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We address the role played by orbital degeneracy in strongly correlated transition-metal compounds. Spe-
cifically, we study the effective spin-orbital model derived for tifeions in a three-dimensional perovskite
lattice, as in KCuk, where at each site the doubly degeneegterbitals contain a single hole. The model
describes the superexchange interactions that depend on the pattern of orbitals occupied and shows a nontrivial
coupling between spin and orbital variables at nearest-neighbor sites. We present the ground-state properties of
this model, depending on the splitting between ¢h@rbitalsE,, and the Hund's rule coupling in the excited
d® states,J,,. The classical phase diagram consists of six magnetic phases which all have different orbital
ordering: two antiferromagnetiF) phases with G-AF order and eithe?—y? or 3z2—r? orbitals occupied,
two phases with mixed orbitdMO) patterns and A-AF order, and two other MO phases with either C-AF or
G-AF order. All of them become degenerate at the multicritical pmet (E,,Jy)=(0,0). Using a generali-
zation of linear spin-wave theory we study both the transverse excitations which are spin waves and spin-and-
orbital waves, as well as the longitudin@rbital) excitations. The transverse modes couple to each other,
providing a possibility of measuring the new spin-and-orbital excitations in inelastic neutron spectroscopy. As
the latter excitation turns into a soft mode near Mepoint, quantum corrections to the long-range-order
parameter are drastically increased near the orbital degeneracy, and classical order is suppressed in a crossover
regime between the G-AF and A-AF phases in tkg,Jy) plane. This behavior is reminiscent of that found
in frustrated spin models, and we conclude that orbital degeneracy provides a different and physically realiz-
able mechanism which stabilizes a spin liquid ground state due to inherent frustration of magnetic interactions.
We also point out that such a disordered magnetic phase is likely to be realized &t lamd low electron-
phonon coupling, as in LiNiQ

I. NOVEL MECHANISM OF FRUSTRATION NEAR However, neither of these arguments applies for a class of
ORBITAL DEGENERACY insulating strongly correlated transition-metal compounds,
where the crystal field leaves thal Drbitals explicitly de-
Quite generally, strongly correlated electron systems ingenerate and thus the type of occupied orbitals is not known
volve orbitally degenerate stattsuch as 8(4d) states in ~ a priori, while the magnetic interaction between the spins of
transition metal compounds, and (&f) states in rare-earth neighboring transition-metal ions depends on which orbitals
compounds. Yet, the orbital degrees of freedom are ignoredre occupied. In this particular class of Mott-Hubbard insu-
in most situations and the common approach is to consider lators (MHI) the orbital degrees of freedom acquire a sepa-
single correlated orbital per atom which leads to spin degenrate existence in much the same way as the spins do.
eracy alone. Indeed, most of the current studies of stronglfhereby, the degeneracy ©f; orbitals is of less importance,
correlated electrons deal with models of nondegenerate ogs the magnetic superexchange and the coupling to the lattice
bitals. The problems discussed recently include mechanismare rather weak. A more interesting situation occurs wéen
of ferromagnetism in the Hubbard modehole propagation orbitals are partly occupied, which results in stronger mag-
and quasiparticles in theJ model® and magnetic states of netic interactions, and strong Jahn-Tell&F) effect. Typical
the Kondo latticé. Of course, in many actually existing com- examples of such ions are: €u(d® configuration, one hole
pounds the orbital degeneracy is removed by the crystah eg-orbitals, low-spin NPE* (d’ configuration, one electron
field, and a single-orbital approach is vafidr se Also, from in e orbitals, as well as MA™ and CFf* ions (high-spind*
a fundamental point of view it is often possible to argue thatconfiguration, on@y electron. The simplest model, relevant
orbital degeneracy is qualitatively irrelevant, and that afor d° transition-metal ions, which is also the subject of the
single-orbital approach can capture the generic mechanisngsesent paper, was introduced by Kugel and Khomskii more
operative in the presence of strong correlations. than two decades agobut its mean-field MF) phase dia-
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gram was analyzed only recenfiyt describes magnetic su- is justified by the large on-site Coulomb interactidnbeing
perexchange interactions between s@asl/2, and the ac- the largest energy scale in MHI. A low-energy Hilbert space
companying orbital superexchange interactions. splits off, spanned bygpin and orbitalconfiguration space,
One might argue that thlassical orbital degeneracy is with superexchangelike couplings between both spin and or-
not easy to realize in such systems, as the electron-phondnital local degrees of freedom. The orbital sector carries a
coupling will lead to the conventional collective JT instabil- discrete symmetry and the net outcome is that the clocklike
ity. In fact, it can be shown that the JT instability is enhancedorbital degrees of freedom get coupled into the SU(2) spin
by the orbital pattern once this has been established as thH@oblem. The resulting low-energy Hamiltonian is called a
result of effective interactions’®the lattice has to react to Spin-orbital model Here we focus on the simplest situation
the symmetry lowering in the orbital sector, which can onlywith two nearly degenerate partially filleg, orbitals, and
increase the stability of a given magnetic state. So the latticeompletely filledt,, orbitals, as encountered in KCynd
follows rather than induces the orbital order, and thereforerelated system$These are JT-distorted cubic crystals, three-
as was pointed out in the early work by Kugel anddimensional(3D) analogs of the cuprate superconductdrs.
Khomskii>® in the orbitally degenerate MHI one has to con- In the highT, cuprates, orbital degeneracy would occur if
sider in first instance the purely electronic problem. This isthe Cu-O bonds which involve apical oxygens were
supported by the results of recent band-structure calculatiorggueezed such as to recover the cubic symmetry of the per-
using the local-density approximatidhDA) with the elec-  ovskite lattice. Of course, such a degeneracggpbrbitals is
tron interactions treated in Hartree-Fock approximation, thdar from being realized in the actual high-materials, and in
so-called LDA+U method, which permits both orbitals and their parent compounds:?®
spins to polarize while keeping the accurate treatment of the If only one correlated orbital is present, the system may
electron-lattice coupling of LDA intact. These calculationsbe described by the effective single-band Hubbard model
reproduce the observed orbital ordering in KGyRef. 10  (typically with more extended hoppihgas in the cuprate
and in Laan,“ even when the lattice distortions are sup- superconductor%g. In this simplest case the effective model
pressed, while allowing the lattice to relax only yields anat half filling is the Heisenberg model with antiferromagnetic
energy gain which is minute in comparison with the energiedAF) superexchange. This changes when more than one 3
involved in the orbital ordering. orbital is partly occupied. For example, we show in Sec. Il
Effects of orbital degeneracy are expected as soon aat virtual excitations involvingl® local triplet states be-
crystal-field splittings become small. Such situations are frecome possible in the case of degenegg@rbitals, and this
quently encountered in rare-earth systems, where they lead teads to additional ferromagnetiEM) interactions. The ori-
the so-called singlet-triplet models discussed in thegin of these interactions was first discussed by Kugel and
seventies? while in the 3 oxides only a small number of KhomskiP and by Cyrot and Lyon-Caéhwho pointed out
so-called Kugel-Khomski{KK) system$ have been recog- that the strongest superexchange constant results from the
nized that actually exhibit orbital effecfsAs pointed out by  excitation to the lowest energy triplet state in the degenerate
Kugel and KhomskiF, in such situations the superexchangeHubbard model. The superexchange interaction in doubly
interactions have a more complex form than in spin-onlydegenerate band with arbitrary filling was somewhat later
models and one expects that also in some other Mottanalyzed by Spatek and Chao, who derived a generalized
Hubbard(or charge-transfginsulators new magnetic phases model foreg electrons’®
might arise due to the competition of various magnetic and The model proposed by Kugel and Khomskii explains
orbital interactions. Some examples of such a competition ofjualitatively the observed magnetic ordering in KGuis
magnetic interactions are encountered in the heavy fermioheing due to an orbital ordering which gives planes of per-
systemg:¥and in the manganites where the phase diagrampendicularly oriented orbitals, and the magnetic coupling be-
show a particular frustration of magnetic interactiofis:’ comes then FM according to the Goodenough-Kanamori
Even more interesting behavior is expected for the dopedules®> As mentioned above, such a state was indeed found
systems, as the competition between the magnetic, orbitalp the band structure calculations of Liechtenstein, Anisi-
and kinetic energy is then described by Hamiltonians of mov, and Zaanéfl using the LDA+U method. An analo-
a novel type, which exhibit qualitatively different excitation gous orbital order is responsible for ferromagnetism in the
spectra due to the underlying orbital degenerdcp few  planar FM insulator KCuF,.%3 In the colossal magnetoresis-
examples of such models have already been discussed in ttence parent compound LaMgQOwhere theg, orbitals con-
literature, such as the tripletJ model’® the low-spin de- tain one electron instead of one hole, a similar orbital order-
fects in aS=1 background? or at-J-like model for the ing occurs/® although the situation there is more complex
manganite$! Whether such models are realistic enough isdue to the presence 0f4 spins, so that the resulting super-
not yet clear, as, for example, in the manganites there arexchange is not between spiés 1/2 but between total spins
experimentaf and theoreticaf indications that the double- S=2.17 Another example of degenerate orbitals is found in
exchange model which includes only the spin degrees o¥,0;, with the orbital ordering studied by Castellani, Natoli,
freedom is insufficient to understand the transport propertieand Ranninger in a series of pap&t#n fact, their prediction
under doping. Recent wotk!”-?*?%strongly suggests that an that the transition into the AF insulator is accompanied by
extension of thé-J and double-exchange models which in- the onset of orbital ordering was experimentally verified only
clude fully the orbital physics should be studied instead. recently®® However, this case is still open, as recent elec-
In this paper we shall consider only the insulating situa-tronic structure calculations suggest that doubly degenerate
tion, where one can integrate out the-d excitations and orbitals are occupied by two electrons in the high-spin state
derive an effective low-energy Hamiltonian. This approachand the orbital degree of freedom plays no rSle.
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In any of the above situations the orbital ordering breakghe bonds with the strongest AF superexchange. One may
the translational symmetry and represents an analog of spfiarther note that in these spin-only models very specific pat-
antiferromagnetism in orbital space. Sdassically orbital ~ terns of magnetic interactions are required already in two
ordering is expected to occur quite generally whenever ondimensions to prevent the system to order classically, while
encounter, orbitals containing either one hole or one elec-Up to now it has proven impossible to realize a spin liquid in
tron, with important consequences for the magnetism. Thighree dimensions.

immediately raises a number of questions about what hap- [N the present paper we address two fundamental ques-
pens in thequantum regimeWill orbital long-range order tONS for the Hglsenberg ant|ferromag|1ib|tAF). extended to
(LRO) be robust or will it give way to amrbital liquid, as mcludeT the c_)rbltal degrees of fregdom in orpltally degengrate
proposed by Ishihara, Yamanaka, and NagaBsareither MHI: (i) Whlch classwalstate_s with magnetl_c LRO do exist
case, what are the consequences of the enlarged phase spiit€he neighborhood of orbital degeneracii) Are those
and the associated additional channels for quantum fluctudOrms of classical order always stable agamgsantumfluc-
tions for the magnetism: can magnetic LRO survive or will it tuations? We will show that the orbitally degenerate MHI
be replaced by apin liquid? represent a class of systems in which spin disorder occurs

Quantum disordered phases are of great current intere{ue (o frustration ofspin and orbital superexchange cou-
Spin disorder is well known to occur in one-dimensional pImgs. 'I_'hls frustra_tlon mechanism is different from that op- _
(1D) and quasi-1D quantum spin systems, and the best exgrative in pure spin systems, and suppresses the magnetic
ample is the 1D Heisenberg model, where the famous exa&RO in the ground stateven in three dimensions
solution found by Bethe many years dgshowed that the As explained above, the low-energy behavior of such sys-
quantum fluctuations prevent true AF LRO, giving instead al€MS is described by a spin-orbital model. We will show that
slow decay of spin correlations. A similar situation is en-Within the framework of such a spin-orbital model the occur-
countered in spin ladders with an even number of legs, whicfience of spin disorder may be regarded as resulting from a
have a spin gap and purely short-range magnetic Grdf@r. competition between various classical ordered phases, each
This is one of the realizations of a spin-liquid ground state®n€ With a simultaneous symmetry breaking in spin and or-
due to purely short-range spin correlations. In the limit of aPital space. As we show belo@ee Sec. Il there are two

two-dimensional2D) Heisenberg model the spin disorder is YPeS of classical AF phasesithout an orbital order, i-gl-,
replaced by a ground state with AF LRO. when all the orbitals are the same: a 2D phase withy

It is well known that frustrated magnetic interactions may©rPitals occupied by spins, the 50'203”9‘_1 AFxx phase, and an
lead to spin disordered states in two dimensions. However, ignisotropic 3D phase with 2—r® orbitals occupied by -
order to achieve this, i.e., to prevent 2D macroscopic spisPins; the so-called AFzz phase, next to a few phases with
systems from behaving classically and to make quantum méTixed orbitalSMO's) which stagger and lead to MO phases,
chanics take over instead, the frustration of the interaction§/Pically with FM interactions in at least one spatial direc-
must be sufficiently severe. This shows that gldba(2) by ~ ton. Thus the qualitatively new aspect is that the magnetic
itself is not symmetric enough to defeat classical order ifnteractions follow the orbital pattern, and thus these systems
D>1 and one has to change the magnetic interactions iffnd to “self-tune” to(critical) points of high classical de-
such a way that they lead to sufficiently strong quanturr@&neneracy. We show explicitly that in the vicinity of such a
fluctuations. So far, this strategy has been shown to lead t@ulticritical point classical order is highly unstable with re-

spin disorder in(quasi)2D systems in three different situa- SPECt t0 quantum fluctuations. As a result, a qualitatively
tions: (i) Frustrating a 2D square lattice by adding |onger_d|fferent guantum spin liquid with strong orbital correlations
range AF interactions, as id;-J, and J;-J,-J; models is expected. We believe that a 3D state of this type is realized

gives a high degeneracy of the classical sector, and a disof? LiNIO . , , ) )

dered state is found for particular values of the magnetic Tge paper is organized as follows. The spin-orbital model
interaction€>#2 This mechanism involves fine tuning of pa- for d” transition-metal ions, such as €uions in KCuk, is
rameters and therefore such systems are hard to realize ‘ijr‘?”}r’ed in Sec. Il using the correct multiplet structure of
nature.(ii) In the bilayer Heisenberg model two planes areCu3 exute;d cqnflguratlons. We solve thl_s model f_|rst in the
coupled by interlayer AF superexchangiewhich generates MF approximation a_nd present the r_esuln_ng classical phases
zero-dimensional fluctuations. This leads to a crossover t§nd the accompanying orbital orderings in Sec. lll. The el-

the disordered ground state of an incompressible spin liqui§Mentary excitations obtained within an extension of the lin-
above a certain critical value df .*>#4Also this mechanism  €ar spin-wavdL.SW) theory are presented in Sec. IV, where

is hard to realize experimentallgiii) In contrast, a spin dis- W€ demonstrate that two transverse modes are strongly
ordered state can be obtained in nature by reducing the nun§OUPled to each other. This leads to soft modes next to the
ber of magnetic bonds in a 2D square lattice. The model OF[asspal transition lines, a}nd to the collapse of LRO due to
caVv,0, studied by Taniguchiet al®® is a 1/5 depleted dlve.rglng guantum corrections, as shown m_Sec._V. We sum-
square lattice, which gives a plaquette resonating valenc&®arize the results and present our conclusions in Sec. VI.
bond (PRVB) ground state for realistic interactions, and a
spin gap which agrees with experimental observatf6rs.
common feature of these systems is a crossover between dif-
ferent magnetic ground states, either between two different Our aim is to construct the effective low-energy Hamil-
patterns of LRO, as in cas@), or simply between the or- tonian for a 3D perovskitelike lattice. The original charge-
dered and disordered states, which results in all three situaransfer multiband model, as considered for instance for the
tions in a tendency towards the formation of spin singlets orcuprates, includes the hybridization elements betweendhe 3

Il. THE SPIN-ORBITAL MODEL
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orbitals of transition-metal ions and the 2rbitals of oxy- ]
gen ions?® If the Coulomb elements at thed3orbitals and (@) E,— U
the charge-transfer energy between thikéhd 2o orbitals 3
are large, this model can be transformed into an effective A,— U-Jy
spin-fermion model. For example, this transformation per-
formed for the three-band model gives an effective Hamil- Z‘F — Iz
tonian with localized spins at the Cu sites which interact by X — % = _LEz Nand - 4_ x
superexchange interactions, while the doped carriers interact
with them by a Kondo-like coupling’ In the limit of un-
doped compounds, one is thus left with a model which de- (b) A, — U+
scribes interacting transition-metal ions.
The simplest form ofsuperexchangenteraction, namely e —u
a purely spin model, is obtained for the case of nondegener-
ated orbitals, whereas orbital degeneracy gives a spin-orbital z% % — t,, % 4_ z
model acting in a larger Hilbert space defined by both spin < >
and orbital degrees of freedom at each transition-metal site. X— —
Having in mind the strongly correlated late transition-metal d? d° d'° 48 d? d°
oxides, we consider specifically the case of one hole per unit i i t
cell in the A° configuration, characterized in the absence of
JT distortion by two degeneraég orbitals:x*—y?~|x) and FIG. 1. Virtual transitionsl?d} — d{°%? which lead to a spin-flip
(32— r2)/\/§~ |z). The derivation is, however, more gen- and generate effective interactions for a bgnd||c axis, with the
eral and applies as well to the low-spif configuration; in ~ €xcitation energies &,=0. For two holes in different orbital®),
the case of the early transition-metal oxides the case  either the triplet®A, or the interorbital singletE, occurs as an
would involve thet,, orbitals instead. intermediated® configuration, while if both holes are |@) orbitals

The holes in the undoped compound which corresponds tf)- o other singlets, E. and Ay, with double occupancy di)
the d® configuration of transition-metal ions. as inJGu0 orbital, contribute. The latter processes are possible either by hole
9 . . 8 ! 4 hopping fromi to j or fromj toi.
or KCuFR, are fairly localized”® Hence we take as a starting
point the following Hamiltonian which describesholes on
transition-metal ions:

The electron-electron interactions are described by the on-
site terms

Heg:Hkin+Hint+HZv (21)

Hint:(U+%JH)Z niaTnial"_(U_‘]H)z NixoNizo

and consider the kinetic energ,;, and the electron- e '

electron interactionsl;,; within the subspace of the, or- R

bitals (thet,q orbitals are filled by electrons, do not couple to +(U- %JH)E NixoNize — %JHZ diTXIrdix;diz;diZ(r

ey Orbitals due to the hoppings via oxygens, and hence can 7 '

be neglected The last termH, describes the crystal-field

splitting of theey orbitals. +334> (ddl diy dipy+dldl di diyg), (2.3

Due to the shape of the twey orbitals|x) and|z), their '

d—p hybridization in the three cubic directions is unequal,ith U and Jy standing for the Coulomb and Hund's rule

and is different between them, so that the effective hOppin%xchange interactio?, respectively, ande=x,z. For conve-

elements are direction dependent and different|%rand . R = .

|z). The only nonvanishing hopping in thedirection con- nience, we u_sed the simplified notapo# —o. This Igamn-

nects two z) orbitals, while the elements in tha,p) planes t02n|<_’;\n d?f”'b‘?s corr(_actly th_e mu_ItlpI(_at structur_ed f(aar.%ge

fulfill the Slater-Koster relation®’ as presented before by d*) ions;” and IS rotationally invariant in the orbital spate. .
The wave functions have been assumed to be real which

:\If]vé) ﬁ;g;’c ;‘aeligf itshtgai\f/lgrr])%;g along thec axis as a unit, gives the same elemedy,/2 for the exchange interaction and
for the “pair hopping” term between the, orbitals,|x) and

|2).
t - - .
Hooo=— 3d! di,+(—1)Yy3(d! di,,+H.c. In fact, we adopted here the most natural units for the
K4 %‘H (3, dics (= 1) V3l ) elements of the Coulomb interaction, with the energy of the
central |'E) doublet being equal taJ. By definition this
+dl di, 1 +tVB Y, di dij, . (2.2  energy does not depend on the Hund's exchange element
(P Jy, as we show below, and is thus the measure of the aver-

- - age excitation energy in th#’d}— d{°d? transition. The in-
where(ij)|| and(ij)L stand for the bonds between nearestieraction element,, stands for the singlet-triplet splitting in
neighbors within the 4,b) planes, and along theaxis, re-  the d® spectrum(Fig. 1) and is just twice as big as the ex-
spectively, angg=1 in a cubic system. The—z hopping in  change elemenk,, used usually in quantum chemisf.
the (a,b) planes depends on the phases ofxthe y* orbit-  The typical energies for the Coulomb and exchange elements
als alonga andb axis, respectively, included in the factors can be found using constrained-occupation local-density
(—1)°Yin Eq. (2.2. functional theory’® Unfortunately, such calculations have
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been performed only for a few compounds so far. For Depending on whether the initial state |g);|x); or
La,CuQ,, a parent compound of superconducting cuprates|z);|z);, the intermediatel!%d® configuration resulting from
one findsU=7.77 eV and),,;=2.38 eV?® other estimations the hole-hop|z);—|z);, involves on thed? site either the

of U based on the experimental data report valuesUé interorbital states, the tripletA, and the singletE,, or the
<8 eV for cuprates and nickelatgsThis results in the ratio two singlets built from the states with doubly occupied or-
Ji/U=0.3 which we take as a representative value for thebitals, E, and A;. Of course, the spins have to be opposite
strongly correlated late transition-metal oxides. The valuedn the latter case, while in the former case also parallel spin
of intersite hoppind, being an effective parameter, are more configurations contribute in the triplet channel. Apart from a
difficult to estimate. As a representative value for,CaiO, constant term, this atomic problem is equivalent to that of the
one might taket~0.65 eV, which results in the superex- d? configuration, and thus one might consider instead the
change interaction between the orbitals in (a,b) planes, spectrum ofd? ions. The eigenstates within tleg subspace
Jiaby=(9/4)t?/U=0.13 eV?® in good agreement with the are: (i) triplet [3A,), (i) interorbital singlet‘E.), and (iii)
experimental valué® Similar values of the effectivé are  bonding and antibonding singletsiE,) and |!A;), with
expected also in the other transition-metal oxides, and thudouble occupancies of both orbitals, where bonding/
we can safely assume that at the filling of one hole per iorantibonding refers to pair hopping temd,; betweer|x) and

the ionic Hamiltonian(2.1) describes an insulating state, and |z) orbital. The energies of the stat€®\,) and |'E.) are
that the effective magnetic interactions can be derived in thgraighforwardly obtained using,-S,= +1/4 and$,- S,
strongly correlated regime af<U. , _ =—3/4, forS=1 andS=0 states, respectively. The remain-

_ The last term in Eq(2.1) stands for t_he crystal field which ing two singlet energies are found by diagonalizing a2
lifts the degeneracy of the twey orbitals and breaks the ropjem in the subspace of doubly occupied states. Hence

symmetry in the orbital space, the resulting spectrum 5
Hz=i2 (exNixe+ €2Nizg), (2.4 E(*A)=U—Jy,
if e,#¢,. It acts as a magnetic field in the orbital space, and E(‘E)=U,

together with the paramete® in H,;, (2.2 quantifies the
deviation in the electronic structure from the ideal cubic lo-
cal point group.

In the atomic limit, i.e., at=0 andE,=0, one has orbital
degeneracy next to spin degeneracy. This gives four basis E(1A)=U+3J4+ 3341+ (E,135)%]Y2 (2.5
states per site, as each hole may occupy either orbitabr
|z), and either spin state;=1 or o= | . The system oN d® . . -
ions has thus a large degeneracy, 4vhich is, however, whereE,=¢g,—¢,. At E,=0 it consists of equidistant states,

i : 1at3
removed by the effective interactions between each pair of'!th @ dlstgncle oby betwelen theht.n[;I?t Az) ?”d the de-
nearest-neighbor iors, j} which originate from virtual tran- gf&gf‘geoﬁggleﬂjfxeingi Eé{V\(/\évergCthgrg;),o?/ecgilrjwrslz:[sagnd
. . 949 . 41048 ,

sitions to the excited stated;d;=d;"d;’, due to hole hop- 9

. l . . o
ping. Hence we derive the effective spin-orbital model fol—the top singlet|"A;). We emphasize that the simplified

lowing Kugel and Khomskit, starting from the Hamiltonian Hﬁ_bl?]ard—llket form of eltectron—t(ajlt?]ctrop |trr1]t_eract|orﬁ_2.3)
in the atomic limit,H,,=H;,;+H,, and treatingH,;, as a which uses two parametert} and Jy;, in this case is an

perturbation. However, in the present study we include th&*@ct representationf the Coulomb interaction in theef
full multiplet structureof the excited states within the® conﬁgura‘qon as obtained in the theory of multiplet spectra,
configuration which gives corrections of the order &f and one finds a one-to-one correspondence between the en-

compared with the earlier results of Refs. 5 and 9. ergies calculated above, and those found with the Racah pa-

Knowing the multiplet structure of the?® intermediate rametersA, B, andC,*
states, the derivation of the effective Hamiltonian can be
done in various ways. The most straightforward but lengthy E(3A,)=A—8B,
procedure is a generalization of the canonical transformation
method used before for the Hubbaf@nd the three-bafd
model. A significantly shorter derivation is possible, how- E(lE)=A+2C,
ever, using the cubic symmetry and starting with the interac-
tions along thec axis. Here the derivation simplifies tremen-
dously as one finds only effective interactions which result E('A;)=A+8B+4C. (2.6)
from the hopping of holes between the directiof®l orbit-
als, as shown in Fig. 1. Next the interactions in the remainingri, ;s the parameters used by us afeA+2C and Jy

directions can be generated by the appropriate rotations ta gg 2 .50 We normalize the energies by the Coulomb
the other cubic axea andb, and applying the symmetry nteractionU. and introduce

rules for the hopping elements between dal(;]@rbitalsf19 The
derivation of the spin-orbital model is given in more detail in
Appendix A. n=JylU (2.7

E('E)=U+ 33— 33u[ 1+ (E,/3))2
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15 : . .
\/ PH=G+HG-H+(E- ™G+,
1
A Pl=2G =)= 1). (2.11)
=10 : 1_ ¢ o
& 1 They are either parallelR;,= 5 — 77) to the direction of the
E i{— 2 i
/ \ bond(ij) on sitei, and perpendicularF{j§=%+er) on the
s other sitej, or parallel on both sites, respectively, and are
. {‘2 . constructed with the following orbital operators associated
09,0 S0 00 10 20 with the three cubic axesa(b,c),
A

| | - . 7=—i(o7=\3a7),
FIG. 2. Energies of the virtual excitatioes/U shown in Fig. 1

.as.fur?ctions ok, /Jy for Jy/U=0.3. The lowest triplef*A,) state Tib: _ %(Uiz_’_ \/§Uix)’
is indicated by full circles, and the singlet staté*) and|'A,))
by full lines.
y w=307. (2.12

The ¢'s are Pauli matrices acting on the orbital pseudospins
as an energy unit for the Hund’s rule exchange interaction.
This gives the excitation energies which correspond to the 1 0
local excitations dd’—d;°d} on a given bondi), x)= ol 12)= 1]

e(PA)=1—17, Hence we find a Heisenberg Hamiltonian for the spins,
coupled into an orbital problem. While the spin problem is
e('E)=1, described by the continuous symmetry gro8pi(2), the
orbital problem is clock-model-like, i.e., there are three di-
e(XE,)=1+1p—Lp[1+(E,/1d)2]"2 rectional orbitals: 8°—r?, 3y?—r?, and Z*~r?, but they
are not independent. The orbital basis consists of one direc-
e(1A)=1+ 39+ L9[1+(E,/134)2]"2 (2.9 tional orbital and its orthogonal counterpart, and we have

chosen her¢z)=3z2—r? and|x)=x?—y? orbitals.
shown in Fig. 2. We note that the deviation from the equi- In general, the energies of these two orbital stgtesand
distant spectrum aE,=0 becomes significant only for |z), are different, and thus the complete effective Hamil-
|E,|/34>1. Taking the realistic parameters of the cuprafes, tonian of thed® model(2.9) includes as well the crystal-field
one finds for LaCuO, with E,=0.64 eV that E,/J,  term(2.4) which we write as
=0.27, a value representative for systems that are already far
from orbital degeneracy. Since we are interested here in what H=—E E < 2.13
happens close to orbital degeneracy, this allows us to neglect T g T '
the E, dependence of the energies of the excitédstates,

and use the atomic spectru@6) in the derivation presented HereE; is a crystal field which acts as a “magnetic field”
in Appendix A. for the orbital pseudospins, and is loosely associated with an

Following the above procedure, we have derived the eftniaxial pressure along treaxis. Thed® spin-orbital mode!
fective Hamiltoniar’ in spin-orbital space, (2..9).depends thgs on two paramete(®: the crystal-field
splitting E,, and(ii) the Hund’s rule exchang#, .
H="Hy+H,, (2.9 While the first two terms in Eq(2.10 cancel for the
magnetic interactions in the limit op—0, the last term
where the superexchange paff can be most generally writ- favors AF spin orientation. Although the forf2.10 might
ten as follows(a simplified form was discussed recently in in principle be used for further analysis, we prefer to make
Ref. 6), an expansion of the excitation energigsin the denomina-
tors of Eq.(2.10 in terms ofJy, and usen=J4/U [Eq.
(2.7] as a parameter which quantifies the Hund'’s rule ex-
7’(%) change. This results in the following form of the effective
exchange Hamiltonian in thé® model (2.9):5%°

+ v (§i§ 1)73“
S(lEe) 14 (ij) HJ:J(ZJ)

L1
2(3‘51‘2)7’559‘7’53}

.. 3 ., 1
— 194 & “plé _ “pld
In, [Si'sj(P<ij>+P<iJ>)+ a7y 47’<ij>}
(2.10 (2.14

Hereé refers to a spirB=1/2 at sitel, andeﬁﬁ are projec- The first term in Eq.(2.14 describes the AF superex-
tion operators on the orbital states for each bond, changexJ=1t?/U (wheret is the hopping betweejz) orbit-

+ + (*S-—E)P“ .
s(Ep) e(lAapllT T 4T
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als along thec axis), and is obtained when the splittings where J,=J,=J and J.=JB. For B>1 the nearest-
between different excited® states~J,, (Fig. 2 are ne- neighbor bonds(ij)|lc are shorter, while for3<1 these
glected. As we show below, in spite of the AF superex-honds are longer than the bonds within tleel() planes. In
change=J, no LRO can stabilize in a system described by the |imit of 3—0 the bonds along the axis may be ne-
the spin-orbital model (2.9) in the limiy—0 at orbital de-  y6cted and the model reduces to a 2D model, representative
gen_era_cy(EZ=_0) beca_use .Of the presence of the frustratl_ngf r the magnetic interactions between Cu ions within the
orbital interactions which gives a highly degenerate classic :

uG, planes of the high-temperature superconductors.

round state. We emphasize that even in the limit)gf o .
g P A The presence of AF spin interactions) suggests mag-

—0 the present Kugel-Khomskii modebes not obegU(4) . . g
symmetry, essentially because of the directionality ofdje netic superstructures with staggered magnetization, and we
orbitals. Therefore such an idealized @Wsymmetric considered several possibilities, with two- and four-sublattice

modef° does not correspontb the realistic situation of de- 3D Structures, giving rise to G-AF and A-AF phases, AF 1D
generatee, orbitals and is expected to give different answerschains coupled ferromagnetically, and others. The MF
concerning the interplay of spin and orbital ordering in cubicHamiltonian contains as well an Aiteraction between or-

a__«o

crystals. bital variables ~J7 o which suggests that it might be

Taking into account the multiplet splittings, we obtain energetically more favorable to alternate the orbitals in a
[second line of Eq(2.14)] again a Heisenberg-like Hamil- certain regime of parameters, and pay thereby part of the
tonian for the spins coupled into an orbital problem, with amagnetic energy. This illustrates the essence offitirgtra-
reduced interaction<J#. It is evident that the new terms tion of the magnetic interactions present in the spin-orbital
support FM rather than AF spin interactions for particularmodel(2.9), as discussed in Sec. |. Therefore for any classi-
orbital orderings. This net FM superexchange originategal state the orbitals occupied by the holes have to be opti-
from the virtual transitions which involve the triplet state mized, and we allowed MO states,

[3A,), which has the lowest energy and thus gives the stron-

gest effective coupling. We remark in passing that the FM

channel is additionally enhanced fdt ions when the virtual _ _ o

excitations to double occupanciesggorbitals happen in the |i o) =cosbilizo) +sinbi|ixa), (3.2
presence of partly filled,, orbitals in high-spin configura-

tions, as realized in the manganitég’

The important feature of the spin-orbital mod@l9) is  with the values of the mixing angld®;} being variational
that theactual magnetic interactions depend on the orbital parameters to be found from the minimization of the classi-
pattern This follows essentially from the hopping matrix g energy.
elements iHy;, (2.2) being different between a pair ¢f) The superexchange in E¢8.1) depends strongly on the
orbitals, between a pair of different orbitatsne|x) and one  qpital state. At large positivé,, where the crystal field
|2) orbita), and between a pair 9¢) orbitals, respectively, gyongly favors|x) occupancy ovefz) occupancy, one ex-
and depending on the bond direction either in tleb] pects thaté,==/2 in Eq. (3.2, and the holes occupix)

planes, or alon'g the axis. V.V.e show in Sec. I th_at this orbitals on every site. In this case the spins do not interact in
leads to a particular competition between magnetic and or;

o ) . . . ~thec direction(see Fig. ], and there is also no orbital energy
bital interactions, and the resulting phase diagram containsa_ . . : -
rather large number of classical phases, stabilized for differgont”bu“.on' Hepce theab) planes will decouple magnen-
ent values of, andJ,, cally, while within each plane thg supergxchange_ is AF and
equal to 9/4 alonga andb. These interactions stabilize a 2D
antiferromagnet, called further AFxx. The resulting 2DeNe
IIl. MEAN-FIELD PHASE DIAGRAM state with decoupleda(b) planes along the direction is the
well-known classical ground state of the high-supercon-
) } o _ ductors LaCuQ, and YBgCu;0g.%* In contrast, ifE,<0
A. Anisotropy of antiferromagnetic interactions and|E,| is large,|E,|/J>1, theng, =0 in Eq. (3.2, and the
We start the analysis of the® spin-orbital (or Kugel-  holes occupyz) orbitals. The spin system has then strongly
Khomski)) model(2.9—(2.14 by analyzing the MF solution  anisotropic AF superexchange, being #etween two|z)
obtained by replacing the scalar produétséj by the Ising  orbitals along the axis, andl/4 between twdz) orbitals in
term SIZSJ-Z. The MF Hamiltonian may be written for the more the (a,b) planes, respectively. The corresponding 30eNe
general situation where the interaction has uniaxial anisotstate with holes occupyinfg) orbitals is called AFzz. The
ropy along thec direction in the 3D lattice as follows: spin and orbital order in both AF phases is shown schemati-

cally within the (@,b) planes in Fig. 3.
M= 24 JL2(S'S - DP ()~ Pl

_ 7]2 Ja[SFSjZ(Pfié})—'—P(giéj))—'— %Pfﬁ> B. Antiferromagnetic states in the 3D model
(ij)

Assuming an AF classical order in all three directions, the
so-called G-AF state, it is thus obvious that for laJgg one

_lpilq_ c
3P Ezzi i @1 finds either the AFxx or the AFzz phase, depending on
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(Pigpjg"' Pigpjg>: 1(7—4cog26),

(2P Py =5(1—2cosd)?, (3.9
and for the bondsij )| c

@ @ <Pixsz+Piszx>:%(1_005229)y

AFxx AFzz (2P;,Pj,)=3(1+cos 29)2. (3.6)

The classical energy per site as a functioroaé then given
%%Q by

ooy
toope

ANy )

E(f)=— |1+ g)(7—400§20)

oo 4
% coo

[

MOFFA MO AFF _ Y n 2
4<1 2)(1 2cos %)

FIG. 3. Schematic representation of orbital and magnetic long- J
range order within the&,b) planes of AFxx(with |x) orbitals 3 (1 5| (1—cos20)
occupied, AFzz (with |z) orbitals occupie] MOFFA [with mixed
orbitals and FM(AF) order alonga and b axis (c axis)], and J
MOAFF phaseswith the orbitals as in MOFFA, but rotated to give 5,8( 1- 5 |(1+cos29)?
AF interaction along the axis), respectively. The shaded parts of
different orbitals are oriented along thexis. The spingarrows in 1
the next @,b) plane in thec direction are AF to those below them += 5 —E,cos 2. (3.7

in AFzz and MOFFA phases, and FM in MOAFF phase. In the
AFxx phase there is no magnetic coupling to the next plane alond@ his has a minimum at
the c axis, but this degeneracy is removed in MOAAF phase, where
a small|z) component promotes a FM coupling. 1
(1— 5)(1 B+ e
whetherE,>0 or E,<0, with the following energies nor- cos 20= — , (3.8
malized per one site, (2+B)n
wheree,=E,/J, if 7#0, and provided thafcos ¥|<1 (a
E. —_33l1- j) _TE similar condition applies to all the other states with MO con-
APXX 4/ 277 sidered below So, as long asXB—1)—3J(B+1)n<E,
=<2J(B—1)+J(5+ B)n, there is genuine MO order, while
upon reaching the smalldtarge) boundary value foiE,,
§Ez- 3.3 the orbitals go over smoothly infa)(|x)), i.e., one retrieves
the AFzz(AFxx) phase. Taking the magnetic ordering in the
The AFxx and AFzz phases are degenerate in a 3D systefiree cubic directiongabc] as a label to classify the classi-
(B=1) along the lineE, =0, while decreasingg moves the  cal phases with M@3.4), we call the phase obtained in the
degeneracy to negative values @&,, namely to E,  regime of genuine MO order MOAAA, with classical energy
=—-2J(1-B)(1—nl2). given by
However, for intermediate values ¢&,| one should al- .
low for mixed orbitals. Following the argument above about N P 3 1-3 [(2=7)(1-B)+e,]
the AF nature of the orbital interaction, we assume alternat- —MOAAA™ Btgm 42+ B) 7y
ing orbitals at two sublatticesA and B. The alternation (3.9
should allow the orbitals to compromise between being iden-
tical (optimizing the magnetic energynd being orthogonal
(optimizing the orbital energy This is realized by choosing
in Eqg. (3.2 the angles alternating between the sublattices.
0;=+06forieA, andg;=— 0 for j € B, respectively;

7
Earz= _J( 1+ Z

U
—23[;(1—5 +

Upon increasingly, the FM interactions occur which in-
crease the energy of the AF phases in three dimensions by
the term3 » per site in Eqs(3.3) (a similar increase of en-
ergy occurs also in the MOAAA phase in the region of its
existence This indicates frustration of magnetic interactions

|i wo') = cosbliza) +sinb]ix o), and opens a potential possibility that other classical phases
with FM order along particular directions might be more
|j wo)=coséljza)—sinb|jxa). (3.4) stable. We have found a few classical phases when the spins

order ferromagnetically either in particular planes, or along
The calculation of the energy can be performed either byne spatial direction, and this magnetic order coexists with
evaluating the average values of the operator varighigs MO occupied by holes.
or by taking the average values of the orbital projection op- For example, the angles in E@®.2) can be chosen in such
erators{P;,} as given in Eq(A3). Using the two-sublattice a way that at least one of the orbitals on two neighboring
orbital ordering(3.4), one finds for the bond&j )| (a,b) sites is perpendicular to the bond direction, e.g., is lke
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—Z type for a bond along tha axis. In such a case, the AF 7>0 andE,/J=0. The magnetic energy is gained due to
superexchange vanishes, and one finds instead a weaker F§latively strong AF interactions on the bondig)|c, and
interaction, in agreement with the Goodenough-Kanamoriveak FM interactions in the planes,p), perpendicular to
rules® By this mechanism Kugel and Khomskiproposed ~the preferred directionality of the M(8.2) along thec di-

an alternating orbital order to explain the FM planes ob-réction, while the orbital energy is gained due to orbital al-
served in KCuk. Following this argument, let us assume ternation within the §,b) planes. Such orbital ordering re-
FM order within (a,b) planes, and the same for(8.4) as ~ Mains stable with decreasirig <0, while two similar states
above for the alternating orbitals at the two sublattidesnd ~ With the staggering either within theb(c) or the (a,c)

B. As alternating orbitals can only be arranged to be perperPlanes, are more stable fr>0. Following our convention,
dicular to the bonds in at most two spatial directions, such athese two degenerate MO states stabl&at0 are called
arrangement for thea(b) planes forces the orbitals to have MOAFF and MOFAF (see Fig. 3, respectively. However,
nonzero lobes along. This results in sizable AF superex- the MO involve in this case the directional orbitg) along
change for the bond&j) parallel toc, which will order the ~ the AF bonds(i.e., [{;)~3x?—r? for MOAFF or |{p)
spins antiferromagnetically in the direction. The orbitals ~3y*—r? for MOFAF, respectively; and the corresponding
may either repeat or stagger along thaxis, and both states orthogonal orbital,[¢). Therefore, since the symmetry-
give the same mean-field energy. Taking the magnetic ordepreaking field acts ofe) orbitals, the angles in the two sub-
ing in the three cubic directiorfsabc] as a label to classify lattices cannot be exactly equivalent in this case, unlike in
the classical phases with M@3.4), we call this ground state the MOFFA phase, and we adopted an ansatz,

the MOFFA phase. With the help of E(8.5) and(3.6) one
obtains the following classical energy as a functiorgof

licy=cosé.|iéa)+sing,|ilo),

|jo)y=cosé_|iéo)—sinb_[i{a), (3.13

wherei € A, j e B, and6..>0 for the two sublattices. Intro-
ducing for convenience the new anglés: (6., + 6_), and
6=0,—6_, one finds the following conditions for the en-
ergy minimum of the classical MOAFF phase,

cos 2p=—H{[(1+B)(2— 5) +&,]cosS+ \/3&,5in 8}

J
E(6)=— Z(1+ 7)(7—4c0$20)

(1—cos26)

J 7
JE— +_
2B 13

J 7
- 5,8( 1-— 5)(1+cos 20)?

X[1+B+(1+28) 5] 1, (3.19
1
+ 5 E,c08 20, (3.10 tan20=+ 3 \3[(1+ B)(2— ) +&,]e,
with a minimum at X{4[1+ B+ (1+2B8) n]+[(1+B)(2— n) +&,]
) —3e7h 319
/3( 1- 5) T 5ez and the energy is given by
COSZBZW, (3.1

J
E =——[7(1+n)+2B(1+cosd
where again the MO exist as long @®s 2|<1. Using Egs. MOAFF 4[ (L+ )+ 25 )]

(3.10 and (3.11) one finds that the classical energy of the
MOFFA phase is given by
7 1
o[ol-3)- 2

J
EMOFFA:_Z(11_777)_§ 21 (21 8) 7

J {[(1+B)(2— 5) +&,]c0s8+ \/3s,5in 5}2
32 1+B+(1+2B8) 7y '

(3.19

. Finally, one may consider states in which magnetic en-
(3.12 ergy is gained in the direction due to MO with a small
' admixture of|z) into orbitals of predominantljx) character,

As a special case, let us consider first degenerate orbital<-: Siné=1—¢in Eq.(3.2). As such a state is a modification
(E,=0) in a 3D system §=1). Equation(3.11) simplifies  Of the AFxx phase, the two sublattices in thelf) planes
in this case to cos@=(1— 5/2)/(2+37). A particularly ~ are again physically equivalent, and it suffices to introduce a
simple result is found aty=0 where cosg@=1/2, i.e., § single angled to characterize this state. Apart froflfarge
=7/6, and the orbitals stagger lik€—z2 andy?—z2, as  €nergy contributions due to AF order on the bonds in the
shown in Fig. 3. This staggering was proposed by Kugel and@;b) planes, the expansion of the ground-state energy con-
Khomskii as a ground state of KCy of course, this state tains alsasmal) terms depending on the spin order in the
is not realized for the realistic parameters wigh=0.3, but  direction,(S{S})c,
the optimized orbitals witt¥ given by Eq.(3.11) are not so
far fr(?m this idealized picturge. Y EaEL E=(1+cos 2)(1+cos 20— 7)(S'Sj)c +const,

The energy of the MOFFA phase is degenerate with that (3.17
of the AF phases at the classical degeneracy pdiht, which prefers FM order as long as {kos %)<7. The rea-
=(E,/J,n)=(0,0), and this phase becomes more stable ason is that the AF superexchange is a fourth-order effect
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0.4 T T
0.3k MOFFA | MOAFF e
S/ :
> 3 =
02} P >
- / -
0.1 e
AFzz /" AFxx A
0.0 L 1
-2 - 1 2

0
E,/J
FIG. 4. Mean-field phase diagram of the 3D spin-orbital model
(2.9 in the (E,,Jy) plane (3=1). The lines separate the classical
states shown in Fig. 3; the transition from AFxx to MOAFF phase

is second ordefdashed ling while the remaining transitions are
first order(full lines).

/U

~¢€*, while the FM interactions: 7 are second order; €,
and give a lower energf as long as théz) occupancy is _
small enough. Following our convention, we call the result- T2 1 o0
ing state the MOAAF phase, with the mixing angle given by E,/J

1 2

n 1 FIG. 5. Mean-field phase diagrams of the spin-orbital model
1- 2 + 5%z (2.9 in the (E,,Jy) plane for different values of hopping along the

cos 2= — BT T2 (3.18 c axis: (a) B=1.414, andb) 8=0.707. The magnetic phases and
Al 7) 7 lines are as in Fig. 4.

and the classical energy b . .
g9y by amplitude ~cos6 increases smoothly from zero and re-

3 1 moves the built-in degeneracy of the 2D AFxx phase with

Envonar= —(2+ 2 n)J— 5,8(1+ 7) respect to the magnetic order along théirection. All the
other transition lines in Fig. 4 are associated with jumps in
(2—p+e,)? the magnetic and in orbital patterns. We emphasize that all

- . (3.19  the considered phases with magnetic LRO are degenerate at
2B+ m)+27] the pointM, with classical energy of-3J. In fact, M is an
Therefore only when the average population of thjeorbit-  infinite-order quantum critical point, since not only may the
als, ~cog¥, increases sufficiently, one can find a transitionspins be chosen to be FM in certain planes, whence the or-
to the AF phase with mixed orbitals, MOAAA, discussed bitals have to be tuned to compensate the loss of the mag-
above. netic energy by the orbital energy contributions, as realized
By making several other choices of orbital mixing andin all MO phases, but also may the orbitals be rotated freely
classical magnetic order, we have verified that no other comwhen the spins are AF in all three directions.We note, how-
mensurate ordering with up to four sublattices can be stablever, that the magnetic terms are essential, and in a purely
in the present situation. Although some other phases couldisordered spin system, wif§/S)=0, a higher energy of
be found, they were degenerate with the above phases only at21J/8 is found even with the optimal choice of orbitals
the M point, and otherwise had higher energies. Thus wewith cos 2=0.
obtain the classical phase diagram of the 3D spin-orbital The symmetry with respect t&,=0 is explicitly broken
model (2.9) by comparing the energies of the six abovein the phase diagram of Fig. 4. The crucial point is that the
phases for various values of two paramet¢gs,/J,Jy /U}: orbitals favored by nonzerg, have differentdirectionality.
two AF phases with two sublattices and pure orbital characunidirectional (z)) for E,<0, planar (x)) for E,>0. For
ter (AFxx and AFzz, three A-AF phases with four sublat- the G-AF phases this leads straightforwardly to different ex-
tices (MOFFA and two degenerate phases: MOAFF andchange interactions depending on which orbital is occupied.
MOAFF), one C-AF phas¢éMOAAF), and one G-AF phase A similar asymmetry is also found for the MO phases, and it
with MO’s (MOAAA). While the orbital mixing is unstable is for this reason that an additional MOAAF phase, with FM
at »=0, the generic sequence of classical phases at finite chains along the axis is found only forE,>0. By contrast,
and decreasing,/J is: AFxx, MOAAF, MOAAA, MOAFF, we note that the phase diagraminwariant under a change
MOFFA, and AFzz, and the magnetic order is tuned togetheof the basis orbitals toX@—r? andy?—z? and a simulta-
with the gradually increasin{g) character of the occupied neous rotation of the crystal field to a situation where the
orbitals. new orbitals are split by a crystal-field parameigr, having
The result for cubic symmetry3=1) is presented in Fig. an analogous meaning f,. This demonstrates the full cu-
4, where one finds all six phases, but the MOAAA phasebic symmetry of the present Hamiltonian, but this symmetry
does stabilize only in a very restricted regime of parameterss explicitly broken by a uniaxial stress along thdirection,
with J,/U<0.1, before MOAFF takes over. Only the first consistent with theQj static distortions considered by
of the above transitions is a continuous one, and [the Kanamori®
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3V

-2

E/J FIG. 7. Schematic representation of the mixed orbitalsaiyb)
planes of the MOFF phase in a 2D modgl) the orbitals with their
phases, andb) the resulting distortion in the oxygen lattice, stabi-
lized by the orbital ordering.

FIG. 6. Mean-field phase diagram of the spin-orbital md@ed)
in the (E,,Jy) plane in two dimensionsg=0). Full lines separate
the classical states AFxx, AFzz, and MOFF shown in Fig. 3, while

the spin order in the MOAA phase is AF, and the orbitals are in ) o ) o
between those in AFxx and MOFF phase. pears, while the remaining two phases with AF order within

(a,b) planes, MOAAA and MOAAF, collapse into a single

We also investigated the phase diagrams for the case ®flOAA phase. Hence one finds in two dimensions a classical
modified hopping along the direction (8#1). One finds phase diagram with only four phases, which are stable with
that increased hopping8& 1.414) in thec direction stabi- decreasing=, and at finitey in the following order: AFxx,
lizes the MO phases, and in particular the MOAFFMOAA, MOFF, and AFzz(Fig. 6). The 2D phase diagram
(MOFAF) phasdFig. 5a)]. By contrast, the MO phases are shows in particular that strong AF superexchange inche
stable in a narrower range Bf, for a fixed value ofl, /U, if  direction is not the stabilizing factor of the MOFFA phase in
the hopping along the direction is decreased belo@=1  the 3D model, but instead these phases are stable due to the
[an example of3=0.707 is shown in Fig. ®)]. The de- orbital interactions which enforce the orbital alternation
creased stability of the MOAFF phase promotes in this casghown in Fig. 3.
the AF order with MO in the MOAAA phase. The latter ~ For the realistic parameters of J@uO, the Cud,2 2
phase is stable only in a relatively narrow rangeEgf and ~ andds,2_,2 orbitals are split, andE,~0.64 eV?® This ma-
only for small enoughl, /U; an increase ofl,/U favors terial belongs together with NGuO, to the class of cuprates
instead FM order along thedirection. We also note that the with weakly coupled Cu® planes, and one finds in the
orbital mixing sets for the MOAAA phasé3.8) only at a  present treatment a 2D AFxx state, as observed in neutron
smaller value o, than in the MOAAF phas¢3.18. Inter-  experiment$? If, however, the orbital splitting is small in a
estingly, the point of high degeneracy of the classical stategD situation, the orbital ordering couples strongly to the lat-
existsindependently of the value @&, and moves foiB# 1 tice, as the hybrids with alternating phasing on two sublat-
to E,= —2J(1— B). This demonstrates the generic nature oftices are formed according to E¢8.13 The net result is a
the internal frustration of spin and orbital interactions in thequadrupolar distortion as indicated in Fig. 7. In fact, using
model, and the crystal-field term just plays here a compenthese arguments Kugel and Khomskii predicethe exis-
sating role for the missingor enhancedmagnetic interac- tence of such a structural distortion in the MOFF phase of a
tions within the @,b) planes. quasi-2D compound JCuF,. This prediction was confirmed

Independently of the value g, the spin-orbital model experimentally a few years latét.
(2.9 has a universal feature: different classical spin struc- The MOFF phase of ¥CuF, is magnetically polarized,
tures become degenerate at the critical lines in Figs. 4—@1as no transverse quantum fluctuations, and is thus well de-
This is also encountered in frustrated 2D magnetic latticescribed in a classical theory. In the next sections we concen-
described by simple Heisenberg Hamiltoni&hsind may trate ourselves on the 3D case, where the quantum fluctua-
thus be regarded as a signature of frustration. However, urtions are strong and destabilize the classical magnetic
like in the purely spin models, in the present c&a@), the  ordering in a particular regime of parameters.
sign of the interactions changes because of the coupling to
the orbital sector, and thigduces the effective dimensional-
ity for the AF interactions-J, with the 3D system behaving IV. ELEMENTARY EXCITATIONS
like a quasi-1D antiferromagnet. A. General formalism

The presence of the orbital degrees of freedom in the
Hamiltonian(2.9) results in excitation spectra that are quali-

As a special case, we considered the limigef:0 which  tatively different from those of the HAF with a single spin-
gives a 2D spin-orbital model. The two AF phases with ei-wave mode. As we have discussed in the limilg=0, the
ther|x) or |z) orbitals occupied, AFxx and AFzz, are degen-transverse excitations are twofokspin-wavesand spin-and-
erate atE,= —2J. This asymmetry reflects the large differ- orbital waves®™ In addition to these two modes there are also
ence between the superexchange interactionijoand |z) longitudinal (purely orbita) excitations, and thus one finds
orbitals within the @,b) planes of a 2D system which has to three elementary excitations for the present spin-orbital
be compensated by the orbital enekgyl3. model (2.9).%5%6 This gives therefore the same number of

As the presence of FM plands axis is crucial for the modes as found in a 1D %4 symmetric spin-orbital model
ordering in the MOAFF phasésee Fig. 3, this phase disap- in the Bethe ansatz meth86°° We emphasize that this fea-

C. Phase diagram of a 2D model
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ture is a consequence of the dimensiequal to 1% of the  nondiagonal operators turning the eigenstates into one an-
sa4) Lie algebra of the local operators, as explained belowpther (like S, andS, in AFxx). Out of those twelve op-
and is not related to the global symmetry of the Hamiltonianerators, six connect two excited staidike S, in AFxx),
Here we present the analysis of the realisticspin-orbital  and are physically irrelevar(at the random-phase approxi-
model for the 3D simple cubid.e., perovskitelikg lattice,  mation leve), because they give only rise to “ghost” modes,
using linear spin-wave theof{);*® generalized such as to modes for which the spectral function vanishes identically.
make it applicable to the present situation. The remaining six operators connect the local ground state
Before we introduce the excitation operators, it is conveith an excited state, three of them describing an excitation
nient to rewrite the spin-orbital modéR.9) in a different  and three a deexcitation, and only these six operators are
representation which uses a four-dimensional spaceghysically relevant. Out of the three excitatiofdeexcita-
{Ix1).[x1),]z1),]z1)}, instead of a direct product of the spin tions), two are transverse, i.e., change the spin, and one is
and orbital spaces. Hence we introduce operators which déongitudinal, i.e., does not affect the spin. For a classical
fine purely spin excitations in individual orbitals, phase with_ sublattices one therefore hak #ransverse and
s —dl g S —d'd @.1) 2L Io_ngitydinal operators per unit cell. Since the spin-o_rbitz_;ll
ixx — Hlix]Hix] o izz™ HiziHiz) o ' Hamiltonian(2.9) does not couple transverse and longitudi-

and operators for simultaneous spin-and-orbital excitations,nal operators, this yields alsd 4ransverse andl2longitu-
dinal modes. Because of time-reversal invariance they all

Kio=dh diz . Ki=didi, . (4.2 occur in pairs with opposite frequenciesw.” .
The corresponding,,, andK?,, operators are defined as Finally, the SU(2) spin invariance of the Hamiltonian
follows guarantees that the transverse operators raising the spin are
decoupled from those lowering the spin, and that they are
2 = %(”ixf Nix)), described by the same set of equations of motion, so that the
transverse modes are pairwise degenerate. Such a simplifica-
z = %(nm_nizl), (4.3 tion does not occur in the longitudinal sector. So, in conclu-
sion, in anL-sublattice phase there akedoubly-degenerate
Kizxz:%(d;rdeizT_drxidiZL)! pos!t@ve-frequency tran;verse modes anmondeggnerate
positive-frequency longitudinal modes, accompanied by the
Kisz=%(diTzIdixT_diTzidixi)' (4.9 same number of negative-frequency modes. This may be

- . o compared with the well-known situation in the HAF, where
The Hamiltonian(2.9) contains also purely orbital inter- there is, with only spin operators involved, only ofreot
actions which can be expressed using the following orbitaltwo) doubly-degenerate positive-frequencytransversg

flip (Ti,p) and orbital-polarizationr{;_) operators, mode in the two-sublattice ¢ state.
Lot t For the actual evaluation it is convenient to decompose
Tixz= 3 (dix;dizy +diy diz)), the superexchange terms in the spin-orbital Hamiltonian
(2.9,

Tizx:%(drszixT_Fd;rzldixi)a
H\]:HH—’_HJ_; 4.7
into two parts which depend on the bond direction:

In order to simplify the notation, we also introduce sum op- (i) for the bondg(ij)||(a,b),
erators for the spin-and-orbital and purely orbital operators,

ni—=3(dl di +df dix, —dl diyy —dl, diy)). (4.5

K" =Kieg Kipe =33 24 [(1=3m) (38t Szt My V3K)
KiZ: KiZXZ+ KiZZX’ X (3§jxx+ §jZZ+ )\ll \EKJ)_ 27]3 . él +(1+27])
Ti:TiXZ+TiZX' (46) X(n|,+)\|J \/§T|)(n],+)\”\/§TJ)_(3+ 77)],

The full set of local operators at a siteconstitute an s@) (4.9

Lie algebra. While the spin operatof4.1) fulfill of course
for x andz separately the usual &) commutation relations,
they also form collectively a subalgebra of(4p and the
same holds for the spin-and-orbital operat@r®). However,
as we will see below, for the calculation of the excitations
one also needs commutators between spin and spin-and-H, =J > [(4—2%)S, Sjzs— 7(Si Sizz+ Sizz S
orbital operators, so that one cannot avoid considering the @i+
full Lie-algebra structure of gd), discussed in Appendix B. 1

The number of collective modes in a particular phase may FA+2mni-n- 23+ ). 4.9
be determined as follows. The (4o Lie algebra consists of Here and in the following sections we consider a 3D model
three Cartan operators, i.e., operators diagonal on the localith B=1. We note that the orbital interactiori2.12 are
eigenstates of the symmetry-broken phase under consideguite different inH; andH, ; propagating spin-and-orbital
ation (e.g., S« ,S,,, andn;_ in the AFxx phasg plus 12  excitations are possible only within tha,p) planes, where

where\ ;= (— 1)% with y being a unit vector in the direc-
tion, and
(i) for the bondg(ij)L (a,b), i.e., along thec axis,
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they are coupled to the spin excitations, while in thdirec-  expectation values in the considered classical state give finite
tion only pure spin excitations and pure orbital excitationscontributions, e.g., for the first spin-flip Green function one
occur, which are decoupled from one another. This breakingises
of symmetry betweerd; andH, is a consequence of the
choice of basis agx) and|z) orbitals. (S Sad - M= (St (Sl - - ), (4.19

In the following sections we consider transverse and lon- e . ) . )
gitudinal excitations in the various symmetry-broken states2nd @ similar formulzil for the mixed spin-and-orbital excita-
The transverse excitations, i.e., spin waves and spin-andlon described by (Kixzl - ),
orbital waves, are calculated using the spin-changing opera- v , N
tors which make a transition to a state realized in a classical ((KixeSmad -+ N =(Shx{(Kixel - )). (4.19
phase at a given siie for example for the AFxx phase these

.. . ) It is crucial that the decoupled operators have different site
operators are for in the A (spin-up sublattice, P P

indices, and thus the decoupling procedure preserves the lo-
cal commutation rules given in Appendix B. Instead, if one
uses products of spin and orbital operators, ek,

T one is tempted to decouple these operators

veniently obtained starting from spin-dependent orbital exciloc@lly’™“which would violate the algebraic structure of the
tation operators, so(4) Lie algebra.
In the present case of the AFxx phase one uses the respec-

tive Neel state average values,
TiXZO':diTXa'diZU" TiZXU:diTZa'diXa" (4.1) 9

|J>r(x:diTdeixL1 Kit(z:diTdeizl . (4-1©

_ot _+
The longitudinal excitations without spin-flip are most con- =S

The commutation relations for these operators are presented (Shod = —(Si0 = Z (4.16
in Appendix B. .
<ni_>:<nj_>:§, (41D

wherei e A andj € B, andA andB are the two sublattices in
The nature and dispersion of elementary excitations in th@ 2D lattice for the AFxx phase. All the remaining averages
spin-orbital model(2.9) can be conveniently studied in the vanish, as this phase has a pxg-orbital character at every
leading order of the B expansion using the Green-function site, which simplifies significantly the equations of motion
formalism. We note, however, that equivalent results for thevhich result from the RPA procedure.
AFxx and AFzz phases can be obtained using instead an The translational invariance of the dlestate implies that
expansion around a classical saddle point with Schwingeihe transformed Green functions are diagonal in the reduced
boson<?® Brillouin zone(BZ). As in the HAF, the Fourier transformed
We start from the equations of motion for the Green func-functions are defined for the Green functions which describe
tions generated by the excitation operatetsl0 written in  the spin dynamics on a given sublattice, eitheor B. For

B. Antiferromagnetic AFxx phase

the energy representati@if* instance, the pure spin-flip Green functions are transformed
as follows:

1

E(Sid - N =5=([Sixr - - DHU[Sx, HI- ), . 1
em 412 (Sl Ma= 5 2, @RS+ D
1

L= K + . 1 e
E<<Kixz| ) 27T<[K|xz’ e ']>+<<[K|xzyH]| " <<Slzxx| .. '>>B=\/_— z eIkRJ<<SjXX| Mg, (418
4.13 N j<B

where the average of the commutator on the right-hand sidgyh%rleN |sftpednumkr)]er (Tf sites in one.suplatncr-fz. r|]-|ence t_I:je
e.9.,([Siy ,Sixx]) is evaluated in the classical ground state Probiem of finding the elementary excitations of the consid-

The excitation operators were chosen as leading to the Iocglred spin-orbital r'node(12.9). reduces EO th.e d|agon.al|zat.|on
states|ix 1) realized at one of the sublattices in the groundof & 4X4 dynamical matrix at eack point, as given in
state of the AFxx phase. As usually, the commutators in EqgPpendix C.

(4.12 and (4.13 generate higher-order Green functions. In ~ The symmetric positive and negative eigenvaluas(lz”),
contrast to the HAF, it does not suffice to consider the spinwith n=1,2, solved from the matrix in Eq.C2) may be
flip Green function((S;;,|- - -)), as the spin flips may also written in the following form for the AFxx phase:

occur together with an accompanying orbital flip, as de-

. 2 2 2
scribed by((K;",|- - -)). [wg1?=J2(\2+ 72— Qe RE—2P%)

We derived the equations of motion for the Green func- . 9 ou, 2 )
tions generated by the set of operators PN 17— 2\~ 7)(Q.:—Ry)
{Sixx Kixz:Sixx:Kjxz}» Whereie A andj e B, and used the 5 s o
random-phase approximatioiRPA) for spinlike operators — A0 1) P Qe+ R+ 2Pp)?

which linearizes the equations of motion by a decoupling o 2 2012
procedurd®’! Thereby the operators which have nonzero —A4(QuiRk— Pl "1™ (4.19
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Here the quantities , and, play the role of local potentials

and follow from the model parametes andJy : (@) (b)
z— t — t —
M= 3-37, (4.20 AJr@j{ at .
X —_ —_— —_—
w=3—4n—2—n+e,. (4.21)
. > J
The remaining terms are dependent, and depend on @ H {c)
. z t —
v+ (k)= 3 (cosky+cosky), (4.22 + = +
. -
y-(K)=3(cosky—cosky), (4.23 s o s 10 s o
v,(K)=cosk,. (4.29
The quantitiesQ,i and P,; for the AFxx phase take the FIG. 8. Schematic propagation of the orbitakcitonid excita-
form, tion (a). If J4,=0, an orbital excitation can propagate only to state
R (b) and is accompanied by a spin fliwp), while J,,>0 allows also
Qui=(3-3n)y+(k), (4.29  the spin flip in the intermediate® state, and thus the propagation
without spin flip(c) becomes possibléottom).
Pi=2V3(3= m)7-(K), 420 _ N
. ] ] yielding two, in general nondegenerate, positive-frequency
while the last dispersive term, modes. In the AFxx phase one finds
Ri=37(K), (4.27) Uy= 2,37, (4.32
carries no index and remains identical for both AF phases . .
(AFxx and AFz3. We emphasize that the coupling between pxi= 2 17+(K). (4.33
the spin-wave and spin-and-orbital-wave excitations occurs _ _ _
due to the terms:P,;, as seen from EqC2). It vanishes in It is important to realize that the propagation of longitu-

the planes ofk,=*k,, but otherwise plays an important dinal excitations, being equivalent to a finite dispersion of
role, as discussed in Sec. V. In the limit of lafgg—, Eq.  longitudinal modes, becomes possible onlysat0. This
(419) reproduces the Spin_wave excitations for a 2D antifer.fO”OWS from the multlplet structure of the excneﬂ states,

- - - hich allows a spin-flip between the orbitals in {A& ;) and
romagnet with an AF superexchange interactionJ w . 0
3 77)9 W Hperex ge | lon Jgf in the S?=0 component of th¢*A,) state only ifJ,#0, as
2 ]

illustrated in Fig. 8. The processest,, are not included, as
M _ q9_ 2 D\12 they would lead to a final state shown in Figbg i.e., to a
@ =3 =y (01 (4.28 propagation of a spin-and-orbital excitation which was al-
while the dispersion of the high-energy spin-and-orbital exeady considered above. In contrast, the relevant longitudinal
citation,w(lf)zEz, becomes negligible. As explained above, Orbital excitation in the symmetry-broken state implies that

both modes are doubly degenerate.

Consider now the orbitgkexcitonig excitations generated —~ 3t ot E/I=13.0
by the orbital-flip operator$4.11). They are found by con- fg P
sidering the equations of motion, = 2 I/ A

1 2 /'/ \‘\'
— | N \.
E(Tiapil ) =5 ((Tiapr» -+ D[ Tiapr HI- -, g/
(4.29 o R
1 4
EQTiapil - D=5 ([Tiaprs - - DL Tiapr Bl ), X T
(4.30 § : - }
and the commutators are calculated using the r(883. In T \
general, one finds four different excitation operators at each 1 Y
site. However, making a Fourier transformations as for the A
transverse operatofd.18, one may show that only two op- T S T

erators per sublattice suffice to describe the modes in an
antiferromagnet. The structure of the respective RPA dy- FIG. 9. Lower panel: spin-wave and spin-and-orbital-wave
namical matrix is given in Appendix C. The orbital excita- transverse excitationdull line and dashed-dotted linend longi-
tions which follow from Eq.(C3) are in general given by tudinal excitationgdashed lingsin AFxx phase; upper panel: cor-
responding neutron intensities of the transverse excitations. Param-
Li=d[uy(u,*+2p 0142, (4.3)  eters:E,/J=3.0 andJ, /U=0.3.
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the exciton has the same spin as imposed by thed dtate of E/i=—3.0
the background; this state is shown in Figc)8 Therefore, in
a perfect Nel state without FM interactions due tp+0,
only local orbital excitations are possible. These local exci-
tations cost no energy in the limit af,—0 which demon-
strates again the frustration of magnetic interactions at the
classical degeneracy point,= 7=0. 0
An example of the excitation spectra is shown in Fig. 9 3
for the main directions in the 2D BZ, witk=(7,0) andS 4t
K
2

x(g) (arb. units)

=(m/2,m/12). Near thel'=(0,0) point one finds &doubly-
degenerateGoldstone mode»&l) with dispersion~k at k
—0, as in the HAF, and a secoidoubly-degenerajdrans-
verse mode at higher energw,&z):wﬁakz. NearI the
Goldstone mode is essentially purely spin wave, the second

mode purely spin-and-orbital wave. With increaslﬁgthese OI‘ X% L T K

modes start to mix due to thB,j term along thel’—X

direction. This is best illustrated by the intensity measured in FIG. 10. The same as in Fig. 9, but for the AFzz phase, as
the neutron-scattering experiments, which see only the spirpbtained forE,/J=—3.0 andJ, /U=0.3.

wave component in each transverse mode, as explained in

more detail in Appendix D. The intensity(q) moves from  With the excitations to the locgizT) states. As usually, the
one mode to the other along the- X direction in the 2D Bz ~ average of the commutator on the right-hand side is next
(Fig. 9), demonstrating that indeed the lowésighest mode ~ €valuated in the classical ground state. After obtaining the
is predominantly spin-wave-likespin-and-orbital-wave-like RPA equations, we thus use the following nonvanishing av-
before the anticrossing point, while this is reversed after th&a9€s:

anticrossing of the two modes. Thus we make here a specific

w/]

Z o\ _ z \_1
prediction thattwo spin-wave-like modes could be measur- (Sz)= (Sl =2, (4.39
able in certain parts of the 2D B4n particular in the vicin- _ o
ity of an anticrossing, if only an AFxx phase was realized for (ni-)=(nj-)=-2, (4.37

parameters not too distant from the classical degeneragy the AFzz phase. This leads again to the general {@®),
point. This provides a possibility of measuring orbital exci- with all the elements except f&®; replaced by,
tations by neutron scattering. Unfortunately, for the realistic

parameters for the cuprat&§one findsE,/J=10 which N\, =3—7n+2(2—7), (4.38

makes the spin-and-orbital excitation and the changes of the

spin-wave dispersion hardly visible in neutron spectroscopy. ,=—3—n+2(1-27n)—e,, (4.39
The orbital (longitudina) excitations are found for the

parameters of Fig. 9 at a finite energy, being of the same Qi= (3= 7). (K)+2(2— n) y,(K), (4.40)

order of magnitude as the energy of the spin-and-orbital ex-

citation, wf;z). The weak dispersion of these modes follows P,i=\3(1— ) y_(K). (4.47)

from the spin-flip processes in tlexcitedstates, as explained

in Fig. 8 and discussed above. We emphasize that the orbitdlhus the transverse excitations have the same fdrt® as

mode has a gap arbes not coupléo any spin excitation. in the AFxx phase, but the above quantiti@s38—(4.41)

At the classical degeneracy poidtthe orbital mode falls to have to be used.

zero energy and is dispersionless, expressing that the orbital In the limit of largeE,— — one finds the spin wave for

can be changed locally without any cost in energy. a 3D anisotropic antiferromagnet with strong superexchange
equal to J(2— ») along thec axis, and weak superexchange

1 e
7J(1—2%) within the (@,b) planes,
C. Antiferromagnetic AFzz phase aJ( 7) @b) p

The transverse excitations in the AFzz phase are deter- w(,;l)IJ{[(%— n)+2(2— )]
mined by considering the complementary set of Green func- .
tions to that given in Eqg4.12) and(4.12): G-y (+22-n)y)4Y (4.42

while the spin-and-orbital excitatiowf;z):—EZ is disper-
1 sionless. Again, both these transverse modes are doubly de-
+ _ + + o - )
E((Szd ‘>>_277<[S‘ZZ’ - DS R ), generate. The orbital excitations in the AFzz phase are found
(4.34 using the equations of motion of the forf#.29 and(4.30
which lead to Eq(4.31) with

1 =—&,~37, 4.4
E((K ) = ([ - D (K ), " 7 @43

(4.39 pri=—37n7.(K), (4.44
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(4.49

and we find again zero-energy nondispersive modes, at (|1M>) (cosa —sin 0)(|jz)>
=n=0. . = . .
7']rhe representative excitation spectrum for the AFzz phase liv) [P0
is shown in Fig. 10. We use the 3D BZ for a bcc lattice with With these definitions and by choosing the anglat the
the standard notationW=(m,7/2,0), L=(m/2,7/2,7/2), value which minimizes the classical ener@11), we guar-
andK=(3m/4,37/4,0). The transverse modes have qualita-antee thafiux) and|ju), respectively, are at each site the
tively the same behavior as in the 2D AFxx phase, and onerbital state realized in the classical MOFFA phase, which is
finds a Goldstone mode\"” at thel point which is spin- ~ G-type with respect to the orbital ordering, whilev) and
wave-like, accompanied by a finite energy spin-and-orbitali ») are the excited state, so that one can readily define the

modew&z). The first one is linear, while the second changeseXCitation operators pertinent to the . symmetry-brokgn
ground state of this phase. Thus the spin, spin-and-orbital,

quadratically with increasing. The dispersion in th& =X 5,4 orbital operators in terms of the new orbital states
direction is, however, only-0.7J, while in the AFxx phase {|w),|v)} defined by Eqs(4.45 and (4.46 are
a large dispersion of-2.5J was found(Fig. 9). This dem-

sind cosé

onstrates the very large difference between the superex- p=lial)(iBll, (4.47)
change in the &,b) planes in the two AF phases.
Here one should bear in mind, that in a strongly aniso- fap=2([lalXiBT| = lial XiBlD), (4.48

tropic antiferromagnet, such as the AFzz phase, the disper-

sion of the spin-wave mode in thék,) plane is roughly N _ . _ _

(23,0d0) Y2, so actually enhanced byl {2J,,)"? compared Ti—:ig ([ino)(ival+|ivo)ino]),  (4.49

with the planar exchange constant. In fact, there is also

strong mixing between spin wave and spin-and-orbital wave ) . . _ _

alongT — X, depressing»{’ at theX point by no less than Ni-=32 (lipo)ipo|=live)iva]). (450

0.5J from its pure spin-wave value. The mixing effect is also 7

visible in the relatively large neutron intensity of the secondThe new operatorsﬁi 5+ T; andA_ , fulfill the same com-

mode. By contrast, the trgnsverse excitations are rather PUIE tation rules as the nontransformed operat&r-@,ﬂ,Ti,

all along theW—L direction [where the neutron intensity andn,_, respectively: they are given in Appendix B. To
>y s . . 1 2 i— ) .

x(q) is larged, except in the regime Wher@(g )zw(g ) and simplify the notation we also introduce total spin and spin-

the neutron intensity is distributed between the modes. Howand-orbital operators,

ever, owing to the abruptness of the anticrossing, the range

where the modes have simultaneously appreciable intensity §i=5‘iw+5‘iw, (4.5
is very narrow, and their energetic proximity then makes it
likely that they would be measured as a single broad maxi- /€i=/€mv+ K v (4.52
mum.
The (longitudina) orbital excitation is found at th& and The transverse excitations may be found starting from the

L points at the same energy as that dbeal excitation from  relevant raising operators that lead to the local sfate )

|z) to |x) orbital (see Fig. 1@ It depends only on the energy realized in one of the sublattices, analogous to those intro-

difference between the orbitals, and has a weak dispersion luced for the AFxx phase(4.10, i.e., the set

the same mechanism as described above for the AFxx pha$8,,, . /Cih S K a1 Skup K kuw 1S K1}, Where

(Fig. 8. ieA, jeB, keC, andl eD; they lead as usual to the or-
bitals {|i u),|ju)} (3.4 realized in the MOFFA phase,

D. Mixed-orbital FFA phase

1
EUSE |- W==={S" . ... D+US" H]|- ),
The excitation operators which couple to the local states (Siual ) 277([ K DS 1)

in a symmetry-broken phase with mixed orbitals are linear (4.53
combinations of the operators considered in Secs. IV B and 1
IV C. The classical order is described by four sublattides + + +

X ' . P = . - + . N
andB (C andD) in even(odd (a,b) planes, withC (D) BUK sl D) 217<[IC””’ DA+ M),
sites being the nearest neighborsfof(B) sites. We assume (4.54

the alternation of orbitals also along theaxis as only this | v iha rotated Hamiltonia® given in Appendix C is

state was found to be stable in the_ present LSW th_eow. It Bbtained by the inverse tranformations to those given by Egs.
therefore convenient to make a unitary transformation of th 4.45 and (4.46

Hamiltonian (2.9) to new orbitals defined as follows far

: . The longitudinal excitations can be obtained from opera-
e A ori e D sublattice:

tors similar to those used in the AFxx and AFzz phases

(4.1,

i cosfd sind\/|j ot ot
(||Ii5;) :( —sing cosc9> ( ::)Z(i) (4.49 Tipn =i iy Ty =iy ding (4.59
for the (a,b) planes with thel spins, and the corresponding

T ,.», and7;,,, for the (a,b) planes with the| spins. The
and forj e B or j e C sublattice, commutation operators for these operators are analogous to
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of E/i=—10 BZ is also visible in the intensity distribution, with the
modesn=1 andn= 3 contributing with comparable intensi-
ties (Fig. 11). The fact that modes labeled as 2 and 4 have

1 >< 1 zero intensity is due to the path—2Z’'—S'—T being in the
high-symmetry BZ plane wherk,=k, so thaty_(k)=0.

Then modes 2 and 4 have equal amplitude but are exactly
3 3 out-of-phase betweeh andB sites as well as betwedhand

D sites, and so their neutron intensities vanish, and only the
companion in-phase modes 1 and 3 are observable by neu-
trons. Unfortunately, no experimental verification of these
spectra is possible at present, as the spin excitations mea-
sured in neutron scattering for KCyBre consistent with the
Bethe ansatz and thus suggest a spin-liquid ground state with
5 2 5 strong 1D AF correlations instead of the A-AF phase with
TP — > magnetic LRO’*

ol 1 1 Interestingly, although the order in the,p) planes is

r X srzs r FM, the energy of the Goldstone mode incredgssarly in

FIG. 11. The same as in Fig. 9, but for the MOFFA phase asaII thre_e directionswith in_creasinglz, an_d the s_lopes are
obtained forE,/J=-1.0 and JH/Li=O.3. Different transversé proport.lonal to the respectlve exchange mteractlons. Thls." be-
modes are labelled by the increasing indicesl, . . ., 4 with in- hawor |s_a.man|festat|0n of.the A-AF spin order; a quall.ta-
creasing energy. tively S|7ré1|lar spectrum s founc_i _experlmentally in
LaMnG;, ”® where, however, the excitation spectra describe
) ) _ ~large spinsS=2 of Mn®" ions. The rather small dispersion
those presented in Appendix B and may be easily obtainec the spin-wave part at low energies is due to small values
The resulting dynamical matrices for both transverse angy the exchange constants for the actual optimal orientation
longitudinal excitations are given in Appendix C; their nu- 5¢ orpitals found atl, /U=0.3. We note, however, that the
merical diagonalization gave the modes presented below\r jnteractions along the axis are much stronger
There are four doubly-degenerate positive-frequency trans-. g tnan in the present case. The AF structure alongcthe
verse modes, and four nondegenerate positive-frequency logys may be easily recognized from the spin-wave mode in
gitudinal modes, consistent with the MOFFA phase havinghe '—7 direction symmetric with respect toZ’
four sublattices. o _=(0,0;7/2), while this mode increases all the way from the
An example of the transverse and longitudinal modes iy g the X point. The fact that only two modes have nonzero
the MOFFA phase is presented in Fig. 11. The modes argq iron scattering intensity alofig—2'—S' —T is due to

shown in the respective BZ which corresponds to the magg,is g7 path being in the high-symmetry BZ plane, where
netic unit cell of the MOFFA phase: The éD part alohg k,—k, and y (IZ)=0 Then two modes have equal ampli-
—X—S—T is identical with the AFxx phasécompare Fig. x Y - ’ ;

: . : . - tude but are exactly out-of-phase betweemand B sites as
9), reflecting Fhe orb|tall aIternatlo_n, while the AF coupling well as betweert ali/dD siteg and so their neutron intensi-
along thec axis results in the folding of the zone along the ties vanish, while only the c’ompanion in-phase modes are

I'-z direction, with Z'=(0,0m/2) and & o oo
— (m2,7/2,7/2). One finds one Goldstone mode, and thre visible to neutrons. Unlike in the AF phases, the purely or-
L : ’ bital excitation is here energetically separated from the spin-

other finite-energy modes at thépoint. If no AF coupling . . : T
-9 e o wave and spin-and-orbital-wave modes. The dispersion is
along thec axis is present, similar positive-energy modes

describe the excitation spectrum in the MOFF phase in th(gIUIte small and decreases with

2D part of the BZ(in the region of stability shown in Fig.)6 _ _

and the symmetric negative-frequency modes carry then no E. Mixed-orbital AFF phase

weight. In contrast, due to the strong AF interactions in the The elementary excitations in the MOAFF phase may be

MOFFA phase, the negative modes give a large energyptained using a similar scheme to that used in Sec. IV D for

renormalization due to quantum fluctuations, as discussed ifhe MOFEFA phase. First of all, one defines new quantum

more detail in Sec. V. . o states which correspond to the minimum of the classical
The spin-wave and spin-and-orbital-wave excitations argyroplem. This is realized by a unitary transformation of the

well separated along thE—X—S—T' path, with a gap of Hamiltonian to the new orbitals defined foe A sublattice
~0.5J, as the FM interactions J» are considerably weaker gg

than the orbital interactions which areJ. Therefore the
neutron intensityy(q) is found mainly as originating from i)
the lowest energy modef;l), with a small admixture of the ( liv,)
higher-energy spin-and-orbital excitaticm(lf). The mag-
netic interactions are considerably stronger alongcthgis;
the modes mix and the higher-energy excitaticmg',) with .
n= 3,4, have a larger dispersion in the remaining directions (“_'“‘>
with k,# 0. Strong mixing of the modes in this part of the liv-)

x(¢) (arb. units)

0o
o

w/l
m\’%; '
-
Y
=

_(cose+ sin0+)(|iz>>
| —sing, cose, /\lix)) (4.59

and forj € B sublattice as

ljz)
[1%)

. (4.57

cosf_ —sinf_
“\sing_  cosd_
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of E/i=+10 teractions leads in spin models to divergent quantum correc-
tions within the LSW theory. Before calculating these cor-
rections in the present situation, a generalization of the usual
> \ RPA procedure to a system with several excitations is nec-
1 essary. Here we present only the relations needed to calculate
/\ the quantum corrections to the LRO parameter and ground-
3
paa

x(¢) (arb. units)

state energy, while more details will be reported separdfely.
For that purpose, let us denote here the local operators

constituting the s@) Lie algebra at sité as Hubbard opera-

tors, X{?=lia)(ip|. Using the unity operatorf zXf*=1,

the diagonal operator that refers to the state) realized at

site iin the classical ground state under consideration may be

expanded in terms of the excitation operators

Xfo=1- >, XPoxe, (5.0
B#a

0
r X srzs T
FIG. 12. The same as in Fig. 9, but for the MOAFF phase, aswh|Ie the diagonal operators referring to @xcitedstate|i 3)

obtained forE,/J=1.0 andJy/U=0.3. are expressed as

BB yBayapB
By choosing the angleg, andé_ at the values which mini- XPP= XX 52

mize the classical energy, given by E@8.14 and (3.15), . . .
9. 9 y Eq Applying these equations to theth spin componentS’

we guarantee thatu ) and|ju_), respectively, are ateach "', ; ) L
site the orbital state realized in the classical MOFFA phase, Shact Siz, Of the total spin at sitein one of the AF phases

and one may easily define the new excitation operators Witﬁf/ith pure grbital ch.aracte(rsay AFé%X for definitenegs one
respect to the symmetry breaking which occurs in this phas Ends, fori in the spin-up sublattice,
they are analogous to those given in E¢$.47)—(4.52.

Next, the Hamiltonian is rotated to the new representation as SEFICGRED GEAEDGIIED Glay
described in Sec. IV D. We do not present an explicit form — 17 yXLXT XX yezl Xyl 2l

of the spin-orbital Hamiltoniag2.9) in this case, as it may be 2 ! ! ! !

obtained from Eqs(C4)—(C6) by replacing the angl@ by =11-S,S,— KiK. (5.3

0, and g_ for the sublatticeA and B, respectively. Further-

more, due to the degeneracy between the MOAFF andaking the average one obtains, with the MF vali¥)
MOFAF phases, we had to average the crystal field between z

the two sublattices in the actual calculation.

We have verified that the transverse excitations have a (Syppa=L—(S5,St V= (K K+
similar dependence on thie vector to those found in the HIRPAT 2 A ThocTho X ixe
MOFFA phase, and we show the representative data in Fig. =3—(S S~ (K{K")
12. For convenience, we have rotated the BZ and use just the , ,
same notation as in Fig. 11. The value of the crystal figld =(S)— (S0, (5.4

is in the present case effectively smaller by a factor of 2 in L ) )
comparison with the MOFFA phase. This asymmetry is awh_ere+the second_equallty is valld“becal,J,se averages like
consequence of the choice|af and|z) states as the orbital (SixxSizz) are zero since they involve “ghost” modes, so that
basis. one may formally replac&;, by Si.+S,,=S', etc. The
One finds again that the spin-wave and spin-and-orbitalfirst contributionoc(Sfo} is the usual renormalization due
wave excitations are well separated along FheX—S—T  to spin waves, while the second ter{K; K;") stands for
path, and the gap between them has increasedlt@). We  the reduction of S)rpa due to spin-and-orbital-wave exci-
note a stronger renormalization of the low-energy modesations. Both terms involve a local excitation preceded by a
which follows from weakened FM interactions between thedeexcitation which reproduces the initial local state. As ex-
alternating orbitals in thel(c) planes in the present case as pected only the transverse excitations contribute to the spin
compared with those within thea(b) planes in the MOFFA renormalization. Note that, since E&.3) is anexact opera-
phase. Although the orbital excitations are still well sepa-tor relation, the present procedure guarantees that(E4)
rated from the remaining transverse modes, their dispersiois a conserving approximatiomhich respects the sum rule

is larger than that in Fig. 11. for the occupancies of all stateEB<Xiﬁ'B>=1. The generali-
zation of Eq.(5.4) to the MO phases using the operators
V. QUANTUM FLUCTUATIONS (4.47 and (4.48, or to other order parameters, like the or-

bital polarization, is straightforward.
The size of quantum fluctuation corrections to the classi- The local correlation functions which renormalize the or-
cal order parameters determines the stability of the classicaler parameter in Eq5.1) are determined in the standard
phases. As mentioned in Sec. |, frustration of magnetic inway,
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1 +oo
_T N\N— " - — T~ Y T~
<BI AI> N EE Jiw deABT(k'w) EXF(,Bw)— 1’ 3.0 _/\’/\/ 3.0 _EZ=—4.0 |
(5.9 20}/ Eze40 { 20t 1
where=1/kgT, and 1.0 { 10} 1
. T 0.0 0.0
A agt(K,0<0)=2IM((ALB)) 0—ie A 30 -3.0
3.0 /\// 3.0 p—~ 3
=> ALK S(w-0?) (5.6 20 /7 1200 y
v<0 1.0 { 10} _/ 1
is the respective spectral density for the negative frequencies 0.0 0.0
(v<0), and A(A”E);T(IZ) are the respective spectral weights. 30} // 20 30 | —22 1
Therefore the correlation functions @t=0 are found by 20 /\ 1 \/
summing up the total spectral weight at the negative frequen- / 207 f- /)
cies, 1.0 4 1 10} / ]
0.0 0.0
1 D e 1,54 -1.84
BIA)= 2 X AnK. (5.7 s0f~ 30 | / ]
“ 20} {1 20} —~ /- 1
As we show elsewher&, the Hamiltonian of the spin- 1.0 / Y 10 /— (
orbital model(2.9) may be expanded in RPA in terms of the 0.0 0.0

excitation and deexcitation operators,
r XWL I K r XwL r K

H=Hnr+ Hgrpa, 5.8 . . . o
MF RPA 68 FIG. 13. Spin-wave and spin-and-orbital-wave excitations in the
whereHye is given by Eq.(3.1), and G-AF phases: AFxxleft) and AFzz(right), in the main directions
of the 3D BZ for a few values oE, (in the units ofJ), and for
/ , / / Jy/U=0.3. The lower-energy mode becomes soft fiag/J
- a a B B H
Hrpa= EA E, X{aph Xt +ng 2 X ag" X7 <154 (E,/J>—1.84) in the AFxx(AFz2) phase.
/7% vy

energy of the propagating modes in comparison with that of
the local excitations. We use E.10 to calculate the total
energy in RPA,

+<Z> > (XEbE X+ X bV XP)
ij) uv

@ vy BV a~puvN VB
+<% ;« (X{ef "X+ X el "™X(") (5.9 E=Eye+ Erpa. (5.11)
for a two-sublattice phasé&he generalization to the four- Before discussing the renormalization of the order param-

sublattice MO phases is straightforwardhe MF part de- eter and the corresponding energies in RPA, we concentrate
scribes the classical problem which was discussed in Sec. llburselves on the behavior of the transverse excitations when
The RPA part(5.9) describes the many-body problem in a the crossover lines between the classical phases are ap-
linear approximation, with the fixed indices and 8 refer-  proached. As already emphasized in Sec. IV, the spin-wave
ring to the symmetry-broken state at sitendj, respectively. and spin-and-orbital-wave excitations couple. As a conse-
This expansion leads, after changing the order of excitatioquence, the modes in all considered phasggenwhen the
operatorsX*” to normal order, and after making straightfor- transition lines between different classical phases, or classi-
ward transformations, to a compact expression for the avercal degeneracy poirMl are approached. To be more precise,
age energy contribution per site, we have verified that the modes soften oafier the classi-
cal first-order transition lines are crossed, and thus the clas-
1 sical phases remain stable in the region of their existence,
ERPA:N<HRPA> while outside they are soon destabilized.
The mode softening is shown for a representative value of
3 W (5.10 Jy/U=0.3 in Fig. 13 for the two AF pha_sé%.m the AFxx
=k ' phase the energy scales of both excitations are separated for
E,>4J, while the spin-and-orbital mode moves towards
where A is the matrix of positive on-site coefficients zero energy with decreasing,, and finally becomes soft

ak*' ab’', appearing in the first line of Eq5.9), and with ~ along theX—R direction [with R=(m,m,m)], i.e., for k

the sum running over all modes with positive frequencies=(m,0k,) and along equivalent lines in the BZ fdg,
(counting doubly-degenerate modes twide the reduced =1.54]. A similar mode softening is found for the AFzz
BZ. This expression is seen to be a direct generalization gbhase aE,<0, with the soft mode alon§f — X and equiva-
the familiar result for the HAF, the distinction being that lent directions in the BZ aE,= —1.84). This peculiar soft-
more modes contribute here, and so Eql0 represents the ening along lines and not at points in the BZ shows that the
energy gain Erpa<0) due to the reduction in zero-point modes behave 2D like instead of 3D Ilik&:constant-

ZI N

1
=—| = Tr{A}+ >,
4 v>0
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e L III
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0.0 0.0 1ol \
r XWL I K r XwL I' K ’
0.0 1
FIG. 14. The same as in Fig. 13, but without the coupling be- r X M 7 T
tween the spin-wave and spin-and-orbital-wave excitations in both
G-AF phases: AFxXleft) and AFzz(right). FIG. 15. Spin-wave and spin-and-orbital-wave excitations in

MOFFA phase in the main directions of the 3D BZ for a few values
frequency surfaces are cylinders contracting towards linesf J,,/U, and forE,/J=—0.5. The lower-energy mode becomes
not spheres contracting towards a point. soft for J; /U< 0.06.

By making an expansion of Edq4.19 around the soft-
mode lines, one finds that the situation is somewhat differe
for AFxx and AFzz phasé In the AFxx phase the low-
energy mode collapses to zero with a quadratic energy d

MWith a finite mass as discussed above, but, nevertheless, the
guantum correction to the order parameter becomes very
ﬁérge at the softening point and its numerical dependence on
pendence oik, andk, (herek,=k,— ), the value ofE, resembles a diverging quantum correction.
. L T2 2 L L2 We emphasize that the quasi-2D nature of the dispersion
@apxx (K) = Ayt By(ky + 1Ak +Ky) ™% (512 is essential for the occurrence of the diverging quantum cor-
As A,—0 at the softening point, this implidiite masses in ~ rections in the AFxx and AFzz phases. It enables a 3D sys-
the perpendicular directions to the lines wher,g:XX(IZ)zo tem tostjestr]ab|l(;;e LRO by V]Yh?]t aredessenually 2D quctuar;
independently ofk,. For this reason, quantum fluctuation tions. S0 t. € divergence o t'e order parameter near t.e
corrections to the order parameter diverge IogarithmicalchrOSSOVer lines in the phase diagram and the associated in-

3 _ ) ) Stability of the classical phases may be regarded as another
(6S)~[d°klw(k)~ [d°k/(A+Bik%) ~InA,. As an ex- manifestation of the effective reduction of the dimensionality

ample, we give explicit expressions gt=0: occurring in the spin-orbital model. We do not present ex-
plicitly the softening of the longitudinal modes which also

9 g 27 1 o . Lo
e =——, (5.13  happens at the transition lines but is of minor importance for
2,13 16e,+3 the stability of AFxx and AFzz phases.
where one finds that the gap,—0 whene,—0, i.e., upon A seemingly attractive way to simplify the calculation of

approaching thévl = (E,,J,;) = (0,0) point at which thdx)  the transverse excitations would be to make a decoupling of
orbitals are replaced bjz) orbitals and the classical state the spin waves and spin-and-orbital waves. However, this is

changes to the AFzz phase. equivalent to vioIating the commutation ruIe; betweep the
A similar expansion in the AFzz phase along e X spin and spln-and?orbnal operators in Apperjd&SBmd thls_
direction gives insteadagain aty=0), changes the physms. It gives the same eXC|tat|o_n energies as
Eq. (4.19, but with P z=0; the numerical result is given in
w257 (K)— A2+ Bz(k§+4k§), (5.14  Fig. 14. Of course, the spin-wave excitation does not depend

then on the orbital splittingz,, and the spin-and-orbital-
independently ok, , and similarly along thé'—Y direction  wave excitation gradually approaches the ling=0 with
with k replaced byk, . Although the result fokwagz7(K) is decreasindE,|. It has a weak dispersion which depends on
similar to that of Eq(5.12 as long asA,#0, the spectrum J,; and on the value dfE,|, and gives an instability at thie
collapses to a linedt dependence at the point of mode soft- point only, not at lines in the BZ, and in the phase diagram
ening. Thus one does not find here a quadratic dependeneeell beyond the transition lines of Fig. 4, i.e., within the
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FIG. 16. Renormalization of the magnetic LRO paramégh
by quantum fluctuations as obtained in RPA (a: AFzz (left) and
AFxx (right) phases as functions &,/J for J,/U=0.1 and 0.3;
(b) MOFFA phase as functions df; /U for E,/J=0.5, —0.5 and

—1.5.
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MOFFA and MOAFF phase foE,<0 andE,>0, respec-
tively. Such spin-wave and spin-and-orbital-wave modes
give, of course, much smaller quantum corrections of the
order parameter and energy than the correct RPA spectra of
Fig. 13%°

The spin-waves in the MOFFA phase, stableEa&0,
soften with decreasing (2.7), as shown in Fig. 15. At large
n the spin-and-orbital waves at high energies are well sepa-
rated from the spin-wave modes. The latter have a rather
small dispersion al /U= 0.3 which follows from relatively
weak FM interactions in thea(b) planes, and AF interac-
tions along thec axis. The modes start to mix stronger with
decreasingy, and finally the gap in the spectrum closes be-
low »=0.1. The mode softening occurs again along lines in
the BZ, namely along thE — X direction. Unfortunately, we
could not perform an analogous analytic expansion of the
energies near the softening point to that in the AFxx and
AFzz phases, but the numerical results reported here suggest
a qualitatively similar behavior to these two phases. The
MOAFF phase gives an analogous instabilitygat>0.

The soft modes in the excitation spectra give a very strong
renormalization of the order paramet{&®)gp in RPA (5.4)
near the mode softening, as shown in Fig. 16. The quantum
correctionsexceedthe MF values of the order parameter in
the AFxx and AFzz phases in a region which separates these
two types of LRO. Although one might expect that another
classical phase with mixed orbitals and FM planes sets in
instead, and the actual instabilities wheféS,)—= are

TABLE |. Individual contributions to quantum correctiod$S”) of the AF order parameter in AFxx
(E;>0) and AFzz E,<0) phases due to spin wavé  S*)), spin-and-orbital wave(K “K*)), and the
leading contribution from low-energy modgjS?),. The values of the magnetic order parameter in RPA are

given by(S")gpa-

Ju /U E./J (878%) (K7K™) (681 (659 (S)rea
0.0 -3.0 0.2680 0.0117 0.2731 0.2797 0.2203
0.0 —-2.0 0.2733 0.0187 0.2606 0.2920 0.2080
0.0 —-1.0 0.2839 0.0368 0.2146 0.3207 0.1793
0.0 1.0 0.2645 0.0901 0.2440 0.3546 0.1454
0.0 2.0 0.2416 0.0516 0.2426 0.2932 0.2068
0.0 3.0 0.2298 0.0352 0.2455 0.2650 0.2350
0.1 -3.0 0.2919 0.0140 0.2963 0.3059 0.1941
0.1 -2.0 0.2995 0.0245 0.2757 0.3240 0.1760
0.1 -1.0 0.3188 0.0612 0.2339 0.3800 0.1200
0.1 1.0 0.2925 0.1461 0.2864 0.4387 0.0613
0.1 2.0 0.2519 0.0665 0.2493 0.3183 0.1817
0.1 3.0 0.2352 0.0421 0.2519 0.2773 0.2227
0.2 —-3.0 0.3270 0.0174 0.3291 0.3445 0.1555
0.2 —-2.0 0.3398 0.0351 0.3023 0.3750 0.1250
0.2 2.0 0.2687 0.0928 0.2647 0.3615 0.1385
0.2 3.0 0.2428 0.0521 0.2593 0.2950 0.2050
0.2 10.0 0.2071 0.0092 0.2077 0.2163 0.2837
0.3 -3.0 0.3861 0.0232 0.3834 0.4093 0.0907
0.3 —-2.0 0.4215 0.0601 0.3720 0.4816 0.0184
0.3 2.0 0.3026 0.1530 0.3179 0.4556 0.0444
0.3 3.0 0.2545 0.0680 0.2706 0.3224 0.1776
0.3 10.0 0.2076 0.0097 0.2083 0.2173 0.2827
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FIG. 17. Renormalization of the magnetic LRO paramég) FIG. 18. Average density ofx) holes{n,) as obtained for

by quantum fluctuations obtained for the G-AF phases as in FigJy/U=0.3 in the MF approximatioidashed lingsand with the
16(a), but for decoupled spin-wave and spin-and-orbital-wave exci-quantum corrections calculated in RRll lines). The splitting of
tations shown in Fig. 14. lines for E,/J>0 corresponds to the MOAFF phase with two dif-
ferent hole densitiegn,),#(Nn,)g on the ions belonging to two
found indeed beyond the transition lines to another phasegublatticessee Fig. 3
the lines whered(S*)=(S*) occur still before the phase
boundaries in the phase diagram of Figsée Fig. 1 of Ref. case of];=0 one finds, however, that the contribution from
6). This leaves a window wheneo classical order is stable the lower mode either stays approximately constémthe
in between the G-AF and A-AF spin structures. AFxx phasg, or even decreasdin the AFzz phasewhen
The origin of such a strong renormalization &) may  the line of the collapsing LRO is approached |&t|—0
be better understood by decomposing the quantum corre¢Taple ). This latter behavior shows again that the coupling
tions into individual contributions as given in E(.4) (see  petween the spin-wave and spin-and-orbital-wave excitations
Table ). The leading correction comes from the local spinis of crucial importanc&® This is further illustrated by Fig.
fluctuation expressed bi§ S') and enhanced with respect 17, which shows the renormalization ¢8,) as obtained
to the the pure spin mod€éHAF), while the spin-and-orbital when spin waves and spin-and-orbital waves are decoupled
fluctuation (K K;") increases rapidly when the instability in the manner discussed above. One observes that significant
lines (S*)rpa=0 are approached. Interestingly, the latterreduction of(S,) then sets in only very close to the actual
fluctuation is stronger in the AFxx than in the AFzz phase fordivergence.
the same values dfy and|E,| which demonstrates that the  Also the orbital polarization is renormalized by the quan-
AFzz phase is more robust due to the directionality of{fhe  tum fluctuations, but this is a rather mild effect not showing
orbitals and the strong AF bonds along thexis. This asym- any instability, since this renormalization involves only the
metry is also visible in Fig. 16, wheréS*)grps decreases spin-and-orbital and the orbital excitation but not the spin
somewhat faster towards zero flag>0. excitation, which is the one participating most strongly in the
In both G-AF phasesAFxx and AFz2 the leading con- lowest transverse mode that goes soft. This is seen in Fig. 18,
tribution to the renormalization ofS*)gpa comes from the where we shown,), the occupation of thix) orbital, again
lower-energy mode, especially at larger valuegdf In the  for J,/U=0.3, both at the MF level as well as including the

TABLE II. Individual contributions to the quantum corrections of the magnetic order para®$éy in MO phases due to spin wave,
(§~8*), and due to spin-and-orbital-wave excitatiogk, X ), and due to individual modes as labeled in Figs. 11 and 887),,
respectively. The values of the renormalized order parameter in RPA are givgsrjaypa-

WU EJI (S8 (KTKY) (887 (857, (88%5 (857 (857 (SUmea
0.2 0.0 0.1350 0.0508 0.0114 0.0344 0.0709 0.0691 0.1858 0.3142
0.3 —-2.0 0.2138 0.0323 0.0673 0.0646 0.0585 0.0557 0.2461 0.2539
0.3 -1.0 0.1338 0.0336 0.0411 0.0025 0.0547 0.0691 0.1674 0.3326
0.3 0.0 0.0918 0.0354 0.0122 0.0241 0.0425 0.0485 0.1273 0.3727
0.3 1.0 0.1095 0.0323 0.0285 0.0041 0.0684 0.0408 0.1418 0.3582
0.3 2.0 0.1330 0.0328 0.0327 0.0076 0.0754 0.0502 0.1658 0.3342
0.3 3.0 0.1664 0.0329 0.0465 0.0146 0.0738 0.0644 0.1993 0.3007
0.4 -3.0 0.2144 0.0232 0.0876 0.0958 0.0294 0.0249 0.2376 0.2624
0.4 —-2.0 0.1373 0.0258 0.0552 0.0145 0.0453 0.0482 0.1631 0.3369
0.4 —-1.0 0.0928 0.0269 0.0370 0.0020 0.0302 0.0505 0.1197 0.3803
0.4 0.0 0.0647 0.0274 0.0224 0.0080 0.0257 0.0360 0.0921 0.4079
0.4 1.0 0.0776 0.0254 0.0258 0.0038 0.0494 0.0240 0.1030 0.3970
0.4 2.0 0.0924 0.0258 0.0292 0.0063 0.0552 0.0276 0.1182 0.3818

0.4 3.0 0.1117 0.0259 0.0363 0.0104 0.0590 0.0319 0.1376 0.3624
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TABLE Ill. The mean-field energ¥, the quantum energy correction due to transverse modes and due
to longitudinal modes$E, and 6E, , respectively, and the ground-state energy in RBAn, (all in the units
of J). The labels FFA and AFF indicate the way of staggering of FM planes in the MO phases with A-AF

order.

Ju /U E,/J Eve OE; SE, Erpa phase
0.0 -2.0 —4.0000 0.6440 0.0 —4.6440 AFzz
0.0 -1.0 —3.5000 0.6700 0.0 —4.1700 AFzz
0.0 1.0 —3.5000 0.7073 0.0 —4.2073 AFXx
0.0 2.0 —4.0000 0.6399 0.0 —4.6399 AFxx
0.1 -2.0 —3.9250 0.6354 0.0008 —4.5612 AFzz
0.1 -1.0 —3.4250 0.6735 0.0021 —4.1006 AFzz
0.1 1.0 —3.4250 0.7344 0.0020 —4.1614 AFXX
0.1 2.0 —3.9250 0.6384 0.0008 —4.5642 AFXX
0.2 -3.0 —4.3500 0.6082 0.0024 —4.9606 AFzz
0.2 -20 —3.8500 0.6328 0.0042 —4.4870 AFzz
0.2 -1.0 —3.4769 0.3964 0.0009 —3.8742 FFA
0.2 0.0 —3.2558 0.2992 0.0028 —3.5577 FFA
0.2 1.0 —3.3543 0.3437 0.0010 —3.6990 AFF
0.2 2.0 —3.4769 0.3962 0.0005 —3.8738 AFF
0.2 2.0 —3.8500 0.6472 0.0041 —4.5013 AFXX
0.3 -3.0 —4.2750 0.6052 0.0062 —4.8864 AFzz
0.3 -3.0 —4.2272 0.5252 0.0194 —4.7717 FFA
0.3 -20 —3.7750 0.6419 0.0134 —4.4303 AFzz
0.3 -20 —3.8651 0.3944 0.0037 —4.2632 FFA
0.3 -1.0 —3.5892 0.3040 0.0019 —3.8951 FFA
0.3 0.0 —3.3996 0.2335 0.0054 —3.6384 FFA
0.3 1.0 —3.4836 0.2664 0.0031 —3.7531 AFF
0.3 2.0 —3.5892 0.3038 0.0016 —3.8947 AFF
0.3 2.0 —3.7750 0.6768 0.0134 —4.4652 AFXX
0.3 3.0 —3.7164 0.3459 0.0015 —4.0638 AFF
0.3 3.0 —4.2750 0.5773 0.0063 —4.8586 AFXX
0.3 10.0 —7.7750 0.4048 0.0014 —8.1812 AFXX

RPA quantum fluctuations, calculated from an expressiorslower roughly by a factor of two. This qualitative difference

similar to Eq.(5.4), e.g., in the AFxx phase from between these two A-AF phases may be seen in Fig. 18. As
. in the G-AF phases, we find that the two lower-energy
(Nix) = 1= &K TizTixz) — (K Ki). (519 modes give the larger contribution to the renormalization of

Especially in the MOFFA and MOAFF phases the deviationh® or+der parameter. The spin-and-orbital fluctuation
from the classical value of as given by Eq(3.11) and by (K K;") remains almost independent Bf,, but increases
Egs. (3.14 and (3.14), respectively, is small. Only in the with decreasing values afy. Thus we conclude that the
AFxx phase a significant admixture {¥f) occupancy could collapse of the LRO in the A-AKMO) phases is primarily
occur close to the regime where this phase becomes unstatdee to increasing spin fluctuatiogs; S;"), while the spin-
due to the divergence @fS*)rpa. and-orbital fluctuations become of equal importance only
The reduction of S*)gpa in the MOFFA/MOAFF phases when the multicritical point of the Kugel-Khomskii model
(Table I), described by a relation similar to E(p.4), isin ~ M=(E,,Jy)=(0,0) is approached.
general weaker than that in the G-AF phases. This is under- The representative quantum corrections to the ground-
standable, as the quantum fluctuations contribute here onlstate energy are given in Table Ill. First of all, these correc-
from a single AF direction, while the FM order in the planestions are larger by roughly a factor of 2 in the G-AF phases
does not allow for excitations which involve spin flips and (AFxx and AFzz than in the A-AF phase$MOFFA and
stabilizes the LRO of A-AF type. For fixedy one finds MOAFF/MOFAF). We believe that this is a generic differ-
increasing quantum correction&S”) when the lines of ence between the quantum corrections in the A-type and
phase transitions towards the AF phases are approache@-type AF phases, with the latter stabilized more due to the
These corrections increase faster with increasthy in the  spin fluctuations contributing at all the bonds. Therefore the
MOFFA phase, as the increasing occupancy of therbital ~ G-AF phases win over the A-AF ones near the transition
makes the AF interaction stronger there than in the MOAFHines, as, for example, found df,/U=2.0 andE,/J=0.2.
phase, where the occupancy of the orbital increases However, one should keep in mind that the energy alone
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04 A significant difference is that in the present case the source
of the problems is distinct: it is associated with the difficulty
to satisfy simultaneously the requirements for a stable spin
and orbital order. The cause of the frustration is dynamical
instead of geometrical.

The most interesting feature is the point at the origin of
the phase diagram. On the classical level it is a point in the
zero-temperature phase diagram where a quasi-1D antiferro-
01 - G-AF G-AF magnet (MOFFA phasg a 2D antiferromagnet(AFxx
phase, and a mildly anisotropic 3D antiferromagn@Fzz
. . phasé become degenera(Eig. 4). In fact, these possibilities
20 -1.0 0.0 1.0 20 make up only an infinitesimal fraction of the total degen-

E./J eracy characterizing this special point. In addition, the orbit-
z als can be freely rotated on every site, if the spins form a 3D

FIG. 19. Schematic phase diagram of the spin-orbital modefntiferromagnet. Likewise, the phase diagram of Fig. 19 is
including quantum fluctuations. Tepin liquid phase is expected to highly incomplete. Next t&,, there exist an infinity of other
separate the AF phases with different types of magnetic LROaxes emerging from this special point, all corresponding with
G-AF phases with eithed,2_,2 (|xx)) or d3,2_,2 (|z2) orbital  distinct ways of explicifocal symmetry breaking in the or-
occupied on both sublattices from the A-AF phases with mixedbital sector. One can either call this point an infinite-critical
orbitals (MO’s) ordered on two sublattices. point, or a point of perfect dynamical frustration, or, finally,

a point where local symmetry is dynamically generated.
does not suffice for the stability of a particular phase in RPA, The obvious problem is that the above wisdom applies
since the MF value of the order parame®8’), has to re- only when quantum mechanics does not play a role. Physical
main larger than the respective quantum correcti®(®’).  reality is different, and since the classical limit is pathologi-
Second, the 2D AFxx phase is characterized by larger quarcal, quantum mechanics is bound to take over. Although we
tum corrections than the strongly anisotropic AFzz phase abave not found a way to make the case precise, it appears to
the same values af, /U and|E,|/J. The same observation us that the local symmetry referred to in the previous para-
was made before at the multicritical poi =(E,,Jy) graph exists only in the classical limit. For this to be active
=(0,0) 5% This is not surprising since the 2D HAF is already on the quantum level, it should be that the true ground state
quite close to the disordered spin state. We note that this also highly degenerate. Although we did not prove the
energy gain due to quantum fluctuations of 0.%428btained  uniqueness of the quantum ground state, so much is clear
for the actual interactions dfJ in a 2D HAP is there con- that the classical local symmetry gets lifted at the moment
siderably smaller than the values &F of the order of 0.65  that quantum fluctuations become significant: the cancella-
reported in Table IIl. tions occur only if the spins are fully classical. Regardless

Finally, we note that the dominating contribution to the the nature of the true ground state, it is generated by a quan-
quantum corrections to the energy comes from the transverdem order-out-of-disorder mechanigt.
excitations. The longitudinal excitations do not contribute at The first possibility is a straightforward order-out-of-
all atJ4/U=0, where these modes are dispersionless. Othdisorder physics: the quantum fluctuations affect the energies
erwise, the orbital excitations have always a significantlyof the various classical states in different ways, thereby
smaller dispersion than the value of the orbital gap in thedreaking the classical degeneracy. One of the saddle points
spectrum, and the resulting quantum corrections are therenight get uniquely favored and this is what is suggested in
fore almost negligible. Ref. 72, where it was argued that the AFzz phase becomes
the ground state at the origin of the phase diagram. Although
this is a credible possibility, one would have to demonstrate
that the other possibilities are less favored, and moreover, we

Summarizing, we have presented here the case that a geave shown elsewhétethat the actual calculation by Kha-
neric (Kugel-Khomski) model for the dynamics of an orbit- liullin and Oudovenké& is flawed. The case is still open.
ally degenerate MHI is characterized by a number of peculiar Yet another possibility is unconventional spin and orbital
features. In this paper we have followed a semiclassical strabrder which is in a sense dual to the orbital and spin
egy. Assuming that the ground state exhibits some particulafantjferromagnetism characterizing the “classical”’ order:
classical spin and orbital order, the stability of this order carspin-orbital (resonating valence bond(R)VB states. We
be investigated by considering the Gaussian fluctuationdemonstrated befotehat these straightforward generaliza-
around this state. In this way we find that in various regimegions of the spin RVB states, well known from the study of
of the zero-temperature phase diagram, conventional order guantum spin-problems, appear as exceptionally stable. In a
defeated by the quantum fluctuations, and we expect a qualirext publication we will further elaborate on these matférs.
tative phase diagram as shown in Fig. 19. The status of both proposals is rather unsure: they rely at

In the first place, near the transition lines between thebest on the variational principle and the true vacuum can still
different phases modes soften, and these soft modes cause completely different. In this regard, some recent experi-
the zero-point fluctuations to diverge. This is not dissimilarments on the system LiNiQare quite interesting In this
from the general theme associated with the geometricallynaterial a Mott insulator seems to be realized, characterized
frustrated quantum spin models, like the-J,-J3 model** by a low spin 6= 1/2)e, degenerate Nill) state. One

0.3

0.2

J, /U

SPIN LIQUID T

|xx>

VI. SUMMARY AND CONCLUSIONS
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would naively expect this system to be unstable towards @endence of the resulting second-order Hamiltonian can be
collective Jahn-Teller distortion, accompanied by spin orderexpressed in terms of the projection operators on the total
ing. This indeed happens in the closely related systenypin states:%+3~§j) for the triplet, and §_§i.§j) for the
NaNiO,, but in L_|N_|02 or_derlng phenomena are completely singlet.

absent;! a peculiarity pointed out long agd.Instead, some " The general form of the effective Hamiltonian may be

quantum-critical state appears to be present, characterized Brived from the formula which includes all possible virtual
power-law behavior of physical quantities, carrying unusuak,ansitions to the excited®d® configurations

exponents. Pending the magnitude of the Li-mediated kinetic

exchange {;;), one can view this system as either discon- t2
nected triangular layers of Nil) ions (vanishingd;), or as Hyijy=— > —Qs(i ))PiaPis. (A1)
interpenetrating cubic lattices of these ions which are de- nap €n '

scribed by the Kugel-Khomskii Hamiltoniaflarge J,;).° ) )

Hence the peculiar state seen in the experiments can eithiheret stands for the—z hopping along the axis, Qg;j j)

originate in some phenomenon associated with the trianguld? the projection operator on the total spin state, & is

layers® but it could also be related to the matters discussed® Projection operator on the orbital staieat sitei, while

in this paper. €n, stands for the excitation energies given by H@s5). The
It is easy to settle this issue experimentally. Comparerbital projection operators dx) and|z) orbital in the ini-

NaNiO, and LiNiO,; if the physics of the quantum disorder tial and final state of thd® configuration at sité are, respec-

in the latter has to do with th@ 11) layers, one would expect tively,

on general grounds that in order to stabilize an ordered state,

the effective dimensionality has to be increased, of course Pi =lix)(ix|=3+17,
assuming that the basics of the electronic structsueh like
covalency do not change appreciably. Hence in this layer P, =|iz)(iz|=1— 7, (A2)

scenario one would expect stronger layer-layer interactions
in NaNiO, as compared to LiNi§Q following the standard whererC is defined as in Eqg2.12

result of quantum field theory that fluctuations increase upon Therlefore one finds from E(-ﬁAl.) for a bond(ij) along
lowering dimensionality. This standard wisdom does not @Pine ¢ direction
ply to the Kugel-Khomskii model, however. The fluctuations

find their origin in a dynamical frustration, and this frustra- 3
tion is only present in three space dimensions. Hence if the . > =

disorder in LiNiO, is caused by the physics discussed in this Heip=- e(3A,) (S" i Z) (PixPie+ PizPiy)
paper, its quantum magnetism should be rather isotropic in

3D space, while NaNi® should be more 2D. It is noticed t2
that according to elementary quantum chemistry Li ions
should be more effective in mediating kinetic exchange than
Na ions.
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(A3) describes the superexchange with the superexchange

APPENDIX A: DERIVATION OF THE SPIN-ORBITAL constant of 42/U.57 However, for convenience we define

MODEL the energy unit a3=t2/U in the present paper. Although the

o o _ form (A3) might in principle be used for further analysis, we
The derivation of the effective interactions between tWOprefer to make an expansion of the excitation energiem
d® ions at sites and] takes the simplest form for abod)  the denominators for smally, and usep=J,/U (2.7) as a
oriented along the axis. In that case the only nonvanishing parameter which quantifies the Hund's rule exchatldds-
hopping element is that between the tj#p orbitals on the ing the explicit form of the orbital projection operatds,

neighboring sites, and thus the orbital occupancies in thea2) this results in the following form of the effective
initial and finald?dj9 states have to be identic@part froma  Hamiltonian for the bondij)|c:

possible simultaneous and opposite spin flip at both )sites
The possible initial states are described by a direct product of

= .8 43)_(&d.&_1
the total spin state, either a tripleS€1) or a singlet & Hep =LA+ 0)(S-§+2) = (S-5=3)]

=0), and the orbital configuration, which takes one of four X[(78+ %)(ch_ D+ (75— %)(ch+ H]
possibilities:|xix;), |xizj), |zX;), or |zz;). Moreover, the L
effective interaction vanishes if the holes occupy |e;) +4J(1-37)(S- S D= 3)(7{—3), (Ad)

configuration. The total spin per two sites is conserved in the
d?d}—d%? excitation process, and therefore the spin de-which may be further simplified to the form
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while they commute with the orbital-polarization operator,

Hin=31 (4S-S+1) (7t -1 (- + 5+ 5-1
e Bl A A [Shani-1=0. (83)
5 o 1
+9(S-S)(ri+7-1)+ Eﬂ[(Tic_ D(1—3) The operators for spin-and-orbital excitations have the
following commutators(l) with the spin operators,
+3(T 7j __)] . (AS) Iaﬁ Saa]_ 1Kltzﬁ’
The first line represents the AF superexchange interactions [Klaﬁ’ 53]: _%Kiaﬁ1
«J, while the other two lines describe the weaker FM inter- [K' . S J=KZ ,—T,
actons=Jy, and stand for the corrections due to the multip- iaprSiaal =Kiap~ Tiap
let splittings of thed” excited states. [King: Sl = KisaT Tiga (B4)
It is straightforward to verify that the above form of the _
effective Hamiltonian simplifies in the limit of occupidd) (i) with the spin-and-orbital operators,
orbitals to [Klaﬁ’ |a/3] 0, (B5)
L= _1.ys.8_1
Hap=431=20)(5-5~2), (A6) [Kirp Kipa = = 5(Sha+ S,
and one recognizes the same constart, and the same B
superexchange interactiod 4 4t%/U as in thet-J model at [Kiag K iaB]:O7

half filling.>” However, the effective superexchange is some-

— 1 . —_n. Z
what reduced by the factor (1% 5) in the presence of the [Kiag Kigal = 2(Nia=Mig) + Saat Sigg,

Hund’s rule interaction. [KWB, ip]=0,
The effective interactions on the bonds within trek)
planes may be now obtained by rotating the orbital operators [K.aﬁ, igal=— 3(Sha— S|+ﬁ,3)

C

77 in Eq. (A4) by =/2 to the cubic axes and b which
generates the orbital operatafsand rib (2.12, respectively.
This results in a nontrivial coupling between the orbital and [Kixzni-1= =K,
spin degrees of freedom, as given in E210. We note that
in the case of a single orbital per site, it would suffice to [KizxMi-1= + Ky (B6)
rotate instead the simpler projected fo(AB), which would

give the same superexchange interaction in any direction.

and (iii ) with the orbital-polarization operator,

1ZX?

The relevant excitonic operators in the symmetry-broken
state(4.1) commute with the above spin-transverse opera-
tors, S, andK;,;, and give the following commutators

with the remaining spin-longitudinal operators,
[TiaBU' 1$Zaa] == %)\UTiaBo' ’

APPENDIX B: COMMUTATION RULES IN THE so (4)
ALGEBRA FOR THE SPIN-ORBITAL MODEL

In order to illustrate the full algebraic structure of our

problem, we present here the so(4) commutators between [Tiaﬂg,azﬁﬁ]er%)\aTiaﬁg,

the various excitation operators which are needed for calcu-

lating the excitation spectra in Sec. IV. As the operators de- [Tiaﬂm la,B] 0,

fined on different sites commute, we only specify the on-site

commutators. Y specty [Tiapo Kigal = 2(Saat Sigp) + 1A o(Nia=Nip),

. The spin operators fulfill the usual relations for each or- [Tiaﬁau iap]=0,

bital «=x,z,
[Saa' Iaa _SiJraai [Tia'B(r'Ti'Ba]:%)\(r(S't’a—i_ ':85) %(nia_niﬁ)’
[S-Luz' Iaa] 257 o (Bl) [Tixmanif]:_Tixma

Their commutators with the other operators which describe [Tipe i ]=+T, (B7)
either spin-and-orbitaltransversg or orbital (longitudinal, 1zxo 12X
i.e., excitoni¢ excitations are responsible for the coupling where\ ,==*1 for c=1,]. Therefore the subset of longitu-
between spin- and spin-and-orbital excitatidghsrea# B), dinal operatorgT;,z,} generates the excitations which do
not couple to the transverse excitations.
[Saa' Iaﬁ 2Kla,3'

[ s |,8a]_ 1K|2a, APPENDIX C: GREEN-FUNCTION EQUATIONS FOR
SPIN AND ORBITAL EXCITATIONS

K a1=(KZ, 5+ Ting), _ . .
[StaaKiapl= (Kiap* Tiag) Here we present the dynamical matrices obtained for the

[Siha Kigal = (Kis,=Tiga), phases with LRO for the spin-orbital mod@.10. It is easy
to verify that the presented dynamical matrices have an RPA
W Tiapl= 1 Kfalg, structure and thus describe symmetric spectra with respect to

w=0.
[Siaa:Tigal =~ 1Kiga (B2) Let us start with the G-AF phases with eitHe) or |z)
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orbitals occupied. The spin and spin-and-orbital excitationspin-raising operators, is also valid for the Green functions
are determined from Eq$4.12 and (4.13 for the AFxx <<5E*XX M)A, etc., describing the modes generated by the

phase, and from Eq$4.34) and (4.35 for the AFzz phase. spin-lowering operatordS;, K, .S, Koy}, with ieA

After using the translational symmetry and performing theandj B, and all transverse modes are Jdoubly degenerate.
familiar RPA decoupling procedurd;’

The orbital(longitudina) excitations correspond to excit-
AB L W= ANB] - - N+ (BICAL - - ), ing an eleptro_n frqm one orb[tal to the other WIthOU-t chang-
(CABy |- N =CANB|-- D)+ (BCAl--)) c1 ing the spin direction. IA(B) is an up(down) sublattice in
) ) ) ) ] the Neel state, the basis operators which define the modes are
wherei andj refer todifferentsites, one finds a system of 7-spin (| -spin orbital excitations, as introduced in Sec. IV.

linear equations for the excitation energies. A straightfor-one finds the following eigenvalue problem using the RPA:
ward but somewhat lengthy calculation shows that the same

matrix with different coefficients describes the elementary
excitations for both AF phases,

ua_?lz 0 +palz +pa|2
)\a_aﬁ 0 Qalz Puzlz 0 _UQ_ZE ~Pak ~Pak
0 r,—wi P Rk —Pak Pk —U,~(i O
_Qalz _Palz _)\a_;lz 0 tPak tpak 0 ua_ZIZ
“Pac “Re 0 —mmoex ((Tiearl -~ ))a
(SgedNa o| (Tl D) o 3
+ (Tixal - Ne
<<kaz| o >>A
_ =0, (CZ) <<T|ZZXL| o >>B
<<S|2xx|”'>>B LT . . . . _
- where agairyy is in units ofJ, i.e., {i={¢/J, and the quan-
<<K|sz|‘ e tities u, andp i depend on the considered G-AF phase.

whereoe is the frequency in units of. i.e. oe=ws/J. The The classical A-AF ground state is discussed here on the
k q ymn 1B QT O example of the MOFFA phase. It consists of four sublattices:
constants\,, and 7, and thek-dependent functionB, and o sublattices A andB) due to different orbital order in the
Q.k depend on the consildered AF phase and are specified 4, b) planes(see Fig. 3, and two others@ andD) due to
Sec. IV, whileRg=3 v, (k). The solution for the eigenener- spins which alternate along tleeaxis. The Hamiltoniari2.9)
gies is given by Eq(4.19. As discussed in Sec. IV A, the was first transformed to the new operators defined by Egs.
same 44 matrix equation written down in EqC2) for  (4.45 and (4.46. For the bondgij)|(a,b) with i € A(C)
((SEXX ---))a, etc., describing the modes generated by theandj e B(D) one finds

Hy= %J<Z>H [(1-39)([(2—cos 2)S, ., + (2+c0s 20)S,,,,+ sin 20K;][ (2— c0S 2) S, , + (2+ c0S 20) S, — SiN 20K;]
i

s

+3[sin20(S,,,,—

Siy)+ €08 20K1[in 260(S; ., — Si,) + €08 20K 1+ N V3{[(2— cOS ) S, ,, + (2+COS 26) S,

+5in 20K 1[sin 20(S; ., — S;,,) — cOS 20K;1—[sin 26(S

' Sivy) €08 26K ][ (2— cos 20) S, , + (2+c0s 20) S,
—sin 20K;1)+ 3 n(cos 20(S; ,,,— Si,,) — sin 20K;1[ oS 20(S; ., — S; ) +5iN 20K;1— 3[ I 26(S, 4, — Si0)

+cos 20/€i][sin ZG(S‘WM—S‘J-W) —Cos 2:9]51-] —\jj \/5{[cos 20(§iw—5‘iw) —sin 20I€i][sin ZH(SJM— §j )
—c0s 20K;1+[sin 20(S; ,,,— Si,,) + c0s 26K;1[ €08 20(S; ., — Sj ) — SiN 20K,11) — 25,5+ (1+ 2 ) {(cos 26N
—sin 207;)(cos 20N+ sin 207;) — 3(sin 20 + cos 207;)(sin 20N, — cos 207;) — \j; V'3[ (cos 20 — sin 207

X(sin 20N — cos 207;) + (sin 20N+ cos 207;)(cos 20N +sin 267)) 1} — (3+ 7)], (C4)

while for the bondg(ij)L (a,b) it takes the form
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HL=J<; (1-37)[(1+cos2)S,,,+(1—cos 26)S,,,—sin 26K;][ (1+ cos 26)S;
ij)L

—in{[(1—cos20)S
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upt(1—c0s20)S;,,—sin 20K ]

upt(1=c0820)S;,,—sin 20K ]

+[(1+c0s 20)S;,,,+(1—cos 20)S;,,—sin 20K ][(1— cos 26) S, ,,, + (1+cos 20) S, + sin 26K}
+(1+27)(cos 20N; — sin 207;) (cos 20N — sin 207;) — $(3+ 7)), (C5)
|
and the transformed orbital-anisotropy term reads Asa=1(1+2 cos &) y+(IZ), (C16)

H,=E,>, (cos20N;—sin267,). (C6)

and the following nonzero elements of matiix

Byy=Bap=[(1— 3 7)(1+cos 20) — § 7](1+ cos 2) y,(K),
(C17)

The transverse excitations were found using the RPA

procedure in Eqgs(4.53 and (4.54 which leads to an
(8%x8) matrix for the eigenenergies. If the operators
K as Big=Bz=—By=—By=—(1— 3 n+cos 20)sin 20y,(K).

transformed to k space are ordered

+ + + + + + + +
SAM,U, 'SB;L,U, ']CA,LLV 'IC Buv ’SC,u,,u 'SDM,U,"]CCMV ’ICD;LV , one
recovers a general structure of the eigenvalue problem,

A—wiZ B

— |=0, (C7
-B —A—wZ

where A and B are (4X4) symmetric matrices is the (4

X 4) identity matrix, andw;= wg/J. Using the averages of

the diagonal operators in the classical ground state,
(Shun) = (S8 = — (880, = ~(SBu) =4

(M-)=2,

one finds the following elements of matri:

(C8)

(C9

A= Ar=—3(1—379)(1—2 cos ¥)%+2(2— n)cos'd

+3p(3+sirf20), (C10

App=[3(1—37)(1-2 cos 2)%— n(3 +sirf26)]y, (K),

(C1D)
A1z=— Ayy=—3(1— 3 7)sin 26(2—cos 20)
—3(3+ 3 9)sin46— ¢,sin 26, (C12
A= —(1—L9—2 cos P)sin 20y, (K)
3 .
+ 7[1—(2— n)cos 2]y _(k), (C13
Ags=+(1—19—2 cos 2)sin 26y, (k)
V3 .
+ 7[1—(2— n)cos 20]y_(k), (C19

Agz= A= —
X (1+ 2 sirf26) — &,c0s 29,

(1-37)(1—2cos ) +37—35(1+27)
(C1H5

Bas=Bay=sirf260y,(K), (C18

(C19

The longitudinal excitations in the A-AF phases were ob-
tained by solving the respective Green function equations
for the excitation operator@.55. After transforming these
equations tok space, and taking the following sequence
of excitation operators: 7a,v1: Zeuvi» Zavurs Tevut s
Ty Touv,» Zcour Towu» ONe finds an eigenvalue
problem of the form

P— (T R +Q +Q
-R  —P-4I  —-Q -9 | .
—-Q -9  —-P-4I —R ’
+Q +Q R P—{iZ
(C20

whereP, R, and Q are symmetric (X 2) matrices, and
={/J. The nonvanishing elements are defined as follows:

P1=Prp=3(1—325)[1—2cos 4+ 2cos H(2+cos 2) ]

+3 5 cos20—2(1+27)cos 40— e,c0s 20,

(c21)

Pro=Pyn=3(1+7)(1-2cosH)y,(k), (C22
Ri7=Rn=3(1+n)(1—-2cosX)y,(k), (C23
Q1= Qpo= 75irP20y,(K). (C24

As in the AF phases, the coupling between the sublattices
andC and betweerB andD, respectively, is proportional to

the weak FM componeng. The mechanism of this coupling

is explained in Fig. 8.

APPENDIX D: NEUTRON INTENSITIES IN TRANSVERSE
EXCITATIONS

In this appendix we explain the intensitigéw) in neu-
tron scattering seen in the presence of orbital degrees of free-
dom. One can start from the general expression for the cross
section for pure magnetic scatteritfy,
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dzg * it normalized per one site may be written as follows:
1 d°c 1klzf . o5
><<Su(0)SJ-L(t)>e—'Q<Ri—Rj), (D1) N dQde 87 kg N < F(@fi(ax(a), (D5

wherek, andk;, are the initial and final momenta, Whiﬁais
the momentum transfer. The spin components atisatied |
are perpendicular t(i. By integrating over time one finds
that the neutron cross secti@dl) is related to the imaginary
part of the spin-spin Green function,

wherex(q) is the neutron scattering intensity which includes
the geometrical factor which originates from E®J). It is
proportional to a linear combination of the diagonal and off-
diagonal elements of the Green function, and one finds for a
two-sublattice magnetic structure, as for example in AFxx
2ok T | and AFzz phases,
s ; , —ig(Ri—Ry) _—__
d0de "k, & T (@f(@e ) 5-2im 2

- q -
x(q)=( 1+ ?) 2IM[Gan(d,— @)

{E (SIS - w]®<w> 02
where® (w)=1 for >0, and® (w)=0 for <0, and we +Gpp(d, — )+ Gpp(q,— ®) + Gga(d, — 0) |O(w),
took the limit of temperaturd —0. In order to extract the (D6)

perpendicular component of the spin-spin correlation func-
tion from the Green functiong(S], [S{|)) ., we use the with the elementGaa(q,— w) standing for the transverse

identity Green function,{(S;d|S;’_a»,w, etc., and the indices
8 andB refer to two sublattices. The explicit formula in terms
E sﬁ( _aa ) (D3)  of the spectral intensitied {!(q) is given by
. fad 2
The components of the Green functions @ space, - 4z o)z W)= )2
<<S§|S‘ja>),w, are found using the following properties of x(@=| 1+ 9 ,,go) [ARa(Q)+ Agg(a) +ARs(q)

the transverse spin-spin functions:
Im<<sg| o= —IM(SIS" )

(

ARQ(D]8(0— o). (D7)

We have used EdD7) to determine the contributions to the
=({(S;1S_1=0, (D4)  neutron cross section due to different excitations, as analyzed
. in Sec. IV and presented in Figs. 9-12. The generalization to
=0 for the wave vectorg+Q, whereQ is  the case of four-sublattice structures found in the MOFFA
the nesting vector. One finds that the neutron cross sectiomnd MOAFF phases is straightforward.
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