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SO(5) theory of insulating vortex cores in high-T . materials
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We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the
superconducting phase of the proposed®@odel of strongly correlated electrons. Our model calculation
gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to
YBCO revealed completely insulating vortex cores.

During the past decade the vastly improved STM techwhere 6 ={6],6/} ={cog n(j—1)/2],sifn(j—1)/2]} points
nigue has led to detailed measurements of the electronic exg the four nearest neighbors, and whegér) annihilates an
citation spectrum of superconductors, in particular the locak|ectron with spins on siter. For the interactions the spinor
electronic density of states in Abrikosov vortices. The metak, malisnt® makes it particularly simple to construct a &D

. . l .
cores predicted by Carodit al. were observed in both stan- i, 4 jant Hamiltonian. In real space it is natural to consider
dard swave superconductdrs(sSQ and in the high- the spinor

T, d-wave superconductokslSQ YBCO.2 The experimen-
tal advances naturally led to intensified theoretical studies of
SC vortices. Following initial calculations on sSC vortex
cores?® the focus soon turned to dSC cofes,and it was : S
concluded that they are indeed metallic with states very close W(r)={c{(r),c/(r),d(r),d (r)}. @
to the Fermi energy. Therefore, it was a surprise when Ren-
ner et al. observed that the vortex cores of the highsu- ] ) )
perconductor BSCCO were completely devoid of low-lying The d,(r) operators are associated with the sites on the op-
electronic excitation&? In this paper we offer an explanation Posite sublattice of the one to whichbelongs:
of this puzzling experimental observation by solving for the
fermionic sector of the SG) model. Our work builds on that
of Arovas et al!* where it was shown that in the $&)
model the vortex cores can become insulating, in fact anti- .
ferromagnetic, in stark contrast to the standard normal metal dy(1)=e7127> ¢(R)C,(r+R), (©)
cores of traditional superconductors. R
The S@5) model is being developed as a candidate
theory for the high¥, superconductors. In the seminal paper .
by Zfiland2 the egmpchasiz was on the phase diagram gnc? ihhereQ= (), and wherep(R) is given by
collective (bosoni¢ modes of the system. The first experi-
mental support, or in some sense the motivation, for the
model was the explanation of the 41 meV magnetic reso- » 1_@l@R
nance in the superconducting state of YBCO observed by _ ik-R _ _c =
Mook etal!® Later the energetics of the normal- ‘P(R)_zk: e sgricosk,—cosky) = ™ R-RZ’
superconductivity transition was shown to explain experi- Y (4)
mental data on the condensation enelthylore recently the
foundation of the S(®&) model has been clarified by work of
Rabelloet al,'® Henley® and Ederet all” These basic con- which is only nonzero on the sublattice not including the
siderations provided the foundation for studying the fermi-origin. The long range nature @f(R) is crucial for the ex-
onic sector of the S®) model, and confirmed the well- istence of strict S®) symmetry. ¥ (r) transforms like a
known electronic spectrum of the antiferromagneth)  spinor under S() transformations, i.e., under rotations in
and the dSC phases. However, the fermionic sector has nthe ab plane generated by the operatord,,
been treated in detail, and our work can be viewed as a step =,V (r)I'3*W¥(r), a,b=1,2,3,4,5, where I
towards exploring this sector more fully. =—i[I'3T'"]. The five 44 I'® matrices are given in terms
In our model calculation we consider strongly correlatedof tensor products of the standarck2 Pauli matricesi™®
electrons hopping on a 2D square lattice with a lattice con=oy®o0,, "=l 0oy, [V=0,00,, I'’=l®0,, and I
stant of unit length. The noninteracting Hamiltoniay, is  =o,® o, . The indices 2, 3, and 4 are written ®sy, andz
given by an isotropic tight-binding model: referring to the real space directions of the AF order param-
A eter. It can be shown that L5 corresponds to the charge
_ + _ —iemyf oad_ R counting operatoR, thatL,,, L,,, andL,, correspond to
Ho= t% 2‘1 Co(r+d))Cq(re ' #N, the spin operators,, Sy,yand S,, and t%atLl(xyy'Z) are
(1) related to ther(, , ,) operators rotating between the dSC and
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AF sectors. As in Ref. 15 we now focus on the vector inter- A(r)=c (r)EI (r)+a (r)c,(r) ®)
action, which in the real space representation takes the form ¢ I : A

Hmt:aErs V(r=9{¥T(NTrawnHvi(9raw(s)}. (5)

ci(r
In reality the S@5) symmetry is broken. However, both the m(r)= %eiQ'r[(c}r(r),cI(r))a( 1l ))
interpretation of the 41 meV excitation as a pseudo Gold- c,(r)

stone mode relating to a rotation of the dSC phase into the

AF phase, as well as the fact that the coupling strengths in o~ d.(r)

the dSC and AF sectors are almost identi€ahake it plau- —(d;(r),d|(r)e| - : ©
sible that the S(®) breaking is weak. The long-range corre- dy(r)

lations of thed-operators apparent in Eq8) and(4) lead to

rather unphysical infinite-range hopping. A natural way O\we find that inH™ of Eq. (7) the SA5) symmetry is broken

. int
break the SG) symmetry Is thus to truncate the sum, andin such a way that d-wave gap function results in the pure
we choose to maintain only nearest neighbor correlations

' SC phase,E§=s§+[2V|A|(coskx—cosky)]2, while a full
(d-wave modulatetf) gap develops in the pure AF phase,
B 1 2 Ei=eZ+{3Vml 1+ (cosk—cosk)?]}.
da(f)ﬂda(f)Zief'Q'r_Zl @iCu(r+ ), (6) To elucidate the role of the gap in the AF sector we first
= study the continuum limit of our model. The important low-
Where¢j=(—l)5iy. Not only does this truncation constitute a 1Ying excitations in the fermionic sector are concentrated in
simple form relating both to S@) symmetry and to the regions near the fourd-wave gap nodesQ,
Hubbard-like models for dS€but, as we shall see below, it =(7/2)(cogm(A2—1/4)],si{m(\2—1/4)]), where \=
also leads, in the homogeneous phases, to the exp@otdd 1,2,3,4. We get rid of the rapid variations by local gauge
observedl quasiparticle excitation spectra of the gapful anti-transformations in each of the four quadrantsn k space:
ferromagnet and the-wave superconductor, respectively. Co(T) =2, "¢ ,(r). The gauge transformation is then
We emphasize that our approximation is designed for thigised orH, (with A=0) andH]. Upon summing over we
reason and not for our present purpose of explaining th&eep only slowly varying terms, ie., terms where
vortex core excitations. Rather, the latter is a consequence eXdi(Q\,*Q,)-r] vanish. Not surprisingly, the only surviv-
the former. Now follow two approximations. First, we make ing terms are either diagonal i or have Q,,=Q,+Q
the usual assumptié® of a point interaction,V(r—s)  =Qy. This means thaty,(r) and g,(r)=¢7,(r) form
=—3V4&(r—s). And second, we utilize the standard mean-one subspace, ang,,(r) and i,,(r)=#,(r) form the
field approximation. These approximations result in the fol-other. It thus becomes natural to consider the spinors
lowing SQ5) symmetry broken mean-field interaction \If{(r)={¢IT(r),lpx—l(r),zp%(r),;//u(r)}. The gauge factor
Hamiltonian: e'@" leads to a sign change between the tegs(r + &)
and ¢, ,(r—&;) in Hy and A. The difference terms arising
from this become derivatives in the continuum limit. Further
Hm{:_z vim(r)-(m(r))+2{A(r)(AT(r))+H.c}], care is necessary regarding exi@g-dependent signs. For
r simplicity we assumem(r)=m(r)e, and obtain a final
(@) Hamiltonian for theW; spinor \=1 andA=3) containing

with the dSC and AF order parameters given by both A(r) andm(r):
) ) ) ) 1
—t(igx+idy) —2V(idy—idy)A(r)* —EVm(r) 0
. . . . 1
—2VA(r)(idy—idy) t(ioy+idy) 0 EVm(r)
H:f drwl(r) L Wy(r).
—EVm(r) 0 t(idy+idy) 2V(idy—idy)A(r)*
1 _ . . .
0 EVm(r) 2VA(r)(idy—idy) —t(idy+idy)

(10

With the ansatzIfI(r)z(al,az,a3,a4)e*ik", andk. =k,*k, for k=(k,,k,) the eigenvalue problem becomes
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1
th,—E 2VA*k.  Zvm 0
1
2VAk_  —tk,—E 0 ~5vm
L =0. (11)
Svm 0 —tk,—E —2VA*k_
1
0 ~5vm  -2vak.  tk.—E

A pure SC phase has a constaht while m=0, and the

spectrum becomeE= =+ (t°%k2 +|2VA|%k? )2 The corre- A(r)=§j: Ao(r—Ry), (12

sponding eigenstates are easily found. For a pure AF phase

is a constant ancA =0, and the spectrum now becomés

=+ (122 + (3Vm)?)Y2, with associated eigenstates. A(n=f(r)e"=]] fo(r_Rj)eZk a9l =Rd,(13)
We now imagine the plane to be divided into two parts. .

Forx<0 the system is in the SC phase while ¥6¢ 0 it is in

the AF phase. It is now simple to study the scattering prob- m(r)= >, my(r— R)), (14)

lem where a particle with enerd¥|<Vm in the SC sector ]

is moving towards the barrier formed by the AF sector. The h _RY s th | le bet dRo |
result is not surprising: if the particle starts out with a mo- Vhere arg(—R,) is the polar angle betweanandR,. In a

mentum near, sayQ, it is completely reflected by the AF lattice model a particularly simple way to construct the mag-

sector(where it only acquires an exponentially damped prob-netlc unit cell is the following. For each area penetrated by

o . . , one flux quantumh/e a Dirac antivortex string carrying a
ability), and it ends up with a momentum near eitlkgr or q 9 ying

- o= flux —h/e is added® The strings will have no physical con-
Q) The process resembles Andreev reflection in the quanseq ences at all when placed between lattice sites. However,

tum number. The conclusion of this exactly solvable hey allow for the construction of a vector potential periodic
model is clear: low energy particles in the SC sector can bg, the magnetic unit cell, through which the magnetic flux is
confined by a surrounding AF sector, or conversely, the AR grg.
sector expels low energy particles. We now construct a square Abrikosov lattice with a Dirac
We now proceed to discuss dSC vortices, first brieflyantivortex added to the center of every second vortex. Since
mentioning the case of normal cores followed by ou®0O each vortex carry half a flux quantum, the smallest magnetic
model calculation of vortices with AF cores. In his semiclas-unit cell possible consists of two vortices. However, due to
sical analysis of the electronic density of states produced bipetter convergence properties in obtaining the periodic vec-
d-wave vortices, Volovik showédhat only a small part of tor potential and a periodic representation of the SC order
the density of states results from quasiparticles localized gtarametefespecially its phasé(r)], we choose to double
the vortex cores, and that that part is a function of the vortexhe magnetic unit cell. Our unit cell contains two ordinary
density. Hence, in any realistic calculation of quasiparticlevortices on one diagonal and two vortices penetrated by
states, the entire vortex lattice must be taken into accounDirac antivortices on the other. Periodic formsAdfr), 6(r),
Wang and MacDonaldmade the first self-consistent, nu- and m(r) are then easily found by adding up contributions
merical lattice calculation of a tight-binding model for from a large number of unit celigypically 64) surrounding
d-wave type-ll superconductors using the Bogoliubov—dethe one we are studying. From this we obtain a mean field
Gennes equations. In the following we expand their work tdattice HamiltonianH=Hy+ Hm{ given by Eqs.(1) and(7),
the case ofd-wave superconductors with antiferromagneticwhich is periodic in our unit cell. Based on the Bogoliubov

cores as described by the 8Dmodel. We take advantage transformation for the operators within our unit cell
of earlier self-consistent calculations of isolated vortices in

the S@5) model!**® where in the symmetric gaug&(r)
= (h/12e)[ ay(r)/r e, the SC and AF order parameters as a (¥ =2 {ur(r)ch(n+ov(rcyn}, (15
function of the distance to the vortex core in polar coordi- '
nates are given by (r)="fy(r)e'?" and m(r)=my(r), re-

spectively. Here the functiony(r), ao(r) andmo(r) are whereo= =1 is the spin index and= — o, the equation of

: AR motion for they% operators using the periodic Hamiltonian
only known numerically. Note thah(r) points in a constant g . :
y y (r) p H leads to the Bogoliubov—de Gennes equation for the

direction, so only the sizen(r) is given. For a lattice of eigenenergies and eigenstates of the fermionic quasiparticles:
nonoverlapping vortices, i.e., vortices further than a few 9 9 9 q P :
u® u®
=E“* . 16
v v (16)

times the London length apart, the self-consistent solutions T+ oM D
for the vector potential, the SC and the AF order parameter to
are expressed in terms of the vortex cent&s, as D* —T*+oM
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First, to check our calculations, we change the model
from SQ5) to ordinary sSC and dSC. The latter is produced
by settingM, ;=0 in Eq. (19), and the former by further-
more setting D), ,»=3V(A(r))4, ,+ in Eq. (18). As shown
in Figs. Xa) and Xb) we confirm qualitatively the main con-
clusions of Refs. 7-9. In the bulk of the sSC phase a full gap
is observed, while a midgap pedlwhich splits atT=0)
develops in the center of a sSC vortex. In the bulk of the dSC
49240123 32410123 3240123 phase a steady rise of the LDOS is seen around the midgap

FIG. 1. LDOS in the vortex corésolid line) and in the bulk sc  Position, while a midgap peak develops in the center of a

(dashed lingfor () BCS swave SC,(b) BCS d-wave SC, andc)  dSC vortex. Our model calculation captures mainly generic
SO(5) SC with an AF vortex core. features and can therefore not be used in the ongoing debate

of the detailed form of the LDOS in the dSC vortex cdré.
However, this issue is not important for our main observa-
containing the values af*(r) andv*(r) on each lattice site 10N IN the S@5) case: instead of a midgap peak the LDOS is
in our unit cell, while the block matrice$, D, andM are dramat|cally suppressed_ In 'ghe AF vortex core resembling
given by bqu_ behavior as shown in Flg.(d). This confirms the con-
clusion of the dSC/AF interface in the $) model studied
, 4 in the first part of this paper. The AF phase effectively sup-
()= _tei(em)f; A-dlz Sr a5 —mS,, (17 presses any fermionic low energy states.
=1 7 ’ We thus reach our main conclusion. The experimentally
observed lack of electronic quasiparticle states in the center
4 of Abrikosov vortices in BSCCQRef. 10 as opposed to the
(D) =2, ¢[D(r')+ D)8 1+, (18  measurements of a normal metallic core of vortices in YBCO
=1 (Ref. 3 finds a natural explanation in the framework of the
4 SQ(5) model. As already pointed out by Arovasal,'! the
- o _ s _ , nature of the S(®) vortex cores are governed by the param-
(M)”'_J. jZ:l Cii M=) 01 s 540, =M1 01 r, eters(e.g., doping level and coupling strengtio the given
' (190  high-T, material. The cores can either become metallic, i.e.,
. 0. a pure dSC behavior, or insulating, i.e., a mixed dSC/AF
with D(r) =z V(A(r)) andM_(r)z%e'Q v{m(r)). _ behavior. At the present stage of the (SDtheory it is dif-

In the numerical calculation we useNax N lattice with eyt to predict which materials will in fact develop AF vor-
N=44. The origin is put in the center and the four vortices |ntex cores. For examp|e, as is studied in the Striped p?*?ase,
the center of each of the quadrants. The periodicity is enthe insulating vortex cores are negatively charged, since they
sured by having H(r+N&)=H(r+N&)=H(r). The must be at half filing, in contrast to the hole doped bulk
Bogoliubov—de Gennes equation, H@6), becomes a 82 material maintained at lower filling. Such a charging energy
X 2N? eigenvalue problem yielding for a given value of the must be taken into account in a detailed calculation of the
spin variables the spectrunE® and the Bogoliubov coeffi- energy gained by forming an AF vortex core. Our calculation
cientsu® andv®. To compare our calculations with the ex- of the generic features in the fermionic sector of the(80
perimental STM measurements on vortfce¥ and with the  model shows that the measured LDOS can be explained if
existing calculationson ordinary sSC and dSC vortices we one simply assumes that YBCO with its metallic vortex
compute the temperature dependent local density of stat&9res is a pure dSC 38) superconductor, while BSCCO is

(LDOS) according to the standard minimal motiel a dSC/AF S@) superconductor. We obtained our results by
studying both the analytically solvable model of a perfect

SC/AF interface and by exact numerical diagonalization of

LDOS (arb. units)

Here E“ is the quasiparticle energy® andv® are vectors

_ @ 21§71 a__ a 2
N(“E)—g [usH = (E“=E)}+[o (n) an Abrikosov lattice model. Clearly, further theoretical in-
sight in the dual dSC/AF nature of the high-compounds
X{—f"(E“+E)}], (200 can be obtained from studies of the striped phases, where

where f(z) = [expe/k:T)+ 1] and where we have ne- alternating stripes of SC phases and AF phases d¢cur.

glected the dispersion in the magnetic Brillouin zone. The  This work was supported by the Danish Natural Science
calculation yields the LDOS shown in Fig. 1. In all casesResearch Council: access to the Cray 92 at@ithrough
V=0.8, kgT=0.1t and uw=—0.6, which due to the band Grant No. 9602481, and H.B. through OléRer Grant No.

structure leads to an asymmetric LDOS. 9600548.
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