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SO„5… theory of insulating vortex cores in high-Tc materials

Brian Mo” ller Andersen, Henrik Bruus, and Per Hedega˚rd
O” rsted Laboratory, Niels Bohr Institute for APG, Universitetsparken 5, DK-2100 Copenhagen O” , Denmark

~Received 24 September 1999!

We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the
superconducting phase of the proposed SO~5! model of strongly correlated electrons. Our model calculation
gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to
YBCO revealed completely insulating vortex cores.
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During the past decade the vastly improved STM te
nique has led to detailed measurements of the electronic
citation spectrum of superconductors, in particular the lo
electronic density of states in Abrikosov vortices. The me
cores predicted by Caroliet al.1 were observed in both stan
dard s-wave superconductors2 ~sSC! and in the high-
Tc d-wave superconductors~dSC! YBCO.3 The experimen-
tal advances naturally led to intensified theoretical studie
SC vortices. Following initial calculations on sSC vorte
cores,4,5 the focus soon turned to dSC cores,6–9 and it was
concluded that they are indeed metallic with states very c
to the Fermi energy. Therefore, it was a surprise when R
ner et al. observed that the vortex cores of the high-Tc su-
perconductor BSCCO were completely devoid of low-lyi
electronic excitations.10 In this paper we offer an explanatio
of this puzzling experimental observation by solving for t
fermionic sector of the SO~5! model. Our work builds on tha
of Arovas et al.11 where it was shown that in the SO~5!
model the vortex cores can become insulating, in fact a
ferromagnetic, in stark contrast to the standard normal m
cores of traditional superconductors.

The SO~5! model is being developed as a candida
theory for the high-Tc superconductors. In the seminal pap
by Zhang12 the emphasis was on the phase diagram and
collective ~bosonic! modes of the system. The first expe
mental support, or in some sense the motivation, for
model was the explanation of the 41 meV magnetic re
nance in the superconducting state of YBCO observed
Mook et al.13 Later the energetics of the norma
superconductivity transition was shown to explain expe
mental data on the condensation energy.14 More recently the
foundation of the SO~5! model has been clarified by work o
Rabelloet al.,15 Henley,16 and Ederet al.17 These basic con
siderations provided the foundation for studying the ferm
onic sector of the SO~5! model, and confirmed the well
known electronic spectrum of the antiferromagnetic~AF!
and the dSC phases. However, the fermionic sector has
been treated in detail, and our work can be viewed as a
towards exploring this sector more fully.

In our model calculation we consider strongly correlat
electrons hopping on a 2D square lattice with a lattice c
stant of unit length. The noninteracting Hamiltonian,H0, is
given by an isotropic tight-binding model:

H052t(
rs

(
j 51

4

cs
†~r1dj !cs~r !e2 i (e/\)*

r
r1d jA•dl2mN̂,

~1!
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where dj5$d j
x ,d j

y%5$cos@p(j21)/2#,sin@p(j21)/2#% points
to the four nearest neighbors, and wherecs(r ) annihilates an
electron with spins on siter . For the interactions the spino
formalism15 makes it particularly simple to construct a SO~5!
invariant Hamiltonian. In real space it is natural to consid
the spinor

C†~r !5$c↑
†~r !,c↓

†~r !,d↑~r !,d↓~r !%. ~2!

The ds(r ) operators are associated with the sites on the
posite sublattice of the one to whichr belongs:

ds~r !5e2 iQ•r(
R

w~R!cs~r1R!, ~3!

whereQ5(p,p), and wherew(R) is given by

w~R!5(
k

eik•Rsgn~coskx2cosky!5
2

p2

12eiQ•R

Rx
22Ry

2
,

~4!

which is only nonzero on the sublattice not including t
origin. The long range nature ofw(R) is crucial for the ex-
istence of strict SO~5! symmetry.C(r ) transforms like a
spinor under SO~5! transformations, i.e., under rotations
the ab plane generated by the operatorsLab
5 1

8 ( rC
†(r )GabC(r ), a,b51,2,3,4,5, where Gab

[2 i @Ga,Gb#. The five 434 Ga matrices are given in term
of tensor products of the standard 232 Pauli matrices:G1

5sy^ sy , Gx5I ^ sx , Gy5sz^ sy , Gz5I ^ sz , and G5

5sx^ sy . The indices 2, 3, and 4 are written asx, y, andz
referring to the real space directions of the AF order para
eter. It can be shown15 that L15 corresponds to the charg
counting operatorQ, that Lyz , Lzx , and Lxy correspond to
the spin operatorsSx , Sy , and Sz , and thatL1(x,y,z) are
related to thep (x,y,z) operators rotating between the dSC a
6298 ©2000 The American Physical Society
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AF sectors. As in Ref. 15 we now focus on the vector int
action, which in the real space representation takes the f

H int5(
ars

V~r2s!$C†~r !GaC~r !%$C†~s!GaC~s!%. ~5!

In reality the SO~5! symmetry is broken. However, both th
interpretation of the 41 meV excitation as a pseudo Go
stone mode relating to a rotation of the dSC phase into
AF phase, as well as the fact that the coupling strength
the dSC and AF sectors are almost identical,18 make it plau-
sible that the SO~5! breaking is weak. The long-range corr
lations of thed-operators apparent in Eqs.~3! and~4! lead to
rather unphysical infinite-range hopping. A natural way
break the SO~5! symmetry is thus to truncate the sum, a
we choose to maintain only nearest neighbor correlation

ds~r !→d̃s~r !5
1

2
e2 iQ•r(

j 51

4

w j cs~r1dj !, ~6!

wherew j5(21)d j
y
. Not only does this truncation constitute

simple form relating both to SO~5! symmetry and to
Hubbard-like models for dSC,7 but, as we shall see below,
also leads, in the homogeneous phases, to the expected~and
observed! quasiparticle excitation spectra of the gapful an
ferromagnet and thed-wave superconductor, respectivel
We emphasize that our approximation is designed for
reason and not for our present purpose of explaining
vortex core excitations. Rather, the latter is a consequenc
the former. Now follow two approximations. First, we mak
the usual assumption7–9 of a point interaction,V(r2s)
52 1

8 Vd(r2s). And second, we utilize the standard mea
field approximation. These approximations result in the f
lowing SO~5! symmetry broken mean-field interactio
Hamiltonian:

H int
mf52(

r
V@m~r !•^m~r !&12$D~r !^D†~r !&1H.c.%#,

~7!

with the dSC and AF order parameters given by
-
m

-
e
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-
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-
-

D~r !5c↓~r !d̃↑~r !1d̃↓~r !c↑~r !, ~8!

m~r !5
1

2
eiQ•rF „c↑

†~r !,c↓
†~r !…sS c↑~r !

c↓~r !
D

2„d̃↑
†~r !,d̃↓

†~r !…sS d̃↑~r !

d̃↓~r !
D G . ~9!

We find that inH int
mf of Eq. ~7! the SO~5! symmetry is broken

in such a way that ad-wave gap function results in the pur
SC phase,Ek

25«k
21@2VuDu(coskx2cosky)#

2, while a full
(d-wave modulated19! gap develops in the pure AF phas

Ek
25«k

21$ 1
2 Vm@11(coskx2cosky)

2#%2.
To elucidate the role of the gap in the AF sector we fi

study the continuum limit of our model. The important low
lying excitations in the fermionic sector are concentrated
the regions near the fourd-wave gap nodes Ql

5(p/2)„cos@p(l/221/4)#,sin@p(l/221/4)#…, where l5
1,2,3,4. We get rid of the rapid variations by local gau
transformations in each of the four quadrantsl in k space:
cs(r )5(leiQl•rcl,s(r ). The gauge transformation is the
used onH0 ~with A50) andH int

mf . Upon summing overr we
keep only slowly varying terms, i.e., terms whe
exp@i(Ql86Ql)•r # vanish. Not surprisingly, the only surviv
ing terms are either diagonal inl or have Ql85Ql1Q
[Ql̄ . This means thatc1s(r ) and c3s(r )5c 1̄s(r ) form
one subspace, andc2s(r ) and c4s(r )5c 2̄s(r ) form the
other. It thus becomes natural to consider the spin
Cl

†(r )5$cl↑
† (r ),cl̄↓(r ),cl̄↑

† (r ),cl↓(r )%. The gauge factor
eiQl•r leads to a sign change between the termscls(r1dj )
and cls(r2dj ) in H0 and D. The difference terms arising
from this become derivatives in the continuum limit. Furth
care is necessary regarding extraQl-dependent signs. Fo
simplicity we assumem(r )5m(r )ez and obtain a final
Hamiltonian for theC1 spinor (l51 andl̄53) containing
both D(r ) andm(r ):
H5E drC1
†~r !S 2t~ i ]x1 i ]y! 22V~ i ]x2 i ]y!D~r !* 2

1

2
Vm~r ! 0

22VD~r !~ i ]x2 i ]y! t~ i ]x1 i ]y! 0
1

2
Vm~r !

2
1

2
Vm~r ! 0 t~ i ]x1 i ]y! 2V~ i ]x2 i ]y!D~r !*

0
1

2
Vm~r ! 2VD~r !~ i ]x2 i ]y! 2t~ i ]x1 i ]y!

D C1~r !.

~10!

With the ansatzC1
†(r )5(a1 ,a2 ,a3 ,a4)e2 ik•r, andk65kx6ky for k5(kx ,ky) the eigenvalue problem becomes
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U tk12E 2VD* k2

1

2
Vm 0

2VDk2 2tk12E 0 2
1

2
Vm

1

2
Vm 0 2tk12E 22VD* k2

0 2
1

2
Vm 22VDk2 tk12E

U50. ~11!
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A pure SC phase has a constantD, while m50, and the
spectrum becomesE56(t2k1

2 1u2VDu2k2
2 )1/2. The corre-

sponding eigenstates are easily found. For a pure AF pham
is a constant andD50, and the spectrum now becomesE

56„t2k1
2 1( 1

2 Vm)2
…

1/2, with associated eigenstates.
We now imagine the plane to be divided into two par

For x,0 the system is in the SC phase while forx.0 it is in
the AF phase. It is now simple to study the scattering pr
lem where a particle with energyuEu,Vm in the SC sector
is moving towards the barrier formed by the AF sector. T
result is not surprising: if the particle starts out with a m
mentum near, say,Ql it is completely reflected by the AF
sector~where it only acquires an exponentially damped pro
ability!, and it ends up with a momentum near eitherQl or
Ql̄ . The process resembles Andreev reflection in the qu
tum number l. The conclusion of this exactly solvabl
model is clear: low energy particles in the SC sector can
confined by a surrounding AF sector, or conversely, the
sector expels low energy particles.

We now proceed to discuss dSC vortices, first brie
mentioning the case of normal cores followed by our SO~5!
model calculation of vortices with AF cores. In his semicla
sical analysis of the electronic density of states produced
d-wave vortices, Volovik showed6 that only a small part of
the density of states results from quasiparticles localize
the vortex cores, and that that part is a function of the vor
density. Hence, in any realistic calculation of quasiparti
states, the entire vortex lattice must be taken into acco
Wang and MacDonald7 made the first self-consistent, nu
merical lattice calculation of a tight-binding model fo
d-wave type-II superconductors using the Bogoliubov–
Gennes equations. In the following we expand their work
the case ofd-wave superconductors with antiferromagne
cores as described by the SO~5! model. We take advantag
of earlier self-consistent calculations of isolated vortices
the SO~5! model,11,18 where in the symmetric gaugeA0(r )
5(\/2e)@a0(r )/r #eu the SC and AF order parameters as
function of the distance to the vortex core in polar coor
nates are given byD(r )5 f 0(r )eiu(r ) and m(r )5m0(r ), re-
spectively. Here the functionsf 0(r ), a0(r ) and m0(r ) are
only known numerically. Note thatm(r ) points in a constan
direction, so only the sizem(r ) is given. For a lattice of
nonoverlapping vortices, i.e., vortices further than a f
times the London length apart, the self-consistent soluti
for the vector potential, the SC and the AF order parame
are expressed in terms of the vortex centers,Rj , as
.
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A~r !5(
j

A0~r2Rj !, ~12!

D~r !5 f ~r !eiu(r )5)
j

f 0~r2Rj !e(k
iarg(r2Rk), ~13!

m~r !5(
j

m0~r2Rj !, ~14!

where arg(r2Rk) is the polar angle betweenr andRk . In a
lattice model a particularly simple way to construct the ma
netic unit cell is the following. For each area penetrated
one flux quantumh/e a Dirac antivortex string carrying a
flux 2h/e is added.20 The strings will have no physical con
sequences at all when placed between lattice sites. Howe
they allow for the construction of a vector potential period
in the magnetic unit cell, through which the magnetic flux
zero.

We now construct a square Abrikosov lattice with a Dir
antivortex added to the center of every second vortex. Si
each vortex carry half a flux quantum, the smallest magn
unit cell possible consists of two vortices. However, due
better convergence properties in obtaining the periodic v
tor potential and a periodic representation of the SC or
parameter@especially its phaseu(r )], we choose to double
the magnetic unit cell. Our unit cell contains two ordina
vortices on one diagonal and two vortices penetrated
Dirac antivortices on the other. Periodic forms ofA(r ), u(r ),
and m(r ) are then easily found by adding up contributio
from a large number of unit cells~typically 64! surrounding
the one we are studying. From this we obtain a mean fi
lattice HamiltonianH5H01H int

mf given by Eqs.~1! and ~7!,
which is periodic in our unit cell. Based on the Bogoliubo
transformation for the operators within our unit cell

~gs
a!†5(

r
$ua~r !cs

†~r !1sva~r !cs̄~r !%, ~15!

wheres561 is the spin index ands̄52s, the equation of
motion for thegs

a operators using the periodic Hamiltonia
H leads to the Bogoliubov–de Gennes equation for
eigenenergies and eigenstates of the fermionic quasiparti

S T1sM D

D* 2T* 1sM D S ua

va D 5EaS ua

va D . ~16!
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Here Ea is the quasiparticle energy,ua and va are vectors
containing the values ofua(r ) andva(r ) on each lattice site
in our unit cell, while the block matricesT, D, and M are
given by

~T!rr 852te2 i (e/\)* r
r8A•dl(

j 51

4

d r8,r1d j
2md r8,r , ~17!

~D !rr 85(
j 51

4

w j@D~r 8!1D~r !#d r8,r1d j
, ~18!

~M !rr 85 (
j , j 851

4

w jw j 8M ~r 82dj !d r8,r1d j 1d j 8
2M ~r 8!d r8,r ,

~19!

with D(r )5 1
2 V^D(r )& andM (r )5 1

2 eiQ•rV^m(r )&.
In the numerical calculation we use aN3N lattice with

N544. The origin is put in the center and the four vortices
the center of each of the quadrants. The periodicity is
sured by having H(r1Nd1)5H(r1Nd2)5H(r ). The
Bogoliubov–de Gennes equation, Eq.~16!, becomes a 2N2

32N2 eigenvalue problem yielding for a given value of th
spin variables the spectrumEa and the Bogoliubov coeffi-
cientsua andva. To compare our calculations with the e
perimental STM measurements on vortices2,3,10and with the
existing calculations7 on ordinary sSC and dSC vortices w
compute the temperature dependent local density of st
~LDOS! according to the standard minimal model4,5,7

N~r ,E!5(
a

@ uua~r !u2$2 f 8~Ea2E!%1uva~r !u2

3$2 f 8~Ea1E!%#, ~20!

where f («)5@exp(«/kBT)11#21, and where we have ne
glected the dispersion in the magnetic Brillouin zone. T
calculation yields the LDOS shown in Fig. 1. In all cas
V50.8t, kBT50.1t and m520.6t, which due to the band
structure leads to an asymmetric LDOS.

FIG. 1. LDOS in the vortex core~solid line! and in the bulk SC
~dashed line! for ~a! BCS s-wave SC,~b! BCS d-wave SC, and~c!
SO~5! SC with an AF vortex core.
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First, to check our calculations, we change the mo
from SO~5! to ordinary sSC and dSC. The latter is produc
by settingM r ,r850 in Eq. ~19!, and the former by further-
more setting (D) r ,r85

1
2 V^D(r )&d r ,r8 in Eq. ~18!. As shown

in Figs. 1~a! and 1~b! we confirm qualitatively the main con
clusions of Refs. 7–9. In the bulk of the sSC phase a full g
is observed, while a midgap peak~which splits atT50)
develops in the center of a sSC vortex. In the bulk of the d
phase a steady rise of the LDOS is seen around the mid
position, while a midgap peak develops in the center o
dSC vortex. Our model calculation captures mainly gene
features and can therefore not be used in the ongoing de
of the detailed form of the LDOS in the dSC vortex core.7–9

However, this issue is not important for our main observ
tion in the SO~5! case: instead of a midgap peak the LDOS
dramatically suppressed in the AF vortex core resemb
bulk behavior as shown in Fig. 1~c!. This confirms the con-
clusion of the dSC/AF interface in the SO~5! model studied
in the first part of this paper. The AF phase effectively su
presses any fermionic low energy states.

We thus reach our main conclusion. The experimenta
observed lack of electronic quasiparticle states in the ce
of Abrikosov vortices in BSCCO~Ref. 10! as opposed to the
measurements of a normal metallic core of vortices in YBC
~Ref. 3! finds a natural explanation in the framework of th
SO~5! model. As already pointed out by Arovaset al.,11 the
nature of the SO~5! vortex cores are governed by the para
eters~e.g., doping level and coupling strengths! of the given
high-Tc material. The cores can either become metallic, i
a pure dSC behavior, or insulating, i.e., a mixed dSC/
behavior. At the present stage of the SO~5! theory it is dif-
ficult to predict which materials will in fact develop AF vor
tex cores. For example, as is studied in the striped phas21

the insulating vortex cores are negatively charged, since t
must be at half filling, in contrast to the hole doped bu
material maintained at lower filling. Such a charging ener
must be taken into account in a detailed calculation of
energy gained by forming an AF vortex core. Our calculati
of the generic features in the fermionic sector of the SO~5!
model shows that the measured LDOS can be explaine
one simply assumes that YBCO with its metallic vort
cores is a pure dSC SO~5! superconductor, while BSCCO i
a dSC/AF SO~5! superconductor. We obtained our results
studying both the analytically solvable model of a perfe
SC/AF interface and by exact numerical diagonalization
an Abrikosov lattice model. Clearly, further theoretical i
sight in the dual dSC/AF nature of the high-Tc compounds
can be obtained from studies of the striped phases, wh
alternating stripes of SC phases and AF phases occur.21
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Research Council: access to the Cray 92 at UnidC through
Grant No. 9602481, and H.B. through Ole Ro”mer Grant No.
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