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Symmetry and energy spectrum of high-nuclearity spin clusters

O. Waldmann
Physikalisches Institut III, Universita¨t Erlangen–Nürnberg, D-91058 Erlangen, Germany

~Received 9 June 1999!

A general and efficient procedure is presented, which allows us to reduce the computational efforts for the
calculation of the energy levels of high-nuclearity spin clusters. The method consists of block factorizing the
Hamiltonian matrix using the invariance of the spin Hamiltonian with regard to interchanges of spin sites. It
can be applied to any arbitrary spin Hamiltonian. In order to demonstrate the flexibility in handling different
spin Hamiltonian terms and symmetry groups, its application to several model clusters is discussed.
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I. INTRODUCTION

In recent years, the magnetic properties of large clus
of interacting magnetic centers have become the focus o
intensive research activity since their dimensions and s
are intermediate between that of simple paramagnets and
of bulk materials.1,2 Molecular clusters of metal ions are o
particular interest as they exhibit no dispersion of size a
shape of the cluster and the number of interacting s
centers1,3 Moreover, the magnetic intercluster interactio
frequently are vanishingly small, so that each cluster con
tutes an isolated magnetic domain.3,4 These so-called high
nuclearity spin clusters~HNSC! were found to be of interes
in several fields of research. For example, clusters with h
spin ground states were found to represent superp
magnets.5–7 In several clusters macroscopic quantum effe
like quantum tunneling of the magnetization we
observed.2,3,8–11A Mn12 cluster compound was even foun
to form a molecular magnetically bistable nanomagne12

with an accordingly large technological impact. HNSC a
also found among biological systems, like, e.
ferritin.2,10,13,14

However, a detailed interpretation of the magnetic pro
erties of HNSC is hampered by the difficulties of the calc
lation of the thermally accessible energy levels. Almost g
erally, the energy spectrum is described by an effective s
Hamiltonian. Its simplest form including interactions amo
spin centers, effects of ligand fields, and Zeeman splittin

H52(
i , j

Ji j Si•Sj1(
i

Si•Di•Si1mB(
i

Si•gi•B, ~1!

i.e., H is restricted to bilinear terms and an isotropic co
pling. i and j runs over all spin centers,Di and gi denote
Cartesian tensors withDi being traceless.

Since the dimension of the Hamiltonian matrix grow
enormously with increasing number of spin centers and s
quantum numbers, an exact diagonalization of the Ham
tonian matrix quickly exceeds the capabilities of any co
puter. It is obvious that then one should take advantage
symmetries in order to block factorize the Hamiltonian m
trix and thereby to reduce the dimension of the matrices to
diagonalized. As has been pointed out by Gatteschi
PRB 610163-1829/2000/61~9!/6138~7!/$15.00
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Pardi,15 there are two basic symmetries that might be cons
ered, the total spin symmetry and the point group symme
of the cluster.

Total spin symmetry. Total spin symmetry may be applie
to the Hamiltonian Eq.~1! if Di50 andgi5g for all i. Thus

H52(
i , j

Ji j Si•Sj1mBS•g•B, ~2!

with S5(Si the total spin. The calculation of the energ
levels is conveniently performed in two steps. First, one c
culates the spectrum for the exchange term alone, which
be denoted asHJ . Since@Si•Sj ,S#50 for arbitraryi , j , HJ
commutes with bothS2 andSz . The eigenfunctions may thu
be written asuSMa& and the energies asEJ(S,a), which are
independent ofM. a denotes additional quantum numbe
necessary for an unambiguous classification of the lev
Using irreducible tensor operator techniques, Gatteschi
Pardi15 developed a general procedure employing total s
symmetry for the calculation of the spectrum ofHJ for any
possible values ofJi j and arrangement of coupling pathway
It thus represents a very powerful tool for the determinat
of EJ(S,a) for a great deal of different clusters. Knowin
theEJ(S,a), it is a straightforward task to calculate the spe
trum of H of Eq. ~2! for arbitrary values of magnetic field
and thereby to calculate the magnetization. Taking the qu
tization axisj to be in the direction ofg•B, the Zeeman term
of Eq. ~2! can be written asmBge f fSjB, wherege f f depends
on the direction ofB with respect to the principal axes ofg.16

For the energies it thus follows

E~S,M ,a!5EJ~S,a!1mBge f fMB. ~3!

The magnetic susceptibility is then calculated directly u
ing the well-known formula of Van-Vleck.17,18 However, it
seems to have not been noted before that also the mag
momentm(T,B) can be expressed in a closed form, whi
will be given here for convenience:

m5mBge f f

(
S,a

e2bEJ(S,a)sinhS 2S11

2
xDSBS~Sx!

(
S,a

e2bEJ(S,a)sinhS 2S11

2
xD , ~4!
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where x5bmBge f fB, b51/(kBT), and BS(y) denotes the
Brillouin function.18

Point group symmetry. Since the symmetry operations o
the point group of the cluster produce interchanges of
spin sites, the point group symmetry is reflected in the s
Hamiltonian by an invariance among permutations of
spin centers. These permutational properties were alre
noted by Griffith,19 who actually used them for a classific
tion of the spin states of a trinuclear cluster by the irreduci
representations of the rotation group in spin domain and
point group. The general group-theoretical procedure
been given by Tsukerblattet al.20 In applying this classifica-
tion scheme, Delfset al.6 arrived at a computation of th
energy spectrum of the octanuclear high-spin Fe~III ! cluster
complex @(tacn)6Fe8O2(OH)12#

81 . Thereby they took ad-
vantage from the fact, that the eight spin centers of the8
cluster with approximateD2 symmetry can be split into two
subsets of four spin centers with againD2 symmetry for each
subset. Both spin and point group symmetry had to be u
since with spin symmetry alone the dimension of the larg
matrix was only reduced from 1 679 616 to 16 576, wha
still intractable. Applying both symmetries, the maximal d
mension could be reduced to 4,170. The same approac
lowed Taftet al.21 to calculate the susceptibility curve for
cyclic ring of eightS55/2 spin centers.

However, the permutational properties were actually
ready exploited as early as 1964 by Bonner and Fishe22

without denoting them so. They calculated the energy spe
of linear rings ofS51/2 spins with an anisotropic coupling
By classifying the states bySz and a wave numberk related
to the translational invariance of the ring, they were able
treat rings with up to 11 spin sites. This technique is d
cussed in more detail in Carboni and Richards.23 Along this
line, Kouzoudis24 recently was able to calculate exact an
lytical expressions for the energy levels and the partit
function of the Heisenberg ring of 5, 6, and 7S51/2 spin
sites. In a very recent work, Ba¨rwinkel et al. developed a
recursive method for applying both translational invarian
and total spin symmetry to Heisenberg rings.25 This allowed
them to obtain analytical expressions also for theN55, S
51, andN58, S51/2 rings.

In contrast to the situation for total spin symmetry
efficient and general procedure has been developed so f
order to deal with point group symmetry. Furthermore,
systems treated till now represent cases where both sym
tries, total spin symmetry, and point group symmetry may
exploited, i.e., only isotropic spin Hamiltonians of the for
of Eq. ~2! were considered.

The denotation of the permutational properties by
term point group symmetry is not entirely satisfying sin
the point group refers to operations in space, while perm
tions of the spin centers are meant. Actually, in some se
the permutational properties can be regarded as an artifi
symmetry of the spin Hamiltonian, which of course is relat
to, but not identical with the point group symmetry of th
cluster. This will become clearer in the following. Therefor
the notation ‘‘spin permutational symmetry’’ is preferred b
the author in order to emphasize this distinction.

The aim of this work is to present a general approach
block factorizing the Hamiltonian matrix using spin perm
tational symmetry, which actually is applicable to any ar
e
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trary spin Hamiltonian. As will be shown, it leads to a ve
simple and intuitive, but still effective scheme. The paper
organized as follows. In the next paragraph the requi
group theoretical techniques are presented. In paragrap
spin permutational symmetry is discussed for a square pla
tetranuclear cluster in the weak exchange limit. Then a he
nuclear ring of sixS55/2 spins additionally exhibiting tota
spin symmetry is considered. These two examples were c
sen since they can be solved without resorting to spin p
mutational symmetry. This allows us to check the validity
the methods by comparing the results of calculations p
formed with using and without using spin permutation
symmetry. Furthermore, these examples are of experime
relevance since the corresponding molecular cluster c
plexes were synthesized recently. The discussion will pa
refer to the experimental results. In the following paragra
various further aspects will be considered. The paper is
ished with a conclusion.

II. BASICS

The general procedure of taking advantage of
symmetry26 consists of first finding operationsR, which
leave the Hamiltonian invariant. The operationsR form the
symmetry group of the Hamiltonian. Then with eachR one
associates an operatorO(R), which acts on wave functions
denoted byun&. SinceR leaves the Hamiltonian invariant
@H,O#50 and the Hamiltonian matrix can be block facto
ized using the symmetry adapted basis functionsuG ( j )n& in-
stead ofun&, whereuG ( j )n& transforms according to the irre
ducible representationG ( j ) of the symmetry group. The state
uG ( j )n& can be constructed using the basis function gene
ing machine26

uGl
( j )n&5

l j

h (
R

G ( j )~R!ll* O~R!un&, ~5!

whereh is the order of the symmetry group andl j the di-
mension ofG ( j ) .

In the case of the spin permutational symmetry the ope
tions R refer to those permutations of spin centers, wh
leave the spin Hamiltonian invariant. It is useful to draw t
coupling pathways among the spin centers as a graph
that in Fig. 1 for a square planar tetranuclear cluster, sinc
reflects the possible invariant permutations. Such a gr
will be denoted as the coupling graph. E.g., the permuta

FIG. 1. Coupling graph of the tetranuclear square planar clu
discussed in the text. The symmetry elements ofD2 are also de-
picted.
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6140 PRB 61O. WALDMANN
R(3412) representing the renumbering 1→3,2→4,3→1,4→2
of the spin centers can be regarded as a 180° rotation o
coupling graph of Fig. 1.

As basis functionsun&, one may choose the product wav
functions uS1M1&uS2M2&uS3M3&•••uSNMN&, with N the
number of spin centers. These wave functions will be abb
viated byuM1M2M3•••MN& or even shorter byu$Mi%&. An-
other possibility are the spin wave functionsuSMb&, where
b denotes the intermediate spin quantum numbers ari
from the chosen coupling scheme. For instance,b
5S1S2S12S3S4S34 for the schemeS125S11S2 , S345S3
1S4, andS5S121S34. Whether the functionsu$Mi%& or the
uSMb& are most appropriate depends on the particular c
ter complex under consideration. This point will be clarifi
in the following.

As final problem, one has to calculate the effects of
operatorsO(R) on the basis functions, i.e., ofO(R)u$Mi%&
or O(R)uSMb&, respectively. This will be done in the nex
two paragraphs.

III. SPIN CLUSTERS IN THE WEAK EXCHANGE LIMIT

As first example a square planar tetranuclear cluste
considered, the spin Hamiltonian of which is at first assum
to be of the form

H52J~S1•S21S2•S31S3•S41S4•S1!1(
i 51

4

Hi
center.

~6!

Hi
center denotes the spin Hamiltonian for thei th spin center

and consists of the Zeeman term and eventually of te
describing the zero-field-splitting~ZFS! due to ligand field
interactions, etc.

As basis functions the product wave functio
uM1M2M3M4& are chosen. The only molecular cluster co
plexes forming strict square planar systems, the Me-@232#
grid molecules with Me denoting a twofold positive
charged metal ion, exhibit exchange splittings much wea
than the ZFS.4,27,28In this so-called weak exchange limit th
product wave functions are most appropriate.

The effect of the operatorO(R) is actually determined
easily since it leads to nothing else than a permutation of
quantum numbers. E.g., the operatorO(3412) associated
with the group element R(3412) results in
O(3412)uM1M2M3M4&5uM3M4M1M2&.

Now one is left with the specification of the symmet
group, and in general several groups are possible. If
square planar cluster is considered as a linear chain
periodic boundaries, then the appropriate symmetry grou
the translation group similar to the situation in crysta
However, several of the irreducible representations are c
plex. Numerically this is unfavorable since it requires t
implementation of a complex arithmetic. Therefore th
group will not be considered here. The full symmetry gro
of a square isD4 . Nevertheless, for simplicity we will con
sider a subgroup ofD4, i.e.,D2 . The symmetry elements ar
depicted in Fig. 1. Table I gives the operatorsO(R) associ-
ated with each group elementR.
he
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In the case of the Co-@232# grid molecules the spin o
each center isS53/2.28 The Hamiltonian matrix is thus o
dimension 256. The reduction of the reducible representa
G(H) yields

G~H !576•A1% 60•A2% 60•B1% 60•B2 ~7!

and the basis functionsuG ( j )$Mi%& are easily constructed
with Table I and Eq.~5!. E.g., forG ( j )5A2 one obtains

uA2$Mi%&5
1

4
@1•O~1234!11•O~3412!21•O~4321!

21•O~2143!#u$Mi%&. ~8!

So far, it has been assumed implicitly that in Eq.~6! a ZFS
term is absent and that all the tensorsgi are isotropic and
identical to each other. However, the presented method is
limited to this case. One may include ZFS, anisotropicgi
tensors, anisotropic, or biquadratic exchange terms, an
on. One only needs to figure out which permutations lea
the Hamiltonian invariant. The occurrence of these terms
be depicted in the coupling graph such that it still reflects
symmetry of the spin Hamiltonian with respect to permu
tions. E.g., different isotropicg factors may be indicated by
different sizes of the points in Fig. 1.

Here the difference between the actual point group sy
metry of the cluster and the spin permutational symme
becomes obvious. The notation of the above group withD2
is somewhat arbitrary, since one can regardO(2143) as a
rotation as well as a reflection. In the latter case one wo
have denoted the spin permutational group asC2n . Further-
more, it is easy to find examples where the point group sy
metry has higher/lower symmetry than the spin permu
tional symmetry. For example, the point group of the Me@2
32# grid molecules is close toD2, whereas the coupling
graph exhibitsD4 symmetry.

The above procedure has been used extensively to in
pret the magnetization data of the Co-@232# and Ni-@232#
grid molecules.4,29 In particular, isotropic, uniaxial aniso
tropic, and biquadratic exchange, uniaxial ZFS, andg-factor
anisotropy were considered demonstrating the flexibility
the method. The Hamiltonian matrix of Co-@232# has a di-
mension of only 256 and is diagonalized very rapidly, bu
fitting of powder magnetization curves requires quite a
~about 100 000! of diagonalizations and is thus rather tim
consuming. Assuming that the computation time increa
cubically with the dimension of the matrices, one expect
reduction of the computation time by a factor of 15. In pra
tice we observed a factor of about 20, i.e., the computa
time was reduced from 6 hours to 20 min on a fast works
tion. The full D4 symmetry led to a further reduction of th
computation time by a factor of about 2.

TABLE I. OperatorsO(R) associated with the group elemen
of D2 for the square planar tetranuclear cluster and the cyclic he
nuclear cluster.

Cluster E C2
z C2

y C2
x

Tetran. O(1234) O(3412) O(4321) O(2143)
Hexan. O(123456) O(456123) O(321654) O(654321)
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IV. SPIN CLUSTERS IN THE STRONG EXCHANGE LIMIT

A. Hexanuclear cluster with isotropic coupling

As next example, a regular ring of six identical spin ce
ters will be considered. The new aspect of the followi
treatment is that both total spin symmetry and permutatio
symmetry will be applied. Therefore, the correct basis fu
tions are spin wave functions where total spin symmetry
already exploited. The spin Hamiltonian is

H52JS (
i 51

5

Si•Si 111S6•S1D 1mBgS•B, ~9!

a special case of Eq.~2!. Due to reasons which will becom
clear below, firstD2 will be used as symmetry group. Th
coupling graph is depicted in Fig. 2~a!. The operatorsO(R)
associated with the group elements are given in Table I.

SinceS commutes withO(R) the states ofH can be clas-
sified simultaneously by the irreducible representations
the spin rotation group, i.e., byS and M, and those of the
spin permutational symmetry group,G ( j ) . These states ar
denoted byuG ( j )SMa&, wherea again represents additiona
quantum numbers. Starting from the spin wave functio
uSMb& as basis functions withb denoting the intermediate
spin quantum numbers arising from the chosen coup
scheme, one has to construct a set of basis funct
uG ( j )SMb&, analogously to Eq.~8!. As coupling scheme, the
special choiceS165S11S6 , S345S31S4 , S16345S161S34,
S255S21S5, and S5S16341S25 is made, so thatb
5S1S6S16S3S4S34S1634S2S5S25. The coupling scheme is de
picted graphically in Fig. 2~a!.

The effect of the operatorsO(R) on the statesuSMb& is
calculated exemplarily for the operatorO(456123). The
stateuSMb& is first decomposed into the product wave fun
tions uS1M1S2M2 . . . S6M6& according to the coupling
scheme:

uSMS1S6S16S3S4S34S1634S2S5S25&

5 (
SMi5M

^1,6,16&^3,4,34&^16,34,1634&^2,5,25&

3^1634,25,S&uS1M1S2M2S3M3S4M4S5M5S6M6&,

~10!

where the shorthand notation ^ i , j ,k&
5^SiMiSjM j uSiSjSkMk& for the Clebsch-Gordon coeffi

FIG. 2. Coupling graph of the hexanuclear ring discussed in
text for ~a! D2 and ~b! D3 symmetry. The symmetry elements a
depicted by dotted lines, the coupling scheme by the thin lines
-

al
-
s

f

s
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ns

-

cients is introduced. Application of the operatorO(456123)
to Eq. ~10! and a subsequent change of indices in the s
according to 4→1, 5→2, 6→3, etc.,~i.e., according toR21)
yields

O~456123!uSMS1S6S16S3S4S34S1634S2S5S25&

5 (
SMi5M

^4,3,34&^6,1,16&^34,16,1634&^5,2,25&

3^1634,25,S&uS1M1S2M2S3M3S4M4S5M5S6M6&.

~11!

Equation~11! can be brought back into the form of Eq
~10! by using the propertŷ j ,i ,k&5(21)Si1Sj 2Sk^ i , j ,k& of
the Clebsch-Gordon coefficients with the final result

O~456123!uSMS1S6S16S3S4S34S1634S2S5S25&

5~21!S31S42S341S11S62S161S161S342S16341S21S52S25

3uSMS4S3S34S6S1S16S1634S5S2S25&. ~12!

Since the effect of the operatorsO(R) is known now, the
new basis functionsuG ( j )SMb& can be set up with Eq.~5!
and Table I.

The simple result that each stateO(R)uSMb& is ex-
pressed by only one basis functionuSMb8& is the conse-
quence of the particular choice of the symmetry group a
the coupling scheme. In some sense, the symmetry group
the coupling scheme are compatible. I.e., if one applies
example the permutationR(213) to the coupling schem
S125S11S2 , S5S121S3 one obtainsS125S21S1 , S5S12
1S3 being identical to the former coupling scheme. O
may thus say that the group elements leave the coup
scheme invariant. This is also reflected by the symmetry
the coupling graph extended by the graphical representa
of the coupling scheme, see Fig. 2~a!.

If one wants to take advantage of the full symmetry gro
of a regular hexagon, i.e., ofD6, a further aspect needs to b
considered since the operatorsO(R) do not longer leave the
coupling scheme invariant. This will be discussed in the f
lowing for D3 . The extension of the results toD6 is straight-
forward.

The coupling schemeS145S11S4 , S255S21S5 , S36
5S31S6 , S14255S141S25, and S5S14251S36 is chosen,
with b5S1S4S14S2S5S25S1425S3S6S36. The coupling graph
including the coupling scheme is depicted in Fig. 2~b!. The
fact that the operatorsO(R) do not leave the coupling
scheme invariant can be inferred from Fig. 2~b!, taking into
account that the coupling scheme must not be ‘‘rotate
However, in order to infer the coupling scheme of the st
O(R)uSMb& from the coupling graph, one has to apply th
permutationR21 on the coupling graph since such a chan
of indices was necessary to obtain Eq.~11!. E.g., for
O(345612), a counter clockwise 180°-rotation of the hex
gon, the resulting state is coupled according toS25365S25
1S36, and S5S25361S14. The resulting state can then b
reexpressed by the basis functionsuSMb& using Wigner-6j
symbols.15 Going through the calculation similarly to Eq
~10!–~12!, one obtains

e
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6142 PRB 61O. WALDMANN
O~345612!uSMS1S4S14S2S5S25S1425S3S6S36&

5~21!S11S42S141S21S52S25(
S14258

A2S142511

3A2S14258 11H S25 S14 S1425

S36 S S14258 J
3~21!S251S141S361S1S361S25362S

3uSMS3S6S36S4S1S14S14258 S5S2S25&, ~13!

with similar results for the other operators. The classificat
scheme for a regular ring of sixS55/2 spin centers is given
in Table II for D2 andD3 .

The above discussion shows that in general the resu
the application of an operatorO(R) to the stateuSMb& can
be expressed by one single spin wave function, which, h
ever, is coupled according to a different coupling sche
thanuSMb& if the operatorO(R) does not leave the couplin
scheme invariant. In that case, the resulting spin wave fu
tion can be expanded into spin functionsuSMb8& using the
Wigner-6j symbols. Obviously, this approach allows us
deal with the spin permutational symmetry of any isotro
spin Hamiltonian.

B. Strong exchange limit

For an interpretation of the experimental results of r
molecular cluster complexes a ZFS term due to ligand-fi
or dipole-dipole interactions has to be retained in the s

TABLE II. Parts of the classification scheme for the hexanucl
cluster withS55/2 for all spin centers in theD2 and theD3 group.

D2 D3

S A1 A2 B1 B2 A1 A2 E Tot. deg.

0 15 27 27 42 22 19 35 111
1 93 78 78 66 54 51 105 315
2 108 117 117 133 81 74 160 475
3 158 142 142 133 101 94 190 575
4 144 150 150 165 106 97 203 609
5 158 143 143 137 100 91 195 581
6 121 124 124 136 90 81 167 505
A
15 1 0 0 0 1 0 0 1
n

of

-
e

c-

l
d
n

Hamiltonian for most cases, i.e., one has to resort to the
Hamiltonian of Eq.~1!. However, there exist a great deal
cluster complexes for which total spin symmetry is almo
fulfilled. Then, in the so-called strong exchange limit, t
isotropic spin Hamiltonian of Eq.~2! is a reasonable firs
approximation and the energy splittings due to the ZFS te
~and the Zeeman term! can be calculated by first-order pe
turbation theory.

In particular, this is actually the situation encountered
the molecular Fe6 ferric wheels consisting of six Fe~III ! ions
forming a regular hexagon. Their low-lying energy spectru
and magnetic anisotropy was investigated recently in de
and could be successfully interpreted by the spin Ham
tonian of Eq.~1! in the strong exchange limit.30–32 The in-
terpretation required an evaluation of the matrix eleme
^SMauTk

quS8M 8a8&, where uSMa& denotes the zero-orde
wave functions andTk

q the kth component of an irreducible
tensor operator of rankq. The calculation of the matrix ele
ments was found to be rather involved, but just tractable
the Fe6 ferric wheels.32

However, since the ZFS term is left invariant by the pe
mutationsR, spin permutational symmetry here also allow
us to reduce the computational efforts. For the Fe6 ferric
wheels theS51 zero-order stateu1Ma&, e.g., is a linear
combination of 315 spin wave functionsu1Mb& ~see Table
II !. Thus a total of 3153315599225 terms need to be ca
culated in order to evaluate the matrix eleme
^1MauTk

qu1M 8a&. The number of terms can be reduced s
nificantly by using spin permutational symmetry. For i
stance, by applyingD2 symmetry only a total of 9321782

17821662525173 terms arise~see Table I!, corresponding
to a reduction by a factor of 4. Since spin permutation
symmetry additionally reduces the time for the computat
of the zero-order basis functions, a significant overall tim
saving is achieved.

V. ADDITIONAL ASPECTS

Now all information has been provided, which is requir
to deal with the spin permutational symmetry of any ar
trary spin Hamiltonian. However, in this paragraph some
ditional aspects will be elaborated.

Let us consider a regular ring of eightS53/2 spin centers
with isotropic coupling. The appropriate spin Hamiltonia
needs not to be written down explicitly because it is simi
to Eq. ~9!. In Table III parts of the classification scheme

r

0
130
170
192
165
133
TABLE III. Parts of the classification scheme for the octanuclear cluster withS53/2 for all spin centers
in the D1 , D2 , D4, andD8 group.

D1 D2 D4 D8

S A A1 A2 B1 B2 A1 A2 B1 B2 E A1 A2 B1 B2 E1 E2 E3

0 364 124 80 80 80 74 30 50 50 80 37 15 15 37 50 40 4
1 1,000 220 260 260 260 100 140 120 120 260 52 68 72 48 120 130
2 1,400 380 340 340 340 200 160 180 180 340 102 78 82 98 180 170
3 1,505 353 384 384 384 168 199 185 185 384 87 96 103 81 185 192
4 1,351 361 330 330 330 189 158 172 172 330 98 76 82 91 172 165
5 1,044 246 266 266 266 118 138 128 128 266 62 66 72 56 128 133
A



s
th
va
c
e

ta

ta
e
ut
pi

ce
le

e
ing
en
o

-

io
to
in

n
ss
t

he
ts
re
tio
no

pin
u-

he

e
tal
the

ster.
the
e

ro-
ry

pic
i-

in-
en-
ling

ake
lear
ter
f the

val-

in
d.
ks
-

to
s
xi-
-

-
re
up
th
ul

ted

PRB 61 6143SYMMETRY AND ENERGY SPECTRUM OF HIGH- . . .
applyingD1 , D2 , D4, andD8 are shown. Table IV present
the computation times typically required on a fast PC for
calculation of the representation matrices and the energy
ues. It is seen that the time for the energy values is redu
drastically, as expected, while the time consumption for s
ting up the representation matrices remains almost cons
For the higher symmetries thanD1 almost all of the compu-
tation time is actually wasted for setting up the represen
tion matrices and not for the calculation of the energy valu
Therefore, the great advantage of applying spin perm
tional symmetry to the calculation of the spectra of isotro
spin Hamiltonians lies in a saving of memory and less in
reduction of computation time.

The considerable time required for setting up the matri
is due to the fact that for the calculation of the matrix e
ments ^GSMbuHuGSMb8& the wave functionsuGSMb&
have to be expanded into spin functionsuSMb& @see Eq.~5!#
and that for the calculation of̂ SMbuHuSMb8& many
Wigner-6j symbols need to be evaluated. Actually, the tim
presented in Table IV were only achieved after hav
implemented the following idea. Using the rearrangem
theorem, the great orthogonality relation, and the unitarity
the irreducible representations,26 one can simplify the calcu
lation of the matrix elementŝGl

( j )nuHuGl
( j )n8& to

^Gl
( j )nuHuGl

( j )n8&5 S l j

h D 2

(
R,R8

Gll
( j )~R!Gll

( j )~R8!

3^nuO~R!HO~R8!un8&

5
l j

h (
R

Gll
( j )~R!^nuHO~R!un8&. ~14!

Heren abbreviates additional quantum numbers. Equat
~14! demonstrates that the double sum can be reduced
single sum over all group elements with a correspond
drastic reduction of computation time.

However, in order to calculate, e.g., the ZFS in the stro
exchange limit or the inelastic neutron-scattering cro
section one needs not only the energy values, but also
eigenvectors. Typical times for the calculation of both t
energy values and the eigenvectors are given in bracke
Table IV. Since the calculation of the eigenvectors requi
much more time than the energy values, the computa
time for setting up the representation matrices is of mi

TABLE IV. Typical computation times required for an octa
nuclear ring withS53/2 for all spin centers. The calculations we
performed on a 233 MHz Pentium II PC. The times for setting
the matrices, for the calculation of the energy values, and for
complete run are given. The values in the brackets refer to calc
tions where both energy values and eigenvectors were compu

Symmetry
group Matrices

Energies
~energ.&eigenvec.! Total

D1 402 s 558 s~61439 s! 963 s~63690 s!
D2 385 s 27 s~2701 s! 416 s~3254 s!
D4 502 s 11 s~969 s! 523 s~1549 s!
D8 499 s 7 s~249 s! 526 s~795 s!
e
l-

ed
t-
nt.

-
s.
a-
c
a

s
-

s

t
f

n
a

g

g
-

he

in
s
n
r

importance. Actually, Table IV demonstrates that here s
permutational symmetry is quite effective in saving comp
tation time.

Contrary to the situation for the spin wave functions, t
calculation of the matrix elements ofH using the product
wave functionsu$Mi%& costs very little time compared to th
diagonalization. Thus, for dealing with clusters where to
spin symmetry cannot be applied, e.g., for systems in
weak exchange limit, it is more convenient to use theu$Mi%&
as has been done in paragraph III for the tetranuclear clu

The above discussion shows that in the cases where
time for setting up the matrices is only a fraction of th
overall computation time, spin permutational symmetry p
vides its full power. It leads not only to a saving of memo
but also to an efficient reduction of computation time.

So far, situations were encountered where the isotro
spin Hamiltonian Eq.~2! was not diagonal in the intermed
ate spin quantum numbers being abbreviated byb. However,
in cases where the spin Hamiltonian commutes with all
termediate spin quantum numbers the calculation of the
ergy values is quite easy since then Kambe’s vector coup
method can be applied.33 But even if H does not commute
with all intermediate spin quantum numbers, one can t
advantage of this further symmetry. If the same octanuc
ring as above is considered with an additional spin cen
situated at the center of the octagon, the exchange term o
spin Hamiltonian is of the form

HJ52JS (
i 51

7

Si•Si 111S8•S1D 2J8S9•S (
i 51

8

Si D . ~15!

It is obvious thatHJ and therebyH commutes with both
S9 andS1285( i 51

8 Si . ThusHJ can be written as

HJ52JS (
i 51

7

Si•Si 111S8•S1D 2
J8

2
~S22S9

22S128
2 !,

~16!

and the energy levels can be calculated from the energy
uesE8(S128 ,a) of the octanuclear ring according to

E~S,S9 ,S128 ,a!5E8~S128 ,a!2
J8

2
@S~S11!2S9~S911!

2S128~S12811!#. ~17!

For the calculation of theE8(S128 ,a) spin permutational
symmetry can of course be exploited as above.

Finally, the efficiency of spin permutational symmetry
block factorizing the Hamiltonian matrix shall be estimate
It is obvious that the sum over the dimensions of all bloc
gives the total numberN of states, whereby taking into ac
count that a block corresponding to al j -dimensional repre-
sentationG ( j ) has to be countedl j -times. I.e.,N5( j l jXj ,
where Xj is the dimension of the block corresponding
G ( j ) . An inspection of Eq.~7! and Tables II and III suggest
that the dimension of the blocks can be roughly appro
mated byXj5 l jX, i.e., the dimension of the blocks corre
sponding to a one-dimensional representation is roughlyX,
that for a two-dimensional representation is roughly 2X, and
so on. Since( j l j

25h, X can be calculated as

e
a-
.
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X5
N

h
. ~18!

Equation~18! provides a simple estimation of the block d
mensions with an accuracy of about 50%.

VI. CONCLUSION

In summary, a general and efficient procedure has b
presented that allows us to block factorize the matrix rep
sentation of any spin Hamiltonian based on its invarian
with respect to permutations of the spin sites. This symm
try, named spin permutational symmetry, is related to
point group symmetry of the cluster since it arises go
from the real electrostatic Hamiltonian to the effective sp
Hamiltonian, but has been demonstrated to be of differ
physical significance. The flexibility of the method in ha
an

.
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dling various different spin Hamiltonian terms and permu
tional symmetries was demonstrated for several cluster m
els. So was it possible to take advantage of the full symme
of an octanuclear ring cluster, i.e., ofD8 . It has been shown
that the method actually can be applied to any arbitrary s
Hamiltonian. It is believed that the presented techniques
be useful for the interpretation of the physical properties o
great variety of different high-nuclearity spin clusters.
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