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We address the role played by orbital degeneracy in strongly correlated transition-metal compounds. Spe-
cifically, we study the effective spin-orbital model derived for thed9 ions in a three-dimensional perovskite
lattice, as in KCuF3, where at each site the doubly degenerateeg orbitals contain a single hole. The model
describes the superexchange interactions that depend on the pattern of orbitals occupied and shows a nontrivial
coupling between spin and orbital variables at nearest-neighbor sites. We present the ground-state properties of
this model, depending on the splitting between theeg orbitalsEz , and the Hund’s rule coupling in the excited
d8 states,JH . The classical phase diagram consists of six magnetic phases which all have different orbital
ordering: two antiferromagnetic~AF! phases with G-AF order and eitherx22y2 or 3z22r 2 orbitals occupied,
two phases with mixed orbital~MO! patterns and A-AF order, and two other MO phases with either C-AF or
G-AF order. All of them become degenerate at the multicritical pointM[(Ez ,JH)5(0,0). Using a generali-
zation of linear spin-wave theory we study both the transverse excitations which are spin waves and spin-and-
orbital waves, as well as the longitudinal~orbital! excitations. The transverse modes couple to each other,
providing a possibility of measuring the new spin-and-orbital excitations in inelastic neutron spectroscopy. As
the latter excitation turns into a soft mode near theM point, quantum corrections to the long-range-order
parameter are drastically increased near the orbital degeneracy, and classical order is suppressed in a crossover
regime between the G-AF and A-AF phases in the (Ez ,JH) plane. This behavior is reminiscent of that found
in frustrated spin models, and we conclude that orbital degeneracy provides a different and physically realiz-
able mechanism which stabilizes a spin liquid ground state due to inherent frustration of magnetic interactions.
We also point out that such a disordered magnetic phase is likely to be realized at lowJH and low electron-
phonon coupling, as in LiNiO2.
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I. NOVEL MECHANISM OF FRUSTRATION NEAR
ORBITAL DEGENERACY

Quite generally, strongly correlated electron systems
volve orbitally degenerate states,1 such as 3d(4d) states in
transition metal compounds, and 4f (5 f ) states in rare-earth
compounds. Yet, the orbital degrees of freedom are igno
in most situations and the common approach is to consid
single correlated orbital per atom which leads to spin deg
eracy alone. Indeed, most of the current studies of stron
correlated electrons deal with models of nondegenerate
bitals. The problems discussed recently include mechani
of ferromagnetism in the Hubbard model,2 hole propagation
and quasiparticles in thet-J model,3 and magnetic states o
the Kondo lattice.4 Of course, in many actually existing com
pounds the orbital degeneracy is removed by the cry
field, and a single-orbital approach is validper se. Also, from
a fundamental point of view it is often possible to argue t
orbital degeneracy is qualitatively irrelevant, and that
single-orbital approach can capture the generic mechan
operative in the presence of strong correlations.
PRB 610163-1829/2000/61~9!/6257~31!/$15.00
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However, neither of these arguments applies for a clas
insulating strongly correlated transition-metal compoun
where the crystal field leaves the 3d orbitals explicitly de-
generate and thus the type of occupied orbitals is not kno
a priori, while the magnetic interaction between the spins
neighboring transition-metal ions depends on which orbit
are occupied. In this particular class of Mott-Hubbard ins
lators ~MHI ! the orbital degrees of freedom acquire a se
rate existence in much the same way as the spins
Thereby, the degeneracy oft2g orbitals is of less importance
as the magnetic superexchange and the coupling to the la
are rather weak. A more interesting situation occurs wheneg
orbitals are partly occupied, which results in stronger m
netic interactions, and strong Jahn-Teller~JT! effect. Typical
examples of such ions are: Cu21 (d9 configuration, one hole
in eg-orbitals!, low-spin Ni31 (d7 configuration, one electron
in eg orbitals!, as well as Mn31 and Cr21 ions ~high-spind4

configuration, oneeg electron!. The simplest model, relevan
for d9 transition-metal ions, which is also the subject of t
present paper, was introduced by Kugel and Khomskii m
than two decades ago,5 but its mean-field~MF! phase dia-
6257 ©2000 The American Physical Society
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6258 PRB 61OLEŚ, FEINER, AND ZAANEN
gram was analyzed only recently.6 It describes magnetic su
perexchange interactions between spinsS51/2, and the ac-
companying orbital superexchange interactions.

One might argue that the~classical! orbital degeneracy is
not easy to realize in such systems, as the electron-pho
coupling will lead to the conventional collective JT instab
ity. In fact, it can be shown that the JT instability is enhanc
by the orbital pattern once this has been established as
result of effective interactions:5,7,8 the lattice has to react to
the symmetry lowering in the orbital sector, which can on
increase the stability of a given magnetic state. So the lat
follows rather than induces the orbital order, and therefo
as was pointed out in the early work by Kugel a
Khomskii,5,9 in the orbitally degenerate MHI one has to co
sider in first instance the purely electronic problem. This
supported by the results of recent band-structure calculat
using the local-density approximation~LDA ! with the elec-
tron interactions treated in Hartree-Fock approximation,
so-called LDA1U method, which permits both orbitals an
spins to polarize while keeping the accurate treatment of
electron-lattice coupling of LDA intact. These calculatio
reproduce the observed orbital ordering in KCuF3 ~Ref. 10!
and in LaMnO3,11 even when the lattice distortions are su
pressed, while allowing the lattice to relax only yields
energy gain which is minute in comparison with the energ
involved in the orbital ordering.

Effects of orbital degeneracy are expected as soon
crystal-field splittings become small. Such situations are
quently encountered in rare-earth systems, where they lea
the so-called singlet-triplet models discussed in
seventies,12 while in the 3d oxides only a small number o
so-called Kugel-Khomskii~KK ! systems9 have been recog
nized that actually exhibit orbital effects.7 As pointed out by
Kugel and Khomskii,5 in such situations the superexchan
interactions have a more complex form than in spin-o
models and one expects that also in some other M
Hubbard~or charge-transfer! insulators new magnetic phase
might arise due to the competition of various magnetic a
orbital interactions. Some examples of such a competition
magnetic interactions are encountered in the heavy ferm
systems,4,13 and in the manganites where the phase diagra
show a particular frustration of magnetic interactions.14–17

Even more interesting behavior is expected for the do
systems, as the competition between the magnetic, orb
and kinetic energy is then described byt-J Hamiltonians of
a novel type, which exhibit qualitatively different excitatio
spectra due to the underlying orbital degeneracy.18 A few
examples of such models have already been discussed i
literature, such as the triplett-J model,19 the low-spin de-
fects in aS51 background,20 or a t-J-like model for the
manganites.21 Whether such models are realistic enough
not yet clear, as, for example, in the manganites there
experimental22 and theoretical23 indications that the double
exchange model which includes only the spin degrees
freedom is insufficient to understand the transport proper
under doping. Recent work16,17,24,25strongly suggests that a
extension of thet-J and double-exchange models which i
clude fully the orbital physics should be studied instead.

In this paper we shall consider only the insulating situ
tion, where one can integrate out thed2d excitations and
derive an effective low-energy Hamiltonian. This approa
on
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is justified by the large on-site Coulomb interactionU, being
the largest energy scale in MHI. A low-energy Hilbert spa
splits off, spanned byspin and orbitalconfiguration space
with superexchangelike couplings between both spin and
bital local degrees of freedom. The orbital sector carrie
discrete symmetry and the net outcome is that the clock
orbital degrees of freedom get coupled into the SU(2) s
problem. The resulting low-energy Hamiltonian is called
spin-orbital model. Here we focus on the simplest situatio
with two nearly degenerate partially filledeg orbitals, and
completely filledt2g orbitals, as encountered in KCuF3 and
related systems.9 These are JT-distorted cubic crystals, thre
dimensional~3D! analogs of the cuprate superconductors26

In the high-Tc cuprates, orbital degeneracy would occur
the Cu-O bonds which involve apical oxygens we
squeezed such as to recover the cubic symmetry of the
ovskite lattice. Of course, such a degeneracy ofeg orbitals is
far from being realized in the actual high-Tc materials, and in
their parent compounds.27,28

If only one correlated orbital is present, the system m
be described by the effective single-band Hubbard mo
~typically with more extended hopping!, as in the cuprate
superconductors.29 In this simplest case the effective mod
at half filling is the Heisenberg model with antiferromagne
~AF! superexchange. This changes when more than oned
orbital is partly occupied. For example, we show in Sec
that virtual excitations involvingd8 local triplet states be-
come possible in the case of degenerateeg orbitals, and this
leads to additional ferromagnetic~FM! interactions. The ori-
gin of these interactions was first discussed by Kugel a
Khomskii5 and by Cyrot and Lyon-Caen30 who pointed out
that the strongest superexchange constant results from
excitation to the lowest energy triplet state in the degene
Hubbard model. The superexchange interaction in dou
degenerate band with arbitrary filling was somewhat la
analyzed by Spałek and Chao, who derived a generalizedt-J
model foreg electrons.31

The model proposed by Kugel and Khomskii explai
qualitatively the observed magnetic ordering in KCuF3 as
being due to an orbital ordering which gives planes of p
pendicularly oriented orbitals, and the magnetic coupling
comes then FM according to the Goodenough-Kanam
rules.32 As mentioned above, such a state was indeed fo
in the band structure calculations of Liechtenstein, Ani
mov, and Zaanen10 using the LDA1U method. An analo-
gous orbital order is responsible for ferromagnetism in
planar FM insulator K2CuF4.33 In the colossal magnetoresis
tance parent compound LaMnO3, where theeg orbitals con-
tain one electron instead of one hole, a similar orbital ord
ing occurs,7,15 although the situation there is more compl
due to the presence oft2g spins, so that the resulting supe
exchange is not between spinsS51/2 but between total spin
S52.17 Another example of degenerate orbitals is found
V2O3, with the orbital ordering studied by Castellani, Nato
and Ranninger in a series of papers.34 In fact, their prediction
that the transition into the AF insulator is accompanied
the onset of orbital ordering was experimentally verified on
recently.35 However, this case is still open, as recent ele
tronic structure calculations suggest that doubly degene
orbitals are occupied by two electrons in the high-spin st
and the orbital degree of freedom plays no role.36
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In any of the above situations the orbital ordering brea
the translational symmetry and represents an analog of
antiferromagnetism in orbital space. So,classically orbital
ordering is expected to occur quite generally whenever
encounterseg orbitals containing either one hole or one ele
tron, with important consequences for the magnetism. T
immediately raises a number of questions about what h
pens in thequantum regime. Will orbital long-range order
~LRO! be robust or will it give way to anorbital liquid, as
proposed by Ishihara, Yamanaka, and Nagaosa?37 In either
case, what are the consequences of the enlarged phase
and the associated additional channels for quantum fluc
tions for the magnetism: can magnetic LRO survive or wil
be replaced by aspin liquid?

Quantum disordered phases are of great current inte
Spin disorder is well known to occur in one-dimension
~1D! and quasi-1D quantum spin systems, and the best
ample is the 1D Heisenberg model, where the famous e
solution found by Bethe many years ago38 showed that the
quantum fluctuations prevent true AF LRO, giving instea
slow decay of spin correlations. A similar situation is e
countered in spin ladders with an even number of legs, wh
have a spin gap and purely short-range magnetic order39,40

This is one of the realizations of a spin-liquid ground st
due to purely short-range spin correlations. In the limit o
two-dimensional~2D! Heisenberg model the spin disorder
replaced by a ground state with AF LRO.

It is well known that frustrated magnetic interactions m
lead to spin disordered states in two dimensions. Howeve
order to achieve this, i.e., to prevent 2D macroscopic s
systems from behaving classically and to make quantum
chanics take over instead, the frustration of the interacti
must be sufficiently severe. This shows that globalSU(2) by
itself is not symmetric enough to defeat classical order
D.1 and one has to change the magnetic interaction
such a way that they lead to sufficiently strong quant
fluctuations. So far, this strategy has been shown to lea
spin disorder in~quasi-!2D systems in three different situa
tions: ~i! Frustrating a 2D square lattice by adding long
range AF interactions, as inJ1-J2 and J1-J2-J3 models,
gives a high degeneracy of the classical sector, and a d
dered state is found for particular values of the magn
interactions.41,42 This mechanism involves fine tuning of pa
rameters and therefore such systems are hard to realiz
nature.~ii ! In the bilayer Heisenberg model two planes a
coupled by interlayer AF superexchangeJ' which generates
zero-dimensional fluctuations. This leads to a crossove
the disordered ground state of an incompressible spin liq
above a certain critical value ofJ' .43,44Also this mechanism
is hard to realize experimentally.~iii ! In contrast, a spin dis-
ordered state can be obtained in nature by reducing the n
ber of magnetic bonds in a 2D square lattice. The mode
CaV4O9 studied by Taniguchiet al.45 is a 1/5 depleted
square lattice, which gives a plaquette resonating vale
bond ~PRVB! ground state for realistic interactions, and
spin gap which agrees with experimental observations.46 A
common feature of these systems is a crossover between
ferent magnetic ground states, either between two diffe
patterns of LRO, as in case~i!, or simply between the or
dered and disordered states, which results in all three s
tions in a tendency towards the formation of spin singlets
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the bonds with the strongest AF superexchange. One
further note that in these spin-only models very specific p
terns of magnetic interactions are required already in t
dimensions to prevent the system to order classically, w
up to now it has proven impossible to realize a spin liquid
three dimensions.

In the present paper we address two fundamental q
tions for the Heisenberg antiferromagnet~HAF! extended to
include the orbital degrees of freedom in orbitally degener
MHI: ~i! Which classicalstates with magnetic LRO do exis
in the neighborhood of orbital degeneracy?~ii ! Are those
forms of classical order always stable againstquantumfluc-
tuations? We will show that the orbitally degenerate M
represent a class of systems in which spin disorder oc
due to frustration ofspin and orbitalsuperexchange cou
plings. This frustration mechanism is different from that o
erative in pure spin systems, and suppresses the mag
LRO in the ground stateeven in three dimensions.

As explained above, the low-energy behavior of such s
tems is described by a spin-orbital model. We will show th
within the framework of such a spin-orbital model the occu
rence of spin disorder may be regarded as resulting fro
competition between various classical ordered phases,
one with a simultaneous symmetry breaking in spin and
bital space. As we show below~see Sec. III!, there are two
types of classical AF phaseswithout an orbital order, i.e.,
when all the orbitals are the same: a 2D phase withx22y2

orbitals occupied by spins, the so-called AFxx phase, and
anisotropic 3D phase with 3z22r 2 orbitals occupied by
spins, the so-called AFzz phase, next to a few phases
mixed orbitals~MO’s! which stagger and lead to MO phase
typically with FM interactions in at least one spatial dire
tion. Thus the qualitatively new aspect is that the magne
interactions follow the orbital pattern, and thus these syste
tend to ‘‘self-tune’’ to ~critical! points of high classical de
geneneracy. We show explicitly that in the vicinity of such
multicritical point classical order is highly unstable with r
spect to quantum fluctuations. As a result, a qualitativ
different quantum spin liquid with strong orbital correlation
is expected. We believe that a 3D state of this type is reali
in LiNiO2.

The paper is organized as follows. The spin-orbital mo
for d9 transition-metal ions, such as Cu21 ions in KCuF3, is
derived in Sec. II using the correct multiplet structure
Cu31 excited configurations. We solve this model first in t
MF approximation and present the resulting classical pha
and the accompanying orbital orderings in Sec. III. The
ementary excitations obtained within an extension of the
ear spin-wave~LSW! theory are presented in Sec. IV, whe
we demonstrate that two transverse modes are stro
coupled to each other. This leads to soft modes next to
classical transition lines, and to the collapse of LRO due
diverging quantum corrections, as shown in Sec. V. We su
marize the results and present our conclusions in Sec. V

II. THE SPIN-ORBITAL MODEL

Our aim is to construct the effective low-energy Ham
tonian for a 3D perovskitelike lattice. The original charg
transfer multiband model, as considered for instance for
cuprates, includes the hybridization elements between thed
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6260 PRB 61OLEŚ, FEINER, AND ZAANEN
orbitals of transition-metal ions and the 2p orbitals of oxy-
gen ions.29 If the Coulomb elements at the 3d orbitals and
the charge-transfer energy between the 3d and 2p orbitals
are large, this model can be transformed into an effec
spin-fermion model. For example, this transformation p
formed for the three-band model gives an effective Ham
tonian with localized spins at the Cu sites which interact
superexchange interactions, while the doped carriers inte
with them by a Kondo-like coupling.47 In the limit of un-
doped compounds, one is thus left with a model which
scribes interacting transition-metal ions.

The simplest form of~superexchange! interaction, namely
a purely spin model, is obtained for the case of nondege
ated orbitals, whereas orbital degeneracy gives a spin-orb
model acting in a larger Hilbert space defined by both s
and orbital degrees of freedom at each transition-metal
Having in mind the strongly correlated late transition-me
oxides, we consider specifically the case of one hole per
cell in the 3d9 configuration, characterized in the absence
JT distortion by two degenerateeg orbitals:x22y2;ux& and
(3z22r 2)/A3;uz&. The derivation is, however, more gen
eral and applies as well to the low-spind7 configuration; in
the case of the early transition-metal oxides thed1 case
would involve thet2g orbitals instead.

The holes in the undoped compound which correspond
the d9 configuration of transition-metal ions, as in La2CuO4
or KCuF3, are fairly localized.48 Hence we take as a startin
point the following Hamiltonian which describesd holes on
transition-metal ions:

Heg
5Hkin1Hint1Hz , ~2.1!

and consider the kinetic energyHkin and the electron-
electron interactionsHint within the subspace of theeg or-
bitals~the t2g orbitals are filled by electrons, do not couple
eg orbitals due to the hoppings via oxygens, and hence
be neglected!. The last termHz describes the crystal-field
splitting of theeg orbitals.

Due to the shape of the twoeg orbitals ux& and uz&, their
d2p hybridization in the three cubic directions is unequ
and is different between them, so that the effective hopp
elements are direction dependent and different forux& and
uz&. The only nonvanishing hopping in thec direction con-
nects twouz& orbitals, while the elements in the (a,b) planes
fulfill the Slater-Koster relations,49 as presented before b
two of us.18 Taking the hoppingt along thec axis as a unit,
the kinetic energy is given by

Hkin5
t

4 (
^ i j &i

@3dixs
† dixs1~21!dW •yWA3~dizs

† dixs1H.c.!

1dizs
† dizs#1tAb (

^ i j &'
dizs

† dizs , ~2.2!

where^ i j &i and ^ i j &' stand for the bonds between neare
neighbors within the (a,b) planes, and along thec axis, re-
spectively, andb51 in a cubic system. Thex2z hopping in
the (a,b) planes depends on the phases of thex22y2 orbit-
als alonga and b axis, respectively, included in the facto
(21)dW •yW in Eq. ~2.2!.
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The electron-electron interactions are described by the
site terms

Hint5~U1 1
2 JH!(

ia
nia↑nia↓1~U2JH!(

is
nixsnizs

1~U2 1
2 JH!(

is
nixsnizs̄2 1

2 JH(
is

dixs
† dixs̄dizs̄

†
dizs

1 1
2 JH(

i
~dix↑

† dix↓
† diz↓diz↑1diz↑

† diz↓
† dix↓dix↑!, ~2.3!

with U and JH standing for the Coulomb and Hund’s ru
exchange interaction,50 respectively, anda5x,z. For conve-
nience, we used the simplified notations̄52s. This Hamil-
tonian describes correctly the multiplet structure ofd8 ~and
d2) ions,51 and is rotationally invariant in the orbital space.52

The wave functions have been assumed to be real w
gives the same elementJH/2 for the exchange interaction an
for the ‘‘pair hopping’’ term between theeg orbitals,ux& and
uz&.

In fact, we adopted here the most natural units for
elements of the Coulomb interaction, with the energy of
central u1E& doublet being equal toU. By definition this
energy does not depend on the Hund’s exchange elem
JH , as we show below, and is thus the measure of the a
age excitation energy in thedi

9dj
9→di

10dj
8 transition. The in-

teraction elementJH stands for the singlet-triplet splitting in
the d8 spectrum~Fig. 1! and is just twice as big as the ex
change elementKxz used usually in quantum chemistry.28

The typical energies for the Coulomb and exchange elem
can be found using constrained-occupation local-den
functional theory.53 Unfortunately, such calculations hav

FIG. 1. Virtual transitionsdi
9dj

9→di
10dj

8 which lead to a spin-flip
and generate effective interactions for a bond^ i j &ic axis, with the
excitation energies atEz50. For two holes in different orbitals~a!,
either the triplet3A2 or the interorbital singlet1Eu occurs as an
intermediated8 configuration, while if both holes are inuz& orbitals
~b!, two other singlets,1Ee and 1A1, with double occupancy ofuz&
orbital, contribute. The latter processes are possible either by
hopping fromi to j or from j to i.



o
te

th
ue
re

x-

h
io
d
th

n

lo

as

r

ol

th

b
th
tio

w-
ac
n-
u

in
s

in

r-
ite
pin
a

the
the

g/

n-

nce

s,

nd
d

ra,
en-

pa-

b

PRB 61 6261QUANTUM MELTING OF MAGNETIC LONG-RANGE . . .
been performed only for a few compounds so far. F
La2CuO4, a parent compound of superconducting cupra
one findsU57.77 eV andJH52.38 eV;28 other estimations
of U based on the experimental data report values 6,U
,8 eV for cuprates and nickelates.54 This results in the ratio
JH /U.0.3 which we take as a representative value for
strongly correlated late transition-metal oxides. The val
of intersite hoppingt, being an effective parameter, are mo
difficult to estimate. As a representative value for La2CuO4
one might taket'0.65 eV, which results in the supere
change interaction between theux& orbitals in (a,b) planes,
J(a,b)5(9/4)t2/U.0.13 eV,55 in good agreement with the
experimental value.56 Similar values of the effectivet are
expected also in the other transition-metal oxides, and t
we can safely assume that at the filling of one hole per
the ionic Hamiltonian~2.1! describes an insulating state, an
that the effective magnetic interactions can be derived in
strongly correlated regime oft!U.

The last term in Eq.~2.1! stands for the crystal field which
lifts the degeneracy of the twoeg orbitals and breaks the
symmetry in the orbital space,

Hz5(
is

~«xnixs1«znizs!, ~2.4!

if «xÞ«z . It acts as a magnetic field in the orbital space, a
together with the parameterb in Hkin ~2.2! quantifies the
deviation in the electronic structure from the ideal cubic
cal point group.

In the atomic limit, i.e., att50 andEz50, one has orbital
degeneracy next to spin degeneracy. This gives four b
states per site, as each hole may occupy either orbital,ux& or
uz&, and either spin state,s5↑ or s5↓. The system ofN d9

ions has thus a large degeneracy 4N, which is, however,
removed by the effective interactions between each pai
nearest-neighbor ions$ i , j % which originate from virtual tran-
sitions to the excited states,di

9dj
9
di

10dj
8 , due to hole hop-

ping. Hence we derive the effective spin-orbital model f
lowing Kugel and Khomskii,5 starting from the Hamiltonian
in the atomic limit,Hat5Hint1Hz , and treatingHkin as a
perturbation. However, in the present study we include
full multiplet structureof the excited states within thed8

configuration which gives corrections of the order ofJH
compared with the earlier results of Refs. 5 and 9.

Knowing the multiplet structure of thed8 intermediate
states, the derivation of the effective Hamiltonian can
done in various ways. The most straightforward but leng
procedure is a generalization of the canonical transforma
method used before for the Hubbard57 and the three-band47

model. A significantly shorter derivation is possible, ho
ever, using the cubic symmetry and starting with the inter
tions along thec axis. Here the derivation simplifies treme
dously as one finds only effective interactions which res
from the hopping of holes between the directionaluz& orbit-
als, as shown in Fig. 1. Next the interactions in the remain
directions can be generated by the appropriate rotation
the other cubic axesa and b, and applying the symmetry
rules for the hopping elements between theeg orbitals.49 The
derivation of the spin-orbital model is given in more detail
Appendix A.
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Depending on whether the initial state isuz& i ux& j or
uz& i uz& j , the intermediatedi

10dj
8 configuration resulting from

the hole-hopuz& i→uz& j , involves on thed8 site either the
interorbital states, the triplet3A2 and the singlet1Eu , or the
two singlets built from the states with doubly occupied o
bitals, 1E« and 1A1. Of course, the spins have to be oppos
in the latter case, while in the former case also parallel s
configurations contribute in the triplet channel. Apart from
constant term, this atomic problem is equivalent to that of
d2 configuration, and thus one might consider instead
spectrum ofd2 ions. The eigenstates within theeg subspace
are: ~i! triplet u3A2&, ~ii ! interorbital singletu1Ee&, and ~iii !
bonding and antibonding singlets,u1Eu& and u1A1&, with
double occupancies of both orbitals, where bondin
antibonding refers to pair hopping term}JH betweenux& and
uz& orbital. The energies of the statesu3A2& and u1Ee& are
straighforwardly obtained usingSW ix•SW iz511/4 andSW ix•SW iz
523/4, forS51 andS50 states, respectively. The remai
ing two singlet energies are found by diagonalizing a 232
problem in the subspace of doubly occupied states. He
the resulting spectrum is58

E~ 3A2!5U2JH ,

E~ 1Ee!5U,

E~ 1Eu!5U1 1
2 JH2 1

2 JH@11~Ez /JH!2#1/2,

E~ 1A1!5U1 1
2 JH1 1

2 JH@11~Ez /JH!2#1/2, ~2.5!

whereEz5«x2«z . At Ez50 it consists of equidistant state
with a distance ofJH between the tripletu3A2& and the de-
generate singletsu1Eu& andu1Ee& ~which form, of course, an
orbital doublet!, as well as between the above singlets a
the top singletu1A1&. We emphasize that the simplifie
Hubbard-like form of electron-electron interactions~2.3!
which uses two parameters,U and JH , in this case is an
exact representationof the Coulomb interaction in thet2g

6 eg
2

configuration as obtained in the theory of multiplet spect
and one finds a one-to-one correspondence between the
ergies calculated above, and those found with the Racah
rametersA, B, andC,51

E~ 3A2!5A28B,

E~ 1E!5A12C,

E~ 1A1!5A18B14C. ~2.6!

Thus the parameters used by us areU5A12C and JH
58B12C.50 We normalize the energies by the Coulom
interactionU, and introduce

h[JH /U ~2.7!
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as an energy unit for the Hund’s rule exchange interact
This gives the excitation energies which correspond to
local excitations di

9dj
9→di

10dj
8 on a given bond (i j ),

«~ 3A2!512h,

«~ 1Ee!51,

«~ 1Eu!511 1
2 h2 1

2 h@11~Ez /JH!2#1/2,

«~ 1A1!511 1
2 h1 1

2 h@11~Ez /JH!2#1/2, ~2.8!

shown in Fig. 2. We note that the deviation from the eq
distant spectrum atEz50 becomes significant only fo
uEzu/JH.1. Taking the realistic parameters of the cuprate28

one finds for La2CuO4 with Ez50.64 eV that Ez /JH
.0.27, a value representative for systems that are alread
from orbital degeneracy. Since we are interested here in w
happens close to orbital degeneracy, this allows us to neg
the Ez dependence of the energies of the excitedd8 states,
and use the atomic spectrum~2.6! in the derivation presente
in Appendix A.

Following the above procedure, we have derived the
fective HamiltonianH in spin-orbital space,

H5HJ1Ht , ~2.9!

where the superexchange partHJ can be most generally writ
ten as follows~a simplified form was discussed recently
Ref. 6!,

HJ5(̂
i j &

H 2
t2

«~3A2!
S SW i•SW j1

3

4DP ^ i j &
zj

1
t2

«~ 1Ee!
S SW i•SW j2

1

4DP ^ i j &
zj

1F t2

«~ 1Eu!
1

t2

«~ 1A1!
G S SW i•SW j2

1

4DP ^ i j &
zz J .

~2.10!

HereSW i refers to a spinS51/2 at sitei, andP ^ i j &
ab are projec-

tion operators on the orbital states for each bond,

FIG. 2. Energies of the virtual excitations« i /U shown in Fig. 1
as functions ofEz /JH for JH /U50.3. The lowest tripletu3A2& state
is indicated by full circles, and the singlet states (u1E& and u1A1&)
by full lines.
n.
e

-

far
at
ct

f-

P ^ i j &
zj 5~ 1

2 1t i
c!~ 1

2 2t j
c!1~ 1

2 2t i
c!~ 1

2 1t j
c!,

P ^ i j &
zz 52~ 1

2 2t i
c!~ 1

2 2t j
c!. ~2.11!

They are either parallel (Pi z5 1
2 2t i

c) to the direction of the
bond ^ i j & on site i, and perpendicular (Pj j5 1

2 1t j
c) on the

other sitej, or parallel on both sites, respectively, and a
constructed with the following orbital operators associa
with the three cubic axes (a,b,c),

t i
a52 1

4 ~s i
z2A3s i

x!,

t i
b52 1

4 ~s i
z1A3s i

x!,

t i
c5 1

2 s i
z . ~2.12!

The s ’s are Pauli matrices acting on the orbital pseudosp

ux&5S 1

0D , uz&5S 0

1D .

Hence we find a Heisenberg Hamiltonian for the spi
coupled into an orbital problem. While the spin problem
described by the continuous symmetry groupSU(2), the
orbital problem is clock-model-like, i.e., there are three
rectional orbitals: 3x22r 2, 3y22r 2, and 3z22r 2, but they
are not independent. The orbital basis consists of one di
tional orbital and its orthogonal counterpart, and we ha
chosen hereuz&[3z22r 2 and ux&[x22y2 orbitals.

In general, the energies of these two orbital states,ux& and
uz&, are different, and thus the complete effective Ham
tonian of thed9 model~2.9! includes as well the crystal-field
term ~2.4! which we write as

Ht52Ez(
i

t i
c . ~2.13!

Here Ez is a crystal field which acts as a ‘‘magnetic field
for the orbital pseudospins, and is loosely associated with
uniaxial pressure along thec axis. Thed9 spin-orbital model
~2.9! depends thus on two parameters:~i! the crystal-field
splitting Ez , and~ii ! the Hund’s rule exchangeJH .

While the first two terms in Eq.~2.10! cancel for the
magnetic interactions in the limit ofh→0, the last term
favors AF spin orientation. Although the form~2.10! might
in principle be used for further analysis, we prefer to ma
an expansion of the excitation energies«n in the denomina-
tors of Eq. ~2.10! in terms of JH , and useh5JH /U @Eq.
~2.7!# as a parameter which quantifies the Hund’s rule
change. This results in the following form of the effectiv
exchange Hamiltonian in thed9 model ~2.9!:6,59

HJ.J(̂
i j &

F2S SW i•SW j2
1

4DP ^ i j &
zz 2P ^ i j &

zj G
2Jh(̂

i j &
FSW i•SW j~P ^ i j &

zz 1P ^ i j &
zj !1

3

4
P ^ i j &

zj 2
1

4
P ^ i j &

zz G .
~2.14!

The first term in Eq.~2.14! describes the AF superex
change}J5t2/U ~wheret is the hopping betweenuz& orbit-
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als along thec axis!, and is obtained when the splitting
between different excitedd8 states;JH ~Fig. 2! are ne-
glected. As we show below, in spite of the AF supere
change}J, no LRO can stabilize in a system described
the spin-orbital model (2.9) in the limith→0 at orbital de-
generacy(Ez50) because of the presence of the frustrat
orbital interactions which gives a highly degenerate class
ground state. We emphasize that even in the limit ofJH
→0 the present Kugel-Khomskii modeldoes not obeySU~4!
symmetry, essentially because of the directionality of theeg
orbitals. Therefore such an idealized SU~4!-symmetric
model60 does not correspondto the realistic situation of de
generateeg orbitals and is expected to give different answe
concerning the interplay of spin and orbital ordering in cu
crystals.

Taking into account the multiplet splittings, we obta
@second line of Eq.~2.14!# again a Heisenberg-like Hamil
tonian for the spins coupled into an orbital problem, with
reduced interaction}Jh. It is evident that the new term
support FM rather than AF spin interactions for particu
orbital orderings. This net FM superexchange origina
from the virtual transitions which involve the triplet sta
u3A2&, which has the lowest energy and thus gives the str
gest effective coupling. We remark in passing that the F
channel is additionally enhanced ford4 ions when the virtual
excitations to double occupancies ineg orbitals happen in the
presence of partly filledt2g orbitals in high-spin configura
tions, as realized in the manganites.16,17

The important feature of the spin-orbital model~2.9! is
that theactual magnetic interactions depend on the orbi
pattern. This follows essentially from the hopping matr
elements inHkin ~2.2! being different between a pair ofux&
orbitals, between a pair of different orbitals~oneux& and one
uz& orbital!, and between a pair ofuz& orbitals, respectively,
and depending on the bond direction either in the (a,b)
planes, or along thec axis.18 We show in Sec. III that this
leads to a particular competition between magnetic and
bital interactions, and the resulting phase diagram contai
rather large number of classical phases, stabilized for dif
ent values ofEz andJH .

III. MEAN-FIELD PHASE DIAGRAM

A. Anisotropy of antiferromagnetic interactions

We start the analysis of thed9 spin-orbital ~or Kugel-
Khomskii! model~2.9!–~2.14! by analyzing the MF solution
obtained by replacing the scalar productsSW i•SW j by the Ising
termSi

zSj
z . The MF Hamiltonian may be written for the mor

general situation where the interaction has uniaxial ani
ropy along thec direction in the 3D lattice as follows:

HMF.(̂
i j &

Ja@2~Si
zSj

z2 1
4 !P ^ i j &

zz 2P ^ i j &
zj #

2h(̂
i j &

Ja@Si
zSj

z~P ^ i j &
zz 1P ^ i j &

zj !1 3
4 P ^ i j &

zj

2 1
4 P ^ i j &

zz #2Ez(
i

t i
c , ~3.1!
-

g
al

s

r
s

n-

l

r-
a

r-

t-

where Ja5Jb5J and Jc5Jb. For b.1 the nearest-
neighbor bondŝ i j &ic are shorter, while forb,1 these
bonds are longer than the bonds within the (a,b) planes. In
the limit of b→0 the bonds along thec axis may be ne-
glected and the model reduces to a 2D model, representa
for the magnetic interactions between Cu ions within t
CuO2 planes of the high-temperature superconductors.

The presence of AF spin interactions}J suggests mag-
netic superstructures with staggered magnetization, and
considered several possibilities, with two- and four-sublatt
3D structures, giving rise to G-AF and A-AF phases, AF 1
chains coupled ferromagnetically, and others. The M
Hamiltonian contains as well an AFinteraction between or-
bital variables, ;Jt i

at j
a , which suggests that it might b

energetically more favorable to alternate the orbitals in
certain regime of parameters, and pay thereby part of
magnetic energy. This illustrates the essence of thefrustra-
tion of the magnetic interactions present in the spin-orb
model~2.9!, as discussed in Sec. I. Therefore for any clas
cal state the orbitals occupied by the holes have to be o
mized, and we allowed MO states,

u ims&5cosu i u izs&1sinu i u ixs&, ~3.2!

with the values of the mixing angles$u i% being variational
parameters to be found from the minimization of the clas
cal energy.

The superexchange in Eq.~3.1! depends strongly on the
orbital state. At large positiveEz , where the crystal field
strongly favorsux& occupancy overuz& occupancy, one ex-
pects thatu i5p/2 in Eq. ~3.2!, and the holes occupyux&
orbitals on every site. In this case the spins do not interac
thec direction~see Fig. 1!, and there is also no orbital energ
contribution. Hence the (a,b) planes will decouple magneti
cally, while within each plane the superexchange is AF a
equal to 9J/4 alonga andb. These interactions stabilize a 2
antiferromagnet, called further AFxx. The resulting 2D Ne´el
state with decoupled (a,b) planes along thec direction is the
well-known classical ground state of the high-Tc supercon-
ductors La2CuO4 and YBa2Cu3O6.61 In contrast, ifEz,0
anduEzu is large,uEzu/J@1, thenu i50 in Eq. ~3.2!, and the
holes occupyuz& orbitals. The spin system has then strong
anisotropic AF superexchange, being 4J between twouz&
orbitals along thec axis, andJ/4 between twouz& orbitals in
the (a,b) planes, respectively. The corresponding 3D N´el
state with holes occupyinguz& orbitals is called AFzz. The
spin and orbital order in both AF phases is shown schem
cally within the (a,b) planes in Fig. 3.

B. Antiferromagnetic states in the 3D model

Assuming an AF classical order in all three directions, t
so-called G-AF state, it is thus obvious that for largeuEzu one
finds either the AFxx or the AFzz phase, depending
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whetherEz.0 or Ez,0, with the following energies nor
malized per one site,

EAFxx523JS 12
h

4 D2
1

2
Ez ,

EAFzz52JS 11
h

4 D22JbS 12
h

2 D1
1

2
Ez . ~3.3!

The AFxx and AFzz phases are degenerate in a 3D sys
(b51) along the lineEz50, while decreasingb moves the
degeneracy to negative values ofEz , namely to Ez
522J(12b)(12h/2).

However, for intermediate values ofuEzu one should al-
low for mixed orbitals. Following the argument above abo
the AF nature of the orbital interaction, we assume altern
ing orbitals at two sublattices,A and B. The alternation
should allow the orbitals to compromise between being id
tical ~optimizing the magnetic energy! and being orthogona
~optimizing the orbital energy!. This is realized by choosing
in Eq. ~3.2! the angles alternating between the sublattic
u i51u for i PA, andu j52u for j PB, respectively;

u ims&5cosuu izs&1sinuu ixs&,

u j ms&5cosuu jzs&2sinuu jxs&. ~3.4!

The calculation of the energy can be performed either
evaluating the average values of the operator variables$t i

a%,
or by taking the average values of the orbital projection
erators$Pia% as given in Eq.~A3!. Using the two-sublattice
orbital ordering~3.4!, one finds for the bondŝi j &i(a,b)

FIG. 3. Schematic representation of orbital and magnetic lo
range order within the (a,b) planes of AFxx~with ux& orbitals
occupied!, AFzz ~with uz& orbitals occupied!, MOFFA @with mixed
orbitals and FM~AF! order alonga and b axis (c axis!#, and
MOAFF phases~with the orbitals as in MOFFA, but rotated to giv
AF interaction along thea axis!, respectively. The shaded parts
different orbitals are oriented along thec axis. The spins~arrows! in
the next (a,b) plane in thec direction are AF to those below them
in AFzz and MOFFA phases, and FM in MOAFF phase. In t
AFxx phase there is no magnetic coupling to the next plane al
thec axis, but this degeneracy is removed in MOAAF phase, wh
a smalluz& component promotes a FM coupling.
m

t
t-

-

:

y

-

^Pi jPj z1Pi zPj j&5 1
8 ~724cos22u!,

^2Pi zPj z&5 1
8 ~122cos2u!2, ~3.5!

and for the bondŝi j &ic

^PixPjz1PizPjx&5 1
2 ~12cos22u!,

^2PizPjz&5 1
2 ~11cos 2u!2. ~3.6!

The classical energy per site as a function ofu is then given
by

E~u!52
J

4 S 11
h

2 D ~724cos22u!

2
J

4 S 12
h

2 D ~122cos 2u!2

2
J

2
bS 11

h

2 D ~12cos22u!

2
J

2
bS 12

h

2 D ~11cos 2u!2

1
1

2
Ezcos 2u. ~3.7!

This has a minimum at

cos 2u52

S 12
h

2 D ~12b!1
1

2
«z

~21b!h
, ~3.8!

where«z5Ez /J, if hÞ0, and provided thatucos 2uu<1 ~a
similar condition applies to all the other states with MO co
sidered below!. So, as long as 2J(b21)23J(b11)h<Ez
<2J(b21)1J(51b)h, there is genuine MO order, while
upon reaching the smaller~larger! boundary value forEz ,
the orbitals go over smoothly intouz&(ux&), i.e., one retrieves
the AFzz~AFxx! phase. Taking the magnetic ordering in th
three cubic directions@abc# as a label to classify the class
cal phases with MO~3.4!, we call the phase obtained in th
regime of genuine MO order MOAAA, with classical energ
given by

EMOAAA 52S 21b1
3

4
h D J2J

@~22h!~12b!1«z#
2

4~21b!h
.

~3.9!

Upon increasingJH , the FM interactions occur which in
crease the energy of the AF phases in three dimension
the term 3

4 h per site in Eqs.~3.3! ~a similar increase of en
ergy occurs also in the MOAAA phase in the region of
existence!. This indicates frustration of magnetic interactio
and opens a potential possibility that other classical pha
with FM order along particular directions might be mo
stable. We have found a few classical phases when the s
order ferromagnetically either in particular planes, or alo
one spatial direction, and this magnetic order coexists w
MO occupied by holes.

For example, the angles in Eq.~3.2! can be chosen in suc
a way that at least one of the orbitals on two neighbor
sites is perpendicular to the bond direction, e.g., is likey2

-
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2z2 type for a bond along thea axis. In such a case, the A
superexchange vanishes, and one finds instead a weake
interaction, in agreement with the Goodenough-Kanam
rules.32 By this mechanism Kugel and Khomskii5 proposed
an alternating orbital order to explain the FM planes o
served in KCuF3. Following this argument, let us assum
FM order within (a,b) planes, and the same form~3.4! as
above for the alternating orbitals at the two sublatticesA and
B. As alternating orbitals can only be arranged to be perp
dicular to the bonds in at most two spatial directions, such
arrangement for the (a,b) planes forces the orbitals to hav
nonzero lobes alongc. This results in sizable AF superex
change for the bondŝi j & parallel toc, which will order the
spins antiferromagnetically in thec direction. The orbitals
may either repeat or stagger along thec axis, and both state
give the same mean-field energy. Taking the magnetic or
ing in the three cubic directions@abc# as a label to classify
the classical phases with MO~3.4!, we call this ground state
the MOFFA phase. With the help of Eqs.~3.5! and~3.6! one
obtains the following classical energy as a function ofu:

E~u!52
J

4
~11h!~724cos22u!

2
J

2
bS 11

h

2 D ~12cos22u!

2
J

2
bS 12

h

2 D ~11cos 2u!2

1
1

2
Ezcos 2u, ~3.10!

with a minimum at

cos 2u5

bS 12
h

2 D2
1

2
«z

21~21b!h
, ~3.11!

where again the MO exist as long asucos 2uu<1. Using Eqs.
~3.10! and ~3.11! one finds that the classical energy of t
MOFFA phase is given by

EMOFFA52
J

4
~1127h!2

J

2

FbS 12
h

2 D2
1

2
«zG2

21~21b!h
.

~3.12!

As a special case, let us consider first degenerate orb
(Ez50) in a 3D system (b51). Equation~3.11! simplifies
in this case to cos 2u5(12 h/2)/(213h). A particularly
simple result is found ath50 where cos2u51/2, i.e., u
5p/6, and the orbitals stagger likex22z2 and y22z2, as
shown in Fig. 3. This staggering was proposed by Kugel
Khomskii as a ground state of KCuF3;9 of course, this state
is not realized for the realistic parameters withh.0.3, but
the optimized orbitals withu given by Eq.~3.11! are not so
far from this idealized picture.

The energy of the MOFFA phase is degenerate with t
of the AF phases at the classical degeneracy point,M
[(Ez /J,h)5(0,0), and this phase becomes more stable
FM
ri

-

n-
n

r-

ls

d

t

at

h.0 andEz /J.0. The magnetic energy is gained due
relatively strong AF interactions on the bonds^ i j &ic, and
weak FM interactions in the planes (a,b), perpendicular to
the preferred directionality of the MO~3.2! along thec di-
rection, while the orbital energy is gained due to orbital
ternation within the (a,b) planes. Such orbital ordering re
mains stable with decreasingEz,0, while two similar states
with the staggering either within the (b,c) or the (a,c)
planes, are more stable forEz.0. Following our convention,
these two degenerate MO states stable atEz.0 are called
MOAFF and MOFAF~see Fig. 3!, respectively. However,
the MO involve in this case the directional orbitaluz& along
the AF bonds ~i.e., uza&;3x22r 2 for MOAFF or uzb&
;3y22r 2 for MOFAF, respectively!, and the corresponding
orthogonal orbital, uj&. Therefore, since the symmetry
breaking field acts onuz& orbitals, the angles in the two sub
lattices cannot be exactly equivalent in this case, unlike
the MOFFA phase, and we adopted an ansatz,

u is&5cosu1u i js&1sinu1u i zs&,

u j s&5cosu2u i js&2sinu2u i zs&, ~3.13!

wherei PA, j PB, andu6.0 for the two sublattices. Intro-
ducing for convenience the new angles,f5 1

2 (u11u2), and
d5u12u2 , one finds the following conditions for the en
ergy minimum of the classical MOAFF phase,

cos 2f52 1
4 $@~11b!~22h!1«z#cosd1A3«zsind%

3@11b1~112b!h#21, ~3.14!

tan2d51 1
2 A3@~11b!~22h!1«z#«z

3$4@11b1~112b!h#1@~11b!~22h!1«z#
2

2 3
4 «z

2%21, ~3.15!

and the energy is given by

EMOAFF52
J

4
@7~11h!12b~11cosd!#

2
J

32

$@~11b!~22h!1«z#cosd1A3«zsind%2

11b1~112b!h
.

~3.16!

Finally, one may consider states in which magnetic e
ergy is gained in thec direction due to MO with a smal
admixture ofuz& into orbitals of predominantlyux& character,
i.e., sinui512e in Eq. ~3.2!. As such a state is a modificatio
of the AFxx phase, the two sublattices in the (a,b) planes
are again physically equivalent, and it suffices to introduc
single angleu to characterize this state. Apart from~large!
energy contributions due to AF order on the bonds in
(a,b) planes, the expansion of the ground-state energy c
tains also~small! terms depending on the spin order in thec
direction,^Si

zSj
z& ic ,

E5~11cos 2u!~11cos 2u2h!^Si
zSj

z& ic1const,
~3.17!

which prefers FM order as long as (11cos 2u),h. The rea-
son is that the AF superexchange is a fourth-order ef
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;e4, while the FM interactions}h are second order,;e2,
and give a lower energyE as long as theuz& occupancy is
small enough. Following our convention, we call the resu
ing state the MOAAF phase, with the mixing angle given

cos 2u52

12
h

2
1

1

2
«z

b~11h!12h
, ~3.18!

and the classical energy by

EMOAAF52S 21
3

4
h D J2

1

2
b~11h!

2J
~22h1«z!

2

2@b~11h!12h#
. ~3.19!

Therefore only when the average population of theuz& orbit-
als, ;cos2u, increases sufficiently, one can find a transiti
to the AF phase with mixed orbitals, MOAAA, discusse
above.

By making several other choices of orbital mixing a
classical magnetic order, we have verified that no other c
mensurate ordering with up to four sublattices can be sta
in the present situation. Although some other phases co
be found, they were degenerate with the above phases on
the M point, and otherwise had higher energies. Thus
obtain the classical phase diagram of the 3D spin-orb
model ~2.9! by comparing the energies of the six abo
phases for various values of two parameters,$Ez /J,JH /U%:
two AF phases with two sublattices and pure orbital char
ter ~AFxx and AFzz!, three A-AF phases with four subla
tices ~MOFFA and two degenerate phases: MOAFF a
MOAFF!, one C-AF phase~MOAAF!, and one G-AF phase
with MO’s ~MOAAA !. While the orbital mixing is unstable
at h50, the generic sequence of classical phases at finih
and decreasingEz /J is: AFxx, MOAAF, MOAAA, MOAFF,
MOFFA, and AFzz, and the magnetic order is tuned toget
with the gradually increasinguz& character of the occupie
orbitals.

The result for cubic symmetry (b51) is presented in Fig
4, where one finds all six phases, but the MOAAA pha
does stabilize only in a very restricted regime of parame
with JH /U,0.1, before MOAFF takes over. Only the fir
of the above transitions is a continuous one, and theuz&

FIG. 4. Mean-field phase diagram of the 3D spin-orbital mo
~2.9! in the (Ez ,JH) plane (b51). The lines separate the classic
states shown in Fig. 3; the transition from AFxx to MOAFF pha
is second order~dashed line!, while the remaining transitions ar
first order~full lines!.
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amplitude ;cos2u increases smoothly from zero and r
moves the built-in degeneracy of the 2D AFxx phase w
respect to the magnetic order along thec direction. All the
other transition lines in Fig. 4 are associated with jumps
the magnetic and in orbital patterns. We emphasize tha
the considered phases with magnetic LRO are degenera
the pointM, with classical energy of23J. In fact, M is an
infinite-order quantum critical point, since not only may th
spins be chosen to be FM in certain planes, whence the
bitals have to be tuned to compensate the loss of the m
netic energy by the orbital energy contributions, as realiz
in all MO phases, but also may the orbitals be rotated fre
when the spins are AF in all three directions.We note, ho
ever, that the magnetic terms are essential, and in a pu
disordered spin system, witĥSi

zSj
z&50, a higher energy of

221J/8 is found even with the optimal choice of orbita
with cos 2u50.

The symmetry with respect toEz50 is explicitly broken
in the phase diagram of Fig. 4. The crucial point is that
orbitals favored by nonzeroEz have differentdirectionality:
unidirectional (uz&) for Ez,0, planar (ux&) for Ez.0. For
the G-AF phases this leads straightforwardly to different
change interactions depending on which orbital is occup
A similar asymmetry is also found for the MO phases, and
is for this reason that an additional MOAAF phase, with F
chains along thec axis is found only forEz.0. By contrast,
we note that the phase diagram isinvariant under a change
of the basis orbitals to 3x22r 2 and y22z2 and a simulta-
neous rotation of the crystal field to a situation where
new orbitals are split by a crystal-field parameterEz , having
an analogous meaning toEz . This demonstrates the full cu
bic symmetry of the present Hamiltonian, but this symme
is explicitly broken by a uniaxial stress along thec direction,
consistent with theQ3 static distortions considered b
Kanamori.62

FIG. 5. Mean-field phase diagrams of the spin-orbital mo
~2.9! in the (Ez ,JH) plane for different values of hopping along th
c axis: ~a! b51.414, and~b! b50.707. The magnetic phases an
lines are as in Fig. 4.
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We also investigated the phase diagrams for the cas
modified hopping along thec direction (bÞ1). One finds
that increased hopping (b51.414) in thec direction stabi-
lizes the MO phases, and in particular the MOAF
~MOFAF! phase@Fig. 5~a!#. By contrast, the MO phases a
stable in a narrower range ofEz for a fixed value ofJH /U, if
the hopping along thec direction is decreased belowb51
@an example ofb50.707 is shown in Fig. 5~b!#. The de-
creased stability of the MOAFF phase promotes in this c
the AF order with MO in the MOAAA phase. The latte
phase is stable only in a relatively narrow range ofEz , and
only for small enoughJH /U; an increase ofJH /U favors
instead FM order along thec direction. We also note that th
orbital mixing sets for the MOAAA phase~3.8! only at a
smaller value ofEz than in the MOAAF phase~3.18!. Inter-
estingly, the point of high degeneracy of the classical sta
existsindependently of the value ofb, and moves forbÞ1
to Ez522J(12b). This demonstrates the generic nature
the internal frustration of spin and orbital interactions in t
model, and the crystal-field term just plays here a comp
sating role for the missing~or enhanced! magnetic interac-
tions within the (a,b) planes.

Independently of the value ofb, the spin-orbital model
~2.9! has a universal feature: different classical spin str
tures become degenerate at the critical lines in Figs. 4
This is also encountered in frustrated 2D magnetic latti
described by simple Heisenberg Hamiltonians,42 and may
thus be regarded as a signature of frustration. However,
like in the purely spin models, in the present case~2.9!, the
sign of the interactions changes because of the coupling
the orbital sector, and thisreduces the effective dimensiona
ity for the AF interactions;J, with the 3D system behaving
like a quasi-1D antiferromagnet.

C. Phase diagram of a 2D model

As a special case, we considered the limit ofb→0 which
gives a 2D spin-orbital model. The two AF phases with
ther ux& or uz& orbitals occupied, AFxx and AFzz, are dege
erate atEz522J. This asymmetry reflects the large diffe
ence between the superexchange interactions forux& and uz&
orbitals within the (a,b) planes of a 2D system which has
be compensated by the orbital energy~2.13!.

As the presence of FM planesic axis is crucial for the
ordering in the MOAFF phase~see Fig. 3!, this phase disap

FIG. 6. Mean-field phase diagram of the spin-orbital model~2.9!
in the (Ez ,JH) plane in two dimensions (b50). Full lines separate
the classical states AFxx, AFzz, and MOFF shown in Fig. 3, wh
the spin order in the MOAA phase is AF, and the orbitals are
between those in AFxx and MOFF phase.
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pears, while the remaining two phases with AF order with
(a,b) planes, MOAAA and MOAAF, collapse into a singl
MOAA phase. Hence one finds in two dimensions a class
phase diagram with only four phases, which are stable w
decreasingEz and at finiteh in the following order: AFxx,
MOAA, MOFF, and AFzz~Fig. 6!. The 2D phase diagram
shows in particular that strong AF superexchange in thc
direction is not the stabilizing factor of the MOFFA phase
the 3D model, but instead these phases are stable due t
orbital interactions which enforce the orbital alternati
shown in Fig. 3.

For the realistic parameters of La2CuO4 the Cu dx22y2

and d3z22r 2 orbitals are split, andEz.0.64 eV.28 This ma-
terial belongs together with Nd2CuO4 to the class of cuprate
with weakly coupled CuO2 planes, and one finds in th
present treatment a 2D AFxx state, as observed in neu
experiments.63 If, however, the orbital splitting is small in a
2D situation, the orbital ordering couples strongly to the l
tice, as the hybrids with alternating phasing on two sub
tices are formed according to Eqs.~3.13! The net result is a
quadrupolar distortion as indicated in Fig. 7. In fact, usi
these arguments Kugel and Khomskii predicted33 the exis-
tence of such a structural distortion in the MOFF phase o
quasi-2D compound K2CuF4. This prediction was confirmed
experimentally a few years later.64

The MOFF phase of K2CuF4 is magnetically polarized,
has no transverse quantum fluctuations, and is thus well
scribed in a classical theory. In the next sections we conc
trate ourselves on the 3D case, where the quantum fluc
tions are strong and destabilize the classical magn
ordering in a particular regime of parameters.

IV. ELEMENTARY EXCITATIONS

A. General formalism

The presence of the orbital degrees of freedom in
Hamiltonian~2.9! results in excitation spectra that are qua
tatively different from those of the HAF with a single spin
wave mode. As we have discussed in the limit ofJH50, the
transverse excitations are twofold:spin-wavesandspin-and-
orbital waves.65 In addition to these two modes there are a
longitudinal ~purely orbital! excitations, and thus one find
three elementary excitations for the present spin-orb
model ~2.9!.6,65,66 This gives therefore the same number
modes as found in a 1D SU~4! symmetric spin-orbital mode
in the Bethe ansatz method.67,60 We emphasize that this fea

e

FIG. 7. Schematic representation of the mixed orbitals in (a,b)
planes of the MOFF phase in a 2D model:~a! the orbitals with their
phases, and~b! the resulting distortion in the oxygen lattice, stab
lized by the orbital ordering.
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ture is a consequence of the dimension~equal to 15! of the
so~4! Lie algebra of the local operators, as explained belo
and is not related to the global symmetry of the Hamiltoni
Here we present the analysis of the realisticd9 spin-orbital
model for the 3D simple cubic~i.e., perovskitelike! lattice,
using linear spin-wave theory,68,69 generalized such as t
make it applicable to the present situation.

Before we introduce the excitation operators, it is con
nient to rewrite the spin-orbital model~2.9! in a different
representation which uses a four-dimensional spa
$ux↑&,ux↓&,uz↑&,uz↓&%, instead of a direct product of the sp
and orbital spaces. Hence we introduce operators which
fine purely spin excitations in individual orbitals,

Sixx
1 5dix↑

† dix↓ , Sizz
1 5diz↑

† diz↓ , ~4.1!

and operators for simultaneous spin-and-orbital excitatio

Kixz
1 5dix↑

† diz↓ , Kizx
1 5diz↑

† dix↓ . ~4.2!

The correspondingSiaa
z and Kiab

z operators are defined a
follows,

Sixx
z 5 1

2 ~nix↑2nix↓!,

Sizz
z 5 1

2 ~niz↑2niz↓!, ~4.3!

Kixz
z 5 1

2 ~dix↑
† diz↑2dix↓

† diz↓!,

Kizx
z 5 1

2 ~diz↑
† dix↑2diz↓

† dix↓!. ~4.4!

The Hamiltonian~2.9! contains also purely orbital inter
actions which can be expressed using the following orbi
flip (Tiab) and orbital-polarization (ni 2) operators,

Tixz5
1
2 ~dix↑

† diz↑1dix↓
† diz↓!,

Tizx5
1
2 ~diz↑

† dix↑1diz↓
† dix↓!,

ni 25 1
2 ~dix↑

† dix↑1dix↓
† dix↓2diz↑

† diz↑2diz↓
† diz↓!. ~4.5!

In order to simplify the notation, we also introduce sum o
erators for the spin-and-orbital and purely orbital operato

Ki
15Kixz

1 1Kizx
1 ,

Ki
z5Kixz

z 1Kizx
z ,

Ti5Tixz1Tizx . ~4.6!

The full set of local operators at a sitei constitute an so~4!
Lie algebra. While the spin operators~4.1! fulfill of course
for x andz separately the usual su~2! commutation relations
they also form collectively a subalgebra of so~4!, and the
same holds for the spin-and-orbital operators~4.2!. However,
as we will see below, for the calculation of the excitatio
one also needs commutators between spin and spin-
orbital operators, so that one cannot avoid considering
full Lie-algebra structure of so~4!, discussed in Appendix B

The number of collective modes in a particular phase m
be determined as follows. The so~4! Lie algebra consists o
three Cartan operators, i.e., operators diagonal on the l
eigenstates of the symmetry-broken phase under cons
ation ~e.g.,Sixx

z ,Sizz
z , andni 2 in the AFxx phase!, plus 12
,
.

-

e,

e-

,

l-

-
,

d-
e

y

al
er-

nondiagonal operators turning the eigenstates into one
other ~like Sixx

1 and Sizz
1 in AFxx!. Out of those twelve op-

erators, six connect two excited states~like Sizz
1 in AFxx!,

and are physically irrelevant~at the random-phase approx
mation level!, because they give only rise to ‘‘ghost’’ mode
modes for which the spectral function vanishes identica
The remaining six operators connect the local ground s
with an excited state, three of them describing an excitat
and three a deexcitation, and only these six operators
physically relevant. Out of the three excitations~deexcita-
tions!, two are transverse, i.e., change the spin, and on
longitudinal, i.e., does not affect the spin. For a classi
phase withL sublattices one therefore has 4L transverse and
2L longitudinal operators per unit cell. Since the spin-orbi
Hamiltonian~2.9! does not couple transverse and longitu
nal operators, this yields also 4L transverse and 2L longitu-
dinal modes. Because of time-reversal invariance they
occur in pairs with opposite frequencies,6vkW

(n) .
Finally, the SU(2) spin invariance of the Hamiltonian

guarantees that the transverse operators raising the spi
decoupled from those lowering the spin, and that they
described by the same set of equations of motion, so tha
transverse modes are pairwise degenerate. Such a simpl
tion does not occur in the longitudinal sector. So, in conc
sion, in anL-sublattice phase there areL doubly-degenerate
positive-frequency transverse modes andL nondegenerate
positive-frequency longitudinal modes, accompanied by
same number of negative-frequency modes. This may
compared with the well-known situation in the HAF, whe
there is, with only spin operators involved, only one~not
two! doubly-degenerate positive-frequency~transverse!
mode in the two-sublattice Ne´el state.

For the actual evaluation it is convenient to decompo
the superexchange terms in the spin-orbital Hamilton
~2.9!,

HJ5Hi1H' , ~4.7!

into two parts which depend on the bond direction:
~i! for the bondŝ i j &i(a,b),

Hi5
1
4 J(

^ i j &i
@~12 1

2 h!~3SW ixx1SW izz1l i jA3KW i !

3~3SW jxx1SW jzz1l i jA3KW j !22hSW i•SW j1~112h!

3~ni 21l i jA3Ti !~nj 21l i jA3Tj !2~31h!#,

~4.8!

wherel i j 5(21)dW yW with yW being a unit vector in theb direc-
tion, and

~ii ! for the bondŝ i j &'(a,b), i.e., along thec axis,

H'5J (
^ i j &'

@~422h!SW izz•SW jzz2h~SW ixx•SW jzz1SW izz•SW jxx!

1~112h!ni 2nj 22 1
4 ~31h!#. ~4.9!

Here and in the following sections we consider a 3D mo
with b51. We note that the orbital interactions~2.12! are
quite different inH i and H' ; propagating spin-and-orbita
excitations are possible only within the (a,b) planes, where
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they are coupled to the spin excitations, while in thec direc-
tion only pure spin excitations and pure orbital excitatio
occur, which are decoupled from one another. This break
of symmetry betweenH i and H' is a consequence of th
choice of basis asux& and uz& orbitals.

In the following sections we consider transverse and l
gitudinal excitations in the various symmetry-broken stat
The transverse excitations, i.e., spin waves and spin-a
orbital waves, are calculated using the spin-changing op
tors which make a transition to a state realized in a class
phase at a given sitei; for example for the AFxx phase thes
operators are fori in the A ~spin-up! sublattice,

Sixx
1 5dix↑

† dix↓ , Kixz
1 5dix↑

† diz↓ . ~4.10!

The longitudinal excitations without spin-flip are most co
veniently obtained starting from spin-dependent orbital ex
tation operators,

Tixzs5dixs
† dizs , Tizxs5dizs

† dixs . ~4.11!

The commutation relations for these operators are prese
in Appendix B.

B. Antiferromagnetic AFxx phase

The nature and dispersion of elementary excitations in
spin-orbital model~2.9! can be conveniently studied in th
leading order of the 1/S expansion using the Green-functio
formalism. We note, however, that equivalent results for
AFxx and AFzz phases can be obtained using instead
expansion around a classical saddle point with Schwin
bosons.69

We start from the equations of motion for the Green fun
tions generated by the excitation operators~4.10! written in
the energy representation70,71

E^^Sixx
1 u•••&&5

1

2p
^@Sixx

1 , . . . #&1^^@Sixx
1 ,H#u•••&&,

~4.12!

E^^Kixz
1 u•••&&5

1

2p
^@Kixz

1 , . . . #&1^^@Kixz
1 ,H#u•••&&,

~4.13!

where the average of the commutator on the right-hand s
e.g.,^@Sixx

1 ,Sjxx
2 #&, is evaluated in the classical ground sta

The excitation operators were chosen as leading to the l
statesu ix↑& realized at one of the sublattices in the grou
state of the AFxx phase. As usually, the commutators in E
~4.12! and ~4.13! generate higher-order Green functions.
contrast to the HAF, it does not suffice to consider the sp
flip Green function^^Sixx

1 u•••&&, as the spin flips may also
occur together with an accompanying orbital flip, as d
scribed by^^Kixz

1 u•••&&.
We derived the equations of motion for the Green fun

tions generated by the set of operato
$Sixx

1 ,Kixz
1 ,Sjxx

1 ,K jxz
1 %, where i PA and j PB, and used the

random-phase approximation~RPA! for spinlike operators
which linearizes the equations of motion by a decoupl
procedure.70,71 Thereby the operators which have nonze
s
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expectation values in the considered classical state give fi
contributions, e.g., for the first spin-flip Green function o
uses

^^Sixx
1 Smxx

z u•••&&.^Smxx
z &^^Sixx

1 u•••&&, ~4.14!

and a similar formula for the mixed spin-and-orbital excit
tion described bŷ ^Kixz

1 u•••&&,

^^Kixz
1 Smxx

z u•••&&.^Smxx
z &^^Kixz

1 u•••&&. ~4.15!

It is crucial that the decoupled operators have different
indices, and thus the decoupling procedure preserves th
cal commutation rules given in Appendix B. Instead, if o
uses products of spin and orbital operators, e.g.,Kixz

1

5Sixx
1 s i

1 , one is tempted to decouple these operat
locally72,73which would violate the algebraic structure of th
so~4! Lie algebra.

In the present case of the AFxx phase one uses the res
tive Néel state average values,

^Sixx
z &52^Sjxx

z &5 1
2 , ~4.16!

^ni 2&5^nj 2&5 1
2 , ~4.17!

wherei PA and j PB, andA andB are the two sublattices in
a 2D lattice for the AFxx phase. All the remaining averag
vanish, as this phase has a pureux&-orbital character at every
site, which simplifies significantly the equations of motio
which result from the RPA procedure.

The translational invariance of the Ne´el state implies that
the transformed Green functions are diagonal in the redu
Brillouin zone~BZ!. As in the HAF, the Fourier transforme
functions are defined for the Green functions which descr
the spin dynamics on a given sublattice, eitherA or B. For
instance, the pure spin-flip Green functions are transform
as follows:

^^SkWxx
1 u•••&&A5

1

AN
(
i PA

eikWRW i^^Sixx
1 u•••&&A ,

^^SkWxx
1 u•••&&B5

1

AN
(
j PB

eikWRW j^^Sjxx
1 u•••&&B , ~4.18!

whereN is the number of sites in one sublattice. Hence
problem of finding the elementary excitations of the cons
ered spin-orbital model~2.9! reduces to the diagonalizatio
of a 434 dynamical matrix at eachkW point, as given in
Appendix C.

The symmetric positive and negative eigenvalues6vkW
(n) ,

with n51,2, solved from the matrix in Eq.~C2! may be
written in the following form for the AFxx phase:

@vkW
(n)

#25J2~lx
21tx

22QxkW
2

2RkW
2
22PxkW

2
!

6J2@~lx
22tx

2!222~lx
22tx

2!~QxkW
2

2RkW
2
!

24~lx2tx!
2PxkW

2
1~QxkW

2
1RkW

2
12PxkW

2
!2

24~QxkWRkW2PxkW
2

!2#1/2. ~4.19!
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Here the quantitiesla andta play the role of local potentials
and follow from the model parametersEz andJH :

lx5 9
2 23h, ~4.20!

tx5 7
2 24h222h1«z . ~4.21!

The remaining terms arekW dependent, and depend on

g1~kW !5 1
2 ~coskx1cosky!, ~4.22!

g2~kW !5 1
2 ~coskx2cosky!, ~4.23!

gz~kW !5coskz . ~4.24!

The quantitiesQxkW and PxkW for the AFxx phase take the
form,

QxkW5~ 9
2 23h!g1~kW !, ~4.25!

PxkW5
1
2 A3~32h!g2~kW !, ~4.26!

while the last dispersive term,

RkW5
3
2 g1~kW !, ~4.27!

carries no index and remains identical for both AF pha
~AFxx and AFzz!. We emphasize that the coupling betwe
the spin-wave and spin-and-orbital-wave excitations occ
due to the terms}PxkW , as seen from Eq.~C2!. It vanishes in
the planes ofkx56ky , but otherwise plays an importan
role, as discussed in Sec. V. In the limit of largeEz→`, Eq.
~4.19! reproduces the spin-wave excitations for a 2D antif

romagnet with an AF superexchange interaction ofJ( 9
4

2 3
2 h),

vkW
(1)

5J~ 9
2 23h!@12g1

2 ~kW !#1/2, ~4.28!

while the dispersion of the high-energy spin-and-orbital
citation,vkW

(2).Ez , becomes negligible. As explained abov
both modes are doubly degenerate.

Consider now the orbital~excitonic! excitations generated
by the orbital-flip operators~4.11!. They are found by con-
sidering the equations of motion,

E^^Tiab↑u•••&&5
1

2p
^@Tiab↑ , . . . #&1^^@Tiab↑ ,H#u•••&&,

~4.29!

E^^Tiab↓u•••&&5
1

2p
^@Tiab↓ , . . . #&1^^@Tiab↓ ,H#u•••&&,

~4.30!

and the commutators are calculated using the rules~B7!. In
general, one finds four different excitation operators at e
site. However, making a Fourier transformations as for
transverse operators~4.18!, one may show that only two op
erators per sublattice suffice to describe the modes in
antiferromagnet. The structure of the respective RPA
namical matrix is given in Appendix C. The orbital excit
tions which follow from Eq.~C3! are in general given by

zkW5J@ua~ua62rakW !#
1/2, ~4.31!
s

rs

-

-
,

h
e

n
-

yielding two, in general nondegenerate, positive-freque
modes. In the AFxx phase one finds

ux5«z23h, ~4.32!

rxkW5
3
2 hg1~kW !. ~4.33!

It is important to realize that the propagation of longit
dinal excitations, being equivalent to a finite dispersion
longitudinal modes, becomes possible only ath.0. This
follows from the multiplet structure of the excitedd8 states,
which allows a spin-flip between the orbitals in theu1Eu& and
in the Sz50 component of theu3A2& state only ifJHÞ0, as
illustrated in Fig. 8. The processes;txz are not included, as
they would lead to a final state shown in Fig. 8~b!, i.e., to a
propagation of a spin-and-orbital excitation which was
ready considered above. In contrast, the relevant longitud
orbital excitation in the symmetry-broken state implies th

FIG. 8. Schematic propagation of the orbital~excitonic! excita-
tion ~a!. If JH50, an orbital excitation can propagate only to sta
~b! and is accompanied by a spin flip~top!, while JH.0 allows also
the spin flip in the intermediatedi

8 state, and thus the propagatio
without spin flip ~c! becomes possible~bottom!.

FIG. 9. Lower panel: spin-wave and spin-and-orbital-wa
transverse excitations~full line and dashed-dotted line! and longi-
tudinal excitations~dashed lines! in AFxx phase; upper panel: cor
responding neutron intensities of the transverse excitations. Pa
eters:Ez /J53.0 andJH /U50.3.
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the exciton has the same spin as imposed by the Ne´el state of
the background; this state is shown in Fig. 8~c!. Therefore, in
a perfect Ne´el state without FM interactions due tohÞ0,
only local orbital excitations are possible. These local ex
tations cost no energy in the limit of«z→0 which demon-
strates again the frustration of magnetic interactions at
classical degeneracy point,«z5h50.

An example of the excitation spectra is shown in Fig
for the main directions in the 2D BZ, withX5(p,0) andS
5(p/2,p/2). Near theG5(0,0) point one finds a~doubly-
degenerate! Goldstone modevkW

(1) with dispersion;k at kW

→0, as in the HAF, and a second~doubly-degenerate! trans-
verse mode at higher energy,vkW

(2).v01ak2. Near G the
Goldstone mode is essentially purely spin wave, the sec
mode purely spin-and-orbital wave. With increasingkW these
modes start to mix due to thePxkW term along theG2X
direction. This is best illustrated by the intensity measured
the neutron-scattering experiments, which see only the s
wave component in each transverse mode, as explaine
more detail in Appendix D. The intensityx(qW ) moves from
one mode to the other along theG2X direction in the 2D BZ
~Fig. 9!, demonstrating that indeed the lowest~highest! mode
is predominantly spin-wave-like~spin-and-orbital-wave-like!
before the anticrossing point, while this is reversed after
anticrossing of the two modes. Thus we make here a spe
prediction thattwo spin-wave-like modes could be meas
able in certain parts of the 2D BZ, in particular in the vicin-
ity of an anticrossing, if only an AFxx phase was realized
parameters not too distant from the classical degene
point. This provides a possibility of measuring orbital ex
tations by neutron scattering. Unfortunately, for the realis
parameters for the cuprates,28 one finds Ez /J.10 which
makes the spin-and-orbital excitation and the changes of
spin-wave dispersion hardly visible in neutron spectrosco

The orbital ~longitudinal! excitations are found for the
parameters of Fig. 9 at a finite energy, being of the sa
order of magnitude as the energy of the spin-and-orbital
citation, vkW

(2) . The weak dispersion of these modes follow
from the spin-flip processes in theexcitedstates, as explaine
in Fig. 8 and discussed above. We emphasize that the or
mode has a gap anddoes not coupleto any spin excitation.
At the classical degeneracy pointM the orbital mode falls to
zero energy and is dispersionless, expressing that the or
can be changed locally without any cost in energy.

C. Antiferromagnetic AFzz phase

The transverse excitations in the AFzz phase are de
mined by considering the complementary set of Green fu
tions to that given in Eqs.~4.12! and ~4.12!:

E^^Sizz
1 u•••&&5

1

2p
^@Sizz

1 , . . . #&1^^@Sizz
1 ,H#u•••&&,

~4.34!

E^^Kizx
1 u•••&&5

1

2p
^@Kizx

1 , . . . #&1^^@Kizx
1 ,H#u•••&&,

~4.35!
i-

e

nd

n
n-
in

e
fic
-

r
cy

c

he
y.

e
x-

tal

ital

r-
c-

with the excitations to the localu iz↑& states. As usually, the
average of the commutator on the right-hand side is n
evaluated in the classical ground state. After obtaining
RPA equations, we thus use the following nonvanishing
erages:

^Sizz
z &52^Sjzz

z &5 1
2 , ~4.36!

^ni 2&5^nj 2&52 1
2 , ~4.37!

in the AFzz phase. This leads again to the general form~C2!,
with all the elements except forRkW replaced by,

lz5
1
2 2h12~22h!, ~4.38!

tz52 1
2 2h12~122h!2«z , ~4.39!

QzkW5~ 1
2 2h!g1~kW !12~22h!gz~kW !, ~4.40!

PzkW5
1
2 A3~12h!g2~kW !. ~4.41!

Thus the transverse excitations have the same form~4.19! as
in the AFxx phase, but the above quantities~4.38!–~4.41!
have to be used.

In the limit of largeEz→2` one finds the spin wave fo
a 3D anisotropic antiferromagnet with strong superexcha
equal to 2J(22h) along thec axis, and weak superexchang
1
4 J(122h) within the (a,b) planes,

vkW
(1)

5J$@~ 1
2 2h!12~22h!#2

2@~ 1
2 2h!g1~kW !12~22h!gz#

2%1/2, ~4.42!

while the spin-and-orbital excitationvkW
(2).2Ez is disper-

sionless. Again, both these transverse modes are doubly
generate. The orbital excitations in the AFzz phase are fo
using the equations of motion of the form~4.29! and ~4.30!
which lead to Eq.~4.31! with

uz52«z23h, ~4.43!

rz,kW52 3
2 hg1~kW !, ~4.44!

FIG. 10. The same as in Fig. 9, but for the AFzz phase,
obtained forEz /J523.0 andJH /U50.3.



t

as
ith

ta
on

ita
e

re

so
pe

ls
av

so
nd
pu
y

ow
n
s

ax

y
n
ha

te
ea
an
,

It
th

e
is

the
en
ital,
tes

o
in-

the

tro-

-

qs.

ra-
es

g

s to
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and we find again zero-energy nondispersive modes a«z
5h50.

The representative excitation spectrum for the AFzz ph
is shown in Fig. 10. We use the 3D BZ for a bcc lattice w
the standard notation:W5(p,p/2,0), L5(p/2,p/2,p/2),
andK5(3p/4,3p/4,0). The transverse modes have quali
tively the same behavior as in the 2D AFxx phase, and
finds a Goldstone modevkW

(1) at theG point which is spin-
wave-like, accompanied by a finite energy spin-and-orb
modevkW

(2) . The first one is linear, while the second chang

quadratically with increasingkW . The dispersion in theG2X
direction is, however, only;0.7J, while in the AFxx phase
a large dispersion of;2.5J was found~Fig. 9!. This dem-
onstrates the very large difference between the supe
change in the (a,b) planes in the two AF phases.

Here one should bear in mind, that in a strongly ani
tropic antiferromagnet, such as the AFzz phase, the dis
sion of the spin-wave mode in the (kx ,ky) plane is roughly
(2JabJc)

1/2, so actually enhanced by (Jc/2Jab)
1/2 compared

with the planar exchange constant. In fact, there is a
strong mixing between spin wave and spin-and-orbital w
alongG2X, depressingvX

(1) at theX point by no less than
0.5J from its pure spin-wave value. The mixing effect is al
visible in the relatively large neutron intensity of the seco
mode. By contrast, the transverse excitations are rather
all along theW2L direction @where the neutron intensit
x(qW ) is larger#, except in the regime wherevkW

(1).vkW
(2) and

the neutron intensity is distributed between the modes. H
ever, owing to the abruptness of the anticrossing, the ra
where the modes have simultaneously appreciable inten
is very narrow, and their energetic proximity then makes
likely that they would be measured as a single broad m
mum.

The ~longitudinal! orbital excitation is found at theX and
L points at the same energy as that of alocal excitation from
uz& to ux& orbital ~see Fig. 10!. It depends only on the energ
difference between the orbitals, and has a weak dispersio
the same mechanism as described above for the AFxx p
~Fig. 8!.

D. Mixed-orbital FFA phase

The excitation operators which couple to the local sta
in a symmetry-broken phase with mixed orbitals are lin
combinations of the operators considered in Secs. IV B
IV C. The classical order is described by four sublatticesA
and B (C and D) in even~odd! (a,b) planes, withC (D)
sites being the nearest neighbors ofA (B) sites. We assume
the alternation of orbitals also along thec axis as only this
state was found to be stable in the present LSW theory.
therefore convenient to make a unitary transformation of
Hamiltonian ~2.9! to new orbitals defined as follows fori
PA or i PD sublattice:

S u im&
u in& D5S cosu sinu

2sinu cosu D S u iz&
u ix& D , ~4.45!

and for j PB or j PC sublattice,
e

-
e

l
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S u j m&
u j n& D5S cosu 2sinu

sinu cosu D S u jz&
u jx& D . ~4.46!

With these definitions and by choosing the angleu at the
value which minimizes the classical energy~3.11!, we guar-
antee thatu im& and u j m&, respectively, are at each site th
orbital state realized in the classical MOFFA phase, which
G-type with respect to the orbital ordering, whileu in& and
u j n& are the excited state, so that one can readily define
excitation operators pertinent to the symmetry-brok
ground state of this phase. Thus the spin, spin-and-orb
and orbital operators in terms of the new orbital sta
$um&,un&% defined by Eqs.~4.45! and ~4.46! are

K iab
1 5u ia↑&^ ib↓u, ~4.47!

K iab
z 5 1

2 ~ u ia↑&^ ib↑u2u ia↓&^ ib↓u!, ~4.48!

Ti 25 1
2 (

s
~ u ims&^ insu1u ins&^ imsu!, ~4.49!

Ni 25 1
2 (

s
~ u ims&^ imsu2u ins&^ insu!. ~4.50!

The new operators,KW iab , Ti andNi 2 , fulfill the same com-
mutation rules as the nontransformed operators,KW iab ,Ti ,
and ni 2 , respectively; they are given in Appendix B. T
simplify the notation we also introduce total spin and sp
and-orbital operators,

SW i5SW imm1SW inn , ~4.51!

KW i5KW imn1KW inm . ~4.52!

The transverse excitations may be found starting from
relevant raising operators that lead to the local stateu im↑&
realized in one of the sublattices, analogous to those in
duced for the AFxx phase ~4.10!, i.e., the set
$S imm

1 ,K imn
1 ,S j mm

1 ,K j mn
1 ,S kmm

1 ,K kmn
1 ,S lmm

1 ,K lmn
1 %, where

i PA, j PB, kPC, and l PD; they lead as usual to the or
bitals $u im&,u j m&% ~3.4! realized in the MOFFA phase,

E^^S imm
1 u•••&&5

1

2p
^@S imm

1 , . . . #&1^^@S imm
1 ,H#u•••&&,

~4.53!

E^^K imn
1 u•••&&5

1

2p
^@K imn

1 , . . . #&1^^@K imn
1 ,H#u•••&&,

~4.54!

where the rotated HamiltonianH given in Appendix C is
obtained by the inverse tranformations to those given by E
~4.45! and ~4.46!.

The longitudinal excitations can be obtained from ope
tors similar to those used in the AFxx and AFzz phas
~4.11!,

Timn↑5dim↑
† din↑ , Tinm↑5din↑

† dim↑ , ~4.55!

for the (a,b) planes with the↑ spins, and the correspondin
Timn↓ and Tinm↓ for the (a,b) planes with the↓ spins. The
commutation operators for these operators are analogou
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those presented in Appendix B and may be easily obtain
The resulting dynamical matrices for both transverse
longitudinal excitations are given in Appendix C; their n
merical diagonalization gave the modes presented be
There are four doubly-degenerate positive-frequency tra
verse modes, and four nondegenerate positive-frequency
gitudinal modes, consistent with the MOFFA phase hav
four sublattices.

An example of the transverse and longitudinal modes
the MOFFA phase is presented in Fig. 11. The modes
shown in the respective BZ which corresponds to the m
netic unit cell of the MOFFA phase: The 2D part alongG
2X2S2G is identical with the AFxx phase~compare Fig.
9!, reflecting the orbital alternation, while the AF couplin
along thec axis results in the folding of the zone along th
G2Z direction, with Z85(0,0,p/2) and S8
5(p/2,p/2,p/2). One finds one Goldstone mode, and th
other finite-energy modes at theG point. If no AF coupling
along thec axis is present, similar positive-energy mod
describe the excitation spectrum in the MOFF phase in
2D part of the BZ~in the region of stability shown in Fig. 6!,
and the symmetric negative-frequency modes carry then
weight. In contrast, due to the strong AF interactions in
MOFFA phase, the negative modes give a large ene
renormalization due to quantum fluctuations, as discusse
more detail in Sec. V.

The spin-wave and spin-and-orbital-wave excitations
well separated along theG2X2S2G path, with a gap of
;0.5J, as the FM interactions}Jh are considerably weake
than the orbital interactions which are}J. Therefore the
neutron intensityx(qW ) is found mainly as originating from
the lowest energy modevkW

(1) , with a small admixture of the

higher-energy spin-and-orbital excitationvkW
(3) . The mag-

netic interactions are considerably stronger along thec axis;
the modes mix and the higher-energy excitations,vkW

(n) with
n53,4, have a larger dispersion in the remaining directio
with kzÞ0. Strong mixing of the modes in this part of th

FIG. 11. The same as in Fig. 9, but for the MOFFA phase,
obtained for Ez /J521.0 and JH /U50.3. Different transverse
modes are labelled by the increasing indicesi 51, . . . ,4 with in-
creasing energy.
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BZ is also visible in the intensity distribution, with th
modesn51 andn53 contributing with comparable intens
ties ~Fig. 11!. The fact that modes labeled as 2 and 4 ha
zero intensity is due to the pathG2Z82S82G being in the
high-symmetry BZ plane wherekx5ky so thatg2(kW )50.
Then modes 2 and 4 have equal amplitude but are exa
out-of-phase betweenA andB sites as well as betweenC and
D sites, and so their neutron intensities vanish, and only
companion in-phase modes 1 and 3 are observable by
trons. Unfortunately, no experimental verification of the
spectra is possible at present, as the spin excitations m
sured in neutron scattering for KCuF3 are consistent with the
Bethe ansatz and thus suggest a spin-liquid ground state
strong 1D AF correlations instead of the A-AF phase w
magnetic LRO.74

Interestingly, although the order in the (a,b) planes is
FM, the energy of the Goldstone mode increaseslinearly in

all three directionswith increasingkW , and the slopes are
proportional to the respective exchange interactions. This
havior is a manifestation of the A-AF spin order; a qualit
tively similar spectrum is found experimentally i
LaMnO3,75 where, however, the excitation spectra descr
large spinsS52 of Mn31 ions. The rather small dispersio
of the spin-wave part at low energies is due to small val
of the exchange constants for the actual optimal orienta
of orbitals found atJH /U50.3. We note, however, that th
AF interactions along thec axis are much stronger atJH
→0 than in the present case. The AF structure along thc
axis may be easily recognized from the spin-wave mode
the G2Z direction symmetric with respect toZ8
5(0,0,p/2), while this mode increases all the way from th
G to theX point. The fact that only two modes have nonze
neutron scattering intensity alongG2Z82S82G is due to
this BZ path being in the high-symmetry BZ plane, whe
kx5ky and g2(kW )50. Then two modes have equal amp
tude but are exactly out-of-phase betweenA and B sites as
well as betweenC andD sites, and so their neutron intens
ties vanish, while only the companion in-phase modes
visible to neutrons. Unlike in the AF phases, the purely
bital excitation is here energetically separated from the sp
wave and spin-and-orbital-wave modes. The dispersion
quite small and decreases withh.

E. Mixed-orbital AFF phase

The elementary excitations in the MOAFF phase may
obtained using a similar scheme to that used in Sec. IV D
the MOFFA phase. First of all, one defines new quant
states which correspond to the minimum of the class
problem. This is realized by a unitary transformation of t
Hamiltonian to the new orbitals defined fori PA sublattice
as

S u im1&
u in1& D5S cosu1 sinu1

2sinu1 cosu1
D S u iz&

u ix& D , ~4.56!

and for j PB sublattice as

S u j m2&
u j n2& D5S cosu2 2sinu2

sinu2 cosu2
D S u jz&

u jx& D . ~4.57!

s
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By choosing the anglesu1 andu2 at the values which mini-
mize the classical energy, given by Eqs.~3.14! and ~3.15!,
we guarantee thatu im1& andu j m2&, respectively, are at eac
site the orbital state realized in the classical MOFFA pha
and one may easily define the new excitation operators w
respect to the symmetry breaking which occurs in this pha
they are analogous to those given in Eqs.~4.47!–~4.52!.
Next, the Hamiltonian is rotated to the new representation
described in Sec. IV D. We do not present an explicit fo
of the spin-orbital Hamiltonian~2.9! in this case, as it may be
obtained from Eqs.~C4!–~C6! by replacing the angleu by
u1 andu2 for the sublatticeA andB, respectively. Further-
more, due to the degeneracy between the MOAFF
MOFAF phases, we had to average the crystal field betw
the two sublattices in the actual calculation.

We have verified that the transverse excitations hav
similar dependence on thekW vector to those found in the
MOFFA phase, and we show the representative data in
12. For convenience, we have rotated the BZ and use jus
same notation as in Fig. 11. The value of the crystal fieldEz
is in the present case effectively smaller by a factor of 2
comparison with the MOFFA phase. This asymmetry is
consequence of the choice ofux& anduz& states as the orbita
basis.

One finds again that the spin-wave and spin-and-orb
wave excitations are well separated along theG2X2S2G
path, and the gap between them has increased to;1.2J. We
note a stronger renormalization of the low-energy mo
which follows from weakened FM interactions between t
alternating orbitals in the (b,c) planes in the present case
compared with those within the (a,b) planes in the MOFFA
phase. Although the orbital excitations are still well sep
rated from the remaining transverse modes, their disper
is larger than that in Fig. 11.

V. QUANTUM FLUCTUATIONS

The size of quantum fluctuation corrections to the clas
cal order parameters determines the stability of the class
phases. As mentioned in Sec. I, frustration of magnetic

FIG. 12. The same as in Fig. 9, but for the MOAFF phase,
obtained forEz /J51.0 andJH /U50.3.
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teractions leads in spin models to divergent quantum cor
tions within the LSW theory. Before calculating these co
rections in the present situation, a generalization of the us
RPA procedure to a system with several excitations is n
essary. Here we present only the relations needed to calc
the quantum corrections to the LRO parameter and grou
state energy, while more details will be reported separatel76

For that purpose, let us denote here the local opera
constituting the so~4! Lie algebra at sitei as Hubbard opera
tors, Xi

ab5u ia&^ ibu. Using the unity operator,(bXi
bb51,

the diagonal operator that refers to the stateu ia& realized at
site i in the classical ground state under consideration may
expanded in terms of the excitation operators

Xi
aa512 (

bÞa
Xi

baXi
ab , ~5.1!

while the diagonal operators referring to anexcitedstateu ib&
are expressed as

Xi
bb5Xi

baXi
ab . ~5.2!

Applying these equations to thezth spin componentSi
z

5Sixx
z 1Sizz

z of the total spin at sitei in one of the AF phases
with pure orbital character~say AFxx for definiteness!, one
finds, for i in the spin-up sublattice,77

Si
z5 1

2 ~Xi
x↑,x↑2Xi

x↓,x↓1Xi
z↑,z↑2Xi

z↓,z↓!

5 1
2 12Xi

x↓,x↑Xi
x↑,x↓2Xi

z↓,x↑Xi
x↑,z↓

5 1
2 12Sixx

2 Sixx
1 2Kizx

2 Kixz
1 . ~5.3!

Taking the average one obtains, with the MF value^Si
z&

5 1
2 ,

^Si
z&RPA5 1

2 2^Sixx
2 Sixx

1 &2^Kizx
2 Kixz

1 &

5 1
2 2^Si

2Si
1&2^Ki

2Ki
1&

5^Si
z&2d^Si

z&, ~5.4!

where the second equality is valid because averages
^Sixx

2 Sizz
1 & are zero since they involve ‘‘ghost’’ modes, so th

one may formally replaceSixx
1 by Sixx

1 1Sizz
1 5Si

1 , etc. The
first contribution}^Si

2Si
1& is the usual renormalization du

to spin waves, while the second term}^Ki
2Ki

1& stands for
the reduction of̂ Si

z&RPA due to spin-and-orbital-wave exc
tations. Both terms involve a local excitation preceded b
deexcitation which reproduces the initial local state. As e
pected only the transverse excitations contribute to the s
renormalization. Note that, since Eq.~5.3! is anexact opera-
tor relation, the present procedure guarantees that Eq.~5.4!
is a conserving approximationwhich respects the sum rul
for the occupancies of all states,(b^Xi

bb&51. The generali-
zation of Eq. ~5.4! to the MO phases using the operato
~4.47! and ~4.48!, or to other order parameters, like the o
bital polarization, is straightforward.

The local correlation functions which renormalize the o
der parameter in Eq.~5.1! are determined in the standar
way,71

s
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^Bi
†Ai&5

1

N (
kW
E

2`

1`

dvA AB†~kW ,v!
1

exp~bv!21
,

~5.5!

whereb51/kBT, and

A AB†~kW ,v,0!52Im^^AkWuBkW
†
&&v2 i e

5 (
n,0

A AB†
(n)

~kW !d~v2vkW
(n)

! ~5.6!

is the respective spectral density for the negative frequen
(n,0), and A AB†

(n) (kW ) are the respective spectral weigh
Therefore the correlation functions atT50 are found by
summing up the total spectral weight at the negative frequ
cies,

^Bi
†Ai&5

1

N (
kW

(
n,0

A AB†
(n)

~kW !. ~5.7!

As we show elsewhere,76 the Hamiltonian of the spin-
orbital model~2.9! may be expanded in RPA in terms of th
excitation and deexcitation operators,

H.HMF1HRPA, ~5.8!

whereHMF is given by Eq.~3.1!, and

HRPA5(
i PA

(
mm8

Xi
maaA

mm8Xi
am81 (

j PB
(
nn8

Xi
nbaB

nn8Xi
bn8

1(̂
i j &

(
mn

~Xi
mabi j

mnXj
bn1Xi

ambi j
mnXj

nb!

1(̂
i j &

(
mn

~Xi
amci j

mnXj
bn1Xi

maci j
mnXj

nb! ~5.9!

for a two-sublattice phase~the generalization to the four
sublattice MO phases is straightforward!. The MF part de-
scribes the classical problem which was discussed in Sec
The RPA part~5.9! describes the many-body problem in
linear approximation, with the fixed indicesa and b refer-
ring to the symmetry-broken state at sitei andj, respectively.
This expansion leads, after changing the order of excita
operatorsXi

ab to normal order, and after making straightfo
ward transformations, to a compact expression for the a
age energy contribution per site,

ERPA5
1

N
^HRPA&

5
1

4 F2Tr$A%1 (
n.0

2

N (
kW

vkW
(n)G , ~5.10!

where A is the matrix of positive on-site coefficient

aA
mm8, aB

nn8, appearing in the first line of Eq.~5.9!, and with
the sum running over all modes with positive frequenc
~counting doubly-degenerate modes twice! in the reduced
BZ. This expression is seen to be a direct generalization
the familiar result for the HAF, the distinction being th
more modes contribute here, and so Eq.~5.10! represents the
energy gain (ERPA,0) due to the reduction in zero-poin
es
.

n-

II.

n

r-

s

of

energy of the propagating modes in comparison with tha
the local excitations. We use Eq.~5.10! to calculate the total
energy in RPA,

E5EMF1ERPA. ~5.11!

Before discussing the renormalization of the order para
eter and the corresponding energies in RPA, we concen
ourselves on the behavior of the transverse excitations w
the crossover lines between the classical phases are
proached. As already emphasized in Sec. IV, the spin-w
and spin-and-orbital-wave excitations couple. As a con
quence, the modes in all considered phasessoftenwhen the
transition lines between different classical phases, or cla
cal degeneracy pointM are approached. To be more precis
we have verified that the modes soften onlyafter the classi-
cal first-order transition lines are crossed, and thus the c
sical phases remain stable in the region of their existen
while outside they are soon destabilized.

The mode softening is shown for a representative value
JH /U50.3 in Fig. 13 for the two AF phases.78 In the AFxx
phase the energy scales of both excitations are separate
Ez.4J, while the spin-and-orbital mode moves towar
zero energy with decreasingEz , and finally becomes sof
along theX2R direction @with R5(p,p,p)], i.e., for kW
5(p,0,kz) and along equivalent lines in the BZ forEz
.1.54J. A similar mode softening is found for the AFz
phase atEz,0, with the soft mode alongG2X and equiva-
lent directions in the BZ atEz.21.84J. This peculiar soft-
ening along lines and not at points in the BZ shows that
modes behave 2D like instead of 3D like:78 constant-

FIG. 13. Spin-wave and spin-and-orbital-wave excitations in
G-AF phases: AFxx~left! and AFzz~right!, in the main directions
of the 3D BZ for a few values ofEz ~in the units ofJ), and for
JH /U50.3. The lower-energy mode becomes soft forEz /J
,1.54 (Ez /J.21.84) in the AFxx~AFzz! phase.
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frequency surfaces are cylinders contracting towards lin
not spheres contracting towards a point.

By making an expansion of Eq.~4.19! around the soft-
mode lines, one finds that the situation is somewhat differ
for AFxx and AFzz phase.79 In the AFxx phase the low-
energy mode collapses to zero with a quadratic energy
pendence onkx andky ~herek̄x5kx2p),

vAFXX~kW !→Dx1Bx~ k̄x
4114k̄x

2ky
21ky

4!1/2. ~5.12!

As Dx→0 at the softening point, this impliesfinite masses in
the perpendicular directions to the lines wherevAFxx(kW )50
independently ofkz . For this reason, quantum fluctuatio
corrections to the order parameter diverge logarithmica

^dS&;*d3k/v(kW );*d2k/(D i1Bik
2); lnDx . As an ex-

ample, we give explicit expressions ath50:

Dx5
9

2

«z

«z13
, Bx5

27

16

1

«z13
, ~5.13!

where one finds that the gapDx→0 when«z→0, i.e., upon
approaching theM5(Ez ,JH)5(0,0) point at which theux&
orbitals are replaced byuz& orbitals and the classical sta
changes to the AFzz phase.

A similar expansion in the AFzz phase along theG2X
direction gives instead~again ath50),

vAFZZ
2 ~kW !→Dz

21Bz~ky
214kz

2!, ~5.14!

independently ofkx , and similarly along theG2Y direction
with ky replaced bykx . Although the result forvAFZZ(kW ) is
similar to that of Eq.~5.12! as long asDzÞ0, the spectrum
collapses to a lineark dependence at the point of mode so
ening. Thus one does not find here a quadratic depend

FIG. 14. The same as in Fig. 13, but without the coupling
tween the spin-wave and spin-and-orbital-wave excitations in b
G-AF phases: AFxx~left! and AFzz~right!.
s,

nt

e-

,

ce

with a finite mass as discussed above, but, nevertheless
quantum correction to the order parameter becomes v
large at the softening point and its numerical dependence
the value ofEz resembles a diverging quantum correction

We emphasize that the quasi-2D nature of the dispers
is essential for the occurrence of the diverging quantum c
rections in the AFxx and AFzz phases. It enables a 3D s
tem to destabilize LRO by what are essentially 2D fluctu
tions. So the divergence of the order parameter near
crossover lines in the phase diagram and the associate
stability of the classical phases may be regarded as ano
manifestation of the effective reduction of the dimensiona
occurring in the spin-orbital model. We do not present e
plicitly the softening of the longitudinal modes which als
happens at the transition lines but is of minor importance
the stability of AFxx and AFzz phases.

A seemingly attractive way to simplify the calculation o
the transverse excitations would be to make a decouplin
the spin waves and spin-and-orbital waves. However, thi
equivalent to violating the commutation rules between
spin and spin-and-orbital operators in Appendix B,65 and this
changes the physics. It gives the same excitation energie
Eq. ~4.19!, but with PakW50; the numerical result is given in
Fig. 14. Of course, the spin-wave excitation does not dep
then on the orbital splittingEz , and the spin-and-orbital
wave excitation gradually approaches the linevkW50 with
decreasinguEzu. It has a weak dispersion which depends
JH and on the value ofuEzu, and gives an instability at theG
point only, not at lines in the BZ, and in the phase diagr
well beyond the transition lines of Fig. 4, i.e., within th

-
th

FIG. 15. Spin-wave and spin-and-orbital-wave excitations
MOFFA phase in the main directions of the 3D BZ for a few valu
of JH /U, and forEz /J520.5. The lower-energy mode become
soft for JH /U,0.06.
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FIG. 16. Renormalization of the magnetic LRO parameter^Si
z&

by quantum fluctuations as obtained in RPA in:~a! AFzz ~left! and
AFxx ~right! phases as functions ofEz /J for JH /U50.1 and 0.3;
~b! MOFFA phase as functions ofJH /U for Ez /J50.5, 20.5 and
21.5.
MOFFA and MOAFF phase forEz,0 andEz.0, respec-
tively. Such spin-wave and spin-and-orbital-wave mod
give, of course, much smaller quantum corrections of
order parameter and energy than the correct RPA spectr
Fig. 13.65

The spin-waves in the MOFFA phase, stable atEz,0,
soften with decreasingh ~2.7!, as shown in Fig. 15. At large
h the spin-and-orbital waves at high energies are well se
rated from the spin-wave modes. The latter have a ra
small dispersion atJH /U50.3 which follows from relatively
weak FM interactions in the (a,b) planes, and AF interac
tions along thec axis. The modes start to mix stronger wi
decreasingh, and finally the gap in the spectrum closes b
low h50.1. The mode softening occurs again along lines
the BZ, namely along theG2X direction. Unfortunately, we
could not perform an analogous analytic expansion of
energies near the softening point to that in the AFxx a
AFzz phases, but the numerical results reported here sug
a qualitatively similar behavior to these two phases. T
MOAFF phase gives an analogous instability atEz.0.

The soft modes in the excitation spectra give a very stro
renormalization of the order parameter^Sz&RPA in RPA ~5.4!
near the mode softening, as shown in Fig. 16. The quan
correctionsexceedthe MF values of the order parameter
the AFxx and AFzz phases in a region which separates th
two types of LRO. Although one might expect that anoth
classical phase with mixed orbitals and FM planes sets
instead, and the actual instabilities whered^Sz&→` are
are
TABLE I. Individual contributions to quantum corrections^dSz& of the AF order parameter in AFxx
(Ez.0) and AFzz (Ez,0) phases due to spin wave (^S2S1&), spin-and-orbital wave (^K2K1&), and the
leading contribution from low-energy mode,^dSz&1. The values of the magnetic order parameter in RPA
given by ^Sz&RPA.

JH /U Ez /J ^S2S1& ^K2K1& ^dSz&1 ^dSz& ^Sz&RPA

0.0 23.0 0.2680 0.0117 0.2731 0.2797 0.2203
0.0 22.0 0.2733 0.0187 0.2606 0.2920 0.2080
0.0 21.0 0.2839 0.0368 0.2146 0.3207 0.1793
0.0 1.0 0.2645 0.0901 0.2440 0.3546 0.1454
0.0 2.0 0.2416 0.0516 0.2426 0.2932 0.2068
0.0 3.0 0.2298 0.0352 0.2455 0.2650 0.2350

0.1 23.0 0.2919 0.0140 0.2963 0.3059 0.1941
0.1 22.0 0.2995 0.0245 0.2757 0.3240 0.1760
0.1 21.0 0.3188 0.0612 0.2339 0.3800 0.1200
0.1 1.0 0.2925 0.1461 0.2864 0.4387 0.0613
0.1 2.0 0.2519 0.0665 0.2493 0.3183 0.1817
0.1 3.0 0.2352 0.0421 0.2519 0.2773 0.2227

0.2 23.0 0.3270 0.0174 0.3291 0.3445 0.1555
0.2 22.0 0.3398 0.0351 0.3023 0.3750 0.1250
0.2 2.0 0.2687 0.0928 0.2647 0.3615 0.1385
0.2 3.0 0.2428 0.0521 0.2593 0.2950 0.2050
0.2 10.0 0.2071 0.0092 0.2077 0.2163 0.2837

0.3 23.0 0.3861 0.0232 0.3834 0.4093 0.0907
0.3 22.0 0.4215 0.0601 0.3720 0.4816 0.0184
0.3 2.0 0.3026 0.1530 0.3179 0.4556 0.0444
0.3 3.0 0.2545 0.0680 0.2706 0.3224 0.1776
0.3 10.0 0.2076 0.0097 0.2083 0.2173 0.2827
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found indeed beyond the transition lines to another pha
the lines whered^Sz&5^Sz& occur still before the phase
boundaries in the phase diagram of Fig. 4~see Fig. 1 of Ref.
6!. This leaves a window whereno classical order is stable
in between the G-AF and A-AF spin structures.

The origin of such a strong renormalization of^Sz& may
be better understood by decomposing the quantum cor
tions into individual contributions as given in Eq.~5.4! ~see
Table I!. The leading correction comes from the local sp
fluctuation expressed bŷSi

2Si
1& and enhanced with respe

to the the pure spin model~HAF!, while the spin-and-orbita
fluctuation ^Ki

2Ki
1& increases rapidly when the instabilit

lines ^Sz&RPA50 are approached. Interestingly, the lat
fluctuation is stronger in the AFxx than in the AFzz phase
the same values ofJH and uEzu which demonstrates that th
AFzz phase is more robust due to the directionality of theuz&
orbitals and the strong AF bonds along thec axis. This asym-
metry is also visible in Fig. 16, wherêSz&RPA decreases
somewhat faster towards zero forEz.0.

In both G-AF phases~AFxx and AFzz! the leading con-
tribution to the renormalization of̂Sz&RPA comes from the
lower-energy mode, especially at larger values ofJH . In the

FIG. 17. Renormalization of the magnetic LRO parameter^Si
z&

by quantum fluctuations obtained for the G-AF phases as in
16~a!, but for decoupled spin-wave and spin-and-orbital-wave ex
tations shown in Fig. 14.
e,

c-

r
r

case ofJH50 one finds, however, that the contribution fro
the lower mode either stays approximately constant~in the
AFxx phase!, or even decreases~in the AFzz phase! when
the line of the collapsing LRO is approached atuEzu→0
~Table I!. This latter behavior shows again that the coupli
between the spin-wave and spin-and-orbital-wave excitati
is of crucial importance.65 This is further illustrated by Fig.
17, which shows the renormalization of^Sz& as obtained
when spin waves and spin-and-orbital waves are decou
in the manner discussed above. One observes that signifi
reduction of^Sz& then sets in only very close to the actu
divergence.

Also the orbital polarization is renormalized by the qua
tum fluctuations, but this is a rather mild effect not showi
any instability, since this renormalization involves only th
spin-and-orbital and the orbital excitation but not the sp
excitation, which is the one participating most strongly in t
lowest transverse mode that goes soft. This is seen in Fig
where we shoŵnx&, the occupation of theux& orbital, again
for JH /U50.3, both at the MF level as well as including th

g.
i-

FIG. 18. Average density ofux& holes ^nx& as obtained for
JH /U50.3 in the MF approximation~dashed lines! and with the
quantum corrections calculated in RPA~full lines!. The splitting of
lines for Ez /J.0 corresponds to the MOAFF phase with two d
ferent hole densitieŝnx&AÞ^nx&B on the ions belonging to two
sublattices~see Fig. 3!.
,

2

9
6
7
2
2
7

4
9
3
9
0
8
4

TABLE II. Individual contributions to the quantum corrections of the magnetic order parameter^dS z& in MO phases due to spin wave
^S 2S 1&, and due to spin-and-orbital-wave excitations,^K 2K 1&, and due to individual modes as labeled in Figs. 11 and 12,^dS z&n ,
respectively. The values of the renormalized order parameter in RPA are given by^S z&RPA.

JH /U Ez /J ^S 2S 1& ^K 2K 1& ^dS z&1 ^dS z&2 ^dS z&3 ^dS z&4 ^dS z& ^S z&RPA

0.2 0.0 0.1350 0.0508 0.0114 0.0344 0.0709 0.0691 0.1858 0.314

0.3 22.0 0.2138 0.0323 0.0673 0.0646 0.0585 0.0557 0.2461 0.253
0.3 21.0 0.1338 0.0336 0.0411 0.0025 0.0547 0.0691 0.1674 0.332
0.3 0.0 0.0918 0.0354 0.0122 0.0241 0.0425 0.0485 0.1273 0.372
0.3 1.0 0.1095 0.0323 0.0285 0.0041 0.0684 0.0408 0.1418 0.358
0.3 2.0 0.1330 0.0328 0.0327 0.0076 0.0754 0.0502 0.1658 0.334
0.3 3.0 0.1664 0.0329 0.0465 0.0146 0.0738 0.0644 0.1993 0.300

0.4 23.0 0.2144 0.0232 0.0876 0.0958 0.0294 0.0249 0.2376 0.262
0.4 22.0 0.1373 0.0258 0.0552 0.0145 0.0453 0.0482 0.1631 0.336
0.4 21.0 0.0928 0.0269 0.0370 0.0020 0.0302 0.0505 0.1197 0.380
0.4 0.0 0.0647 0.0274 0.0224 0.0080 0.0257 0.0360 0.0921 0.407
0.4 1.0 0.0776 0.0254 0.0258 0.0038 0.0494 0.0240 0.1030 0.397
0.4 2.0 0.0924 0.0258 0.0292 0.0063 0.0552 0.0276 0.1182 0.381
0.4 3.0 0.1117 0.0259 0.0363 0.0104 0.0590 0.0319 0.1376 0.362
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TABLE III. The mean-field energyEMF , the quantum energy correction due to transverse modes and
to longitudinal modes,dEt anddEl , respectively, and the ground-state energy in RPA,ERPA ~all in the units
of J). The labels FFA and AFF indicate the way of staggering of FM planes in the MO phases with
order.

JH /U Ez /J EMF dEt dEl ERPA phase

0.0 22.0 24.0000 0.6440 0.0 24.6440 AFzz
0.0 21.0 23.5000 0.6700 0.0 24.1700 AFzz
0.0 1.0 23.5000 0.7073 0.0 24.2073 AFxx
0.0 2.0 24.0000 0.6399 0.0 24.6399 AFxx

0.1 22.0 23.9250 0.6354 0.0008 24.5612 AFzz
0.1 21.0 23.4250 0.6735 0.0021 24.1006 AFzz
0.1 1.0 23.4250 0.7344 0.0020 24.1614 AFxx
0.1 2.0 23.9250 0.6384 0.0008 24.5642 AFxx

0.2 23.0 24.3500 0.6082 0.0024 24.9606 AFzz
0.2 22.0 23.8500 0.6328 0.0042 24.4870 AFzz
0.2 21.0 23.4769 0.3964 0.0009 23.8742 FFA
0.2 0.0 23.2558 0.2992 0.0028 23.5577 FFA
0.2 1.0 23.3543 0.3437 0.0010 23.6990 AFF
0.2 2.0 23.4769 0.3962 0.0005 23.8738 AFF
0.2 2.0 23.8500 0.6472 0.0041 24.5013 AFxx

0.3 23.0 24.2750 0.6052 0.0062 24.8864 AFzz
0.3 23.0 24.2272 0.5252 0.0194 24.7717 FFA
0.3 22.0 23.7750 0.6419 0.0134 24.4303 AFzz
0.3 22.0 23.8651 0.3944 0.0037 24.2632 FFA
0.3 21.0 23.5892 0.3040 0.0019 23.8951 FFA
0.3 0.0 23.3996 0.2335 0.0054 23.6384 FFA
0.3 1.0 23.4836 0.2664 0.0031 23.7531 AFF
0.3 2.0 23.5892 0.3038 0.0016 23.8947 AFF
0.3 2.0 23.7750 0.6768 0.0134 24.4652 AFxx
0.3 3.0 23.7164 0.3459 0.0015 24.0638 AFF
0.3 3.0 24.2750 0.5773 0.0063 24.8586 AFxx
0.3 10.0 27.7750 0.4048 0.0014 28.1812 AFxx
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RPA quantum fluctuations, calculated from an express
similar to Eq.~5.4!, e.g., in the AFxx phase from

^nix&5124^TizxTixz&2^Ki
2Ki

1&. ~5.15!

Especially in the MOFFA and MOAFF phases the deviat
from the classical value ofu as given by Eq.~3.11! and by
Eqs. ~3.14! and ~3.14!, respectively, is small. Only in the
AFxx phase a significant admixture ofuz& occupancy could
occur close to the regime where this phase becomes uns
due to the divergence of^Sz&RPA.

The reduction of̂ Sz&RPA in the MOFFA/MOAFF phases
~Table II!, described by a relation similar to Eq.~5.4!, is in
general weaker than that in the G-AF phases. This is un
standable, as the quantum fluctuations contribute here
from a single AF direction, while the FM order in the plan
does not allow for excitations which involve spin flips an
stabilizes the LRO of A-AF type. For fixedJH one finds
increasing quantum correctionsd^Sz& when the lines of
phase transitions towards the AF phases are approac
These corrections increase faster with increasinguEzu in the
MOFFA phase, as the increasing occupancy of theuz& orbital
makes the AF interaction stronger there than in the MOA
phase, where the occupancy of theux& orbital increases
n

ble

r-
ly

ed.

F

slower roughly by a factor of two. This qualitative differenc
between these two A-AF phases may be seen in Fig. 18
in the G-AF phases, we find that the two lower-ener
modes give the larger contribution to the renormalization
the order parameter. The spin-and-orbital fluctuat
^K i

2K i
1& remains almost independent ofEz , but increases

with decreasing values ofJH . Thus we conclude that the
collapse of the LRO in the A-AF~MO! phases is primarily
due to increasing spin fluctuations^S i

2S i
1&, while the spin-

and-orbital fluctuations become of equal importance o
when the multicritical point of the Kugel-Khomskii mode
M5(Ez ,JH)5(0,0) is approached.

The representative quantum corrections to the grou
state energy are given in Table III. First of all, these corr
tions are larger by roughly a factor of 2 in the G-AF phas
~AFxx and AFzz! than in the A-AF phases~MOFFA and
MOAFF/MOFAF!. We believe that this is a generic differ
ence between the quantum corrections in the A-type
G-type AF phases, with the latter stabilized more due to
spin fluctuations contributing at all the bonds. Therefore
G-AF phases win over the A-AF ones near the transit
lines, as, for example, found atJH /U52.0 andEz /J50.2.
However, one should keep in mind that the energy alo
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does not suffice for the stability of a particular phase in RP
since the MF value of the order parameter,^Sz&, has to re-
main larger than the respective quantum correction,d^Sz&.
Second, the 2D AFxx phase is characterized by larger qu
tum corrections than the strongly anisotropic AFzz phas
the same values ofJH /U and uEzu/J. The same observatio
was made before at the multicritical pointM5(Ez ,JH)
5(0,0).65 This is not surprising since the 2D HAF is alread
quite close to the disordered spin state. We note that
energy gain due to quantum fluctuations of 0.423J ~obtained
for the actual interactions of94 J in a 2D HAF! is there con-
siderably smaller than the values ofdE of the order of 0.65J
reported in Table III.

Finally, we note that the dominating contribution to th
quantum corrections to the energy comes from the transv
excitations. The longitudinal excitations do not contribute
all at JH /U50, where these modes are dispersionless. O
erwise, the orbital excitations have always a significan
smaller dispersion than the value of the orbital gap in
spectrum, and the resulting quantum corrections are th
fore almost negligible.

VI. SUMMARY AND CONCLUSIONS

Summarizing, we have presented here the case that a
neric ~Kugel-Khomskii! model for the dynamics of an orbit
ally degenerate MHI is characterized by a number of pecu
features. In this paper we have followed a semiclassical s
egy. Assuming that the ground state exhibits some partic
classical spin and orbital order, the stability of this order c
be investigated by considering the Gaussian fluctuati
around this state. In this way we find that in various regim
of the zero-temperature phase diagram, conventional ord
defeated by the quantum fluctuations, and we expect a q
tative phase diagram as shown in Fig. 19.

In the first place, near the transition lines between
different phases modes soften, and these soft modes c
the zero-point fluctuations to diverge. This is not dissimi
from the general theme associated with the geometric
frustrated quantum spin models, like theJ1-J2-J3 model.41

FIG. 19. Schematic phase diagram of the spin-orbital mo
including quantum fluctuations. Thespin liquidphase is expected to
separate the AF phases with different types of magnetic LR
G-AF phases with eitherdx22y2 (uxx&) or d3z22r 2 (uzz&) orbital
occupied on both sublattices from the A-AF phases with mix
orbitals ~MO’s! ordered on two sublattices.
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A significant difference is that in the present case the sou
of the problems is distinct: it is associated with the difficu
to satisfy simultaneously the requirements for a stable s
and orbital order. The cause of the frustration is dynami
instead of geometrical.

The most interesting feature is the point at the origin
the phase diagram. On the classical level it is a point in
zero-temperature phase diagram where a quasi-1D antife
magnet ~MOFFA phase!, a 2D antiferromagnet~AFxx
phase!, and a mildly anisotropic 3D antiferromagnet~AFzz
phase! become degenerate~Fig. 4!. In fact, these possibilities
make up only an infinitesimal fraction of the total dege
eracy characterizing this special point. In addition, the orb
als can be freely rotated on every site, if the spins form a
antiferromagnet. Likewise, the phase diagram of Fig. 19
highly incomplete. Next toEz , there exist an infinity of other
axes emerging from this special point, all corresponding w
distinct ways of explicitlocal symmetry breaking in the or
bital sector. One can either call this point an infinite-critic
point, or a point of perfect dynamical frustration, or, finall
a point where local symmetry is dynamically generated.

The obvious problem is that the above wisdom appl
only when quantum mechanics does not play a role. Phys
reality is different, and since the classical limit is patholog
cal, quantum mechanics is bound to take over. Although
have not found a way to make the case precise, it appea
us that the local symmetry referred to in the previous pa
graph exists only in the classical limit. For this to be acti
on the quantum level, it should be that the true ground s
is also highly degenerate. Although we did not prove t
uniqueness of the quantum ground state, so much is c
that the classical local symmetry gets lifted at the mom
that quantum fluctuations become significant: the cance
tions occur only if the spins are fully classical. Regardle
the nature of the true ground state, it is generated by a qu
tum order-out-of-disorder mechanism.42

The first possibility is a straightforward order-out-o
disorder physics: the quantum fluctuations affect the ener
of the various classical states in different ways, there
breaking the classical degeneracy. One of the saddle po
might get uniquely favored and this is what is suggested
Ref. 72, where it was argued that the AFzz phase beco
the ground state at the origin of the phase diagram. Altho
this is a credible possibility, one would have to demonstr
that the other possibilities are less favored, and moreover
have shown elsewhere65 that the actual calculation by Kha
liullin and Oudovenko72 is flawed. The case is still open.

Yet another possibility is unconventional spin and orbi
order which is in a sense dual to the orbital and s
~anti!ferromagnetism characterizing the ‘‘classical’’ orde
spin-orbital ~resonating! valence bond~R!VB states. We
demonstrated before6 that these straightforward generaliz
tions of the spin RVB states, well known from the study
quantum spin-problems, appear as exceptionally stable.
next publication we will further elaborate on these matters76

The status of both proposals is rather unsure: they rel
best on the variational principle and the true vacuum can
be completely different. In this regard, some recent exp
ments on the system LiNiO2 are quite interesting.80 In this
material a Mott insulator seems to be realized, character
by a low spin (S51/2)eg degenerate Ni~III ! state. One
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would naively expect this system to be unstable toward
collective Jahn-Teller distortion, accompanied by spin ord
ing. This indeed happens in the closely related sys
NaNiO2, but in LiNiO2 ordering phenomena are complete
absent,81 a peculiarity pointed out long ago.82 Instead, some
quantum-critical state appears to be present, characterize
power-law behavior of physical quantities, carrying unus
exponents. Pending the magnitude of the Li-mediated kin
exchange (JLi), one can view this system as either disco
nected triangular layers of Ni~III ! ions ~vanishingJLi), or as
interpenetrating cubic lattices of these ions which are
scribed by the Kugel-Khomskii Hamiltonian~large JLi).

6

Hence the peculiar state seen in the experiments can e
originate in some phenomenon associated with the triang
layers,83 but it could also be related to the matters discus
in this paper.

It is easy to settle this issue experimentally. Comp
NaNiO2 and LiNiO2; if the physics of the quantum disorde
in the latter has to do with the~111! layers, one would expec
on general grounds that in order to stabilize an ordered s
the effective dimensionality has to be increased, of cou
assuming that the basics of the electronic structure~such like
covalency! do not change appreciably. Hence in this lay
scenario one would expect stronger layer-layer interacti
in NaNiO2 as compared to LiNiO2, following the standard
result of quantum field theory that fluctuations increase u
lowering dimensionality. This standard wisdom does not
ply to the Kugel-Khomskii model, however. The fluctuatio
find their origin in a dynamical frustration, and this frustr
tion is only present in three space dimensions. Hence if
disorder in LiNiO2 is caused by the physics discussed in t
paper, its quantum magnetism should be rather isotropi
3D space, while NaNiO2 should be more 2D. It is noticed
that according to elementary quantum chemistry Li io
should be more effective in mediating kinetic exchange th
Na ions.
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APPENDIX A: DERIVATION OF THE SPIN-ORBITAL
MODEL

The derivation of the effective interactions between t
d9 ions at sitesi andj takes the simplest form for a bond^ i j &
oriented along thec axis. In that case the only nonvanishin
hopping element is that between the twouz& orbitals on the
neighboring sites, and thus the orbital occupancies in
initial and finaldi

9dj
9 states have to be identical~apart from a

possible simultaneous and opposite spin flip at both sit!.
The possible initial states are described by a direct produc
the total spin state, either a triplet (S51) or a singlet (S
50), and the orbital configuration, which takes one of fo
possibilities: uxixj&, uxizj&, uzixj&, or uzizj&. Moreover, the
effective interaction vanishes if the holes occupy theuxixj&
configuration. The total spin per two sites is conserved in
di

9dj
9→di

10dj
8 excitation process, and therefore the spin d
a
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pendence of the resulting second-order Hamiltonian can
expressed in terms of the projection operators on the t

spin states: (34 1SW i•SW j ) for the triplet, and (14 2SW i•SW j ) for the
singlet.

The general form of the effective Hamiltonian may b
derived from the formula which includes all possible virtu
transitions to the excitedd8d10 configurations,

H ^ i j &52 (
n,ab

t2

«n
QS( i , j )PiaPj b , ~A1!

wheret stands for thez2z hopping along thec axis,QS( i , j )
is the projection operator on the total spin state, andPia is
the projection operator on the orbital statea at sitei, while
«n stands for the excitation energies given by Eqs.~2.5!. The
orbital projection operators onux& and uz& orbital in the ini-
tial and final state of thed9 configuration at sitei are, respec-
tively,

Pix5u ix&^ ixu5 1
2 1t i

c ,

Piz5u iz&^ izu5 1
2 2t i

c , ~A2!

wheret i
c is defined as in Eqs.~2.12!.

Therefore one finds from Eq.~A1! for a bond^ i j & along
the c direction

H ^ i j &52
t2

«~ 3A2!
S SW i•SW j1

3

4D ~PixPjz1PizPjx!

1
t2

«~ 1Ee!
S SW i•SW j2

1

4D ~PixPjz1PizPjx!

1F t2

«~ 1Eu!
1

t2

«~ 1A1!
G S SW i•SW j2

1

4D2PizPjz .

~A3!

While the magnetic interactions due to the first two terms
Eq. ~A3! cancel each other in the limit ofh→0, the last term
favors AF spin orientation. We recognize that Hamiltoni
~A3! describes the superexchange with the superexcha
constant of 4t2/U.57 However, for convenience we defin
the energy unit asJ5t2/U in the present paper. Although th
form ~A3! might in principle be used for further analysis, w
prefer to make an expansion of the excitation energies«n in
the denominators for smallJH , and useh5JH /U ~2.7! as a
parameter which quantifies the Hund’s rule exchange.50 Us-
ing the explicit form of the orbital projection operatorsPia
~A2! this results in the following form of the effective
Hamiltonian for the bond̂ i j &ic:

H ^ i j &5J@~11h!~SW i•SW j1
3
4 !2~SW i•SW j2

1
4 !#

3@~t i
c1 1

2 !~t j
c2 1

2 !1~t i
c2 1

2 !~t j
c1 1

2 !#

14J~12 1
2 h!~SW i•SW j2

1
4 !~t i

c2 1
2 !~t j

c2 1
2 !, ~A4!

which may be further simplified to the form
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H ^ i j &5JH ~4SW i•SW j11!~t i
c2 1

2 !~t j
c2 1

2 !1t i
c1t j

c21

1h~SW i•SW j !~t i
c1t j

c21!1
1

2
h@~t i

c2 1
2 !~t j

c2 1
2 !

13~t i
ct j

c2 1
4 !#J . ~A5!

The first line represents the AF superexchange interact
}J, while the other two lines describe the weaker FM int
actons}Jh, and stand for the corrections due to the mult
let splittings of thed8 excited states.

It is straightforward to verify that the above form of th
effective Hamiltonian simplifies in the limit of occupieduz&
orbitals to

H ^ i j &54J~12 1
2 h!~SW i•SW j2

1
4 !, ~A6!

and one recognizes the same constant2 1
4 , and the same

superexchange interaction 4J54t2/U as in thet-J model at
half filling.57 However, the effective superexchange is som
what reduced by the factor (12 1

2 h) in the presence of the
Hund’s rule interaction.

The effective interactions on the bonds within the (a,b)
planes may be now obtained by rotating the orbital opera
t i

c in Eq. ~A4! by p/2 to the cubic axesa and b which
generates the orbital operatorst i

a andt i
b ~2.12!, respectively.

This results in a nontrivial coupling between the orbital a
spin degrees of freedom, as given in Eq.~2.10!. We note that
in the case of a singles orbital per site, it would suffice to
rotate instead the simpler projected form~A6!, which would
give the same superexchange interaction in any direction

APPENDIX B: COMMUTATION RULES IN THE so „4…
ALGEBRA FOR THE SPIN-ORBITAL MODEL

In order to illustrate the full algebraic structure of o
problem, we present here the so(4) commutators betw
the various excitation operators which are needed for ca
lating the excitation spectra in Sec. IV. As the operators
fined on different sites commute, we only specify the on-s
commutators.

The spin operators fulfill the usual relations for each
bital a5x,z,

@Siaa
1 ,Siaa

z #52Siaa
1 ,

@Siaa
1 ,Siaa

2 #52Siaa
z . ~B1!

Their commutators with the other operators which descr
either spin-and-orbital~transverse!, or orbital ~longitudinal,
i.e., excitonic! excitations are responsible for the couplin
between spin- and spin-and-orbital excitations~hereaÞb),

@Siaa
1 ,Kiab

z #52 1
2 Kiab

1 ,

@Siaa
1 ,Kiba

z #52 1
2 Kiba

1 ,

@Siaa
1 ,Kiab

2 #5~Kiab
z 1Tiab!,

@Siaa
1 ,Kiba

2 #5~Kiba
z 2Tiba!,

@Siaa
1 ,Tiab#5 1

2 Kiab
1 ,

@Siaa
1 ,Tiba#52 1

2 Kiba
1 , ~B2!
ns
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en
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e

-
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while they commute with the orbital-polarization operator

@Siaa
1 ,ni 2#50. ~B3!

The operators for spin-and-orbital excitations have
following commutators:~i! with the spin operators,

@Kiab
1 ,Siaa

z #52 1
2 Kiab

1 ,

@Kiab
1 ,Sibb

z #52 1
2 Kiab

1 ,

@Kiab
1 ,Siaa

2 #5Kiab
z 2Tiab ,

@Kiab
1 ,Sibb

2 #5Kiba
z 1Tiba , ~B4!

~ii ! with the spin-and-orbital operators,

@Kiab
1 ,Kiab

z #50, ~B5!

@Kiab
1 ,Kiba

z #52 1
2 ~Siaa

1 1Sibb
1 !,

@Kiab
1 ,Kiab

2 #50,

@Kiab
1 ,Kiba

2 #5 1
2 ~nia2nib!1Siaa

z 1Sibb
z ,

@Kiab
1 ,Tiab#50,

@Kiab
1 ,Tiba#52 1

2 ~Siaa
1 2Sibb

1 !,

and ~iii ! with the orbital-polarization operator,

@Kixz
1 ,ni 2#52Kixz

1 ,

@Kizx
1 ,ni 2#51Kizx

1 . ~B6!

The relevant excitonic operators in the symmetry-brok
state~4.11! commute with the above spin-transverse ope
tors, Siaa

1 and Kiab
1 , and give the following commutator

with the remaining spin-longitudinal operators,

@Tiabs ,Siaa
z #52 1

2 lsTiabs ,

@Tiabs ,Sibb
z #51 1

2 lsTiabs ,

@Tiabs ,Kiab
z #50,

@Tiabs ,Kiba
z #5 1

2 ~Siaa
1 1Sibb

1 !1 1
4 ls~nia2nib!,

@Tiabs ,Tiab#50,

@Tiabs ,Tiba#5 1
2 ls~Siaa

1 1Sibb
1 !1 1

4 ~nia2nib!,

@Tixzs ,ni 2#52Tixzs ,

@Tizxs ,ni 2#51Tizxs , ~B7!

wherels561 for s5↑,↓. Therefore the subset of longitu
dinal operators$Tiabs% generates the excitations which d
not couple to the transverse excitations.

APPENDIX C: GREEN-FUNCTION EQUATIONS FOR
SPIN AND ORBITAL EXCITATIONS

Here we present the dynamical matrices obtained for
phases with LRO for the spin-orbital model~2.10!. It is easy
to verify that the presented dynamical matrices have an R
structure and thus describe symmetric spectra with respe
v50.

Let us start with the G-AF phases with eitherux& or uz&
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orbitals occupied. The spin and spin-and-orbital excitatio
are determined from Eqs.~4.12! and ~4.13! for the AFxx
phase, and from Eqs.~4.34! and ~4.35! for the AFzz phase.
After using the translational symmetry and performing t
familiar RPA decoupling procedure,70,71

^^AiBj u•••&&.^Ai&^^Bj u•••&&1^Bj&^^Ai u•••&&,
~C1!

where i and j refer to different sites, one finds a system o
linear equations for the excitation energies. A straightf
ward but somewhat lengthy calculation shows that the sa
matrix with different coefficients describes the element
excitations for both AF phases,

S la2v̄kW 0 QakW PakW

0 ta2v̄kW PakW RkW

2QakW 2PakW 2la2v̄kW 0

2PakW 2RkW 0 2ta2v̄kW

D
3S ^^SkWxx

1 u•••&&A

^^KkWxz
1 u•••&&A

^^SkWxx
2 u•••&&B

^^KkWxz
2 u•••&&B

D 50, ~C2!

wherev̄kW is the frequency in units ofJ, i.e., v̄kW5vkW /J. The
constantsla andta and thekW -dependent functionsPakW and
QakW depend on the considered AF phase and are specifie
Sec. IV, whileRkW5

3
2 g1(kW ). The solution for the eigenener

gies is given by Eq.~4.19!. As discussed in Sec. IV A, the
same 434 matrix equation written down in Eq.~C2! for
^^SkWxx

1 u•••&&A , etc., describing the modes generated by
s

-
e

y

in

e

spin-raising operators, is also valid for the Green functio
^^SkWxx

2 u•••&&A , etc., describing the modes generated by
spin-lowering operators$Sixx

2 ,Kixz
2 ,Sjxx

2 ,K jxz
2 %, with i PA

and j PB, and all transverse modes are doubly degenera
The orbital~longitudinal! excitations correspond to excit

ing an electron from one orbital to the other without chan
ing the spin direction. IfA(B) is an up~down! sublattice in
the Néel state, the basis operators which define the modes
↑-spin (↓-spin! orbital excitations, as introduced in Sec. IV
One finds the following eigenvalue problem using the RP

S ua2 z̄kW 0 1rakW 1rakW

0 2ua2 z̄kW 2rakW 2rakW

2rakW 2rakW 2ua2 z̄kW 0

1rakW 1rakW 0 ua2 z̄kW

D
3S ^^TkWxz↑u•••&&A

^^TkWzx↑u•••&&A

^^TkWxz↓u•••&&B

^^TkWzx↓u•••&&B

D 50, ~C3!

where againz̄kW is in units ofJ, i.e., z̄kW5zkW /J, and the quan-
tities ua andrakW depend on the considered G-AF phase.

The classical A-AF ground state is discussed here on
example of the MOFFA phase. It consists of four sublattic
two sublattices (A andB) due to different orbital order in the
(a,b) planes~see Fig. 3!, and two others (C andD) due to
spins which alternate along thec axis. The Hamiltonian~2.9!
was first transformed to the new operators defined by E
~4.45! and ~4.46!. For the bondŝ i j &i(a,b) with i PA(C)
and j PB(D) one finds
Hi5
1
4 J(

^ i j &i
†~12 1

2 h!„@~22cos 2u!SW imm1~21cos 2u!SW inn1sin 2uKW i #@~22cos 2u!SW j mm1~21cos 2u!SW j nn2sin 2uKW i #

13@sin 2u~SW imm2SW inn!1cos 2uKW i #@sin 2u~SW j mm2SW j nn!1cos 2uKW j #1l i jA3$@~22cos 2u!SW imm1~21cos 2u!SW inn

1sin 2uKW i #@sin 2u~SW j mm2SW j nn!2cos 2uKW j #2@sin 2u~SW imm2SW inn!1cos 2uKW i #@~22cos 2u!SW j mm1~21cos 2u!SW j nn

2sin 2uKW j #%…1
1
2 h„@cos 2u~SW imm2SW inn!2sin 2uKW i #@cos 2u~SW j mm2SW j nn!1sin 2uKW j #23@sin 2u~SW imm2SW inn!

1cos 2uKW i #@sin 2u~SW j mm2SW j nn!2cos 2uKW j #2l i jA3$@cos 2u~SW imm2SW inn!2sin 2uKW i #@sin 2u~SW j mm2SW j nn!

2cos 2uKW j #1@sin 2u~SW imm2SW inn!1cos 2uKW i #@cos 2u~SW j mm2SW j nn!2sin 2uKW j #%…22hSW iSW j1~112h!$~cos 2uNW i

2sin 2uTW i !~cos 2uNW j1sin 2uTW j !23~sin 2uNW i1cos 2uTW i !~sin 2uNW j2cos 2uTW j !2l i jA3@~cos 2uNW i2sin 2uTW i !

3~sin 2uNW j2cos 2uTW j !1~sin 2uNW i1cos 2uTW i !~cos 2uNW j1sin 2uTW j !#%2~31h!‡, ~C4!

while for the bondŝ i j &'(a,b) it takes the form
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H'5J (
^ i j &'

„~12 1
2 h!@~11cos 2u!SW imm1~12cos 2u!SW inn2sin 2uKW i #@~11cos 2u!SW j mm1~12cos 2u!SW j nn2sin 2uKW j #

2 1
4 h$@~12cos 2u!SW imm1~11cos 2u!SW inn1sin 2uKW i #@~11cos 2u!SW j mm1~12cos 2u!SW j nn2sin 2uKW j #

1@~11cos 2u!SW imm1~12cos 2u!SW inn2sin 2uKW i #@~12cos 2u!SW j mm1~11cos 2u!SW j nn1sin 2uKW j #%

1~112h!~cos 2uNW i2sin 2uTW i !~cos 2uNW j2sin 2uTW j !2 1
4 ~31h!…, ~C5!
P
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and the transformed orbital-anisotropy term reads

Ht5Ez(
i

~cos 2uNW i2sin 2uTW i !. ~C6!

The transverse excitations were found using the R
procedure in Eqs.~4.53! and ~4.54! which leads to an
(838) matrix for the eigenenergies. If the operato
transformed to kW space are ordered a
S Amm

1 ,S Bmm
1 ,K Amn

1 ,K Bmn
1 ,S Cmm

1 ,S Dmm
1 ,K Cmn

1 ,K Dmn
1 , one

recovers a general structure of the eigenvalue problem,

S A2v̄kWI B
2B 2A2v̄kWI

D 50, ~C7!

whereA andB are (434) symmetric matrices,I is the (4
34) identity matrix, andv̄kW5vkW /J. Using the averages o
the diagonal operators in the classical ground state,

^S Amm
z &5^S Bmm

z &52^S Cmm
z &52^S Dmm

z &5 1
2 , ~C8!

^Ni 2&5 1
2 , ~C9!

one finds the following elements of matrixA:

A115A2252 1
2 ~12 1

2 h!~122 cos 2u!212~22h!cos4u

1 1
2 h~ 3

2 1sin22u!, ~C10!

A125@ 1
2 ~12 1

2 h!~122 cos 2u!22h~ 3
4 1sin22u!#g1~kW !,

~C11!

A1352A2452 1
2 ~12 1

2 h!sin 2u~22cos 2u!

2 1
4 ~31 11

2 h!sin 4u2 1
2 «zsin 2u, ~C12!

A1452~12 1
2 h22 cos 2u!sin 2ug1~kW !

1
A3

2
@12~22h!cos 2u#g2~kW !, ~C13!

A2351~12 1
2 h22 cos 2u!sin 2ug1~kW !

1
A3

2
@12~22h!cos 2u#g2~kW !, ~C14!

A335A4452~12 1
2 h!~122cos 2u!1 1

2 h2 1
2 ~112h!

3~112 sin22u!2«zcos 2u, ~C15!
A

A345
1
2 ~112 cos 4u!g1~kW !, ~C16!

and the following nonzero elements of matrixB:

B115B225@~12 1
2 h!~11cos 2u!2 1

4 h#~11cos 2u!gz~kW !,
~C17!

B335B445sin22ugz~kW !, ~C18!

B135B3152B2452B4252~12 1
2 h1cos 2u!sin 2ugz~kW !.

~C19!

The longitudinal excitations in the A-AF phases were o
tained by solving the respective Green function equati
for the excitation operators~4.55!. After transforming these
equations tokW space, and taking the following sequen
of excitation operators: TAmn↑ , TBmn↑ , TAnm↑ , TBnm↑ ,
TCmn↓ , TDmn↓ , TCnm↓ , TDnm↓ , one finds an eigenvalue
problem of the form

S P2 z̄kWI R 1Q 1Q
2R 2P2 z̄kWI 2Q 2Q
2Q 2Q 2P2 z̄kWI 2R
1Q 1Q R P2 z̄kWI

D 50,

~C20!

whereP, R, andQ are symmetric (232) matrices, andz̄kW

5zkW /J. The nonvanishing elements are defined as follow

P115P225
1
2 ~12 1

2 h!@122cos 4u12cos 2u~21cos 2u!#

1 3
4 h cos 2u2 3

2 ~112h!cos 4u2«zcos 2u,

~C21!

P125P215
1
2 ~11h!~122 cos 2u!g1~kW !, ~C22!

R125R215
1
2 ~11h!~122 cos 2u!g1~kW !, ~C23!

Q115Q225hsin22ugz~kW !. ~C24!

As in the AF phases, the coupling between the sublatticeA
andC and betweenB andD, respectively, is proportional to
the weak FM componenth. The mechanism of this coupling
is explained in Fig. 8.

APPENDIX D: NEUTRON INTENSITIES IN TRANSVERSE
EXCITATIONS

In this appendix we explain the intensitiesx(v) in neu-
tron scattering seen in the presence of orbital degrees of f
dom. One can start from the general expression for the c
section for pure magnetic scattering,84
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d2s

dVdv
}

k1

k0
(
i j

f j* ~qW ! f i~qW !
1

2pE dte2 ivt

3^SW i'~0!SW j'~ t !&e2 iqW (RW i2RW j ), ~D1!

wherek0 andk1 are the initial and final momenta, whileqW is
the momentum transfer. The spin components at sitei and j

are perpendicular toqW . By integrating over timet one finds
that the neutron cross section~D1! is related to the imaginary
part of the spin-spin Green function,

d2s

dVdv
}

k1

k0
(
i j

f j* ~qW ! f i~qW !e2 iqW (RW i2RW j )
1

2p
2Im

3H(
a

^^Sj'
a uSi'

a &&2vJ Q~v!, ~D2!

whereQ(v)51 for v.0, andQ(v)50 for v,0, and we
took the limit of temperatureT→0. In order to extract the
perpendicular component of the spin-spin correlation fu
tion from the Green functions,̂̂ Sj'

a uSi'
a &&2v , we use the

identity

Si'
a 5(

b
Si

bS dab2
qaqb

q2 D . ~D3!

The components of the Green functions inqW space,
^^SqW

auS
2qW
b

&&2v , are found using the following properties o
the transverse spin-spin functions:

Im^^SqW
auS

2qW
b

&&2v52Im^^SqW
buS

2qW
a

&&v ,

^^SqW
1uS

2qW
1

&&v5^^SqW
2uS

2qW
2

&&v50, ~D4!

and^^SqW
auS

2qW
z

&&v50 for the wave vectorsqW ÞQW , whereQW is
the nesting vector. One finds that the neutron cross sec
v

.

.

-

on

normalized per one site may be written as follows:

1

N

d2s

dVdv
}

1

8p

k1

k0

1

N (
i j

f j* ~qW ! f i~qW !x~qW !, ~D5!

wherex(qW ) is the neutron scattering intensity which includ
the geometrical factor which originates from Eq.~D3!. It is
proportional to a linear combination of the diagonal and o
diagonal elements of the Green function, and one finds fo
two-sublattice magnetic structure, as for example in AF
and AFzz phases,

x~qW !5S 11
qz

2

q2D 2Im@GAA~qW ,2v!

1GBB~qW ,2v!1GAB~qW ,2v!1GBA~qW ,2v!#Q~v!,

~D6!

with the elementGAA(qW ,2v) standing for the transvers
Green function,̂ ^SA,qW

1 uSA,2qW
2

&&2v , etc., and the indicesA
andB refer to two sublattices. The explicit formula in term
of the spectral intensitiesA mn

(n)(qW ) is given by

x~qW !5S 11
qz

2

q2D (
n(.0)

@A AA
(n)~qW !1A BB

(n)~qW !1A AB
(n)~qW !

1A BA
(n)~qW !#d~v2vqW

(n)
!. ~D7!

We have used Eq.~D7! to determine the contributions to th
neutron cross section due to different excitations, as analy
in Sec. IV and presented in Figs. 9–12. The generalizatio
the case of four-sublattice structures found in the MOF
and MOAFF phases is straightforward.
B
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