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Triangular Ising antiferromagnet in a staggered field
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We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in
the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the
ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the
ground states into sectors specified by the number of ‘‘strings.’’ We show that the effect of the staggered field
is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling
constantJ becoming infinitely large, we prove the existence of a phase transition in this system and obtain a
finite lower bound for the transition temperature. For finiteJ, we study the equilibrium properties of the system
using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration
times for low-field values increase rapidly with system size at low temperatures. Due to this difficulty in
equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical
results does not permit a definite conclusion about the existence of a phase transition for finite values ofJ. A
surprising feature in the system is the fact that unlike usual glassy systems, a zero-temperature quench almost
always leads to the ground state, while a slow cooling does not.
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I. INTRODUCTION

The triangular Ising antiferromagnet~TIAFM !, described
by the Hamiltonian

H5J(
^ i , j &

sisj J.0, ~1!

wheresi561 and^ i , j & denotes nearest-neighbor sites on
triangular lattice, provides an interesting example of a fr
trated system without disorder. Unlike the nearest-neigh
Ising antiferromagnet on a square lattice, this model does
have a finite-temperature phase transition. It has an expo
tially large number of degenerate ground states, which
plies that the zero-temperature entropy per spin is finite.
zero-field partition function can be computed exactly, lea
ing to the resultS(T50)50.3383 . . . ~Ref. 1! for the zero-
temperature entropy per spin. At zero temperature, the
tem is critical and the two-spin correlation function decays
a power law,c(r );cos(2pr/3)/r 1/2, along the three principa
directions.2 The ground states of the TIAFM can be mapp
exactly to dimer coverings on the dual lattice, which
hexagonal.3 Using this mapping, it is possible to classify th
ground states into sectors specified by the number
‘‘strings’’ that represent the difference between two dim
coverings.

The exponential degeneracy of the ground state of
TIAFM can be removed in various ways, e.g., by choos
different coupling constants along the three principal dir
tions, or by introducing a uniform field. Both these cas
have been extensively studied. For anisotropic couplings,
problem is exactly solvable4 and one finds a usual Ising-lik
second-order phase transition except in some special c
for which the transition temperature goes to zero. In the c
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of a uniform field, simulations and renormalization-grou
arguments5 indicate that there is a second-order transiti
belonging to the three-state Potts model universality clas

A particularly interesting special case is the limit in whic
the system is restricted to remain within the manifold of t
TIAFM ground states. This can be achieved by making
coupling constantJ infinitely large. One then considers th
effects of degeneracy breaking terms. In this limit, the nat
of the transition changes. In the case of anisotropic c
plings, the transition changes from Ising-like to Kastely
type (K-type!.6 Below Tc , the system freezes into th
ground state and the specific heat vanishes identically. AsTc
is approached from the high-temperature side, the spe
heat shows a (T2Tc)

21/2 singularity. In the case of a uni
form applied field, the transition is believed to be
Kosterlitz-Thouless type.7 This case is treated by first map
ping the problem to a solid-on-solid model and then us
renormalization-group arguments.

In this paper, we study the behavior of the TIAFM in th
presence of a staggered field chosen to be conjugate to o
the ground states. Our work is motivated in part by simi
studies on glassy systems8 with exponentially large numbe
of metastable states. These studies consider the therm
namic behavior of such systems in the presence of a fi
conjugate to a typical configuration of an identical replica
the system. As the strength of the field is increased fr
zero, the system is found to undergo a first-order transitio
which the overlap with the selected configuration chan
discontinuously. This transition is driven by the competiti
between the energy associated with the field term and
configurational entropy arising from the presence of an
ponentially large number of metastable states. Like th
glassy systems, the TIAFM has frustration and an expon
tially large number of ground states. Thus it is of interest
6227 ©2000 The American Physical Society
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6228 PRB 61DHAR, CHAUDHURI, AND DASGUPTA
investigate whether a similar behavior is present in
TIAFM, which is a simpler model with no externally im
posed quenched disorder. Besides, the question of wheth
phase transition can occur in the TIAFM in the presence
an ordering field is interesting by itself. For systems with
finite number of ground states, such as the purely ferrom
netic Ising model and the Ising antiferromagnet on a bipar
lattice, it can be proved that no phase transition can occu
the presence of ordering fields.9 However, no such genera
proof exists for systems with an exponentially large num
of ground states, and the question of whether a competi
between the energy associated with the ordering field and
extensive ground-state entropy can drive a phase transitio
such systems remains open.

The staggered field considered by us is conjugate t
ground state with alternate rows of up and down spins. In
lattice-gas picture of the Ising model, this corresponds to
applied potential that is periodic in the direction transverse
the rows. In the presence of the field, there are a large n
ber of low-lying energy states and this suggests the poss
ity of an interesting phase transition as the temperatur
varied. We consider the case where the coupling constanJ is
finite, as well as the limitJ→`. In the latter limit, one con-
siders only the set of states that are ground states of
TIAFM Hamiltonian of Eq.~1!. In this limit, we show that
the problem of evaluating the partition function reduces
calculating the largest eigenvalue of a one-dimensional
mion Hamiltonian with long-range Coulombic interaction
We have not been able to solve this problem but have
tained a finite lower bound for the transition temperatu
The transition appears to beK-type.

For finite J, we have studied the equilibrium behavior
the system by Monte Carlo~MC! simulations using three
different kinds of dynamics:~1! single-spin-flip Metropolis
dynamics,~2! cluster dynamics, and~3! ‘‘string’’ dynamics
in which all the spins on a line are allowed to flip simult
neously. We find that in all three cases, equilibration time
low fields and low temperatures increase rapidly with syst
size. The last dynamics is found to be the most efficient
for equilibrating the system in this regime. Finite-size scal
analysis of the data for small fields suggests the existenc
a characteristic temperature near which the correlation len
becomes very large. However, because of the long equili
tion times, we have not been able to study large eno
systems to be able to answer conclusively the question
whether this corresponds to a true phase transition.

One surprising finding of our study concerns ze
temperature quenches of the system, starting from ran
initial configurations. We show that the system almost
ways reaches the ground state in such quenches. On the
hand, a slow cooling of the system leads to a metasta
state. This is contrary to what happens in usual glassy
tems where a fast quench usually leads to the system ge
stuck in a higher-energy state, while a slow cooling leads
the ground state with a high probability.

The paper is organized as follows. In Sec. II, we consi
the TIAFM in zero field and describe the mapping from t
ground states to dimer coverings and the subsequent cl
fication of the ground states into sectors. Many of the res
in this section are well-known, but we have included the
for the sake of completeness. Also our description is so
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what different from the existing ones. In Sec. III, we co
sider the TIAFM with an applied staggered field in the lim
J→`. The mapping of this system to a one-dimensional f
mion model is described and a finite lower bound for t
transition temperature is derived. In Sec. IV, we present
numerical results for the equilibrium properties at finiteJ.
These results are obtained from exact numerical evalua
of averages using transfer matrices and also through
simulations. We also discuss the dynamic behavior of
system under different MC procedures. Section V contain
summary of our main results and a few concluding remar

II. MAPPING OF TIAFM GROUND STATES
TO DIMER COVERINGS AND CLASSIFICATION

INTO STRING SECTORS

The frustration of the TIAFM arises from the fact that it
impossible to satisfy all three bonds of any element
plaquette of the triangular lattice. At most we can have t
bonds satisfied. The lowest-energy configuration of the s
tem is one in which every elementary triangle is maxima
satisfied. This condition can be satisfied for a large num
of configurations and for future reference we shall denote
set of all such states byG. We now show the correspondenc
between the ground states and dimer coverings on the
lattice. The dual lattice is formed by taking the centers of
the triangles. Consider any two triangles that share a bon
the bond is not satisfied, we place a dimer connecting
centers of the two triangles. The fact that every triangle
one and only one unsatisfied bond implies that every poin
the dual lattice forms the end point of one and only o
dimer. Hence we obtain a dimer covering. This mapping
not unique, since flipping all spins in any given spin config
ration leads to the same dimer covering. In Fig. 1 we sho
ground-state configuration and the corresponding dimer c
ering. Another dimer covering that corresponds to a grou
state with alternate rows of up and down spins is shown
Fig. 2. We shall call this the standard configuration. It
important to choose the boundary conditions in a conven
manner and we follow the convention used in Fig. 1 w
periodicity in thex andy directions.

A useful classification of the ground states is obtained
superposing the standard dimer configuration with any ot
dimer configuration. This results in string configurations
shown, for example, in Fig. 3, which is obtained by sup
posing the standard configuration of Fig. 2 with the config
ration of Fig. 1. Clearly there is a one-to-one corresponde
between string and dimer configurations.

It is easy to prove the following points:~i! the number of
strings passing though every row is conserved;~ii ! the strings
do not intersect;~iii ! the number of strings can be any eve
number from 0 toL, whereL is the number of spins in a row
~iv! the periodic boundary conditions mean that the strin
have to match at the boundaries and form closed loops.

We classify the ground states into different sectors, w
each sector specified by the number of strings. The num
of states in each sector can be counted exactly using tran
matrices. Let us label the bonds on successive rows of
lattice in the manner shown in Fig. 4. The position of t
strings on each row is specified by the set of numb
$b1 ,b2 , . . .bn%, where bk gives the position of thekth
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PRB 61 6229TRIANGULAR ISING ANTIFERROMAGNET IN A . . .
string. Note that$bk% give the positions of the satisfied bond
in a row. In a sector withn strings we consider the
LCn3LCn matrix, which has nonvanishing entries equal
one if the two states can be connected by string config
tions. We need two different transfer matrices, namelyT(1),
which transfers from odd-numbered rows to even-numbe
ones andT(2), which transfers from even to odd ones. T
total number of states in any given sector is then given b

FIG. 1. A ground-state configuration and the correspond
dimer covering for a 636 lattice. Periodic boundary conditions a
applied in the horizontal and vertical directions. The crosses co
spond to repeated points.

FIG. 2. The standard configuration of dimers.
a-

d

N~n!5Tr~T(1)T(2)!L/2, ~2!

where we choose, for convenience, the length of the latticL
to be even.

As an example let us consider the transfer matrix in
two-string sector. This is given by

T( l 1 ,l 2)u( l 3 ,l 4)
(1) 5d l 1 ,l 3

d l 2 ,l 4
1d l 1 ,l 321d l 2 ,l 4

1d l 1 ,l 3
d l 2 ,l 421

1d l 1 ,l 321d l 2 ,l 421 for l 2Þ l 111,

g

e-

FIG. 3. A configuration of strings obtained by superposing
dimer configurations in Fig. 1 and Fig. 2.

FIG. 4. Labeling of successive rows on a 636 lattice.
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6230 PRB 61DHAR, CHAUDHURI, AND DASGUPTA
T( l 1 ,l 111)u( l 3 ,l 4)
(1) 5d l 1 ,l 3

d l 111,l 4
1d l 1 ,l 3

d l 111,l 421

1d l 1 ,l 321d l 111,l 421 . ~3!

The matrix is diagonalized by the antisymmetrized pla
wave eigenstates

al 1 ,l 2
5ei (q1l 11q2l 2)2ei (q1l 21q2l 1), q1,q2 . ~4!

The periodic boundary condition leads to the following v
ues for the wave vectors:qi5(2ni11)p/L, with ni
50,1,2, . . .L21. The eigenvalues are given by

l q̄
(1)

5~11eiq1!~11eiq2!. ~5!

The matrixT(2) has the same set of eigenvectors, while
eigenvalues are given by

l q̄
(2)

5~11e2 iq1!~11e2 iq2!. ~6!

The results for the two-string sector can be generalize
any of the other sectors. The transfer matricesT(1) andT(2)

in any sector are diagonalized by antisymmetrized pla
wave states. This just reflects the fact that the strings ca
thought of as the world lines of noninteracting fermions. T
eigenvalues in then-string sector are

l q̄
(1)

5)
k51

n

~11eiqk!,

l q̄
(2)

5)
k51

n

~11e2 iqk!, ~7!

with qks as before. The number of states in then-string sec-
tor is thus given by

N~n!5Tr~T(1)T(2)!L/2

5 (
q1,q2 . . . .qn

F )
k51

n

~11eiqk!~11e2 iqk!GL/2

. ~8!

In the largeL limit, only the dominant term in the above su
contributes and we finally obtain

N~p!5eL2a(p),

a~p!5p ln 21
2

pE0

pp/2

dx ln@cos~x!#, ~9!

wherep5n/L is the fraction of strings~‘‘string density’’!.
Thus every sector with nonzerop has an exponentially larg
number of states.

We note that the functiona(p) is peaked atp52/3 and
the entropy of this sector,S5a(2/3), reproduces the well
known result of Wannier for the zero-temperature entropy
the TIAFM. Thus we have rederived Wannier’s result a
also shown that most of the states are in the sector w
string density equal to 2/3.
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III. SPLITTING OF LEVELS IN THE PRESENCE
OF A STAGGERED FIELD: THE J\` LIMIT

In the presence of a staggered fieldh that is conjugate to
one of the ground states of the TIAFM, the macrosco
degeneracy of the ground state is lifted. The field we c
sider is conjugate to the state corresponding to the stan
dimer configuration~Fig. 2!. There are two such spin con
figurations and we choose the one that has all up spins on
first row. Note that in the presence of the field, any two sta
related by the flipping of all the spins have the same str
representation but different energies. To remove this am
guity, we use an additional label for the string states, wh
we take as the sign of the first spin in the first row. The s
configuration on any row is then fully specified by the s
(s,b1 ,b2 , . . .bn).

Let us now look at the effect of the field in splitting th
energy levels in each sector. In the zero-string sector th
are two states, one corresponding to the ground state an
other, obtained by flipping all spins, to the highest-ene
state. The lowest-energy states in the two-string sector ca
generated by starting with the ground-state spin configu
tion and flipping a line of spins as shown in Fig. 5. Figure
shows a higher-energy two-string state. Note that the stri
separate the lattice into two domains, one in which all
spins point along the staggered-field directions and ano
in which they point opposite to the field. This is, in gener
true for anyn-string state where the strings divide the latti
into n domains, with spins in alternate domains pointi
along and opposite to the staggered fields. The lowest-en
configuration in any sector is clearly the state with altern
pairs of strings tightly packed. For the sector in which t
string density isp, the lowest energy per spin is

FIG. 5. A configuration of two strings that corresponds to t
lowest-energy state in this sector. This configuration is obtained
starting with the ground state and flipping a line of spins~the circled
ones!. The strings are closely packed and all the spins in the reg
between them point opposite to the local applied fields.
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eg~p!52~12p!h, ~10!

where for the caseJ→` being considered here, we hav
subtracted the infinite constant energy term2J.

Because of the conservation of the number of strin
across rows, the transfer matrix is block diagonal, each bl
corresponding to a fixed string sector. In the zero-field c
the strings are noninteracting and the problem reduced es
tially to that of free fermions on a line. In the present ca
however, the energy increases when the separation betw
two strings is increased. In fact, it is easy to see that this c
reduces to a one-dimensional fermion problem in which
ery alternate pair of fermions interact with each other via
attractive linear potential. It is then no longer simple to
agonalize the transfer matrix. However, through the follo
ing argument we prove the existence of a phase trans
and obtain a lower bound for the transition temperature.
zero temperature, the system will be in the ground state
the zero-string sector. As the temperature is increased,
entropic factor associated with the other sectors becomes
portant and can cause either a gradual or a sharp transitio
other sectors. To determine which of the two possibilit
actually occurs, we consider the simpler case where
strings do not interact and all configurations belonging to
sector with string densityp have the same energyNeg(p),
whereN5L2 is the total number of spins. Since all the sta
in this sector have energies greater than or equal toNeg(p)
in the interacting model, a sharp transition in the nonint
acting case implies a sharp transition in the interact
model. In particular, if the noninteracting model exhibits
transition at temperatureTc , so that it is frozen in the ground
state in the zero-string sector forT<Tc , then the interacting
model must also be in the ground state for allT<Tc . In

FIG. 6. A higher-energy configuration in the two-string sector
can be seen that the strings divide the lattice into two domains
the spins in one domain being along the applied field and oppo
to it ~the circled spins! in the other domain.
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other words, the transition temperature of the noninterac
model provides a lower bound to the transition temperat
of the interacting model.

The partition function of the noninteracting model may
written as

Z5(
p

eNa(p)2bNeg(p)

5eN[a(pm)2beg(pm)] , ~11!

whereb51/T andpm is the value ofp corresponding to the
minimum of the functionf (p)52a(p)1beg(p). Using Eq.
~9! and Eq.~10!, we get

pm50, T,Tc ,

pm5
2

p
cos21S eh/T

2 D , T.Tc , ~12!

with Tc5h/ ln(2). Thus, there exists a sharp transition a
finite temperatureTc , the number of strings being identicall
zero below this temperature. In Fig. 7, we show the dim
sionless free-energy functionf (p) at two different tempera-
tures, one above and one belowTc . It can be seen that fo
T,Tc , the functionf (p) has its lowest value atp50. The
minimum of f (p) moves continuously away fromp50 as
the temperature is increased aboveTc , approachingp52/3
in the T→` limit.

In Fig. 8, we have plottedpm , the equilibrium value of
the string density obtained from Eq.~12!, as a function of
T/h. It is easy to see from Eq.~12! that pm grows as (T
2Tc)

1/2 as T is increased aboveTc . Since the internal en-
ergy is proportional topm in the noninteracting model, the
specific heat vanishes identically forT,Tc and diverges as
(T2Tc)

21/2 for T approachingTc from above. Thus we get a
K-type transition that is expected because of the equivale
of our system to dimer models. While this proves the ex

t
th
ite

FIG. 7. The dimensionless free energyf (p) of the noninteract-
ing model, plotted as a function of the string densityp at two
different temperatures,T152.5h, which is aboveTc , and T25h,
which is belowTc .
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6232 PRB 61DHAR, CHAUDHURI, AND DASGUPTA
tence of a transition in the interacting model too, it is n
clear whether the nature of the transition is the same.15 It is
quite possible that the long-range interactions between
strings would result in a transition in a different universal
class. This issue is addressed in the next section.

It is interesting to compare our model with the model w
anisotropic couplings studied by Blo¨te and Hilhorst.6 Con-
sider the case when the horizontal couplings have stre
(J2D) and the remaining two are of strengthJ. In the limit
J→`, we need to consider only the states withinG. In this
case too, the ground state lies in the zero-string sector b
twofold degenerate since the up-down symmetry is retain
The excitations are again in the form of strings but are n
interacting and so equivalent to the excitations in the sim
fied model considered by us. In fact the expression for
free energy in Eq.~11! follows directly from Eq.~2! in Ref.
6 if we make the identificationh52D.

IV. MC SIMULATIONS AND TRANSFER-MATRIX
CALCULATIONS FOR FINITE J

For finiteJ, we have carried out MC simulations to dete
mine whether the phase transition persists and its nature
does. A problem with the simulations is that equilibrati
times are very long for small values ofh/J and T/J. We
have tried to overcome this problem by performing simu
tions with three kinds of dynamics. However, even with t
fastest dynamics, we have been able to obtain reliable
only for relatively small system sizes (L<18). We have also
carried out exact numerical evaluations of averages u
transfer matrices for small samples. The results obtai
from these numerical calculations are described below.

A. Single-spin-flip Metropolis dynamics

In Fig. 9 we show the results of a MC simulation usin
the standard single-spin-flip Metropolis dynamics.10 We
have plotted the staggered magnetizationm as a function of
temperatureT for a heating run and a cooling run on

FIG. 8. The equilibrium string densitypm plotted as a function
of the temperatureT ~measured in units ofh) for the noninteracting
string model.
t
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636 system. The staggered field and the coupling cons
are set toh50.05 andJ51.0, respectively~unless otherwise
stated, all the numerical results reported in this section
for J51.0!. The data shown were obtained by averagi
over 106 MC steps per spin~MCS!. The heating run was
started from the ground state in the zero-string sector and
cooling run started from a random spin configuration. It
clear from the data that even for this small system, equilib
tion is not obtained for temperatures lower than about 0
We also examined the states obtained by starting the sys
in a random configuration and then quenching it instan
neously to zero temperature. We find that the system t
goes to the lowest-energy state in one of the many sec
For example, in the simulation corresponding to Fig. 9,
system reached the zero-string ground state. On heating
system continues to be in the zero-string sector until at so
temperature value it jumps to the high-temperature phase
the other hand, a slow cooling from the high-temperat
phase leads to the lowest-energy state in thep5(2/3) sector
and the true zero-string ground state is not reached.

These results can be understood as follows. As discus
in the preceding section, the ground state lies in the ze
string sector, and the excitations withinG from the ground
state correspond to the formation of an even number
strings. The single-spin-flip dynamics is reasonably effici
in exploring the states within a sector with a fixed number
strings. However, at low temperatures, it is extremely in
fective in changing the number of strings. In fact, even w
zero external field, the single-spin-flip dynamics at zero te
perature is nonergodic and only samples states within a g
sector. At finite temperatures, the only way to change
number of strings is through moves which take the syst
out of G. These moves cost energy of orderJ. At low tem-
peratures, the probability of acceptance of such moves
comes extremely small. Thus in Fig. 9, during the heat
run, the system starts from the ground state in the zero-st
sector and stays stuck in it till the temperature is sufficien

FIG. 9. Results for the staggered magnetizationm, obtained
from single-spin-flip MC heating and cooling runs for a 636 sys-
tem with h50.05 andJ51. Also shown are the results of exa
numerical evaluation of the staggered magnetization forJ51, and
the staggered magnetization in thep52/3 sector forJ→`.
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PRB 61 6233TRIANGULAR ISING ANTIFERROMAGNET IN A . . .
high. At high temperatures, thep52/3 sector is most prob
able~note that at very high temperatures, the string pictur
no longer valid! and during the cooling run, the system sta
from this sector and again stays stuck in this sector since
dynamics cannot reduce the number of strings. Thus
cooling curve basically shows equilibrium properties with
the p52/3 sector.

We have verified the above picture by an exact numer
evaluation of the staggered magnetization for a 636 system.
This is done by numerically computing the two sums th
occur in the expression

m5
1

N
^M &5

1

N

Tr@M ~V(1)V(2)!L/2#

Tr@~V(1)V(2)!L/2#
, ~13!

whereV(1),(2) are the usual row-to-row transfer matrices a
M is a diagonal matrix corresponding to the staggered m
netization. Similarly one can compute the staggered sus
tibility x defined as

x5
1

N
@^M2&2^M &2#. ~14!

This exact evaluation can, however, be done only for sm
systems since this procedure involves using very large
trices. For finiteJ, we have been able to do this calculatio
only for L<6. ForJ→`, the transfer matrices become bloc
diagonal, and this means that one can perform separatel
computations in each block that are of smaller size. In t
case, we have been able to go up to system sizeL512. Note
that in this limit, we can also compute the thermodynam
properties in each sector. In Fig. 9, we have plotted the e
results form obtained from the full partition function with
J51, as well as the results form in the p52/3 sector for
infinite J. It is readily seen that our picture of the syste
getting stuck in thep52/3 sector during the cooling run i
correct.

The counter-intuitive results of the quenching process
also be understood using the above picture. After the que
domains of spins pointing in and opposite to the direction
the staggered field begin forming. Only spins on the bou
aries of the domains can flip, leading to motion of the d
main walls. This motion is biased, favoring the growth of t
domains aligned with the staggered field. Now we recall t
any nonzero string configuration will have domains of m
aligned spins spanning the entire lattice. Clearly, it is
tremely unlikely that the biased domain growth process w
lead to such configurations. We have checked in our sim
tions that as the system size is increased, the probabilit
the quench leading to the zero-string sector approaches u
To further clarify this process, we show in Fig. 10 differe
stages in the evolution of a 24324 system following a zero
temperature quench from a random initial state. The field
set at the valueh50.05. It can be seen that the domains
misaligned spins rapidly vanish. On the other hand, in F
11 we show aT50.4 equilibrium spin configuration and th
result of quenching it toT50. In this case the system ge
stuck in thep52/3 sector.
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B. String dynamics

To speed up the dynamics, it is necessary to be abl
efficiently change the number of strings. A straightforwa
way of doing this is to introduce moves that attempt to fl
an entire vertical line of spins. Such moves are accepte
rejected according to the usual Metropolis rules. Combin
these moves with the single-spin-flip ones makes the dyn
ics ergodic at zero-temperature in the absence of the field
Fig. 12, we show the results of simulations with the stri

FIG. 10. Three stages in the evolution of the system, follow
a zero-temperature quench from a random initial state. The firs
the initial configuration and the other two are configurations o
tained after 2 and 4 MC sweeps. The dark and bright regions i
cate spins pointing along and opposite to the direction of the s
gered fields, respectively.

FIG. 11. A configuration that is at equilibrium atT50.4 and the
configuration resulting from quenching it toT50. It can be seen
that the final configuration consists of tightly bound strings and
the lowest-energy state in thep52/3 sector.
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dynamics, again for a 636 system. The values ofJ andh are
the same as those for the data shown in Fig. 9, and
averaging is over the same number of MCS. The excel
agreement with the exact results shows that equilibra
times have been greatly reduced. We have also shown in
12 simulation results for a 12312 system. Again there is
very good agreement with the exact results, which, as no
above, were obtained by settingJ→`.

To determine the existence of a phase transition, we h
performed simulations with the above dynamics and stud
the dependence of the staggered susceptibilityx on the sys-
tem size for different values of the field. The results a
summarized in Figs. 13, 14, and 15. The data in Fig.
correspond to a low-field value,h50.05. The number of
MCS used for computing the averages is 106, 107, and
43108 for the three system sizes,L56, 12, and 18, respec
tively. For system sizesL56 andL512, we also show the
exact transfer-matrix results. Even though theL512
transfer-matrix results are forJ→`, we find very good
agreement with the simulation data. This is because exc
tions out ofG, which involve energies of orderJ, are very
much suppressed at the low temperatures considered.
L518 MC data are not as smooth as the data for sma
sample sizes, indicating that the errors in the calculation
averages are significant in spite of averaging over a v
large number of MCS. Thus, even with the string dynami
we have not been able to attain equilibration for syste
with L.18.

The close agreement between the MC results forJ51 and
the exact transfer-matrix results forJ→` indicates that the
MC results for the system sizes considered are represent
of theJ→` limit. In Sec. III, we established the existence
a finite-temperature phase transition in this limit. Our M
results indicate that this transition occurs nearT.2.5h,
which is substantially higher than the lower bound,h/ ln(2),
derived in Sec. III. To determine whether this transition is

FIG. 12. Staggered magnetizationm versus temperatureT for
h50.05, J51. The data for system sizesL56, 12, and 18 were
obtained from MC simulations using string dynamics. Exa
transfer-matrix results forL56 and for L512 (J→`) are also
shown.
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K-type, we have examined the dependence ofxp , the peak
value of the staggered susceptibilityx, on the system sizeL.
In theJ→` limit, the staggered susceptibility is proportion
to the specific heat that diverges as (T2Tc)

21/2 in a K-type
transition. This implies that the susceptibility exponentg
51/2, and the correlation length exponentn is equal to 3/4.
According to standard finite-size scaling,11 xp then should be
proportional toLg/n5L2/3. As shown in Fig. 16, our numeri
cal data are in good agreement with this expectation. W
therefore, conclude that our model undergoes aK-type tran-
sition in theJ→` limit.

In Fig. 14, we show simulation results for an intermedia
field value, h50.25. In this case, for system sizesL

t

FIG. 13. Staggered susceptibilityx versus temperatureT for h
50.05, J51. The data for system sizesL56, 12, and 18 were
obtained from MC simulations using string dynamics. Exa
transfer-matrix results forL56 and for L512 (J→`) are also
shown.

FIG. 14. Staggered susceptibilityx versus temperatureT for h
50.25, J51. The data for system sizesL56, 12, 18, and 24 were
obtained from MC simulations using string dynamics. Exa
transfer-matrix results forL56 are also shown.
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56, 12, 18, and 24, equilibrium values were obtained
averaging over 23106, 53106, 23107, and 53107 MCS,
respectively. As in theh50.05 case, the peak ofx occurs
near T.2.5h, and the peak value ofx increases asL is
increased. Finally, in Fig. 15, we have shown the results
a high-field value,h50.4. In this case, equilibration time
are quite small and we can simulate relatively large syste
without any difficulty. All the MC data shown in Fig. 15
were obtained with averaging over only 23105 MCS. We
find that in this case, the staggered susceptibility saturate
L>12, and clearly there is no phase transition.

In Fig. 16, we have plottedxp , the value of the staggere
susceptibility at the peak, against the system sizeL for the

FIG. 15. Staggered susceptibilityx versus temperatureT for h
50.4, J51. The data for system sizesL56, 12, 18, and 24 were
obtained from MC simulations using string dynamics. Exa
transfer-matrix results forL56 are also shown.

FIG. 16. The susceptibility maximumxp plotted against the
system sizeL for three different values~0.05, 0.25, and 0.4! of the
staggered fieldh. The solid lines correspond to the power-law for
xp}L2/3.
y

r

s

for

three different fields. As noted above, we getxp;L2/3 for
h50.05. For h50.25, the values ofxp for L56 and L
512 are consistent with this power-law form, but the da
for higher values ofL show deviations from this form and
signs of saturation. Finally, forh50.4, the peak value ofx
clearly saturates forL>12.

Taken at face value, these results would imply that foJ
51, there is aK-type transition forh50.05, but no transition
for h50.25 andh50.4. In other words, there is a phas
transition for smallh, which disappears beyond a critica
value of the field. This naive interpretation of the data
questionable because a line of continuous phase transi
in the h-T plane is very unlikely to end abruptly at som
point. A more plausible interpretation is that the system w
finite J does not exhibit a true phase transition for any va
of the staggered field—the signature of a phase transi
found in the scaling behavior of the data for smallh is a
remnant of the transition in theJ→` limit. The behavior of
a system with finiteJ would differ from that in theJ→`
limit only if the values of the parametersJ, T, and L are
such that excitations out of the manifoldG are not strongly
suppressed. Since the typical value of the local field in
configuration inG is 2J, the typical energy cost associate
with a single-spin-flip excitation out of this manifold is 4J.
Since this excitation can occur at any site of the lattice,
free-energy cost of such an excitation is approximately giv
by dF.4J22T ln L. Such excitations are likely to occur i
dF<0, which corresponds toL>Lc5e2J/T. The values of
Lc at temperatures near the peak ofx are'107, 28, and 7.4
for h50.05, 0.25, and 0.4, respectively. In view of the ve
large value ofLc for h50.05, it is not surprising that the MC
results form andx for h50.05, J51.0, andL<18 are es-
sentially identical to the results for the same value ofh in the
J→` limit. The power-law scaling of the data forxp at h
50.05 can then be attributed to the occurrence of a ph
transition in theJ→` limit. The observation that forh
50.25, the numerical data forxp show deviations from
power-law scaling withL and signs of saturation forL>24 is
also consistent with this interpretation. The small value ofLc
for h50.4 implies that the effects ofJ being finite should be
evident even in the small samples we consider. The fact
the data forh50.4 clearly indicate the absence of any pha
transition is, thus, consistent with the interpretation that th
is no phase transition for finiteJ.

While the scenario described above is consistent with
our numerical data, we cannot be absolutely sure that
correct—data for much larger systems would be needed f
conclusive answer to the question of whether a phase tra
tion occurs for finiteJ. We note that even if our interpreta
tion is correct, the behavior of finite samples with finiteJ
would look very similar to that near a true phase transition
h/J is small. In such cases, the value ofxp will continue to
grow with L as a power law untilL becomes comparable t
Lc , at which pointxp will saturate. SinceLc depends expo-
nentially onJ/h, it would be very large forh/J!1.

C. Cluster dynamics

We have also performed simulations using a clus
method. We briefly report our results here. This method w
introduced by Kandelet al.12 for the study of frustrated sys

t
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tems. Recently Zhang and Yang13 have applied this algo
rithm to the zero-field TIAFM. We have modified this algo
rithm to take into account the presence of the staggered fi
The cluster algorithm is usually implemented in two steps
the first step, one performs a ‘‘freeze-delete’’ operation
the bonds using a fixed set of rules,12,13 which results in the
formation of independent clusters. The second step con
in flipping these clusters. In our modified algorithm, the fi
step is unchanged. The freeze-delete operations are ex
as in Ref. 13 and are effected without considering the ene
associated with the staggered field. In the second step
calculate the staggered-field energy of every cluster and
flip it using heat-bath rules. It can be proved that this pro
dure satisfies the detailed balance condition.

The cluster dynamics performs better than the single-s
flip dynamics and we have been able to obtain equilibri
averages for aL56 system (J51, h50.05) with 106 MCS.
However, for bigger system sizes (L>12), we have not been
able to achieve equilibration even with runs over 108 MCS.
Thus this dynamics is much slower than the string dynam
This is due to the following reason. While the cluster dyna
ics does allow the number of strings to change, the clus
formed at low temperatures are quite large and the proba
ity of flipping them becomes very small. In order to obta
quantitative comparisons of the three different dynamics,
have studied the autocorrelation function,

C~t!5
^M ~t!M ~0!&2^M &2

^M2&2^M &2
, ~15!

where M is the total staggered magnetization andt is the
‘‘time’’ measured in units of MCS. In Figs. 17 and 18, w
plot the results forC(t) obtained from simulations usin
different dynamics at two different temperatures. The d
correspond to aL56 lattice and the averaging was carrie
out over 107 MCS in all the cases. We note that the sing

FIG. 17. Autocorrelation functionC(t) of the staggered mag
netization, obtained from the three different dynamics at a comp
tively high temperature,T50.4. The data are for a 636 sample
with J51, h50.05. The ‘‘time’’ t is measured in units of MC
steps per spin.
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spin-flip dynamics leads to a two-step relaxation—a fast o
corresponding to equilibration within a sector and a slow
one in which different sectors are sampled. The res
shown in these figures also demonstrate the superiority of
string dynamics over the other two methods at both high
low temperatures.

V. SUMMARY AND DISCUSSION

In summary, we have studied the equilibrium propert
of a triangular Ising antiferromagnet in the presence of
ordering field, which is conjugate to one of the degener
ground states. We have addressed the question of wheth
phase transition can occur in this system. Using a mappin
the TIAFM ground states to dimer coverings, we find tha
is possible to obtain a very detailed description of the lo
lying energy states. In the limiting case of the coupling co
stantJ→`, we show that the problem reduces to that of a
of nonintersecting strings with long-range interactions. F
this limiting case, we prove existence of a transition th
appears to beK-type. For finiteJ, we have studied the system
using exact numerical evaluation of the staggered magn
zation and susceptibility by transfer-matrix methods, a
also by MC simulations using three different dynamics. W
find that the dimer description also helps in understand
the dynamics and in finding methods of improving the e
ciency of the MC simulation. A single-spin-flip dynamics
very inefficient in sampling different string sectors and
low temperatures, the system stays stuck within a sector
shows thermodynamic behavior corresponding to that sec
A cluster dynamics method improves over the single-sp
flip dynamics, but is still very slow at low temperatures. W
have developed a dynamics that allows moves that add
remove pairs of strings. As expected, this greatly redu
equilibration times. However, even with this increased e
ciency, we have not been able to equilibrate systems w
L.18 in the interesting region of low-field values (h/J

a-
FIG. 18. Autocorrelation functionC(t) of the staggered mag

netization, obtained from string and cluster dynamics at a low te
perature,T50.125. The data are for a 636 sample withJ51,h
50.05. The ‘‘time’’ t is measured in units of MC steps per spin
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!1). Hence our results on possible phase transitions fo
nite J are inconclusive, although there are indications tha
true phase transition does not occur for finiteJ.

We close with a few comments on possible connecti
of the system studied here with supercooled liquids near
structural glass transition. The phase transition we found
our model in theJ→` limit is similar in nature to the
Gibbs–Di Marzio scenario14 for the structural glass trans
tion. In the Gibbs–Di Marzio picture, the structural gla
transition is supposed to be driven by an ‘‘entropy crisi
resulting from a vanishing of the configurational entropy
the transition is approached from the high-temperature s
A similar vanishing of the entropy occurs at the phase tr
fi-
a

s
e

in

’
s
e.
-

sition in our model. It is interesting to note in this conte
that a ‘‘compressible’’ TIAFM model in which the ground
state degeneracy is lifted by a coupling of the spins w
lattice degrees of freedom has been proposed16 as a simple
spin model of glassy behavior. In view of these similariti
with the structural glass problem, a detailed study of
dynamic behavior of our model would be very interesting
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