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Impurity correlations in dilute Kondo alloys
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The single-impurity Kondo model is often used to describe metals with dilute concentrations (ni) of mag-
netic impurities. Here we examine how dilute the impurities must be for this to be valid by developing a virial
expansion in impurity density. TheO(ni

2) term is determined from results on the two-impurity Kondo problem
by averaging over the Ruderman-Kittel-Kasuya-Yosida coupling. The nontrivial fixed point of the two-
impurity problem could produce interesting singularities in the heat capacity of dilute alloys atO(ni

2).
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I. INTRODUCTION

The physics of the single-impurity Kondo model, th
problem describing a magnetic moment interacting with
sea of conduction electrons, is well understood.1 At high
temperatures the moment is free. The spin susceptibility
the impurity obeys a simple Curie-Weiss law, and there i
large additional term in the entropy,S5kBln 2. As the tem-
perature decreases, the impurity spin disappears as it for
singlet with conduction electrons. The characteristic ene
scale at which this happens is the Kondo temperature, w
is exponentially small at small couplings,TK
;EFexp@21/(Jr)#, whereJ is thes-d exchange constant,r
is the density of states. The 1/T divergence of the spin sus
ceptibility is then effectively cut off by this scale at low
temperatures. The singlet state formed by conduction e
trons and impurity can be described at low temperatureT
!TK as a Fermi liquid with enhanced density of states,dn
;ni /TK , whereni is the concentration of impurities.

The single-impurity Kondo model is often used as a w
to obtain insights into the nature of the ground state for
Kondo lattice problem, a toy model for a number of rar
earth compounds, such as heavy fermions. Enhanceme
the density of states due to the Kondo physics explains qu
tatively the heavy masses in the heavy fermion materi
The local moments in a Kondo lattice interact through
electron-mediated Ruderman-Kittel-Kasuya-Yosida~RKKY !
interaction, which competes with the Kondo physics. T
low-temperature behavior of the Kondo lattice is oft
thought to be determined by this competition. Conventio
mean-field models of the heavy fermions,2 however, often
neglect the RKKY interaction, since it only appears as
correction to the mean-field behavior, and therefore is d
cult to calculate.

The simplest model that captures the physics of this co
petition is the two-impurity Kondo model.3–5 Depending on
the relation between the RKKY interaction and the Kon
temperature and the presence of particle-hole symm
breaking, the impurity spins can each get compensated
conduction electrons, form a singlet with each other, o
combination of both. A surface of Fermi-liquid fixed poin
PRB 610163-1829/2000/61~9!/6170~6!/$15.00
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occurs in the problem as well as an unstable nontrivial cr
cal point associated with critical behavior of the thermod
namic functions.6–11

Despite extensive theoretical work on the two-impur
problem, we are not aware of any effort to apply the resu
in a systematic way to experiments. The appropriate way
do this, for dilute alloys, was pointed out in 1970 by Lark
and collaborators.12 One should develop an expansion
thermodynamic quantities in powers of the impurity conce
tration ni , a virial expansion. The pioneering work on th
subject12 only considered the high-T limit where the Kondo
interaction could be ignored and only the RKKY interactio
considered. AtT of O(TK) or lower the Kondo interaction
must be included. TheO(ni

2) term in the virial expansion is
completely determined by properties of the two-impur
problem appropriately averaged over the strength of
RKKY interaction. This calculation gives an estimate of t
characteristic impurity concentration at which the sing
impurity Kondo model breaks down. Analysis of th
N-impurity models withN.2 could provide a further insigh
into the structure of this expansion.

We note that deviations from linear dependence of th
modynamic quantities on impurity concentration do not ar
solely from the mechanism considered here. The Kondo t
perature depends exponentially on the exchange integral,
changes in the composition of an alloy can alter it sign
cantly. Such corrections, however, can be incorporated in
single-impurity picture, even though they alter the linear d
pendence of the thermodynamic and magnetic properties
dilute alloy on concentration.

In the next section we discuss the subtle issue of len
scales in the Kondo problem. Section III sets up the vir
expansion, following Ref. 12. Section IV reviews some r
evant results on the two-impurity Kondo problem. Th
O(ni

2) term is then considered forT@TK in Sec. V and at
T<TK in Sec. VI. Quantitative results would certainly re
quire accurate numerical solution of the two-impurity pro
lem for all values or the RKKY coupling. Here we just app
the large-N approximation and make some qualitative r
marks on the effect of the nontrivial critical point. Sectio
VII contains conclusions.
6170 ©2000 The American Physical Society
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II. LENGTH SCALES IN THE KONDO PROBLEM

There are~at least! three different ways of estimating
lower bound on the average separation of impurities nec
sary for the single-impurity model to be valid. One cou
require that each impurity be far from the others compare
the sizejK of its screening cloud. Alternatively, one cou
require that the density of electron states within an energyTK

of the Fermi surface be at least as large asni ~the Nozières
exhaustion principle!. This appears to be a neccessary~al-
though not obviously sufficient! condition for the screening
cloud wave functions from each impurity to form an appro
mately orthogonal set. Or, finally, one could require that
average RKKY interaction be small compared toTK .

As a mechanism of Kondo screening, the picture of s
exhaustion cloud of exponentially large sizejK;vF /TK (vF

is the Fermi velocity! has often been adapted.1 From the
renormalization group point of view, clearly, this leng
scale is present in the problem, since the low-energy Fe
liquid theory13 is only valid for k2kF!TK /vF , or at dis-
tancesr @jK away from the impurity. Direct calculations o
the screening cloud profile14 for the spin-spin correlators o
the single-impurity Kondo model demonstrate that t
screening cloud of conduction electrons indeed forms at
distance scale;jK . Note that this is a more dynamical typ
of a screening than that which occurs for charge impuritie
a Fermi liquid since it involves a linear combination of sta
where the impurity spin and the screening electron spin
in either an up-down or down-up configuration. In particul
the finiteness of the susceptibility atT→0 should not be
attributed to a static conduction electron polarization can
ling the impurity spin polarization. Rather it results from th
tendency of the impurity to form a singlet with the screeni
electron. This tendency is very well illustrated by a calcu
tion of an equal-time correlator, which provides an insta
snapshot of the system, and the zero-frequency spin
relator, or the spin susceptibility.14 Indeed, it has been show
that the magnetic moment of conduction electrons exa
compensates that of the impurity at the same momen
time. Yet, there is no net polarization of the conduction el
trons ~as illustrated by a calculation of zero-frequency sp
susceptibility!, the fact also known as the Anderso
Clogston theorem.

Existence of an exponentially large length scale co
have potentially strong effect on the theory of alloys w
magnetic impurities. Indeed, typicalTK;10 K and EF
;10 eV makesjK;10 000a, wherea is the lattice spacing
much larger than typical distance between two impuriti
This issue was addressed in one dimension for Luttinger
uids with magnetic impurities,15 where it was found that the
crossover happens atni;1/jK . At higher dimension, how-
ever, no such crossover was found experimentally. T
physical reason for this is that the screening cloud w
function has an oscillatory character. Let us make a sim
estimate of the overlap of the screening clouds from t
separate impurities, with one impurity located at a distancR
apart from the other. We shall make no particular assum
tions about the screening cloud wave function except tha
is made up of Fourier modes withuk2kFu less than or of
order of 1/jK . Thus the overlap is
s-
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O~R![E d3rc* ~ urW1RW /2u!c~ urW2RW /2u!

5E d3k

~2p!3 eikW•RW uc~k!u25E
0

`

dkk2uc~k!u2
sin~kR!

2p2kR
.

~1!

So far we have only used the spherical symmetry of
screening cloud wave function and hence its Fourier tra
form. Now we assume

uc~k!u2'~jK /kF
2 ! f @~k2kF!jK#, ~2!

where the scaling functionf (y) obeys the normalization con
dition

E dy f~y!52p2, ~3!

in order thatO(0)51. Thus we get

O~R!5~1/2p2!E dy f~y!sin@kFR1~R/jK!y#/kFR. ~4!

For R!jK this reduces to

O~R!5sin~kFR!/kFR. ~5!

Thus the overlap is small forkFR@1. This calculation can
be easily extended to the one-dimensional~1D! or 2D case.
For 1D the overlap is essentially cos(2kFR) for R!jK . It
does not get small untilR@jK . In 2D it is a Bessel function,
J0(kFR)'A2/pkFRcos(kFR2p/4) ~for kFR@1), again be-
coming small forkFR@1. We see that in dimensions highe
than one the overlap of the two screening cloud wave fu
tions is suppressed by 1/AkFR (2D) or 1/kFR (3D), small
factors at large enough interimpurity separation. In 1D t
overlap is O(1). Thus the dimensionality of the problem
could be the main reason why the large Kondo scale is
sent in alloys.

The well-known Nozie`res’ exhaustion principle states th
for each impurity spin there should be a conduction elect
in the vicinity ;TK of the Fermi energy that screens it. Th
produces the following estimate for the interimpurity sepa
tion: R;(jKkF

22)1/3 in 3D, R;AjKkF
21 in 2D, andR;jK in

1D.
On the other hand, one can argue that the single-impu

model stops working when the RKKY interaction at the a
erage interimpurity distance becomes comparable to
Kondo temperature,JRKKY;TK . This gives a somewha
higher estimate for the concentration at which one need
account multi-impurity effects~or lower estimate for the av
erage inter-impurity distance!, R;(l2jKkF

22)1/3 in 3D, R
;Al2jKkF

21 in 2D, andR;l2jK in 1D, because of its de
pendence on the small coupling constant,l[(Jr).

III. THE VIRIAL EXPANSION

We start with the ordinarys-d Hamiltonian for a collec-
tion of magnetic impurities in an electron gas located at
bitrary positions in space:
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Hsd52
J

2N (
j ,k,k8

ak8a
†

~sb
a
•Simp

j !ak
bei (k2k8)r j . ~6!

The free energy forN impurities is determined by the for
mula

F1,2, . . . ,N52T lnK expH 2E
0

1/T

Hsd~t!dtJ L . ~7!

To obtain a virial expansion, one can introduce the quanti
f defined by recurrence relation

f i5Fi ,

Fi j •••n5(
k

f k1(
kr

f kr1••• (
kr•••m

f kr•••m1 f i j •••n ,

~8!

where the summation is carried out over different sets
indices i j •••n. The functionf vanishes if the distance be
tween any two impurities tends to infinity. For example,

f i j 5Fi j 2~Fi1F j !. ~9!

Averaging Eq.~8! over the distribution of the impurities an
going to the thermodynamic limitN→`, we obtain an ex-
pansion of the free energy in powers of the density. F
magnetic impurities interacting with an RKKY interactio
such expansion was carried out in Ref. 12. Theni

2 term in the
Kondo regime without the RKKY term was calculated
Ref. 16, although the influence of the RKKY interaction
this result was discussed in a later paper. The ordin
Kondo term is proportional to the density of impurities,ni

[Ni /V. Theni
2 contribution takes the following form:

F (2)5Ni

ni

2 E dR@F2i~R!22FKondo#. ~10!

Here F2i(R) is the free energy of the two impurities sep
rated by a distanceR, FKondo is the usual single-impurity
Kondo term. Thus theni

2 correction is competely determine
by the two-impurity physics. Equation~10! and similar ex-
pressions for thermodynamic functions~derivatives ofF)
could be useful for numerical determination of the tempe
ture dependence of theni

2 term in thermodynamic function
from the results on the two-impurity model.

IV. TWO-IMPURITY KONDO MODEL

Before calculating theni
2 term let us discuss the releva

physics of the two-impurity model. The study of the critic
point for two impurities interacting with the Hamiltonian Eq
~6! starts with a reduction of a three-dimensional problem
a one-dimensional one.6,9,10 This is done by introducing or
thogonal 1D fermionic operators,

c1,2~k!5E dV
k

A2
F 1

Ne~k!
cos~k•R/2!

6
i

No~k!
sin~k•R/2!Ga~k!, ~11!

where we have integrated over spherical angle, and
s

f

r

ry

-

o

Ne,o~k!5A16
sin~kR!

kR
. ~12!

Then the two-impurity model can be rewritten in 1D form
While the transformation itself is exact, thek-dependent cou-
plings arise. Then these couplings are assumed to bek inde-
pendent for excitations in the vicinity of the Fermi surfac
an assumption questioned in Ref. 17. The main drawbac
such assumption is that the RKKY exchange interaction t
does not have a correct oscillating character. The reaso
that the main contribution to RKKY interaction comes fro
energies;vF /R, wherevF is the Fermi velocity,R is the
distance between impurities. Apart from this, however, t
procedure is fully justified. One can view the process of c
off renormalization in two stages. During the first stage,
cutoff L is reduced belowvF /R, L!vF /R, and oscillating
RKKY interaction appears as a result:

Hint5
1

2
lc̄1

†~0!s•S1c̄1~0!1
1

2
lc̄2

†~0!s•S2c̄2~0!

1IS1•S2 . ~13!

Here l5Jr is the Kondo coupling constant andI
5V0cos(2kFR)/R3 is the usual RKKY term, V0
5rJ2/(16p). Note that both impurities are now at the sam
place in the 1D model. During the second stage the
Hamiltonian Eq.~13! is renormalized. The wave function
c̄1 andc̄2 are not orthogonal; they can be written in terms
orthogonalc1 andc2 as follows:

c̄15ac11bc2 , ~14!

c̄25bc11ac2 , ~15!

where

a5
Ne~kF!1No~kF!

2
.1, ~16!

b5
Ne~kF!2No~kF!

2
.

sin~kFR!

2kFR
. ~17!

This orthogonal basis differs from the usual ‘‘even’’ an
‘‘odd’’ parity wave functions. It is seen explicitly in this
basis that forkFR@1 channel mixing terms play minor rol
and can be neglected. Other marginal operators appear in
interaction Hamiltonian Eq.~13!. Those, however, are sup
pressed by factors ofkFR, and therefore can be neglected

V. HIGH-TEMPERATURE RESULTS

We can now analyze theni
2 corrections in a Kondo alloy

of spin-1/2 impurities using the 1D Hamiltonian Eq.~13!. At
high temperatures (T@TK) this can be done by including th
RKKY term in Eq. ~13! in the noninteracting Hamiltonian
and perturbing in the Kondo interaction. Instead of averag
over distances as in Eq.~10! one can do averaging over th
strength of the RKKY coupling.12 Indeed, the interaction
I (R) is a product of the smooth functionR23 times the rap-
idly oscillating function cos(2kFR). It is convenient to carry
out the integration in formula Eq.~10! by first averaging the
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integrand over the period of oscillations. Changing the or
of averaging and integration, we obtain

F (2)5
4NniV0

3T
v.p.E dy

y2 @F2i~y,l!2F2i~0,l!#, ~18!

where y5I (R)/T, v.p. stands for ‘‘principle value.’’ The
behavior of the bulk spin susceptibility and the heat capa
of a Kondo alloy at temperaturesT@TK is well known:

x~T!5
~gmB!2ni

4T
@12le f f~T!#,

C~T!5
3

4
p2nile f f~T!4, ~19!

wherele f f(T).l1l2ln@L/T# is the effective coupling con
stant at energy scaleT. To the lowest orders in the Kond
coupling we get the following result for theni

2 correction to
the heat capacity:

dC5
4

3

ni
2V0

T S 12l2lnFLT G D , ~20!

while for the magnetic susceptibility we find

dx5k~gmB!2
ni

2V0

3T2 S 12l22l2lnFLT G D , ~21!

where

k5v.p.E
2`

` dy

y2

12ey

31ey.20.501 447, ~22!

andL!vF /R̄.vF(TK /V0)1/3 is the cutoff of the 1D model.
Note that the small bandwidth effective theory of the tw
impurity Kondo model is, of course, only valid for calcula
ing low-energy properties. Thus the above results are vali
the rangeTK!T!L. Since the RKKY interaction is relevan
at weak coupling, it gives rise to power law singularities
thermodynamic functions at high temperatures.12 The mar-
ginal Kondo interaction gives rise to weaker logarithm
terms in Eqs.~20! and~21!. As we will see below in the nex
section, these singularities are cut off at temperatures of
order of TK . The parameter of the virial expansion
niV0 /T!1. The major contribution to theni

2 term comes

from distancesR̄;(V0 /T)1/3, where the amplitude of the
RKKY term is of the same order as temperature. The vi
expansion fails at high enough densities when the ave
distance between impurities becomes comparable toR̄. Note
that the second virial coefficients for the spin susceptibi
and the heat capacity Eqs.~20! and ~21! cannot be written
simply in terms of an effective coupling. Averaging ov
distances in the virial expansion correspond to different v
ues of RKKY exchangeI, which can be quite large. It is clea
that I ruins the simple dependence of physical quantities
L and bare coupling. Consider what happens when we taI
either very large or very small, continuing to treatI exactly
and doing perturbation theory in the Kondo couplings. IfI is
very small ~compared toT) we should be able to ignore
and then we just get two decoupled single impurity Kon
problems. In this limit we certainly recover the standard
r
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ge
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-

duction of L dependence to renormalized coupling. On t
other hand, ifT!uI u (I ,0) then, at low energies, we hav
essentially a two-channelS51 Kondo problem. Again we
expect a standard reduction of the dependence onL corre-
sponding to the beta function for that problem. However,
evolution of effective Kondo coupling with energy scale
different in these two limits~two decoupled one-channelS
51/2 Kondo problems versus one two-channelS51 Kondo
problem!. Thus as we lower our cutoff pastI the nature of
the dependence on the cutoff changes. This is to be expe
on general grounds. When we have a physical energy sc
like I in the problem we do not in general get simple depe
dence on the cutoff scale. In a massive quantum field the
effective coupling constants are only useful at energy sc
large compared to the mass.

VI. CORRECTIONS AT LOW TEMPERATURES

Let us now consider this problem at low temperatur
Averaging over the distances between two impurities
volves integration over all RKKY couplings@see Eq.~18!#,
which makes analytical analysis extremely difficult. Inste
let us consider first theSU(N) generalization of the two-
impurity model, for which explicit results for the linear term
in the specific heat (g) and the bulk magnetic susceptibilit
were obtained7 as a function of RKKY coupling strength
For a U5` SU(N) generalized two-impurity Anderson
model with RKKY interaction they find, in the large-N limit,

g5p2x5
Np

3

2e2Bdcosd

~12A2!TK*
, ~23!

whereA.sin(kFR)/kFR, B.cos(kFR)/kFR, d is related to
the scattering phase shift in even and odd channels,de,o

5p/26d, N is the SU(N) expansion parameter,TK* is the
Kondo temperature.d is found from the solution of appro
priate mean-field equations. To find theni

2 correction tog
andx, we have to average Eq.~23! over distances, or ove
RKKY interaction. Since for the average distancekFR̄@1,
B→0, A→0. For these values of parameters the model ha
first-order phase transition at (I /TK)c58/p, with d.0 when
(I /TK),8/p andd.p/2 if ( I /TK).8/p. We can apply the
same averaging technique as in Eq.~18! @with y5I (R)/TK#:

x (2)5
4NniV0

3TK
v.p.E dy

y2 @x2i~y,l!2x2i~0,l!#. ~24!

Performing the integration, we easily find

g5p2x5Ni

pN

3TK
S 12

pniV0

3TK
D , ~25!

where the first term in Eq.~25! corresponds to the ordinar
Kondo effect in theSU(N) model. One important result o
the virial expansion is to find the density at which the sing
impurity approximation no longer works. As one can s
from Eq. ~25!, this happens atni;TK /V0, or when the
Kondo temperature becomes comparable to the amplitud
the RKKY interaction at the average interimpurity distanc

The mean-fieldN5` solution suffers from a number o
defficiencies. In particular, it was shown6,11,10 that for two
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6174 PRB 61VICTOR BARZYKIN AND IAN AFFLECK
spin-1/2 impurities the quantum phase transition is seco
not first order. The critical point for two spin-1/2 impuritie
is only present if the model is particle-hole symmetric. U
der these conditions it was found11,10 that the specific-hea
coefficient g diverges at the critical point asuI /TK
2(I /TK)cu22, (I /TK)c.2.2, while the uniform spin suscep
tibility x does not. Let us find out whether this divergen
produces any singularity in the thermodynamic quantiti
Unlike in the N5` model, where there is always a firs
order phase transition, one can identify possible singulari
at y.0 andy.yc from Eq. ~24!. At y[I /TK→0 the two
Kondo impurities are independently screened. Since impu
spin at the Kondo fixed point should be replaced by the lo
spin density,

S1}
vFcL

†~0!scL~0!

TK
, ~26!

so that the RKKY interaction can be written as follows:

HRKKY}
IvF

2

TK
2 @c1

†~0!sc1~0!•c2
†~0!sc2~0!#. ~27!

Perturbing inHRKKY, one easily finds that the singularity i
g and x at y→0 is logarithmic, i.e., principle-value inte
grable. Fory.yc the bulk susceptibilityx does not have a
singularity, whereasg has a power-law divergence;(y
2yc)

22. The form of this singularity in the vicinity ofyc
was investigated ealier using bosonisation by Gan,10 who
showed that it is effectively cut off at finite temperatures
dy}AT. This produces a square-root singularity ing,

dg}
Ni

TK

niV0

ATTK

. ~28!

Sincex does not diverge at the critical point, such singular
is absent for the bulk susceptibility. It is known9 that in the
absence of particle-hole symmetry there are relevant pe
bations near the zero-temperature critical point of the tw
impurity Kondo model. Such perturbations tend to wipe o
the singularity at low temperatures, so it is not clear whet
this effect could be observed in real materials.

VII. CONCLUSIONS

To summarize, we have considered cluster expansio
‘‘dense’’ Kondo alloys. This expansion ties the two-impuri
model, which has been investigated in detail, to experim
At high temperatures,ni

2 corrections produce additional 1/T
and logarithmic singularities in thermodynamic quantitie
h

e
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-
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t
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.

At low temperatures, theni
2 term becomes large when th

RKKY interaction at the average distance between impuri
becomes of the same order as the Kondo temperature. S
the parameter of expansion in density isni /nc , wherenc

5TK /V0}l22exp(21/l) (l5rJ is the dimensionless
Kondo coupling constant! is exponentially small, deviation
from the single-impurity behavior could be observed in
lute alloys with magnetic impurities. We have also seen t
the presence of the intermediate fixed point in the tw
impurity problem could lead to a mild low-temperature si
gularity in the specific heat, but not the bulk magnetic s
ceptibility. Further numerical investigation of this problem
desirable. In some rare-earth alloys, such as YbxY12xCuAl,1

the behavior of thermodynamic functions is linear inx up to
very largex.0.9. This observation could be related to t
fact that these ions are often described by the Coqb
Schrieffer model (N58 in case of Yb31), where the RKKY
interaction is suppressed@O(1/N2) ~Ref. 18!#.

Our calculation of the second virial coefficient shows th
the density of impurities at which multi-impurity effects be
come important ishigher than that given by Nozie`res’ ex-
haustion principle. According to this principle, at these de
sities (n&nc) there are not enough states to screen
impurities. Since Nozie`res’ principle is multi-impurity in na-
ture, it may be necessary to study the convergence prope
of the expansion itself rather than the behavior of a giv
term to claim its failure.

Finally, we note that the reason why the large Kon
length scale is absent in the problem is purely geometric.
channel mixing terms between two impurities are large in
one-dimensional problem. However, in 3D they become s
pressed by a small factor of 1/kFR, and the physics of the
two-impurity model~and relatedni

2 term in the cluster ex-
pansion! is fully determined by the competition of th
RKKY and Kondo effects.
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