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Observation of superconductivity in Eu, sCey sSr,Cu,TiO 4
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Ew_,CeSrLCu,TiO, with x~10 is shown to exhibit predicted superconductivity, as deteitedy a
sudden drop in surface resistancd g&=22 K, (ii) by vortex dissipation in an applied field at temperatures less
than T, and (iii) by measurements of diamagnetigMeissner effegt This is our fourth successfully pre-
dicted high-temperature superconductor, based on a model with the primary superconducting layers in the
charge-reservoirs, not in the cuprate planes.

. INTRODUCTION tion technique. Prescribed amounts of 6y
CeQ, TiO,, SrCQ;, and CuO were mixed, pressed into
One of the primary tasks of a successful theory of high-pellets, and preheated at 1000 °C for about 1 day in the pres-
temperature superconductivity is the prediction of which ma-ence of flowing oxygen at atmospheric pressure. The reac-
terials will superconduatand which will noy. We are aware tion products were cooled, reground, and sintered at 1050 °C
of only three materialgi) that originally did not supercon- for 72 h in a slightly pressurized oxygen atmosphere, and
duct, (ii) that were predicted to be capable of superconthen furnace cooled to ambient temperature.
ducting at high temperatures, andiii) that were Powder x-ray diffraction measurements confirmed the pu-
subsequently shown to superconduct: B8O, ™™ ity of the compound€~90%) and indicated that the mate-
Gy 4Cey ¢SHCWTiO 0, and Py sCay sSLCWLNDO . > rial has a tetragonal-type structure with lattice parameters
(All were first granular superconductors; subsequently, re-a=3.863(1) A andc=28.50(5) A. The extra diffraction
fined preparation techniques yieldédilk superconducting peaks probably belong to the JBr,Cu,Ti,0,; phase(the
PrBaCu;0; °.) so-called 2222 phageall attempts to eliminate this phase
Here we report a fourth superconductor, one which wasvere unsuccessful.
predicted to superconduct on the basis of the charge- The dc magnetic measurements on solid ceramic pieces in
reservoir oxygen modéf'®'%and, until the present work, the range of 5 to 100 K were performed in a commer&fal
has not been observed to superconduct. This superconductsuiperconducting quantum interference device magnetometer
is Ew_,Ce,SLCWwTIO, with x~10 (Fig. 1) and its super-
conductivity has been detectégl by observation of a sudden -
drop of surface resistance in zero applied magnetic fiekt B 5 Ceo_53r20u2T|01
T.~22K (Ref. 20 (Fig. 2), (ii) by vortex dissipation in ap- :
plied fieldsH at temperatures less thdp (Fig. 2), and(iii )
by a Meissner effectFig. 3). The dc resistance also shows
evidence of granular superconductivityFig. 4). Thus
Euw,_,CeSKnCu,TiO4q is definitely a granular supercon-
ductor from a class of materials that has previously yielded
other granular superconductors: G8e,sSLCWTIO
(Refs. 12-1# and PfCesSL,CuLNDO . °~1  (This
means that at least NglegsSKLCW,TIO;, and
Smy Ce) sSKLCWTiIO,o, should also superconduct, if fabri-
cated correctly.

0

Il. EXPERIMENTAL DETAILS

Ceramic  samples with  nominal  composition
Eu, sCe sSIL,CW,TIO, were prepared using a solid state reac- FIG. 1. Crystal structure of Bu,Ce,SrL,CW,TiO;
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FIG. 4. The dc resistandgn ohm) of Eu, sCey sSKLCW,TiOg as

FIG. 2. Measured EuCe, sSr,CW,TiO;o microwave dissipation, a function of temperaturén K).

ARg(H,T), as a function of temperature and applied field with e
HIlJ,s. The field-dependent dissipation is typical of what is ob- mm/s and a quadrup_ole splitting |n_the r.ange of 5.58 mmy/s.
) ; The small isomer shift values obtained indicate that the Eu
served for high-temperature superconductors. The broad signal in . . 2
ARg(H,T) for T<T, is due to vortex dissipation lons are trivalent with a nonmagnetie=0 ground staté
S ’ c .

(SQUID). The magnetization was measured by two different lll. SUPERCONDUCTIVITY

proceduresli) the sample was zero-field cooled to 5 K, a  Ey, .Cq, sSr,Cu,TiO;is a type-Il superconductor accord-
field was then applied, and finally the magnetization wasng to the following measurements.

measured as a function of temperature @inithe sample (i) Our first method of detecting the superconductivity
was field cooled from above 256 6 K and the magnetiza- was to measure the magnetic-field induced change in the
tion was measured. Resistivity measurements were pefjcrowave surface resistance ARg=Rg(H,T)—Rg(H
formed using the standard four-point technique. =0,T), of Eu, £CeysSL,CW,TiO;, as a function of both tem-

Maossbauer spectroscopy studies"dfu were carried out peratureT and applied magnetic field (Fig. 2). The micro-
using a conventional constant-acceleration spectrometer anghye frequency was 12.95 GHz. Figure 2 displays data

a 50 mCi **'SmF; source, and the isomer shifts were re-which are typical of measurements on other high-
ported with respect to this source. B&bauer spectroscopy temperature superconductéPsiata taken foH|J,, where
performed at 300 K ort>Eu shows a single narrow line of j_is the rf current density. These data show an onset in the
width 2.151) mm/s. The fit yields an isomer shift of 0.2}  field-induced change of the surface resistan®(H,T) at

T.~22K, which is characteristic of vortex dissipation at and
0.0010 ‘ N aaaannnn below T, in a type-Il superconductdf.

Eu, sCegsSr,Cu,TiO (i) A bulk Meissner effect, corresponding to a 6% Meiss-
‘H=7 Oe ner fraction, is observed at superconducting temperatures
0.0000 ' (Fig. 3.

(iii) As expected, for typicap-type doping, the Eu is in
. yero field cooled ] the Eu'® charge state, as determined by $dbauer isomer
shift measurements.

Furthermore the dc resistance of the sample becomes flat
3 as a function of temperature beldWw, as indicated in Fig. 4.

] We speculate that this behavior is a consequence of a granu-
lar material that has not reached the percolation threshold of
its superconductivity. The microwave data are unambiguous
in detecting superconductivity in a fraction of the sample.
—0.0040 b L L , ] Because we have a finite Meissner effect, it is clear that

0 10 20 30 40 we are rather close to percolation. Clearly
Temperature(K) Eu, Ce sSrL,CU,TiO, is a type-Il granular superconductor.
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FIG. 3. Bulk magnetizatiotiin emu/g versus temperature (in IV. CRITICAL TEMPERATURE AND VALENCE
K) of Euy, Ceq sSr,CW,TiO4, illustrating the onset of a Meissner

effect at T=22K. The upper line represents the field-cooled The superconducting critical temperature observed for
material. Eu Ce sSLCU, TiO g was ~22 K, and should be compared
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with the prediction of the empirical rul,=(15K/A)d,*®*  (Gd,_,CeSLCW,TiO o hasT,~11K.* Indeed the charge-
which gives a predicted value of about 30 K for optimally reservoir oxygen model's argument, that GgCe,CuQ,
doped material. We do not know if our material is optimally fails to superconduct because @glis anL=0 (andJ+0)
doped, but suspect that it is not—because no effort has begsn, (ii) is unaffected by crystal-field splitting, and her(dg)
made to optimize the Ce doping. Hence, although the agregs a Cooper pair breaker, also implies that the superconduct-
ment of the measured, with the predicted empirical rule is jng condensate of Gd,Ce,Sr,Cu,TiO;, cannot be in the
reasonably good, improved doping is likely to incred$eo  cyprate planes: those planes are adjacent to the Gd, and
a value nearer the prediction. . , should not supercondutiiecause of Gd pair-breakinij the

Ti is known to prefer the Ti* valence state, which ap- superconducting condensate is scattered by the Gd, as it is in
pears to be consistent _Wlth the potential at its |deal_ site. I_ d, ,Ce,Cu0, which has the same local structure as in
this charge state does indeed occur, then the material is di Sd, ,CeSLCWTiO, Consequently, the cuprate planes of
f;dz_ZCeZSrZCuQTiOw cannot carry the primary supercon-

according to x-ray absorption spectrosctgnd Massbauer ducting Icondensate. Because,EyC eZSrZCuleollo IS 1505
measurement®. This valence difference would also imply tructural to Gd-,Ce,SpCu,TiOy,, its cuprate planes must

that the two compounds have significantly different chargd!Ct carry the primary superconductivity either. The super-
distributions, although both superconduct. conducting condensate must be adjacent to the rare-Barth

in R, ,Ce,Cu0Q, compounds, but remote from it in

V. EVIDENCE THAT Eu21-4 IS NOT PRESENT AS THE R,_,CeSr,Cu,TiO1q This is consistent with previous as-

MAIN MINORITY SUPERCONDUCTING PHASE signments of the s_uperconductlv@ to t_hg vicinity of bpth
the rare-earth site and the interstitial oxygen in the

The 22 K superconductor Eu,Ce,Sr,Cu,TiO3 can be  R,_,Ce,CuQ, compound® and(ii) to the SrO layers of the
viewed as a superlattice of ExCe,sCuQ, (Eu21-4 withz R, ,Ce,Sr,Cu,TiO,, materials*1°1t is also consistent with
=0.5) and the layers /SrO/TSrO/CuQ/. Potentially differences in critical temperatures, such as observed in
Eu,_,Ce,CuQy, could be present as a superconducting impUEuz,zCezCqu and in Ey_,Ce,SrLCWTiO,, [We are un-
rity phase. There are several facts which are inconsistendyare of any explanation of the nonsuperconductivity of
with such an interpretation, however. . Gd,_,CeCu0, (Ref. 26 and (La_,Gd,),_,Ce,Cu0, (Ref.

First, in order to produce superconductivity in 30) in terms of a cuprate-plane model.

R;-,Ce,Cu0, materials, one must anneal them-a950 °C The  differences  between  non-superconducting

under a reducing atmosphere of flowing Ar, and then quenc?sdz,ZCeZCqu and superconducting Gd,Ce,Sr,CTiO;

th_em tk;) lrlfom tempedratttj_re_t in the tsamhe_ atrr(;o%rphhere. Oﬂ;?irﬁdicate thatdifferent layers provide the primary supercon-
wise, bulk superconcuctivity 1S not achieved. These con I'ductivity in the R, ,Ce,CuO, homologues and in the

tions have not been met in the samples discussed here: F rz—zCeszzCUzTiolo compounds(Previous work has shown

that theR, _,Ce,CuQ, compounds superconduct in the vicin-
Oj(t)y of both the rare-earth and the interstitial-oxygen sftes,
not match those expected for a £yCe,CuQ, minority While RZ_SZS?%S&CUZT'ON superconducts primarily in its
phase of Ey ,CeSKLCWTiO;,; they do match to SO layers. o , ,
EWw,SKLCU,Ti,0yy, even better than to EGUO,. Since EU* is not a pair breaker in _Iowest orde_r, we can-
Third, the observed, of the Ey_,Ce,SrLCWTiO;q is too not conclude that the superconduchwty is exclusively in the
high to be caused by Eu,Ce,CuQ,: Eu,_,Ce,CuQ, has a Sro Iaygr.s c_>f Epl,Ce,SrCLpTIO, However, any super-
critical superconducting transition temperature of only 7.5eonductivity in the cuprate-planes must be secondary.
K,2%2"too low to account for the observation of 22 K super-
conductivity of Ey:CesSLCWTIO;, as due to a
Eu,_,Ce,CuQ, substructure. VI. CONCLUSION
Fourth, the doping is inconsistent with the superconduc-
tivity being due to Ey_,Ce,CuQ;: Eu, ,CeSr,Cu,TiOqq

Ew,_,CeSrLCWRUO,, which has its Ru in the RD state,

example, in producing Bu,Ce,Sr,Cu,TiO;; 0Oxygen at a
higher pressure than 1 atm was employed.
Second, the x-ray spectrum features extra peaks which

Eu, Ce sSKLCW, TiO; ¢ superconducts with a critical tem-
perature ofT.=22K,?° as predicted by the charge-reservoir
superconducts far=0.5, and Ey,Ce,CuQ, superconducts  qqe| of superconductivity. The fact that it does supercon-
optimally for z=0.15. Moreover, the possibility thatex- g,¢t Jends support to the charge-reservoir oxygen model
ceed_s Q.Z or 0.3.|_s eﬁectwely ruled out by the fact that Ce,hich (i) predicted the superconductivity aril) assigned
has limited solubility inR, _,Ce,CuQ, compounds, wher®  the primary superconducting condensate to the SrO layers

. . 8
is a rare-earth ioA? (which are the charge reservoirsather than to the cuprate
Fifth, the relations of Eu ,CeCuQ, and planes.

Eu, ,CeSrCW,TiOq to Gd,_,Ce,CuQ, and
Gd,_,Ce,Sr,Cu,TiOg lend support to the picture that pre-
dicted the superconductivity of both &d,Ce,SrL,Cu,TiO,q
and Ey_,Ce,SrLCWTiO . We studied
Gd,_,CeSr,Cu,TiO,q first, because Gd ,Ce,CuQ, does We thank the supporting agencies: U.S. Department of
not superconduct, making it unnecessary for us to prove tha&nergy (MISCON [DE-FG02-90ER4542], the U.S. Army
the superconductivity we observe in £dCe,SrL,CW,TiO;;  Research Office[ DAAG55-97-1-0387, and the United

is caused by Gd ,Ce,CuQ,, which does not superconduct. States-Israel Binational Science FoundatiBSF 1998.
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