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Triangular Ising antiferromagnet in a staggered field
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We study the equilibrium properties of the nearest-neighbor Ising antiferromagnet on a triangular lattice in
the presence of a staggered field conjugate to one of the degenerate ground states. Using a mapping of the
ground states of the model without the staggered field to dimer coverings on the dual lattice, we classify the
ground states into sectors specified by the number of “strings.” We show that the effect of the staggered field
is to generate long-range interactions between strings. In the limiting case of the antiferromagnetic coupling
constant] becoming infinitely large, we prove the existence of a phase transition in this system and obtain a
finite lower bound for the transition temperature. For fiditeve study the equilibrium properties of the system
using Monte Carlo simulations with three different dynamics. We find that in all the three cases, equilibration
times for low-field values increase rapidly with system size at low temperatures. Due to this difficulty in
equilibrating sufficiently large systems at low temperatures, our finite-size scaling analysis of the numerical
results does not permit a definite conclusion about the existence of a phase transition for finite values of
surprising feature in the system is the fact that unlike usual glassy systems, a zero-temperature quench almost
always leads to the ground state, while a slow cooling does not.

[. INTRODUCTION of a uniform field, simulations and renormalization-group
argument? indicate that there is a second-order transition
The triangular Ising antiferromagnéfIAFM), described  belonging to the three-state Potts model universality class.
by the Hamiltonian A particularly interesting special case is the limit in which
the system is restricted to remain within the manifold of the
TIAFM ground states. This can be achieved by making the
coupling constang infinitely large. One then considers the
effects of degeneracy breaking terms. In this limit, the nature
wheres;=*1 and(i,j) denotes nearest-neighbor sites on aof the transition changes. In the case of anisotropic cou-
triangular lattice, provides an interesting example of a frusplings, the transition changes from Ising-like to Kastelyn-
trated system without disorder. Unlike the nearest-neighbotype (K-type).5 Below T., the system freezes into the
Ising antiferromagnet on a square lattice, this model does n@round state and the specific heat vanishes identicallyl. As
have a finite-temperature phase transition. It has an exponeis approached from the high-temperature side, the specific
tially large number of degenerate ground states, which imheat shows aT— T,) Y2 singularity. In the case of a uni-
plies that the zero-temperature entropy per spin is finite. Théorm applied field, the transition is believed to be of
zero-field partition function can be computed exactly, lead-Kosterlitz-Thouless typé.This case is treated by first map-
ing to the resulS(T=0)=0.338 ... (Ref. 1) for the zero- ping the problem to a solid-on-solid model and then using
temperature entropy per spin. At zero temperature, the sysenormalization-group arguments.
tem is critical and the two-spin correlation function decays as In this paper, we study the behavior of the TIAFM in the
a power lawgc(r)~cos(2r/3)/r'2 along the three principal presence of a staggered field chosen to be conjugate to one of
directions? The ground states of the TIAFM can be mappedthe ground states. Our work is motivated in part by similar
exactly to dimer coverings on the dual lattice, which isstudies on glassy systefnsith exponentially large number
hexagonaf. Using this mapping, it is possible to classify the of metastable states. These studies consider the thermody-
ground states into sectors specified by the number ofiamic behavior of such systems in the presence of a field
“strings” that represent the difference between two dimerconjugate to a typical configuration of an identical replica of
coverings. the system. As the strength of the field is increased from
The exponential degeneracy of the ground state of theero, the system is found to undergo a first-order transition in
TIAFM can be removed in various ways, e.g., by choosingwhich the overlap with the selected configuration changes
different coupling constants along the three principal direc-discontinuously. This transition is driven by the competition
tions, or by introducing a uniform field. Both these casesbetween the energy associated with the field term and the
have been extensively studied. For anisotropic couplings, theonfigurational entropy arising from the presence of an ex-
problem is exactly solvabfeand one finds a usual Ising-like ponentially large number of metastable states. Like these
second-order phase transition except in some special casgkssy systems, the TIAFM has frustration and an exponen-
for which the transition temperature goes to zero. In the casgally large number of ground states. Thus it is of interest to

H=J<Z> ss; J>0, (1)
1)
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investigate whether a similar behavior is present in thewhat different from the existing ones. In Sec. lll, we con-
TIAFM, which is a simpler model with no externally im- sider the TIAFM with an applied staggered field in the limit
posed quenched disorder. Besides, the question of whethelda-. The mapping of this system to a one-dimensional fer-
phase transition can occur in the TIAFM in the presence ofnion model is described and a finite lower bound for the
an ordering field is interesting by itself. For systems with atransition temperature is derived. In Sec. IV, we present our
finite number of ground states, such as the purely ferromagiumerical results for the equilibrium properties at finite
netic Ising model and the Ising antiferromagnet on a bipartiteThese results are obtained from_exact numerical evaluation
lattice, it can be proved that no phase transition can occur iff @verages using transfer matrices and also through MC
the presence of ordering fieldsHowever, no such general simulations. We_ also discuss the dynamic _behawor of_ the
proof exists for systems with an exponentially large numbeSyStem under different MC procedures. Section V contains a
of ground states, and the question of whether a competitionummary of our main results and a few concluding remarks.

between the energy associated with the ordering field and the

ext(;nswe ground—st{:\te entropy can drive a phase transition in Il. MAPPING OF TIAEM GROUND STATES
S“ﬁ_hSVStems reg‘?'”lz open. dered b _ _ TO DIMER COVERINGS AND CLASSIFICATION
e Staggere e consilaere y us Is conjugate to a INTO STRING SECTORS

ground state with alternate rows of up and down spins. In the
lattice-gas picture of the Ising model, this corresponds to an The frustration of the TIAFM arises from the fact that it is
applied potential that is periodic in the direction transverse tampossible to satisfy all three bonds of any elementary
the rows. In the presence of the field, there are a large nunplaquette of the triangular lattice. At most we can have two
ber of low-lying energy states and this suggests the possibibonds satisfied. The lowest-energy configuration of the sys-
ity of an interesting phase transition as the temperature i&em is one in which every elementary triangle is maximally
varied. We consider the case where the coupling condtiant satisfied. This condition can be satisfied for a large number
finite, as well as the limig—<. In the latter limit, one con- of configurations and for future reference we shall denote the
siders only the set of states that are ground states of theet of all such states hy. We now show the correspondence
TIAFM Hamiltonian of Eq.(1). In this limit, we show that between the ground states and dimer coverings on the dual
the problem of evaluating the partition function reduces tolattice. The dual lattice is formed by taking the centers of all
calculating the largest eigenvalue of a one-dimensional ferthe triangles. Consider any two triangles that share a bond. If
mion Hamiltonian with long-range Coulombic interactions. the bond is not satisfied, we place a dimer connecting the
We have not been able to solve this problem but have obeenters of the two triangles. The fact that every triangle has
tained a finite lower bound for the transition temperature.one and only one unsatisfied bond implies that every point of
The transition appears to betype. the dual lattice forms the end point of one and only one
For finite J, we have studied the equilibrium behavior of dimer. Hence we obtain a dimer covering. This mapping is
the system by Monte CarlMC) simulations using three not unique, since flipping all spins in any given spin configu-
different kinds of dynamics(1) single-spin-flip Metropolis ration leads to the same dimer covering. In Fig. 1 we show a
dynamics,(2) cluster dynamics, an(B) “string” dynamics  ground-state configuration and the corresponding dimer cov-
in which all the spins on a line are allowed to flip simulta- ering. Another dimer covering that corresponds to a ground
neously. We find that in all three cases, equilibration times astate with alternate rows of up and down spins is shown in
low fields and low temperatures increase rapidly with systentig. 2. We shall call this the standard configuration. It is
size. The last dynamics is found to be the most efficient onémportant to choose the boundary conditions in a convenient
for equilibrating the system in this regime. Finite-size scalingmanner and we follow the convention used in Fig. 1 with
analysis of the data for small fields suggests the existence @feriodicity in thex andy directions.
a characteristic temperature near which the correlation length A useful classification of the ground states is obtained by
becomes very large. However, because of the long equilibrasuperposing the standard dimer configuration with any other
tion times, we have not been able to study large enoughlimer configuration. This results in string configurations as
systems to be able to answer conclusively the question athown, for example, in Fig. 3, which is obtained by super-
whether this corresponds to a true phase transition. posing the standard configuration of Fig. 2 with the configu-
One surprising finding of our study concerns zero-ration of Fig. 1. Clearly there is a one-to-one correspondence
temperature quenches of the system, starting from randoimetween string and dimer configurations.
initial configurations. We show that the system almost al- It is easy to prove the following point¢i) the number of
ways reaches the ground state in such quenches. On the otlstrings passing though every row is conserv@dthe strings
hand, a slow cooling of the system leads to a metastabldo not intersect(iii) the number of strings can be any even
state. This is contrary to what happens in usual glassy systumber from 0 td., whereL is the number of spins in a row;
tems where a fast quench usually leads to the system gettin{ey) the periodic boundary conditions mean that the strings
stuck in a higher-energy state, while a slow cooling leads tdave to match at the boundaries and form closed loops.
the ground state with a high probability. We classify the ground states into different sectors, with
The paper is organized as follows. In Sec. Il, we consideeach sector specified by the number of strings. The number
the TIAFM in zero field and describe the mapping from theof states in each sector can be counted exactly using transfer
ground states to dimer coverings and the subsequent classiatrices. Let us label the bonds on successive rows of the
fication of the ground states into sectors. Many of the resulttattice in the manner shown in Fig. 4. The position of the
in this section are well-known, but we have included themstrings on each row is specified by the set of numbers
for the sake of completeness. Also our description is somefb, ,b,, ...b,}, where b, gives the position of theth
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FIG. 1. A ground-state configuration and the corresponding FIG. 3. A configuration of strings obtained by superposing the
dimer covering for a & 6 lattice. Periodic boundary conditions are dimer configurations in Fig. 1 and Fig. 2.
applied in the horizontal and vertical directions. The crosses corre-

spond to repeated points. N(n):Tr(T(l)T(Z))L/Z’ ()

string. Note tha{b,} give the positions of the satisfied bonds Where we choose, for convenience, the length of the lalttice
in a row. In a sector withn strings we consider the to be even.

LCnXLCn matrix, which has nonvanishing entries equa| to As an example let us consider the transfer matrix in the
one if the two states can be connected by string configurdWo-string sector. This is given by

tions. We need two different transfer matrices, nan&f, W

which transfers from odd-numbered rows to even-numbered T(i; 1,)|(5.1,)= O1;.1500,.0,1 01 15-101,1,F 61 1,61,.1,-1

ones andT(®, which transfers from even to odd ones. The

total number of states in any given sector is then given by +3i,,1,-10,0,-1 for I,#I,+1,

FIG. 2. The standard configuration of dimers. FIG. 4. Labeling of successive rows on &6 lattice.
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1
TE|1),|1+1)\(|3,|4): 011501411, 01 1,01, +1),-1
O 1,-101,+1),-1- ()

The matrix is diagonalized by the antisymmetrized plane-
wave eigenstates

all’|2:ei(Q1|1+QZ|2)_ei(Q1|2+Q2|1), 0:<0,. (4)

The periodic boundary condition leads to the following val-
ues for the wave vectorsg=(2n;+1)a/L, with n;
=0,1,2...L—1. The eigenvalues are given by

D= (14 ) (1+ %), ®)

The matrixT®) has the same set of eigenvectors, while the
eigenvalues are given by

D= (1+e ) (1+e %), ®

The results for the two-string sector can be generalized to
any of the other sectors. The transfer matri¢€s and T(?)
in any sector are diagonalized by antisymmetrized plane- FIG. 5. A configuration of two strings that corresponds to the
wave states. This just reflects the fact that the strings can Hewest-energy state in this sector. This configuration is obtained by
thought of as the world lines of noninteracting fermions. Thestarting with the ground state and flipping a line of syihe circled
eigenvalues in the-string sector are ones. The strings are closely packed and all the spins in the region
between them point opposite to the local applied fields.

n
)\(—1): H (1+eiQK), III. SPLITTING OF LEVELS IN THE PRESENCE
9 k=1 OF A STAGGERED FIELD: THE J—o LIMIT

n In the presence of a staggered fibldhat is conjugate to
)\Q):H (1+e"1%) 7) one of the ground states of the TIAFM, the macroscopic
a =1 ' degeneracy of the ground state is lifted. The field we con-
sider is conjugate to the state corresponding to the standard
with s as before. The number of states in thstring sec-  dimer configuration(Fig. 2). There are two such spin con-

tor is thus given by figurations and we choose the one that has all up spins on the
first row. Note that in the presence of the field, any two states
M) =Tr(TOT@)HL2 related by the flipping of all the spins have the same string

representation but different energies. To remove this ambi-
guity, we use an additional label for the string states, which
®) we take as the sign of the first spin in the first row. The spin
configuration on any row is then fully specified by the set

In the largeL limit, only the dominant term in the above sum (S,b1,b5, .. .by).

L/2

n
{H (1+e'%)(1+e %)
g1<dp....q, [ k=1

contributes and we finally obtain Let us now look at the effect of the field in splitting the
energy levels in each sector. In the zero-string sector there
N(p):eLZa(p) are two states, one corresponding to the ground state and the

other, obtained by flipping all spins, to the highest-energy
state. The lowest-energy states in the two-string sector can be
a(p)=pln2+ Eprlzdxln[cos(x)] 9) generated by starting with the ground-state spin configura-
m)o ' tion and flipping a line of spins as shown in Fig. 5. Figure 6
shows a higher-energy two-string state. Note that the strings
wherep=n/L is the fraction of stringg“string density”). ~ separate the lattice into two domains, one in which all the
Thus every sector with nonzemhas an exponentially large spins point along the staggered-field directions and another
number of states. in which they point opposite to the field. This is, in general,
We note that the functiom(p) is peaked ap=2/3 and true for anyn-string state where the strings divide the lattice
the entropy of this sectoi$S= a(2/3), reproduces the well- into n domains, with spins in alternate domains pointing
known result of Wannier for the zero-temperature entropy ofalong and opposite to the staggered fields. The lowest-energy
the TIAFM. Thus we have rederived Wannier's result andconfiguration in any sector is clearly the state with alternate
also shown that most of the states are in the sector witlpairs of strings tightly packed. For the sector in which the
string density equal to 2/3. string density i, the lowest energy per spin is
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f(p)

FIG. 7. The dimensionless free enerffyp) of the noninteract-
ing model, plotted as a function of the string densityat two
different temperaturesl,=2.5h, which is aboveT., andT,=h,
which is belowT,.

FIG. 6. A higher-energy configuration in the two-string sector. It
can be seen that the strings divide the lattice into two domains witother words, the transition temperature of the noninteracting
the spins in one domain being along the applied field and oppositenodel provides a lower bound to the transition temperature

to it (the circled spingin the other domain. of the interacting model.
The partition function of the noninteracting model may be
eg(p)=—(1-ph, (1o ~ Written as
where for the casd—« being considered here, we have Z=>, eNe(P)~ANey(p)
subtracted the infinite constant energy ternd. p

Because of the conservation of the number of strings
across rows, the transfer matrix is block diagonal, each block
corresponding to a fixed string sector. In the zero-field casgnere 3= 1/T andp,, is the value ofp corresponding to the

the strings are noninteracting and the problem reduced essegyinimum of the functiorf (p) = — a(p) + Be4(p). Using Eq.
tially to that of free fermions on a line. In the present caseg) and Eq.(10), we get ’

however, the energy increases when the separation between

— eNla(Pm) — Beg(Pr)] (11)

two strings is increased. In fact, it is easy to see that this case pPm=0, T<T,,
reduces to a one-dimensional fermion problem in which ev-
ery alternate pair of fermions interact with each other via an 2 e
ive li - i i : =—cos | —|, T>T (12)
attractive linear potential. It is then no longer simple to di- Pm pm > | c

agonalize the transfer matrix. However, through the follow-

ing argument we prove the existence of a phase transitiowith Tc=h/In(2). Thus, there exists a sharp transition at a
and obtain a lower bound for the transition temperature. Afinite temperaturd, the number of strings being identically
zero temperature, the system will be in the ground state izero below this temperature. In Fig. 7, we show the dimen-
the zero-string sector. As the temperature is increased, trgionless free-energy functioi{p) at two different tempera-
entropic factor associated with the other sectors becomes intdres, one above and one beldw. It can be seen that for
portant and can cause either a gradual or a sharp transition 1o<T, the functionf(p) has its lowest value gi=0. The
other sectors. To determine which of the two possibilitiesminimum of f(p) moves continuously away frop=0 as
actually occurs, we consider the simpler case where ththe temperature is increased abdve approachingp=2/3
strings do not interact and all configurations belonging to then the T— oo limit.

sector with string densityp have the same enerdyey(p), In Fig. 8, we have plottegh,,, the equilibrium value of
whereN=L? is the total number of spins. Since all the statesthe string density obtained from E(l2), as a function of

in this sector have energies greater than or equalég(p) T/h. It is easy to see from Eq12) that p,, grows as T

in the interacting model, a sharp transition in the noninter— T,)? asT is increased abov&,. Since the internal en-
acting case implies a sharp transition in the interactingergy is proportional t@,, in the noninteracting model, the
model. In particular, if the noninteracting model exhibits aspecific heat vanishes identically fd< T, and diverges as
transition at temperaturg,, so that it is frozen in the ground (T—T.) Y2 for T approaching. from above. Thus we get a
state in the zero-string sector fo<T,., then the interacting K-type transition that is expected because of the equivalence
model must also be in the ground state for B¥T.. In  of our system to dimer models. While this proves the exis-
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FIG. 8. The equilibrium string density,, plotted as a function FIG. 9. Results for the staggered magnetizationobtained
of the temperatur@ (measured in units df) for the noninteracting from single-spin-flip MC heating and cooling runs for x6 sys-
string model. tem with h=0.05 andJ=1. Also shown are the results of exact

numerical evaluation of the staggered magnetizationlfed, and

tence of a transition in the interacting model too, it is notthe staggered magnetization in the=2/3 sector forJ—.
clear whether the nature of the transition is the sahieis
guite possible that the long-range interactions between th
strings would result in a transition in a different universality
class. This issue is addressed in the next section.

It is interesting to compare our model with the model with
anisotropic couplings studied by Béand Hilhorsf Con-
sider the case when the horizontal couplings have strengt
(J—A) and the remaining two are of strengthin the limit
J—, we need to consider only the states witlginin this
case too, the ground state lies in the zero-string sector but

6X 6 system. The staggered field and the coupling constant
&re set tch=0.05 andJ=1.0, respectivelyunless otherwise
stated, all the numerical results reported in this section are
for J=1.0. The data shown were obtained by averaging
over 1¢ MC steps per spifMCS). The heating run was
tarted from the ground state in the zero-string sector and the
ooling run started from a random spin configuration. It is
clear from the data that even for this small system, equilibra-
tion is not obtained for temperatures lower than about 0.3.

. . ) e also examined the states obtained by starting the system
twofold degenerate since the up-down symmetry is retaine y g Y

Th i inin the f £ stri but h a random configuration and then quenching it instanta-
€ excitations are again in the form of strings but are nor"neously to zero temperature. We find that the system then

interacting and so equivalent to the excitations in the simpli- oes to the lowest-energy state in one of the many sectors
fied model c_onsidered by us. !n fact the express_ion for th or example, in the simulation corresponding to Fig. 9, the .
frge energy in Eq(_ll) fp!lows directly from Eq.(2) in Ref. system reached the zero-string ground state. On heating, the
6 if we make the identificatioh=2A. system continues to be in the zero-string sector until at some
temperature value it jumps to the high-temperature phase. On
IV. MC SIMULATIONS AND TRANSFER-MATRIX the other hand, a slow cooling from the high-temperature
CALCULATIONS FOR FINITE J phase leads to the lowest-energy state inpthe(2/3) sector

For finite J, we have carried out MC simulations to deter- 2"d the true zero-string ground state is not reached.
mine whether the phase transition persists and its nature if jt | N€S€ results can be understood as follows. As discussed

does. A problem with the simulations is that equilibration'n the preceding section, the ground state lies in the zero-
times are very long for small values 6fJ and T/J. We string sector, and the excitations withfhfrom the ground

have tried to overcome this problem by performing simula-St&t€ correspond to the formation of an even number of
tions with three kinds of dynamics. However, even with theStfings. The single-spin-flip dynamics is reasonably efficient
fastest dynamics, we have been able to obtain reliable dafg &xPloring the states within a sector with a fixed number of
only for relatively small system sizes & 18). We have also strings. However, at low temperatures, it is extremely inef-

carried out exact numerical evaluations of averages usinffctive In changing the number of strings. In fact, even with
transfer matrices for small samples. The results obtained€"© €xternal field, the single-spin-flip dynamics at zero tem-

from these numerical calculations are described below.  Perature is nonergodic and only samples states within a given
sector. At finite temperatures, the only way to change the

number of strings is through moves which take the system
out of G. These moves cost energy of orderAt low tem-

In Fig. 9 we show the results of a MC simulation using peratures, the probability of acceptance of such moves be-
the standard single-spin-flip Metropolis dynami@sWe  comes extremely small. Thus in Fig. 9, during the heating
have plotted the staggered magnetizatioas a function of  run, the system starts from the ground state in the zero-string
temperatureT for a heating run and a cooling run on a sector and stays stuck in it till the temperature is sufficiently

A. Single-spin-flip Metropolis dynamics
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high. At high temperatures, the=2/3 sector is most prob-
able(note that at very high temperatures, the string picture is
no longer valid and during the cooling run, the system starts
from this sector and again stays stuck in this sector since the
dynamics cannot reduce the number of strings. Thus the
cooling curve basically shows equilibrium properties within
the p=2/3 sector.

We have verified the above picture by an exact numerical
evaluation of the staggered magnetization foragsystem.
This is done by numerically computing the two sums that
occur in the expression

1 LTI M(VIIV)H
m= N<M>—N Tr[(VDV@)Li2] (13

whereV():(2) gre the usual row-to-row transfer matrices and
M is a diagonal matrix corresponding to the staggered mag-
netization. Similarly one can compute the staggered suscep-

tibility x defined as FIG. 10. Three stages in the evolution of the system, following
a zero-temperature quench from a random initial state. The first is
the initial configuration and the other two are configurations ob-
Y= i[(M2>—(M>2]. (14) tained after 2 and 4 MC sweeps. The dark and bright regions indi-
N cate spins pointing along and opposite to the direction of the stag-
gered fields, respectively.

This exact evaluation can, however, be done only for small
systems since this procedure involves using very large ma-
trices. For finiteJ, we have been able to do this calculation To speed up the dynamics, it is necessary to be able to
only for L<6. ForJ—x, the transfer matrices become block efficiently change the number of strings. A straightforward
diagonal, and this means that one can perform separately tlveay of doing this is to introduce moves that attempt to flip
computations in each block that are of smaller size. In thisan entire vertical line of spins. Such moves are accepted or
case, we have been able to go up to systemlsiz&2. Note  rejected according to the usual Metropolis rules. Combining
that in this limit, we can also compute the thermodynamicthese moves with the single-spin-flip ones makes the dynam-
properties in each sector. In Fig. 9, we have plotted the exadts ergodic at zero-temperature in the absence of the field. In
results form obtained from the full partition function with Fig. 12, we show the results of simulations with the string
J=1, as well as the results fan in the p=2/3 sector for
infinite J. It is readily seen that our picture of the system
getting stuck in thg=2/3 sector during the cooling run is
correct.

The counter-intuitive results of the quenching process can
also be understood using the above picture. After the quench,
domains of spins pointing in and opposite to the direction of
the staggered field begin forming. Only spins on the bound-
aries of the domains can flip, leading to motion of the do-
main walls. This motion is biased, favoring the growth of the
domains aligned with the staggered field. Now we recall that
any nonzero string configuration will have domains of mis-
aligned spins spanning the entire lattice. Clearly, it is ex-
tremely unlikely that the biased domain growth process will
lead to such configurations. We have checked in our simula-
tions that as the system size is increased, the probability of
the quench leading to the zero-string sector approaches unity.
To further clarify this process, we show in Fig. 10 different
stages in the evolution of a 2824 system following a zero-
temperature quench from a random initial state. The field is
set at the valuér=0.05. It can be seen that the domains of
misaligned spins rapidly vanish. On the other hand, in Fig. F|G. 11. A configuration that is at equilibrium @t=0.4 and the
11 we show al = 0.4 equilibrium spin configuration and the configuration resulting from quenching it =0. It can be seen
result of quenching it tar =0. In this case the system gets that the final configuration consists of tightly bound strings and is
stuck in thep=2/3 sector. the lowest-energy state in thpe=2/3 sector.

B. String dynamics
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FIG. 12. Staggered magnetizatiom versus temperaturé for FIG. 13. Staggered susceptibilify versus temperatur€ for h
h=0.05, J=1. The data for system sizés=6, 12, and 18 were =0.05, J=1. The data for system sizds=6, 12, and 18 were
obtained from MC simulations using string dynamics. EXactobtained from MC simulations using string dynamics. Exact
transfer-matrix results foL =6 and forL=12 (J—=) are also  transfer-matrix results fot =6 and forL=12 (J—x) are also
shown. shown.

dynamics, again for a% 6 system. The values dfandhare ~ K-type, we have examined the dependenceof the peak
the same as those for the data shown in Fig. 9, and th alue of the staggered susceptibiljfy on the system sizk.

averaging is over the same number of MCS. The excellen theJHoo.Ii.mit, the staggered susceptibilitlyzi.s proportional
agreement with the exact results shows that equilibratiortn0 the_ _specmq h(_aat t_hat diverges JS_(TC). _n aK-type
times have been greatly reduced. We have also shown in Fiér_ansmon. This |mp||e§ that the susceptibility exponent
12 simulation results for a 2212 system. Again there is =1/2,d§1nd the cogelgt:cpr? Iength expl)%r;intshequaﬂ tolg’/é"
very good agreement with the exact results, which, as notef¢cording to star)y ar z,gn'te's'ze scaliiy, then should be
above, were obtained by settidg- . proportional t(_)L7 =L“*. As shown In F|g_. 16, our numeri-
To determine the existence of a phase transition, we hav§.‘al data are in good agreement with this expectation. We,
performed simulations with the above dynamics and studie _grefpre,hconcludl_e t_hat our model undergod&-gpe tran-
the dependence of the staggered susceptibjlign the sys- Stion in theJ—ce limit. . . .
tem size for different values of the field. The results are_ In Fig. 14, we show S|mul_at|on results for an mtermedlate
summarized in Figs. 13, 14, and 15. The data in Fig. 1dield value, h=0.25. In this case, for system sizds
correspond to a low-field valugy=0.05. The number of 9
MCS used for computing the averages is®,1a0’, and

F—o L=6
4% 10 for the three system sizes=6, 12, and 18, respec- —oL=12
tively. For system sizek=6 andL=12, we also show the —a =18

— =24

exact transfer-matrix results. Even though the=12 7
transfer-matrix results are fol—«, we find very good
agreement with the simulation data. This is because excita-
tions out ofG, which involve energies of ordel, are very
much suppressed at the low temperatures considered. Thex 5
L=18 MC data are not as smooth as the data for smaller
sample sizes, indicating that the errors in the calculation of -
averages are significant in spite of averaging over a very e
large number of MCS. Thus, even with the string dynamics, 3
we have not been able to attain equilibration for systems
with L>18.

The close agreement between the MC resultdfed and
the exact transfer-matrix results fdrco indicates that the 1 . : w .
MC results for the system sizes considered are representative 05 0.55 0.6 0.65 0.7
of theJ— oo limit. In Sec. I, we established the existence of T
a finite-temperature phase transition in this limit. Our MC  F|G. 14. Staggered susceptibilify versus temperatur€ for h
results indicate that this transition occurs néla=2.5n, =0.25, J=1. The data for system siz€s=6, 12, 18, and 24 were
which is substantially higher than the lower bouhdin(2),  obtained from MC simulations using string dynamics. Exact
derived in Sec. lll. To determine whether this transition is atransfer-matrix results for =6 are also shown.

% Exact |
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3 : three different fields. As noted above, we ggtL%2 for

; h=0.05. Forh=0.25, the values ofy, for L=6 and L
=12 are consistent with this power-law form, but the data
for higher values oL show deviations from this form and
signs of saturation. Finally, fdn=0.4, the peak value of
clearly saturates fok=12.

Taken at face value, these results would imply thatJor
=1, there is &-type transition foh=0.05, but no transition
for h=0.25 andh=0.4. In other words, there is a phase
transition for smallh, which disappears beyond a critical
value of the field. This naive interpretation of the data is
guestionable because a line of continuous phase transitions
in the h-T plane is very unlikely to end abruptly at some
point. A more plausible interpretation is that the system with
finite J does not exhibit a true phase transition for any value
of the staggered field—the signature of a phase transition
Q ‘samomosedifes ; : found in the scaling behavior of the data for smialis a
025 05 0.75 T 1 125 1S remnant of the transition in th&— o limit. The behavior of

a system with finiteJ would differ from that in theJ—o

FIG. 15. Staggered susceptibilify versus temperatur€ for h limit only if the values of the parameteds T, andL are
=0.4, J=1. The data for system sizés=6, 12, 18, and 24 were sych that excitations out of the manifoftlare not strongly
obtained from MC simulations using string dynamics. Exactsuppressed. Since the typical value of the local field in a
transfer-matrix results foL =6 are also shown. configuration ing is 2J, the typical energy cost associated

with a single-spin-flip excitation out of this manifold isJ4
=6, 12, 18, and 24, equilibrium values were obtained bySince this excitation can occur at any site of the lattice, the
averaging over X 1P, 5x10°, 2x10’, and 510’ MCS,  free-energy cost of such an excitation is approximately given
respectively. As in thdr=0.05 case, the peak of occurs by 6F=4J—2TInL. Such excitations are likely to occur if
near T=2.5n, and the peak value of increases at is OF<O0, which corresponds tb=L.=e*T. The values of
increased. Finally, in Fig. 15, we have shown the results fok¢ at temperatures near the peakyofire~ 10", 28, and 7.4
a high-field valueh=0.4. In this case, equilibration times for h=0.05, 0.25, and 0.4, respectively. In view of the very
are quite small and we can simulate relatively large systemkarge value oL . for h=0.05, it is not surprising that the MC
without any difficulty. All the MC data shown in Fig. 15 results formand x for h=0.05, J=1.0, andL<18 are es-
were obtained with averaging over only<20° MCS. We  sentially identical to the results for the same valué of the
find that in this case, the staggered susceptibility saturates fek— limit. The power-law scaling of the data for, at h

L=12, and clearly there is no phase transition. =0.05 can then be attributed to the occurrence of a phase
In Fig. 16, we have plotteg,, the value of the staggered transition in theJ—o limit. The observation that foh
susceptibility at the peak, against the system ¢ider the ~ =0.25, the numerical data fog, show deviations from

power-law scaling with. and signs of saturation far=24 is
also consistent with this interpretation. The small valué of
for h=0.4 implies that the effects dfbeing finite should be
evident even in the small samples we consider. The fact that
the data folh=0.4 clearly indicate the absence of any phase
transition is, thus, consistent with the interpretation that there
is no phase transition for finité

While the scenario described above is consistent with all

our numerical data, we cannot be absolutely sure that it is
correct—data for much larger systems would be needed for a
conclusive answer to the question of whether a phase transi-
tion occurs for finiteJ. We note that even if our interpreta-
tion is correct, the behavior of finite samples with finite

________________ O S A would look very similar to that near a true phase transition if

M h/J is small. In such cases, the value ygf will continue to

] grow with L as a power law untiL becomes comparable to
L., at which pointy, will saturate. Sincé.. depends expo-
nentially onJ/h, it would be very large foh/J<1.

18 24 30

. . . C. Cluster dynamics
FIG. 16. The susceptibility maximuny, plotted against the

system sizd. for three different value€0.05, 0.25, and 0)4of the We have also performed simulations using a cluster
staggered fieldh. The solid lines correspond to the power-law form method. We briefly report our results here. This method was
xp*L %2 introduced by Kandeét al? for the study of frustrated sys-
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FIG. 17. Autocorrelation functiol©(7) of the staggered mag- FIG. 18. Autocorrelation functiol©(7) of the staggered mag-
netization, obtained from the three different dynamics at a comparanetization, obtained from string and cluster dynamics at a low tem-
tively high temperatureT=0.4. The data are for a>66 sample perature,T=0.125. The data are for a>66 sample withJ=1h
with J=1, h=0.05. The “time” 7 is measured in units of MC =0.05. The “time” 7 is measured in units of MC steps per spin.
steps per spin.

spin-flip dynamics leads to a two-step relaxation—a fast one
tems. Recently Zhang and Yarighave applied this algo- corresponding to equilibration within a sector and a slower
rithm to the zero-field TIAFM. We have modified this algo- one in which different sectors are sampled. The results
rithm to take into account the presence of the staggered fiel&hown in these figures also demonstrate the superiority of the

The cluster algorithm is usually implemented in two steps. Instring dynamics over the other two methods at both high and
the first step, one performs a “freeze-delete” operation onow temperatures.

the bonds using a fixed set of ruf&si®which results in the
formation of independent clusters. The second step consists
in flipping these clusters. In our modified algorithm, the first
step is unchanged. The freeze-delete operations are exactly ; g ;
as in Ref. 13 and are effected without considering the energy. In summary, we have studied the equilibrium properties

. . . a triangular Ising antiferromagnet in the presence of an
associated with the staggered field. In the second step, W(?rdering field, which is conjugate to one of the degenerate

cglqulatg the staggered-field energy of every cIuster. and the round states. We have addressed the question of whether a
flip it using heat-bath rules. It can be proved that this proce:

. . - phase transition can occur in this system. Using a mapping of
durTehZaéEg?;tg'engg;?:de?g?nqgebgagg'ttr'](;r:]' the sinale-s int_he TIAFM ground states to dimer coverings, we find that it
flip dynamics ar{d we haF\)/e been able to obtain eqt?ilibriﬁnwis possible to obtain a very detailed description of the low-
averages for & =6 system §=1, h=0.05) with 16 MCS. ying energy states. In the limiting case of the coupling con-

However, for bigger system sizek#12), we have not been stantJ— o, we show that the problem reduces to that of a set
- ST o of nonintersecting strings with long-range interactions. For
able to achieve equilibration even with runs ovef MCS. 9 g g g

Thus this d S h sl than the string d ._this limiting case, we prove existence of a transition that
us this dynamics IS much Slower than the string yn‘"’”n'csetppears to b&-type. For finiteJ, we have studied the system

.Th'sd's due”to thtﬁ foIIoer)\g fef‘s?ﬂ- WTIe tr?e clus'i(re]r dylna{n'using exact numerical evaluation of the staggered magneti-
;Cfm ogs tal c\)/://vt n? m:": ;ar 0 rS rlngi;ts Iorc anr?;ia,th € ?Lés Elr ation and susceptibility by transfer-matrix methods, and
ormed at low temperatures are quite large a € probabiyq, by MC simulations using three different dynamics. We

ity of _fllp_pmg them _becomes Very smal_l. In order to qbtamfind that the dimer description also helps in understanding
quantitative comparisons of the three (_Jllfferent dynamics, Wehe dynamics and in finding methods of improving the effi-
have studied the autocorrelation function, ciency of the MC simulation. A single-spin-flip dynamics is
very inefficient in sampling different string sectors and at
low temperatures, the system stays stuck within a sector and
shows thermodynamic behavior corresponding to that sector.
A cluster dynamics method improves over the single-spin-
whereM is the total staggered magnetization ands the  flip dynamics, but is still very slow at low temperatures. We
“time” measured in units of MCS. In Figs. 17 and 18, we have developed a dynamics that allows moves that add or
plot the results forC(7) obtained from simulations using remove pairs of strings. As expected, this greatly reduces
different dynamics at two different temperatures. The dataquilibration times. However, even with this increased effi-
correspond to & =6 lattice and the averaging was carried ciency, we have not been able to equilibrate systems with
out over 10 MCS in all the cases. We note that the single-L>18 in the interesting region of low-field value$/(

V. SUMMARY AND DISCUSSION

_(M(IM(0)—(M)?
(M?)—(M)?

: (19
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<1). Hence our results on possible phase transitions for fisition in our model. It is interesting to note in this context

nite J are inconclusive, although there are indications that ahat a “compressible” TIAFM model in which the ground-

true phase transition does not occur for finite state degeneracy is lifted by a coupling of the spins with
We close with a few comments on possible connectionsattice degrees of freedom has been proptsed a simple

of the system studied here with supercooled liquids near thgpin model of glassy behavior. In view of these similarities

structural glass transition. The phase transition we found ifyith the structural glass problem, a detailed study of the

our model in theJ—co limit is similar in nature to the dynamic behavior of our model would be very interesting.
Gibbs—Di Marzio scenari§ for the structural glass transi-

tion. In the Gibbs—Di Marzio picture, the structural glass
transition is supposed to be driven by an “entropy crisis”
resulting from a vanishing of the configurational entropy as
the transition is approached from the high-temperature side. We thank Chinmay Das, Rahul Pandit, and B. Sriram
A similar vanishing of the entropy occurs at the phase tranShastry for helpful discussions.
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