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Impurity correlations in dilute Kondo alloys
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The single-impurity Kondo model is often used to describe metals with dilute concentrationsf (nag-
netic impurities. Here we examine how dilute the impurities must be for this to be valid by developing a virial
expansion in impurity density. Tr@(nf) term is determined from results on the two-impurity Kondo problem
by averaging over the Ruderman-Kittel-Kasuya-Yosida coupling. The nontrivial fixed point of the two-
impurity problem could produce interesting singularities in the heat capacity of dilute aII@(mé).

[. INTRODUCTION occurs in the problem as well as an unstable nontrivial criti-
cal point associated with critical behavior of the thermody-
The physics of the single-impurity Kondo model, the namic functions:**
problem describing a magnetic moment interacting with a Despite extensive theoretical work on the two-impurity
sea of conduction electrons, is well understéofit high ~ problem, we are not aware of any effort to apply the results
temperatures the moment is free. The spin susceptibility ofh & systematic way to experiments. The appropriate way to
the impurity obeys a simple Curie-Weiss law, and there is &l0 this, for dilute alloys, was pointed out in 1970 by Larkin
large additional term in the entrop$=kgln 2. As the tem- and collaborators? One should develop an expansion of
perature decreases, the impurity spin disappears as it formstia@rmodynamic quantities in powers of the impurity concen-
singlet with conduction electrons. The characteristic energyration n;, a virial expansion. The pioneering work on this
scale at which this happens is the Kondo temperature, whicaubject? only considered the higfi-limit where the Kondo
is exponentially small at small couplings, T,  interaction could be ignored and only the RKKY interaction
~Egexd —1/(Jp)], wherel is thes-d exchange constarp, ~ considered. Al of O(Tk) or lower the Kondo interaction
is the density of states. TheTltivergence of the spin sus- must be included. Th®(n?) term in the virial expansion is
ceptibility is then effectively cut off by this scale at low completely determined by properties of the two-impurity
temperatures. The singlet state formed by conduction elegroblem appropriately averaged over the strength of the
trons and impurity can be described at low temperatlires RKKY interaction. This calculation gives an estimate of the
<Ty as a Fermi liquid with enhanced density of statés, characteristic impurity concentration at which the single-
~n,; /T, wheren; is the concentration of impurities. impurity Kondo model breaks down. Analysis of the
The single-impurity Kondo model is often used as a wayN-impurity models withN>2 could provide a further insight
to obtain insights into the nature of the ground state for thénto the structure of this expansion.
Kondo lattice problem, a toy model for a number of rare- We note that deviations from linear dependence of ther-
earth compounds, such as heavy fermions. Enhancement gfodynamic quantities on impurity concentration do not arise
the density of states due to the Kondo physics explains qualsolely from the mechanism considered here. The Kondo tem-
tatively the heavy masses in the heavy fermion materialsperature depends exponentially on the exchange integral, and
The local moments in a Kondo lattice interact through thechanges in the composition of an alloy can alter it signifi-
electron-mediated Ruderman-Kittel-Kasuya-YosiB&KY)  cantly. Such corrections, however, can be incorporated in the
interaction, which competes with the Kondo physics. Thesingle-impurity picture, even though they alter the linear de-
low-temperature behavior of the Kondo lattice is oftenpendence of the thermodynamic and magnetic properties of a
thought to be determined by this competition. Conventionabilute alloy on concentration.
mean-field models of the heavy fermioh&owever, often In the next section we discuss the subtle issue of length
neglect the RKKY interaction, since it only appears as ascales in the Kondo problem. Section Il sets up the virial
correction to the mean-field behavior, and therefore is diffi-expansion, following Ref. 12. Section IV reviews some rel-
cult to calculate. evant results on the two-impurity Kondo problem. The
The simplest model that captures the physics of this comO(n?) term is then considered foF>Ty in Sec. V and at
petition is the two-impurity Kondo modér® Depending on  T<Ty in Sec. VI. Quantitative results would certainly re-
the relation between the RKKY interaction and the Kondoquire accurate numerical solution of the two-impurity prob-
temperature and the presence of particle-hole symmetriem for all values or the RKKY coupling. Here we just apply
breaking, the impurity spins can each get compensated bihe largeN approximation and make some qualitative re-
conduction electrons, form a singlet with each other, or anarks on the effect of the nontrivial critical point. Section
combination of both. A surface of Fermi-liquid fixed points VII contains conclusions.
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IIl. LENGTH SCALES IN THE KONDO PROBLEM

| o= [ dryr (iR - Ri)
There are(at least three different ways of estimating a
lower bound on the average separation of impurities necces- Bk - - w
sary for the single-impurity model to be valid. One could =f > 3e""R|z//(k)|2=f dkk2|¢/(k)|2m.
require that each impurity be far from the others compared to (2m) 0 .
the size¢x of its screening cloud. Alternatively, one could (D)
require that the density of electron states within an en&ggy
of the Fermi surface be at least as largenagthe Noziees
exhaustion principle This appears to be a neccesséay
though not obviously sufficiehtcondition for the screening

sin(kR)

So far we have only used the spherical symmetry of the
screening cloud wave function and hence its Fourier trans-
form. Now we assume

cloud wave functions from each impurity to form an approxi- 2. 2 _
mately orthogonal set. Or, finally, one could require that the |91~ (& k) FL(K—Ke) €, @
average RKKY interaction be small comparedTip. where the scaling functiof(y) obeys the normalization con-

As a mechanism of Kondo screening, the picture of spirdition
exhaustion cloud of exponentially large sige~vg/Tk (vg
is the Fermi velocity has often been adaptédsrom the P
renormalization group point of view, clearly, this length dyf(y)=2=*, 3
scale is present in the problem, since the low-energy Fermi-
liquid theory”® is only valid for k—ke<Ty /v, or at dis- N order thatO(0)=1. Thus we get
tancesr> ¢ away from the impurity. Direct calculations of
the SC.reenir:lg Clqud prOfﬂéfor the spin—spin correlators of O(R):(]./Z’ITZ)f dyf(y)S”{kFRJ"(ngK)y]/kFR (4)
the single-impurity Kondo model demonstrate that the
screening cloud of conduction electrons indeed forms at th
distance scale- {x . Note that this is a more dynamical type
ofa scrggning t_han t.hgt which occurs for cha_rge_impurities in O(R) =sin(keR)/keR. (5)
a Fermi liquid since it involves a linear combination of states
where the impurity spin and the screening electron spin arghus the overlap is small fdkeR>1. This calculation can
in either an up-down or down-up configuration. In particular,be easily extended to the one-dimensiofid)) or 2D case.
the finiteness of the susceptibility &—0 should not be For 1D the overlap is essentially cokfR) for R<&y . It
attributed to a static conduction electron polarization canceldoes not get small untR> ¢, . In 2D it is a Bessel function,
ling the impurity spin polarization. Rather it results from the Jy(kgR)~ \2/7mkgRcoskR—7/4) (for keR>1), again be-
tendency of the impurity to form a singlet with the screeningcoming small forkeR>1. We see that in dimensions higher
electron. This tendency is very well illustrated by a calcula-than one the overlap of the two screening cloud wave func-
tion of an equal-time correlator, which provides an instanttions is suppressed by R (2D) or 1keR (3D), small
snapshot of the system, and the zero-frequency spin cofactors at large enough interimpurity separation. In 1D this
relator, or the spin susceptibilify.Indeed, it has been shown overlap isO(1). Thus the dimensionality of the problem
that the magnetic moment of conduction electrons exactlgould be the main reason why the large Kondo scale is ab-
compensates that of the impurity at the same moment igent in alloys. . -
time. Yet, there is no net polarization of the conduction elec- 1he well-known Noziees’ exhaustion principle states that
trons (as illustrated by a calculation of zero-frequency spin{Of €ach impurity spin there should be a conduction electron
susceptibility, the fact also known as the Anderson- in the vicinity ~T, of the Fermi energy that screens it. This
Clogston theorem. produces the following estimate for the interimpurity separa-

Existence of an exponentially large length scale couldion: R~(&cks?)3in 3D, R~ \/éckg * in 2D, andR~ & in
have potentially strong effect on the theory of alloys with 1D.
magnetic impurities. Indeed, typicalc~10 K and Eg On the other hand, one can argue that the single-impurity
~10 eV makest~1000@, wherea is the lattice spacing, Mmodel stops working when the RKKY interaction at the av-
much larger than typical distance between two impurities€rage interimpurity distance becomes comparable to the
This issue was addressed in one dimension for Luttinger ligkondo temperatureJgxky~Tk . This gives a somewhat
uids with magnetic impuritie® where it was found that the higher estimate for the concentration at which one needs to
crossover happens at~1/¢¢ . At higher dimension, how- account multi-impurity effectgor lower estimate for the av-
ever, no such crossover was found experimentally. The&rage inter-impurity distangeR~(\?é¢ks %) in 3D, R
physical reason for this is that the screening cloud wave- \/)\ZgKk;I in 2D, andR~\2&, in 1D, because of its de-
function has an oscillatory character. Let us make a simpl@pendence on the small coupling constans (Jp).
estimate of the overlap of the screening clouds from two
separate impurities, with one impurity located at a distdRce
apart from the other. We shall make no particular assump-
tions about the screening cloud wave function except that it We start with the ordinarg-d Hamiltonian for a collec-
is made up of Fourier modes witlk—kg| less than or of tion of magnetic impurities in an electron gas located at ar-
order of 1€ . Thus the overlap is bitrary positions in space:

BorrR< &k this reduces to

Ill. THE VIRIAL EXPANSION
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_sin(kR)

kR (12

J . . ,
Hsa=— 5N ,-kzk, A o(0 Slnp) e * . (6) Ne,o(k) =
The free energy folN impurities is determined by the for- Then the two-impurity model can be rewritten in 1D form.
mula While the transformation itself is exact, tkadependent cou-
plings arise. Then these couplings are assumed toibée-
= = —Tinl exol — me (r)d @) pendent for excitations in the vicinity of the Fermi surface,
L2 N o | SATETI an assumption questioned in Ref. 17. The main drawback of
such assumption is that the RKKY exchange interaction then
oes not have a correct oscillating character. The reason is
that the main contribution to RKKY interaction comes from
f—F. energies~ve /R, wherevg is the Fermi velocity R is the
distance between impurities. Apart from this, however, this
procedure is fully justified. One can view the process of cut-
= i 2 fet - 2 Fooomtfijn off renormalization in two stages. During the first stage, the
K kr W cutoff A is reduced below( /R, A<vg/R, and oscillating
®) RKKY interaction appears as a result:
where the summation is carried out over different sets of

To obtain a virial expansion, one can introduce the quantltlea
f defined by recurrence relation

indicesij - - -n. The functionf vanishes if the distance be- 1)\ 0 + )\ 0
tween any two impurities tends to infinity. For example, Hin= ¢1( )o Slwl(o) ¢2(O)U SMZ( )
fi;=Fij— (Fi+F)). (9 18- S;. (13
Averaging Eq.(8) over the distribution of the impurities and Here A=Jp is éhe Kondo coupling constant and
going to the thermodynamic limil—o, we obtain an ex- _VOCOS(ZkFR)/R is the wusual RKKY term, Vj

pansion of the free energy in powers of the density. For=pJ®/(16m). Note that both impurities are now at the same
magnetic impurities interacting with an RKKY interaction Place in the 1D model. During the second stage the 1D
such expansion was carried out in Ref. 12. iigerm inthe ~Hamiltonian Eq.(13) is renormalized. The wave functions
Kondo regime without the RKKY term was calculated in 7 andy, are not orthogonal; they can be written in terms of
Ref. 16, although the influence of the RKKY interaction on orthogonaly, and i, as follows:

this result was discussed in a later paper. The ordinary .

Kondo term is proportional to the density of impurities, 1=+ By, (14
=N;/V. The ni2 contribution takes the following form:

0 o= B+ s, (15
F(z):Niéf dR[F»i(R) = 2Fkondol- (100 where
Here F,(R) is the free energy of the two impurities sepa- ~ Ne(kp) +No(kg)
rated by a distanc®, Fgonqo is the usual single-impurity @= 2 T (16)
Kondo term. Thus thei2 correction is competely determined
by the two-impurity physics. Equatiofi0) and similar ex- Ne(ke) —No(kg)  sin(kgR)
pressions for thermodynamic functioriderivatives ofF) = 2 ~ "2kR (17)

could be useful for numerical determination of the tempera- o
ture dependence of the term in thermodynamic functions This orthogonal basis differs from the usual “even” and

from the results on the two-impurity model. “odd” parity wave functions. It is seen explicitly in this
basis that fokeR>1 channel mixing terms play minor role
V. TWO-IMPURITY KONDO MODEL and can be neglected. Other marginal operators appear in the

interaction Hamiltonian Eq(13). Those, however, are sup-
Before calculating th@? term let us discuss the relevant pressed by factors &:R, and therefore can be neglected.
physics of the two- |mpur|ty model. The study of the critical
point for two impurities interacting with the Hamiltonian Eq. V. HIGH-TEMPERATURE RESULTS
(6) starts with a reduction of a three-dimensional problem to
a one-dimensional orfe?° This is done by introducing or- We can now analyze the? corrections in a Kondo alloy
thogonal 1D fermionic operators, of spin-1/2 impurities using the 1D Hamiltonian EG3). At
high temperaturesi>T) this can be done by including the
k RKKY term in Eq. (13) in the noninteracting Hamiltonian,
’ﬁl,z(k):f dﬂﬁ Wcos{h R/2) and perturbing in the Kondo interaction. Instead of averaging
¢ over distances as in E¢L0) one can do averaging over the
strength of the RKKY coupling® Indeed, the interaction
a(k), (1) I(R) is a product of the smooth functidR™® times the rap-
idly oscillating function cos(RgR). It is convenient to carry
where we have integrated over spherical angle, and out the integration in formula Eq10) by first averaging the

sin(k-R/2)

N (k)
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integrand over the period of oscillations. Changing the ordeduction of A dependence to renormalized coupling. On the
of averaging and integration, we obtain other hand, ifT<|I| (1<0) then, at low energies, we have
AN d essentially a two-chann&=1 Kondo problem. Again we
n; y i .
(2)_ ivo f_ . . expect a standard reduction of the dependencd arorre
F a1 VP2 [Fa(yM)=Fa(0M]. (18 sponding to the beta function for that problem. However, the
wherey=1(R)/T, v.p. stands for “principle value.” The evolution of effective Kondo coupling with energy scale is

; : - . different in these two limitgtwo decoupled one-channél
behavior of the bulk spin susceptibility and the heat capacity”
of a Kondo alloy at temperaturds Ty is well known: = 1/2 Kondo problems versus one two-chan8ei1 Kondo

problem. Thus as we lower our cutoff pastthe nature of

(gug)n; the dependence on the cutoff changes. This is to be expected
x(M)= T[l—)\eff(T)], on general grounds. When we have a physical energy scale,
like | in the problem we do not in general get simple depen-
3 dence on the cutoff scale. In a massive quantum field theory,
c(M)= Z”Tzni)\eff(T)4’ (19  effective coupling constants are only useful at energy scales
large compared to the mass.
where .¢(T) =\ + A\2In[A/T] is the effective coupling con-
stant at energy scal€. To the lowest orders in the Kondo VI. CORRECTIONS AT LOW TEMPERATURES

coupling we get the following result for thﬂ:2 correction to

. Let us now consider this problem at low temperatures.
the heat capacity:

Averaging over the distances between two impurities in-

2 volves integration over all RKKY couplingsee Eq.(18)],
4 n?V, A . ) . .
S5C=— —[1=2\nl— (200  Which makes analytical analysis extremely difficult. Instead
3 T T let us consider first th&U(N) generalization of the two-

while for the magnetic susceptibility we find impurity model, for which explicit results for the linear term

in the specific heaty) and the bulk magnetic susceptibility

ni2V0

) were obtainetl as a function of RKKY coupling strength.
ox=K(9us)” 372

), (2)  For aU=% SU(N) generalized two-impurity Anderson
model with RKKY interaction they find, in the largg-limit,

A
)\ — 2|n| =
1)\2)\In_|_

where

,  Nm2e P’coss

- T 501447 22 YTTXT o7 (23
K=v.p. Y are 0 : (22 (1-AHTE

— 13 whereA=sin(kgR)/keR, B=coskgR)/keR, & is related to

andA <vg /R=vg(Ty Vo) ™" is the cutoff of the 1D model. he seattering phase shift in even and odd channgls,

Note that the small bandwidth effective theory of the two-_ 5. 5 N is the SU(N) expansion parameteF?, is the

@mpurity Kondo model _is, of course, only valid for calcula_lt-_ Kondo temperatured is found from the solution of appro-
ing low-energy properties. Thus the above results are valid in .

the rangel«<T<A. Since the RKKY interaction is relevant gzgte Tvia;;:';k:oeg:s:;ones'E-I(;gg;'r;?/;:‘iigg;iiog:%?/er
at weak coupling, it gives rise to power law singularities in X 9 ’

thermodynamic functions at high temperatuteghe mar- RKKY interaction. Since for the average distarigeR>1,
ginal Kondo interaction gives rise to weaker logarithmic B—0, A—0. For these values of parameters the model has a
terms in Eqs(20) and(21). As we will see below in the next first-order phase transition alt/[T) =8/, with §=0 when
section, these singularities are cut off at temperatures of the/Tk) <8/7 and = /2 if (1/Ty)>8/7. We can apply the
order of T. The parameter of the virial expansion is Same averaging technique as in Etg) [with y=1(R)/Ty:
n;Vo/T<1. The major contribution to the? term comes

f i _. 13 . ) 4NN Vy dy

rom distancesR~ (Vo /T)Y3 where the amplitude of the X =z v.p.f Sz [xai(Y: M) = x2i(0N) ] (24)
RKKY term is of the same order as temperature. The virial K y

expansion fails at high enough densities when the averagserforming the integration, we easily find

distance between impurities becomes comparabk fdote

that the second virial coefficients for the spin susceptibility ) 7N Vg
and the heat capacity Eq&0) and (21) cannot be written Y= X=Ni3_-|—K - 3T )
simply in terms of an effective coupling. Averaging over

distances in the virial expansion correspond to different valwhere the first term in Eq25) corresponds to the ordinary
ues of RKKY exchangé, which can be quite large. Itis clear Kondo effect in theSU(N) model. One important result of
that| ruins the simple dependence of physical quantities orthe virial expansion is to find the density at which the single-
A and bare coupling. Consider what happens when weltakeimpurity approximation no longer works. As one can see
either very large or very small, continuing to trdagxactly — from Eq. (25), this happens ah;~Tx/Vy, or when the
and doing perturbation theory in the Kondo couplingd.i§ ~ Kondo temperature becomes comparable to the amplitude of
very small(compared tol') we should be able to ignore it the RKKY interaction at the average interimpurity distance.
and then we just get two decoupled single impurity Kondo The mean-fieldN=o solution suffers from a number of
problems. In this limit we certainly recover the standard re-defficiencies. In particular, it was shof°that for two

(29
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spin-1/2 impurities the quantum phase transition is secondit low temperatures, thcrai2 term becomes large when the
not first order. The critical point for two spin-1/2 impurities RKKY interaction at the average distance between impurities
is only present if the model is particle-hole symmetric. Un-pecomes of the same order as the Kondo temperature. Since
der these conditions it was fouttd® that the specific-heat the parameter of expansion in densityrign., wheren,
coefficient y diverges at the critica! point .as’,I/TK =T /Vox\~2exp(-1\) (A=pJ is the dimensionless

— (Tl 2, (1/T¢)¢=2.2, while the uniform spin suscep- Kondo coupling constantis exponentially small, deviation
tibility x does not. Let us find out whether this divergencesrom the single-impurity behavior could be observed in di-
produces any singularity in the thermodynamic quantities|yte alloys with magnetic impurities. We have also seen that
Unlike in the N=c0 model, where there is always a first- the presence of the intermediate fixed point in the two-
order phase transition, one can identify possible singularitiefypurity problem could lead to a mild low-temperature sin-
aty=0 andy=y. from Eq.(24). At y=1/Tx—0 the two  gylarity in the specific heat, but not the bulk magnetic sus-
Kondo impurities are independently screened. Since impurityeptibility. Further numerical investigation of this problem is
spin at the Kondo fixed point should be replaced by the locafjesiraple. In some rare-earth alloys, such agy¥h,CuAl,*
spin density, the behavior of thermodynamic functions is lineaxiop to

1(0) (0) very largex=0.9. This observation could be related to the
SlocM, (26) fact that these ions are often described by the Coqgblin-
Tk Schrieffer model =8 in case of YB"), where the RKKY
. - . 2
so that the RKKY interaction can be written as follows: ~ Interaction is suppressge®(1/N°) (Ref. 18].

Our calculation of the second virial coefficient shows that
Ivﬁ the density of impurities at which multi-impurity effects be-
HRKKY“T—z[lﬂ(O)O’%(O)- ¥5(0)oyy(0)].  (27)  come important ishigher than that given by Nozies’ ex-
K haustion principle. According to this principle, at these den-
Perturbing inHgkky, one easily finds that the singularity in sities (©=n;) there are not enough states to screen all
v and y at y—O0 is logarithmic, i.e., principle-value inte- impurities. Since Nozies’ principle is multi-impurity in na-
grable. Fory=y, the bulk susceptibilityy does not have a ture, it may be necessary to study the convergence properties
singularity, whereasy has a power-law divergence-(y  of the expansion itself rather than the behavior of a given
—y.) 2. The form of this singularity in the vicinity of,  term to claim its failure.

was investigated ealier using bosonisation by &awho Finally, we note that the reason why the large Kondo
showed that it is effectively cut off at finite temperatures atlength scale is absent in the problem is purely geometric. The
Sy \[T. This produces a square-root singularity,in channel mixing terms between two impurities are large in the
one-dimensional problem. However, in 3D they become sup-
N; n;iVq pressed by a small factor of KR, and the physics of the
57“T_K \/T_TK (28 two-impurity model(and relatedqi2 term in the cluster ex-

pansion is fully determined by the competition of the
Sincey does not diverge at the critical point, such singularityRKKY and Kondo effects.
is absent for the bulk susceptibility. It is knowthat in the
absence of particle-hole symmetry there are relevant pertur-
bations near the zero-temperature critical point of the two- ACKNOWLEDGMENTS
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