxygen atoms in this material, thesr[.y stqtel. Thfw phase shift character|§t|c,9f a domain wall
ises in this “frustrated phase separation” approach from a

phase separation reflected a universal tendency for dop )
holes in antiferromagnets to phase sepatatey argued secondary effect, namely, from the same reduction of the

that this phase separation is not seen in the absence of mobff@nsverse kinetic energy of hopping whidnives domain
dopants because it is frustrated by the long-range Coulomall formation in the first approach. In support of this ap-
repulsion between holes. This led to a number of studieproach, studies of classical spin models of competing long
using analytical arguments and numerical simulations to fincand short range interactions have been shown to have a va-
out whether the-J and Hubbard modelgvhich do not have riety of inhomogeneous ground states, including striped
long-range Coulomb interactionexhibit phase separation statest! Unfortunately, the difficulty associated with the
and to the related question of the mechanism responsible fggng-range Coulomb interactions has so far prevented more
stripe formation in the cuprates. realistic microscopic calculations. However, as a minimum

.T'here are, in fact, cur_rently two main views regarding therequirement for the viability of the frustrated phase separa-
origin of stripes. In the first, stripes form because of a com-,

petition between kinetic and exchange energies in doped arti'-On scenario, one clearly must have phase _separanon in rel-
tiferromagnets. In this approach, long range Coulomb intera€Vant models of doped antiferromagnets which lack the long-
tions are not important. Indeed, a decade ago Hartree-Fod@Nge Coulomb interaction, such as thd or Hubbard
solutions of the two-dimensiona(2D) Hubbard model Mmodels. Extensive numerical studies of the Hubbard model
showed that domain walls were present in mean field solubave failed to find convincing evidence of phase separation
tions of the Hubbard modé&lHowever, the stripes in the and interest has shifted to the) model which does exhibit
Hartree-Fock solution are characterized by a filling of onephase separation in certain regionsJéf-doping parameter
hole per domain wall unit cell, while the incommensuratespace. In this case, the question becomes one of determining
spin susceptibility peaks seen in experiments require a fillingvhether the phase separation takes place in the physical pa-
of half this. Subsequently, numerical studies ofthiemodel  rameter range. More generally, the question becomes one of
by Prelovsek and co-workérshowed that indeed, stripelike whether more elaborate models such as, for example, three-
correlations are an important ingredient in the ground state ddand models or models which include electron-phonon inter-
smallt-J clusters. This work also made clear that stripes actctions will exhibit phase separation in the physical region of
as domain walls in K& antiferromagnets. However, becauseparameter space. Here we will not address this more general
of the limited size of the systems studied, only filled stripesquestion, but rather focus on thie] model because it has
were found. Recently, using density-matrix renormalizationoften been used in the discussion of stripe formation.

group method¢DMRG) (Ref. 7) to study much larger sys- The proposal that the dopéel model phase-separates in
tems numerically, we have found evidence for striped groungbhysically relevant parameter and doping regimes has been
states for a wide range of dopings in thd model®® Sig-  supported by variational argumeritsjiagonalizations of
nificantly, we have found that stripes with a linear doping ofsmall clusters, Green’s function quantum Monte Carlo
one hole per two domain wall unit cells are the lowest energyfQMC) calculations;? and the recent analysis of the Casimir
configurations at low doping. force arising from fluctuating spin waves in the antiferro-
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magnetic regions separating widely spaced strip&n the  doping. However, others argued that the binding of two
other hand, a substantial body of other QMC calculatidns, pairs, rather than pair formation, signals the onset of phase
series expansioriS exact diagonalization$,and our DMRG  separatiort® The possibility of striped ground states makes
calculation8® have yielded results contradicting these even the binding of two pairs an unreliable indicator of phase
claims. In this paper, we will review some of these calcula-separation: the two pairs may form a short “stripe,” but if
tions and arguments. However, we will pose a slightly dif-stripes do not attract, there is no phase separation.
ferent, and easier question regarding phase separation than|arger systems have subsequently been studied using sev-
has generally been addressed in previous studies. Rather thaga| different types of QMC and related techniques. Almost
asking, “does the-J model phase separate at arbitrarily low all of these studies concluded that there was no phase sepa-
doping?,” we will ask, “does theé-J model phase separate ration in the parameter regimes relevant to the
at high enough doping to allow the frustrated phase separ@uprates:*1>#-2%|n contrast, using Green’s function Monte
tion mechanism to yield stripes consistent with those foundCarlo, Hellberg and Manousaki$iM) (Ref. 12 concluded
in the cuprates?” We will conclude that the answer to thisthat phase separation occurs at all valuesJf at low
question is that it does not. enough doping, and in particular that fdft=0.3 it occurs
We will also compare the variational energies of severakor hole-doping levels less than about0.12. Although in
of the numerical approaches. In this comparison, we find thafhese various studies the possibility of striped ground states
the DMRG calculations yield energies in excellent agreewas usually not considered, and thus was not specifically
ment with exact diagonalization, but can be extended t@xcluded, the results obtained were generally uniform. Our
much larger systems. On the other hand, we find that the beg{MRG calculations represent a third possibility, namely that
Green's function QMC calculations to date are slightly stripes form in thet-J model, without any phase separation
higher in energy, and that this energy difference is close tgnto uniform hole-rich and undoped regions, and without the
the stabilization energy of stripes over pairs. Our DMRGneed to add long-range Coulomb terms. Consequently, there
calculations give striped ground states directly, without longare three broad possibilities for the charge ordering of the
range Coulomb interactions included in the model and With'ground state of the lightly-doped, puteJ model atJ/t
out p.hase.separation. Note th.at formation of a uniform array. g 3 phase separated, uniform, or striped.
of stripes isnot phase separation. _ The question of what happens in the limit of very low
Most of the numerical work on doped antiferromagnetsgoping is quite difficult for numerical methods, requiring in-
has centered on thteJ model, with a Hamiltonian given by = creasingly larger systems as the doping is reduced. Most of
the controversy has centered on the very low doping range.
H= —tE (C;rSCjSJrH_C_)JrJE (S.Sj_”i_”i), (1) Fortun_ately, if one is interested in the mechanism of stripe
{Ds m 4 formation at dopings relevant to the cuprates, say, from
] ] o 0.07<x=<0.25, one need not be concerned with extremely
where doubly occupied sites are explicitly excluded from thgqy doping. The frustrated phase separation scenario, in fact,
Hilbert space. Heréij) are near-neighbor sites,is a spin - appears to put rather strong constraints on the dopings re-
index, S; and ci’fs are electron spin and creation operators,quired to produce phase separation. First, note that according
and nizcﬁciﬁchcil. The near-neighbor hopping and ex- to this scenario, phase separation must occur at all dopings in
change interactions ateandJ. We measure energies in units which stripes are found. Furthermore, note that the long-
of t. range part of the Coulomb interaction between holes makes
We begin with a review of previous arguments and nu-the hole density distribution more uniform. Consider, there-
merical data concerning phase separation. Emery, Kivelsoripre, as in Ref. 3, a phase-separated system, in the absence of
and Lir® used a combination of variational arguments forlong-range Coulomb forces, which has all of the holes in one
large and small/t and exact diagonalization for moderate region at a density,s and no holes in the other region. Then,
values ofJ/t to argue for the occurence of phase separatioriurning on the Coulomb interaction will tend to drive the
at all values of)/t. The variational arguments show that for holes apart, possibly elongating the hole-rich regions into
small enoughl/t (roughlyJ/t<10 2), and low enough dop- stripes, if the long-range repulsion is not too weak and not
ing, a uniform paramagnetic phase of independent holes hdgo strong. Under these circumstances, the local hole density
higher energy than a phase-separated state in which the holié-the stripes is lower or, at most, the same, as the original
rich state is ferromagnetic. Emeey al. pointed out that this  hole densityx,s: Xs<Xys. If this is true, then the known
variational argument would not rule out other phase-lower limits for xs from experiments imply lower limits on
separated states which might have even lower energy and bxgs. Note thatx,sis simply the critical doping at which phase
more physical than the ferromagnetic state. However, thesgeparation first occurs, for any particular valueJdf.
hypothetical states might also be unifottin particular, Neutron scattering shows that the hole doping per unit
Putikka et al. suggestet?!’ that a uniform ferrimagnetic length of the stripes fork=0.125 is about 0.5. The neutron
state might have lower energy than the phase-separated feseattering experiments currently cannot determine whether
romagnetic state. In any case, the “Nagaoka-like” ferromag-the stripes are centered on copper sigte-centeredor on
netic state which was shown to have low energy is of limitedthe oxygen sites between thefmond centered If one as-
relevance to the cuprates. sumes the stripes are site-centered, with nominal width 1 in
The exact diagonalization of Emest al. showed, atl/t the t-J model, then the local dopinwithin a stripe isxg
=0.1 and 0.4, that two holes on ax4l system bind into a =0.5. If one takes them as bond centered, with nominal
pair, but that two pairs do not bind. Emeey al. argued that width 2, then the doping within a stripe i&=0.25. Of
the pair formation was a sign of phase separation at lovcourse, the hole density is not strictly zero in the antiferro-
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natel, in a 25x6 t-J system(filled circles, with 12 holes, com-

-1.3 pared with the hole density in a 28l system, with 3 holegopen
-14 1 squares
. 1.5 site, as a function of overall doping, farx 6 t-J lattices,
= 16 (b) | with J/t=0.35 for a variety of length& up toL=19. Note
-17 : the near linearity of the data for<0.12. If our uncertainties
were much larger, we might have been tempted to claim
187 phase separation based on this data. This near linearity of the
-19 : . . data illustrates the numerical difficulty of the problem—
00 01 02 03 04 precise linearity in an exact calculation in the thermody-

x namic limit is an indication of phase separation, whereas
FIG. 1. () Energy per site inLx6 t-J systems, withy/t  deviations may be finite size effects, numerical errors, or
=0.35 for a variety of lengthk up toL=19. Cylindrical boundary they may indicate the absence of phase separation. In this
conditions were used, along with extrapolation to reach zero truncase, as we will discuss, the near linearity reflects the weak
cation error.(b) Energy per holee,(x) for the same systems as in repulsion of the four-hole domain walls which form in these
(a). lattices, wrapping around thiex 6 cylinder. With DMRG,
we are able to resolve the energy quite precisely and reliably

magnetic regions between stripes. On the other hand, theff! theseL X6 systems. The major constraint for DMRG is

are some signs of stripes well abowe=0.125, and one the system’s width—thg accuracy falls off rapidly fo.r wider
would expect some suppressiongfrelative tox,s. Further- systems. Green'’s function Monte Carlo can treat wider sys-

more, if stripes are necessary for superconductivity, one cef€Ms, but the presence of the fermion sign problem makes

tainly needs them for the whole superconducting dopinqgje r?sultt_deper?.dh perhaps” strﬁngly, tonha trial .cf)r gu'ﬁ'?g
range. Therefore, for the sake of argument, we will assum avelunction which 1S usually chosen 1o have unitorm hole

that experiments requirg,:=0.25. However, our conclu- dfe?3|_tty. Thus :ctf's tessennal ttr? assess the :_elatlve wgptortance
sions would not change if a somewhat smaller lifsay ? llmef&ze.e ects versl;:s € approximations used to con-
X,=0.2) were used. rol the fermion sign problem.

Although there is disagreement about the behavior at In Fig. 1(b) we show the same data plotted as the energy

smaller doping, there is general agreement among the varke holeen(x) (following Ref. 3, relative to the undoped

ous approaches on the lack of phase separatiot+&tL25. system

For example, HM report the critical doping level fdrt E(N,)—E(0)
=0.3 to be about 0.12), implying the density of the hole- en(x)= — N
rich regions is also 0.12), farfrom x=0.25. Kivelsoret al. h
interpreted the lack of binding of two pairs in Ref. 3 aswhereNy, is the number of holes, arfl(N) is the energy of
indicating the critical doping was less thar=3/16 the system wittN holes. In this case, phase separation would
=0.1875%! We are not aware of any interpretations of quan-be seen as a minimum away frome 0. We see no evidence
titative numerical calculations finding phase separatiorfor such a minimum, but the results are far from conclusive
above this value. What value dft can give phase separa- for x<0.1. At x~0.25, however, the results clearly indicate
tion nearx=0.25? According to HM, one would neelit  the absence of phase separation. The energy per hole is about
~0.9. Other calculations find higher values Iit. For ex-  0.2% higher atx~0.25 than at smak. As we discuss below,
ample, Calandra, Becca, and Sorella fiit~ 1.0, and series this energy difference is about an order of magnitude higher
expansion techniques produce an even higher valuekitof than typical finite size effects at this width. Therefore, we

2

~1.5. conclude, in agreement with other simulations, that there is
Although the calculations seem in reasonable agreememo phase separation neaf 0.25.
regarding the lack of phase separation neaf.25, it is still In fact, the systems shown in Fig. 1 with<0.25 are

important to compare them carefully in order to assess theistriped, with four-hole stripes wrapping around the cylindri-
descriptions of the ground states, as well as possibly put everal systems. In Fig. 2 we show the average hole density per
lower limits on the possible dopings having phase separatiorsite as a function of the coordinate on a 286 system with

In Fig. (&), we show DMRG results for the energy per 12 holes. For comparison, so that one can judge the effects of
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the open boundary conditions, we show a<25system with -1.2
3 holes. In the case of a single chain, the charge density (@
oscillations decay as a power law away from the open ends,
but in the thermodynamic limit the system is uniform. In the
case of theL X6 systems, however, the amplitude of the
oscillations is much larger and much more anharmonic at
this doping. Using DMRG, we have found evidence for
striped ground states for a wide range of dopings inttlle o
model®® Importantly, we have found that stripes with a lin- -14
ear doping near 1/2 on long domain walls are the lowest

energy configurations at low doping.

The striped nature of the ground state tells us why the FIG. 3. Energy per hole,, in units of t, using DMRG and
energy shown in Fig.(®) is so nearly linear: adjacent stripes exact diagonalizations. The points labeled DMRG-Var are from
repel, but only very weakly at large distances. The repulsio®MRG calculations performed with cylindrical boundary condi-
appears to be due to overlap of the hole densities in théons on 126 systems, and are variational. The points labeled
adjacent stripes, and falls off roughly exponentially with theDMRG-Extrap are extrapolated to zero truncation error. Here, the
separation at short to intermediate distances. Thus, the sy@pergies are defined relative to the DMRG energy of an undoped
tem at low doping becomes almost infinitely compressible System on the same lattice. These calculations for undoped systems
making the energy per site as a function of doping neary2® much more accurate Fhap for t.he. doped systems, and we ignore
linear, and suggesting phase separation. any errors in these energies in claiming that the DMRG-yar results

As mentioned above, our results showing the presence &re variational. Two dlﬁergnt types of exact dla_lgonall_zatlon results
stripes disagree with most Green’s function Monte Carlo®"€ Shown, for systems with=20 andN =26 sites, with two or
work. This may be because the uniform trial wave funCtionSfour _holes. For the points labeled Lanczos-I, the energy is defined
used to date in these calculations bias the calculations tcfr_-'al""t've tcl)l the exact undoged eﬂergy don tge same '?‘tt'ce' For the
wards uniform states. Note also that all that is necessary gganezos-Il points, we used as the undoped energy the energy per

. L .~ .Site for an infinite Heisenberg lattice, multiplied by the number of
generate false signals of phase separation is that one’s tri I:
wave function be substantially worse for low doping than for
high doping. Fortunately, it is possible to compare the vari-
ous calculations because most are variational—if a trial wavélsed. Using the same system as reference results in a cance-
function is poor, it will produce a higher energy result than itlation of exchange energies associated with the open sides,
should. Even in cases where the calculation is not variareducing the finite size effects. Note that with cylindrical
tional, a poor calculation will often result in an energy aboveboundary conditions, striping is not frustrated.
the true ground state energy. In the case of DMRG, two In Fig. 4, we compare DMRG and Green’s function
results are available: a variational energy, and a more acciMonte Carlo results. The results of Hellberg and Manousakis
rate but nonvariational energy coming from extrapolating theare based on unpublished dtavhich was summarized in
truncation error to zero. However, we find that the shift inRef. 12. The points shown are a representative subset of the
energy in DMRG coming from this extrapolation is small results used in Ref. 12. A fit to all the data, showing a mini-
compared to the differences in energies between differerium neaix=0.14, was the basis for the conclusion of phase
methods. separation ai/t=0.5 in Ref. 12. For the B 6 system with 4

In Fig. 3, we compare the energies per hole from DMRGholes and the X7 system with 7 holes, the results of HM
and exact diagonalization calculations for a number of sysand Calandraet al® are in fairly good agreement. The
tems with J/t=0.5. We see that the DMRG results agreeDMRG energy on a 12 6 system is lower. We attribute this
nicely with exact diagonalizatioff, within finite size effects. energy difference to the energy associated with the formation
Note that perhaps the largest finite size effect in the energgf stripes. Note that the 6 system with 4 holes would be
per hole comes from how the reference undoped energffustrated if the holes formed a single stripe. To study a
E(0) is defined. For théN=20 andN=26 lattices studied similar, frustrated & 6 system with DMRG, we have ap-
with the Lanczos method, the undoped Heisenberg system @lied frustrating staggered magnetic fields to the open ends
unfrustrated, and the ground state energy per site is lowesf a 6X6 system with cylindrical BCs. The points labeled
than in an infinite system. This results in a higher energy pefAF” have this field, which would favor Nel order, but
hole (Lanczos-) than if one uses the infinite-system energyfrustrate thes phase shift of a stripe. Two field strengths
per site—1.16944(4) (Ref. 23 as referencéLanczos-1).  were usedh=0.1 (the lower energy pointandh=0.2. The
This effect is much less pronounced on the laflger26 site  calculation labeledr had aw phase shifiwith h=0.1) fa-
system. However, the corresponding doped systems are neoring a stripe in the applied staggered fields. As reference
necessarily unfrustrated. In particular, formation of a singleenergies, the equivalent undoped, unfrustrated Heisenberg
stripe would be frustrated by these boundary conditions. Thisystem was used in all cases. Application of the frustating
would make it very difficult to draw any conclusions about fields brings the energy of thex66 system very close to the
stripe stability from the Lanczos data alone. However, theQMC results. We interpret this to mean that the stabilization
Lanczos data provide an important check on the accuracy afnergy of the stripe is nearly balanced by the frustration of
the calculations on larger systems. For the DMRG with cy-the boundary conditions. Thus the QMC energy of Calandra
lindrical boundary conditions, one cannot use the infinite-et al?® on the 6x6 system may be quite accurate, even if it
system reference energy, so the same undoped systemdses not have a stripéWe note that their results for thé
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-1.1 - - per hole, when compared to much larger systems. Similar
(b) * ggmgj\i’fi finite size effects were reported in Ref. 9. These finite size
© ¥ tgmgzggs effects may be important for the determination of phase
£ ol A QMC—CBS-II 3 separat_lon, but they are sm_all enoggh to aIIovx{ us to compare
& 6x6 ¥ the various methods on slightly different lattices. We also
& ¥ find that the energy per hole is insensitive to the use of open
L%’ boundary conditions on the two short ends of but 6 sys-
-13 tems. For example, in comparing aX8 system and the
™~ central 126 region of a 24K 6 system, keeping the doping
0.0 0:1 0:2 constant, we find a difference of less than @.@ithe energy

per hole.

A recent analysf€ of Casimir forces involving spin-wave

FIG. 4. Energy per hole,,, in units oft, comparing DMRG and modes has found that in the limit of low doping, in the ab-
Green’s function Monte Carlo data. The points labeled DMRG-12sence of Coulomb interactions, static stripes attract with an
X6 are the DMRG-Extrap points from Fig. 3. The QMC points areinteraction decaying as 2. One can also estimate the coef-
from a variety of periodic lattices, some of which are labeled. Inficients in front of the leading decay terms; for stripes, the
this case, the energies are defined relative to the identical undopgsbhavior is roughly 10%2Jr =2 per unit length, withr in lat-
system, as in the Lanczos-I data. However, for the7/system, the  tjce spacings, for large. At all length scales this force is a

undoped system would be frustrated, and therefore an extrapolatiafiy 51| correction to Coulomb interactions. which decay as

using the 6<6 and 8<8 undoped systems and the known finite sizerfl with a larger coefficient, assuming dielectric screening.

dependence on system size was used to obtain a reference enerlic means that the Casimir effect cannot have a role in

for this case. The points labeled QMC-CBS are variational ﬁxedfrustrated phase separation. However, the Casimir force is
node quantum Monte Carlo calculations provided to us by Calan : !

dra, Becca, and Sorella. The points labeled QMC-CBS-II are fronPOtentia"y releva_nt to. the issge of phase sepgration in the
their stochastic reconfiguration methoo=6), which is not varia- puret-J model, since it would induce an attraction between

tional. The points labeled QMC-HM are from the calculations of strlpes,_cau_smg an unusua_l forrr_1 of true macroscopic phase
Hellberg and Manousakis, which use a released-node procedure afigParation into rgglogqs having widely spaced stripes, and re-
are not strictly variational. The DMRG-AFy calculations are de- 9i0NS without stripes: It is important to estimate at what

scribed in the text. Where not shown, error bars are smaller than tHdOPINgs this force can come into play. o
symbols. Our simulations automatically include the Casimir effects

as well as other short range effects. At distances between
=26 sites system compare well with Lanc2o0@n a 7X6  stripes in ourL X6 systems of up to about 10-12 lattice
system with 4 holegnot shown Calandraet al. obtain an  spacings, we have found only pure repulsion. We believe this
energy per hole of about 1.2@, very close to their result is because the wave functions of the holes in the stripes
for the 6X6 system. However, in this case, where a singleextend beyond the stripe in exponentially decaying tails, and
stripe is not frustrated, we believe that the energy should bthe overlap of these tails apparently causes higher hole ki-
about the same as in the 4B system near this doping, netic energy. At larger separations the energies are too small
namely about-1.31. In general, or X 6 systems which do to resolve. This distance puts a limit on the maximum dop-
not frustrate stripes, we expect the QMC results to be todng, for the Casimir effect to be important, of about 0.06. We
high by a stripe stabilization energy 6f0.0% per hole near have also fit the short range repulsionliix 6 striped sys-
x~0.1. tems to an exponential forfye find the potential is roughly

Measurements of the hole-hole correlation function by0.6t exp(—r/1.8) per unit length. If this repulsion is assumed,
Calandreet al. in Ref. 20 were made using the less accuratehe Casimir effect becomes dominant at distances of about
fixed node approximation. Even in these measurements, thay=20 between stripes, corresponding to dopings of less than
found some signs of incommensurate correlations indicating.025. The temperature at which such small energies could
incipient fluctuating stripes. be relevant would be less than 1 K, assumirg1500 K.

The data point for the 8 8 system with four holes of HM  Despite its limited applicable doping range, the Casimir ef-
appears to be anomalously high. Our results with frustratingect illustrates the extreme difficulty of resolving the issue of
and nonfrustrating field&ll with h=0.1) on the &8 sys-  phase separation in theJ model in the limit of small dop-
tem give results very similar to those of thex6 system, ing, using only numerical simulations. However, this ques-
and with much lower energy than found by HM. The sto-tion is of very limited relevance physically.
chastic reconfiguration result of Calandrial. for the same These comparisons indicate that the DMRG calculations
system is also much lower. The high energy on the88 are quite reliable, at least in terms of the ground state ener-
systems appears to have been important for the conclusion gfes. Based on this, we conclude that the short distance be-
phase separation near0.14 atJ/t=0.5 of HM. The best havior and correlations of these systems, which affect the
data of Calandrat al. also show a slight minimum near  energy most strongly, are reliably determined by DMRG.
=0.14, but in Ref. 20 calculations on larger systems showetiowever, we would like to address the question of the
this to be only a finite size effect. Note that aside from theboundary conditions used by DMRG in somewhat more de-
small systems studied by Lanczos, and cases where issuestafl. It has been suggested that the stripes we see with DMRG
frustration arise, typical finite size effects are rather small irmay be due to the use of cylindrical boundary conditions,
the energy per hole. Systems with about 50 sites were founthat they are artifacts which would not appear in “more re-
in Ref. 20 to have finite size effects of about ¢.8D.02  alistic” periodic boundary conditions. We disagree with this
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vertical edge links on both the left and right edges, and we
also applied staggered fields withmaphase shift built in on
sites(1,1), (1,4), (1,5, and(1,8), and the equivalent sites on
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b 4 'f f‘f the right edge. To stabilize the stripe configuration it was
v v \4 H H 1
00V POOI OO SODIOOD alsc_) necessary to apply pinning fle_lds throughogt_the system
QOO - N N OROR OO during the warmup sweep and first several finite system
e ¢ L sweeps. Because of the mapping of the sites in the 2D sys-
104 tem onto an effective 1D chain in DMRG, during these first
O 025 sweeps the system is much better equilibrated inytbizec-

tion than thex direction, and the system is unstable to the
stripes on a 188 t-J lattice with cylindrical boundary conditions, Torm.atlor? of transverse stripes. After these sweeps, all of the
J/t=0.35, and 20 holes. The diameter of the circles is proportiona|nterlor fields were turned. off aqd about a dozen more
to the hole density % (n;) on theith site and the length of the sweeps were performed, W'th, the final number of states Kept
arrows is proportional 1¢S?), according to the scales shown. Dif- Per block equal to 1600. This calculation shows that with
ferently styled arrows are used to show the two different antiferroinning terms applied only at the edges, a rather long cylin-
magetic domains. This structure depends on the boundary cond@ler supports longitudinal stripes. These stripes cannot be re-
tions as discussed in the text. garded as simple charge density oscillations induced by
. . . boundaries, as one could argue one has in the single chain
position. In using finite size clusters to study models W_h'Chsystem shown in Fig. 2. Of course, on a long system the state
may have broken-symmetry ground states, one often intro-

duces a symmetry-breaking field and then studies the Iimit\-NIth longitudinal stripes might have higher energy than a

ing behavior by first letting the size of the system go tostate with the bulk having transverse stripes. DMRG is un-

LD ; . able to tunnel between two states which differ so much over
infinity and then letting the strength of the perturbation go tolarge length scales. However, we believe that DMRG would
zero. We view the open end boundary conditions in th X '

DMRG calculations in this way. Far from being artificial,enave no trouble making the system shown in Fig. 5 uniform

) . ) if the correct ground state was uniform, simply by smearing
they are important for understanding the physics. Of COUrSgy '+ the stripes in the central region.

at present we are unable to carry out a proper finite-size Thus, while we are unable to carry out a rigorous finite

scaling analysis to obtain the infinite size limit. Such a studySize scaling analysis, we believe our results imply that the

WOUId require very Iargg Iatt|ces,_smce the domal_n wa!l SPACYH re 2Dt-J model, in the smalb/t regime most relevant to
ing rather than the lattice spacing sets the lattice sizes re;

uired. Nevertheless, we have compared on numerous occ he cuprates, and with dopings neer-0.1, has a ground
q ) ' P %ate which is stripe@ By this, we mean that dynamical

sions systems of different lengths, and not seen S|gn|f|car%pin and charge susceptibility measurements will show either

reduction in th‘? stripe_amplitudes. Furthgrmore, wh|I¢ Wedivergences or sharp peaks characteristic of static or fluctu-
have seen various arrangements of stripes depending qn.

o Y aling stripes, respectively. Furthermore, we believe that there
boundary conditions, we have beenableto stabilize any : : :
. are no low-lying states which do not have some signs of such
uniform states. In contrast, ware able to observe an essen-

tially uniform ground state even with open boundary Condi_strlpes. Specifically, fod/t=0.5 we estimate the lowest en-

tions; they occur when a next-nearest neighbor hopplrig ergy stripeless states are about ©.p8r hole higher in en-
made large enought(~0.2) 2’ The effect of this term is to ergy than the ground state. We believe that if one tries to

destabilize the domain walsand favor a gas of pairs. write down variational wave functions for the ground state,

As an illustration of the robustness of the striped state, Wé”md omits the striping behavior, one will not achieve a low

have made an effort to stabilizengitudinal half-filled energy state, even in cases where the stripes m_the true
. . . S . ground state fluctuate. Finally, the energy scales involved
stripes inL X8 systems with cylindrical boundary condi-

tions. This is somewhat difficult, because the transversSqueSt that a proper description of superconductivity re-

. . uires taking these stripes into account.
stripes appear to have slightly lower energy. Furthermore%,1 g P

we have found that domain walls do not like to end on open We thank T. Tohyama, M. Calandra, F. Becca, D. Hone,
boundaries, which seem to repel wall ends. However, weC. S. Hellberg, D. Poilblanc, and especially E. Dagotto, E.
have found that we can stabilize the ends nicely by increasManousakis, and S. Sorella for stimulating conversations and
ing the hopping slightly on a single edge link at which we for providing us with results from their calculations. S.R.
wish the domain wall to end. In Fig. 5 we show the hole andWhite acknowledges support from the NSF under Grant No.
spin densities in an 288 system with two longitudinal DMR98-70930 and D.J. Scalapino acknowledges support
stripes. We used a hopping of £.@n the second and sixth from the NSF under Grant No. DMR95-27304.

FIG. 5. Hole density and spin moments showing longitudinal
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