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Symmetry and energy spectrum of high-nuclearity spin clusters
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A general and efficient procedure is presented, which allows us to reduce the computational efforts for the
calculation of the energy levels of high-nuclearity spin clusters. The method consists of block factorizing the
Hamiltonian matrix using the invariance of the spin Hamiltonian with regard to interchanges of spin sites. It
can be applied to any arbitrary spin Hamiltonian. In order to demonstrate the flexibility in handling different
spin Hamiltonian terms and symmetry groups, its application to several model clusters is discussed.

[. INTRODUCTION Pardi!® there are two basic symmetries that might be consid-
ered, the total spin symmetry and the point group symmetry
In recent years, the magnetic properties of large clustersf the cluster.

of interacting magnetic centers have become the focus of an Total spin symmetryTotal spin symmetry may be applied
intensive research activity since their dimensions and sizeto the Hamiltonian Eq(l) if D;=0 andg;=g for all i. Thus
are intermediate between that of simple paramagnets and that
of bulk materials-? Molecular clusters of metal ions are of
particular interest as they exhibit no dispersion of size and H=—2> J;S-S+usS 9B, (]
shape of the cluster and the number of interacting spin =
center$® Moreover, the magnetic intercluster interactions
frequently are vanishingly small, so that each cluster consti
tutes an isolated magnetic domdihThese so-called high-
nuclearity spin clustereHNSC) were found to be of interest
in several fields of research. For example, clusters with high

spin 9“’97” d states were found to represent SUPETPATS \vritten ag§SMa) and the energies &5(S,a), which are
f.“agneté In several c_Iusters macroscopic quantum eﬁectﬁndependent oM. a denotes additional quantum numbers
I|lge q“gf;?gf?lA“;;‘”e"”ﬁ tOf the mecljgnenzatlon fwerde necessary for an unambiguous classification of the levels.
'?o Sfi?rlw? é molec I;rlznsausnZ:'gsr]pg'g?ab;’gazaer]\:)enQagggt Using irreducible tensor operator techniques, Gatteschi and
u gnetically bi ' Pardf® developed a general procedure employing total spin

with an accordingly large technological impact. HNSC aresymmetry for the calculation of the spectrumldf for any

?elfr?tin 2%%2?14 among  biological  systems, like, e'g"possible values af;; and arrangement of coupling pathways.

However. a detailed interpretation of the maanetic pro It thus represents a very powerful tool for the determination
X g P o' e mag i E;(S,«) for a great deal of different clusters. Knowing
erties of HNSC is hampered by the difficulties of the calcu- o .
! X theE (S, @), it is a straightforward task to calculate the spec-
lation of the thermally accessible energy levels. Almost gen-

erally, the energy spectrum is described by an effective spiﬁrurn of H of Eq. (2) for arbitrary values of magnetic field,

Hamiltonian. Its simplest form including interactions among and thereby to calculate the magnetization. Taking the quan-

spin centers, effects of ligand fields, and Zeeman splittin iéization axis¢ to be in the direction of-B, the Zeeman term
P ' 9 ' PUTING 12 Eq. (2) can be written agtggeiS:B, Wherege¢; depends
on the direction oB with respect to the principal axes gf®

For the energies it thus follows

with S=XS the total spin. The calculation of the energy
levels is conveniently performed in two steps. First, one cal-
culates the spectrum for the exchange term alone, which will
be denoted abl;. Since[S-S;,S]=0 for arbitraryi,j, H,
commutes with bott$? andS, . The eigenfunctions may thus

H=-2 J;S S+ S-Di-S+us S-6-B, (1)
= I I E(SlMia):EJ(S’a)+MBgeffMB' (3)

i.e., H is restricted to bilinear terms and an isotropic cou- ~ The magnetic susceptibility is then calculated directly us-

pling. i andj runs over all spin center® andg denote ing the well-known formula of van-Vleck”*® However, it .

Cartesian tensors with; being traceless. seems to have not been noted bef(_)re that also the mag_netlc
Since the dimension of the Hamiltonian matrix grows momentm(T,B) can be expressed in a closed form, which

enormously with increasing number of spin centers and spiMill be given here for convenience:

guantum numbers, an exact diagonalization of the Hamil-

tonian matrix quickly exceeds the capabilities of any com- BE(Sa)ei 2S+1

puter. It is obvious that then one should take advantage of S% e P Ysinh| ——x | SBy(SX)
symmetries in order to block factorize the Hamiltonian ma- ~ m= uggesi— 551 , (4
trix and thereby to reduce the dimension of the matrices to be E e~ BEi(Sdsinh X
diagonalized. As has been pointed out by Gatteschi and Sa
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where Xx= BugdesiB, B=1/(kgT), and Bg(y) denotes the . CJ
Brillouin function® 4 J 1
Point group symmetrySince the symmetry operations of
the point group of the cluster produce interchanges of the
spin sites, the point group symmetry is reflected in the spin .
Hamiltonian by an invariance among permutations of the c? sz
spin centers. These permutational properties were already 2
noted by Griffith!® who actually used them for a classifica-
tion of the spin states of a trinuclear cluster by the irreducible 3 J 2
representations of the rotation group in spin domain and the :

point group. The general group-theoretical procedure has g 1. coupling graph of the tetranuclear square planar cluster

been given by Tsukerblagt a-|_zo In applying this glassifica- discussed in the text. The symmetry elementegfare also de-
tion scheme, Delfet al® arrived at a computation of the picted.

energy spectrum of the octanuclear high-spifllFecluster

complex [ (tacn)Fe;0,(OH)1,]*" - Thereby they took ad- trary spin Hamiltonian. As will be shown, it leads to a very
vantage from the fact, that the eight spin centers of the Fesimple and intuitive, but still effective scheme. The paper is
cluster with approximat®, symmeiry can be split into tWo  grganized as follows. In the next paragraph the required
subsets of four spin centers with agélp symmetry for each  group theoretical techniques are presented. In paragraph il
subset. Both spin and point group symmetry had to be useghin permutational symmetry is discussed for a square planar
since with spin symmetry alone the dimension of the largestetranuclear cluster in the weak exchange limit. Then a hexa-
matrix was only reduced from 1679616 to 16 576, what ispyclear ring of sixS=5/2 spins additionally exhibiting total
still intractable. Applying both symmetries, the maximal di- spin symmetry is considered. These two examples were cho-
mension could be reduced to 4,170. The same approach alen since they can be solved without resorting to spin per-
lowed Taftet al** to calculate the susceptibility curve for a mytational symmetry. This allows us to check the validity of
cyclic ring of eightS=5/2 spin centers. the methods by comparing the results of calculations per-
However, the permutational properties were actually alformed with using and without using spin permutational
ready exploited as early as 1964 by Bonner and Figher, symmetry. Furthermore, these examples are of experimental
without denoting them so. They calculated the energy spectiglevance since the corresponding molecular cluster com-
of linear rings ofS=1/2 spins with an anisotropic coupling. plexes were synthesized recently. The discussion will partly
By classifying the states bg, and a wave numbet related  refer to the experimental results. In the following paragraph

to the translational invariance of the ring, they were able tayarious further aspects will be considered. The paper is fin-
treat rings with up to 11 spin sites. This technique is dis-ished with a conclusion.

cussed in more detail in Carboni and Richattiflong this
line, Kouzoudié* recently was able to calculate exact ana-
lytical expressions for the energy levels and the partition IIl. BASICS

fL_mction of the Heisenberg ring (_)f 5, 6, andS~ 1/2 spin The general procedure of taking advantage of a
sites. In a very recent work, Bainkel et al. developed a gymmetry® consists of first finding operation®, which
recursive method for applying both translational invariancgeaye the Hamiltonian invariant. The operatidRgorm the
and total spin symmetry to Heisenberg rifgThis allowed symmetry group of the Hamiltonian. Then with eaRfone
them to obtain analytical expressions also for e 5, S gssociates an operat®(R), which acts on wave functions
=1, andN=8, S=1/2 rings. _ denoted by|n). SinceR leaves the Hamiltonian invariant,
In contrast to the situation for total spin symmetry NO[H, 0]=0 and the Hamiltonian matrix can be block factor-
efficient and general procedure has been developed so far jpg using the symmetry adapted basis functiifén) in-
order to deal with point group symmetry. Furthermore, allgiooq ofn), where|1“(i)n> transforms according to the irre-
systems treated till now represent cases where both SYMMQycible representatiofi) of the symmetry group. The states

tries, Fotal ;pin symmetry, a}nd p_oint group symmetry may bffr(i)n> can be constructed using the basis function generat-
exploited, i.e., only isotropic spin Hamiltonians of the form ing maching®

of Eq. (2) were considered.
The denotation of the permutational properties by the
term point group symmetry is not entirely satisfying since |1“(j)n)=|—j E r'O(R)*, O(R)|n) (5)
the point group refers to operations in space, while permuta- A h r M '
tions of the spin centers are meant. Actually, in some sense
the permutational properties can be regarded as an artificiathereh is the order of the symmetry group ahdthe di-
symmetry of the spin Hamiltonian, which of course is relatedmension ofl' (" .
to, but not identical with the point group symmetry of the In the case of the spin permutational symmetry the opera-
cluster. This will become clearer in the following. Therefore, tions R refer to those permutations of spin centers, which
the notation “spin permutational symmetry” is preferred by leave the spin Hamiltonian invariant. It is useful to draw the
the author in order to emphasize this distinction. coupling pathways among the spin centers as a graph like
The aim of this work is to present a general approach fothat in Fig. 1 for a square planar tetranuclear cluster, since it
block factorizing the Hamiltonian matrix using spin permu- reflects the possible invariant permutations. Such a graph
tational symmetry, which actually is applicable to any arbi-will be denoted as the coupling graph. E.g., the permutation
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R(3412) representing the renumbering:3,2—4,3—1,4—2 TABLE |. OperatorsO(R) associated with the group elements
of the spin centers can be regarded as a 180° rotation of thd D for the square planar tetranuclear cluster and the cyclic hexa-
coupling graph of Fig. 1. nuclear cluster.

As basis function$n), one may choose the product wave - ”
functions |S;M;)|S,M,)|SsM3)- - -|SyMy), with N the  Cluster E C2 Cy Cz
n.umber of spin centers. These wave functions will be abbregy,,. 0(1234) 0(3412) 0(4321) 0(2143)
viated by|M;M,Ms- - -My) or even shorter b Mi}). An- oo 0(123456) 0(456123) O(321654) O(654321)
other possibility are the spin wave functiofMg), where
B denotes the intermediate spin quantum numbers arising
from the chosen coupling scheme. For instange, In the case of the CE2x2] grid molecules the spin of
=515,5125:54S34 for the schemeS,;;=S,+S,, $34=S;  each center i$=3/2.28 The Hamiltonian matrix is thus of
+8;, andS= S+ S4. Whether the functionfM;}) or the  dimension 256. The reduction of the reducible representation
|SMB) are most appropriate depends on the particular clusF (H) yields
ter complex under consideration. This point will be clarified
in the following. I'(H)=76-A1960-A,®60-B,®60-B, (7)

As final problem, one has to calculate the effects of the , i 0 .
operatorsO(R) on the basis functions, i.e., @(R)[{M;}) ar_1d the basis functionfl’ {Mi}>(_:;1re easily con_structed
or O(R)|SMB), respectively. This will be done in the next With Table I and Eq(S). E.g., forl’ V=A; one obtains
two paragraphs.

1
|Ao{M;})= 3[1-O(1234+1-0(3412 —1-0(4321)

I1l. SPIN CLUSTERS IN THE WEAK EXCHANGE LIMIT

—1-0(21431{M;}). 8

As first example a square planar tetranuclear cluster is

considered, the spin Hamiltonian of which is at first assumedP© far, it has been assumed implicitly that in E6). a ZFS
to be of the form term is absent and that all the tensgfsare isotropic and

identical to each other. However, the presented method is not
limited to this case. One may include ZFS, anisotrogic
4 tensors, anisotropic, or biquadratic exchange terms, and so
H=—J3(S;- S+ S-S5+ S5- S+ S, Sp) + >, HEeMe, on. One only needs to figure out which permutations leave
=1 6 the Hamiltonian invariant. The occurrence of these terms can
©) be depicted in the coupling graph such that it still reflects the
symmetry of the spin Hamiltonian with respect to permuta-
HEe" e denotes the spin Hamiltonian for thth spin center tions. E.g., different isotropig factors may be indicated by
and consists of the Zeeman term and eventually of termdifferent sizes of the points in Fig. 1.
describing the zero-field-splittingZFS) due to ligand field Here the difference between the actual point group sym-
interactions, etc. metry of the cluster and the spin permutational symmetry
As Dbasis functions the product wave functionsbecomes obvious. The notation of the above group With
[M;M,M3M,) are chosen. The only molecular cluster com-is somewhat arbitrary, since one can reg@x(R143) as a
plexes forming strict square planar systems, the[Rie2] rotation as well as a reflection. In the latter case one would
grid molecules with Me denoting a twofold positively have denoted the spin permutational grougCas. Further-
charged metal ion, exhibit exchange splittings much weakemore, it is easy to find examples where the point group sym-
than the ZFS:?"%In this so-called weak exchange limit the metry has higher/lower symmetry than the spin permuta-
product wave functions are most appropriate. tional symmetry. For example, the point group of the Ne-
The effect of the operatoD(R) is actually determined 2] grid molecules is close t®,, whereas the coupling
easily since it leads to nothing else than a permutation of thgraph exhibitsD, symmetry.
guantum numbers. E.g., the operat©(3412) associated The above procedure has been used extensively to inter-
with  the group element R(3412) results in pret the magnetization data of the €x2] and Ni{2x2]
0(3412)M1M,M3M ) =|M35M M M)). grid molecule$:?® In particular, isotropic, uniaxial aniso-
Now one is left with the specification of the symmetry tropic, and biquadratic exchange, uniaxial ZFS, grfdctor
group, and in general several groups are possible. If thanisotropy were considered demonstrating the flexibility of
square planar cluster is considered as a linear chain witthe method. The Hamiltonian matrix of §@x2] has a di-
periodic boundaries, then the appropriate symmetry group imension of only 256 and is diagonalized very rapidly, but a
the translation group similar to the situation in crystals.fitting of powder magnetization curves requires quite a lot
However, several of the irreducible representations are com@bout 100 00D of diagonalizations and is thus rather time
plex. Numerically this is unfavorable since it requires theconsuming. Assuming that the computation time increases
implementation of a complex arithmetic. Therefore thiscubically with the dimension of the matrices, one expects a
group will not be considered here. The full symmetry groupreduction of the computation time by a factor of 15. In prac-
of a square iD,. Nevertheless, for simplicity we will con- tice we observed a factor of about 20, i.e., the computation
sider a subgroup dD,, i.e.,D,. The symmetry elements are time was reduced from 6 hours to 20 min on a fast worksta-
depicted in Fig. 1. Table | gives the operat@$§R) associ- tion. The fullD, symmetry led to a further reduction of the
ated with each group elemeRt computation time by a factor of about 2.



FIG. 2. Coupling graph of the hexanuclear ring discussed in the

text for (@) D, and (b) D3 symmetry. The symmetry elements are
depicted by dotted lines, the coupling scheme by the thin lines.

IV. SPIN CLUSTERS IN THE STRONG EXCHANGE LIMIT

A. Hexanuclear cluster with isotropic coupling

As next example, a regular ring of six identical spin cen-
ters will be considered. The new aspect of the following
treatment is that both total spin symmetry and permutational
symmetry will be applied. Therefore, the correct basis func-
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cients is introduced. Application of the operat®(456123)

to Eq. (10) and a subsequent change of indices in the sum
according to 4-1, 5-2, 63, etc.,(i.e., according tdR 1)
yields

O(456123|SM S S55,165354534516345,S5S25)

L, (43:34(61,16(34,161634(5.2,25

X(1634,255)|S;M1S,M,S3M 3S,M 4SsM5SsMg) .
(13)
Equation(11) can be brought back into the form of Eq.

(10) by using the propertyj,i,k)=(—1)5"S"%(i,j k) of
the Clebsch-Gordon coefficients with the final result

O(456123|SM S S55,165354534516345,S5S26)

=(—1)53"54" Saat S1¥ S~ S16t S16t Saa S634" 52+ S5~ S5

X | SM §,5;3S3456S1 51651634555, S25) - (12

tions are spin wave functions where total spin symmetry is

already exploited. The spin Hamiltonian is

5
H=-J ;13'3+1+56'51 + 11595 B,

©)

a special case of E@2). Due to reasons which will become

clear below, firstD, will be used as symmetry group. The

coupling graph is depicted in Fig(&. The operator©(R)

associated with the group elements are given in Table I.
SinceS commutes withO(R) the states oH can be clas-

sified simultaneously by the irreducible representations o

the spin rotation group, i.e., bg and M, and those of the
spin permutational symmetry group. These states are
denoted by|T'"SMa), wherea again represents additional
guantum numbers. Starting from the spin wave function
|SMB) as basis functions witl8 denoting the intermediate

spin quantum numbers arising from the chosen couplin%f
scheme, one has to construct a set of basis function@O

[T WsMmB), analogously to Eq8). As coupling scheme, the
special choiceS;e=S;+ S5, S34= S3+Sy, Si634= Si6t Saa,
S;5=S,+S5, and S=Sjgt+Sy;s is made, so thatg

= 51565165354 534516305:S5S,5. The coupling scheme is de-
picted graphically in Fig. @&).

The effect of the operatoi®(R) on the state$SMg) is
calculated exemplarily for the operat@®(456123). The
state| SMB) is first decomposed into the product wave func-
tions |S;M1S,M, ...SsMg) according to the coupling
scheme:

|SM S S6S165:54 54516363, S5 S5
>

S
X (1634,258)|S;M 1S,M ,8;M 3S,M 4 SsM5SsM),
(10

where the shorthand notation  (i,j,k)
=<SiMiSij|3SjSkMk> for the Clebsch-Gordon coeffi-

(1,6,16(3.4,34(16,34,163%2,5,29

Since the effect of the operato®(R) is known now, the
new basis function$I"’SMB) can be set up with Eq5)
and Table I.

The simple result that each sta@®(R)|SMB) is ex-
pressed by only one basis functiog8 Mg’} is the conse-
guence of the particular choice of the symmetry group and
the coupling scheme. In some sense, the symmetry group and
the coupling scheme are compatible. l.e., if one applies for
example the permutatioR(213) to the coupling scheme
?12=Sl+82, S=S,,+S; one obtainsS;,=S,+S;, S=S;»
+S; being identical to the former coupling scheme. One
may thus say that the group elements leave the coupling
scheme invariant. This is also reflected by the symmetry of
the coupling graph extended by the graphical representation

f the coupling scheme, see Figap

If one wants to take advantage of the full symmetry group
a regular hexagon, i.e., @fg, a further aspect needs to be
nsidered since the operat@¢R) do not longer leave the
coupling scheme invariant. This will be discussed in the fol-
lowing for D3. The extension of the results By is straight-
forward.

The coupling scheme5;,=S,+S,, S5=S+S5, Sis
=53+ S5, Sia25= Siat S5, and S=Syypst+ Sz is chosen,
W|th B:SJ_S4SJ_48285825814258386836. The Coupling graph
including the coupling scheme is depicted in Figh)2 The
fact that the operator©(R) do not leave the coupling
scheme invariant can be inferred from FigbR taking into
account that the coupling scheme must not be “rotated.”
However, in order to infer the coupling scheme of the state
O(R)|SMB) from the coupling graph, one has to apply the
permutationR ™! on the coupling graph since such a change
of indices was necessary to obtain Ed1). E.g., for
0(345612), a counter clockwise 180°-rotation of the hexa-
gon, the resulting state is coupled accordingS@se= S5
+S36, and S=Sy5361 Si4. The resulting state can then be
reexpressed by the basis functidi®&MB) using Wigner-6j
symbols'® Going through the calculation similarly to Eq.
(10)—(12), one obtains
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TABLE II. Parts of the classification scheme for the hexanuclearHamiltonian for most cases, i.e., one has to resort to the spin
cluster withS=5/2 for all spin centers in thB, and theD; group.  Hamiltonian of Eq.(1). However, there exist a great deal of
cluster complexes for which total spin symmetry is almost

D, Ds fulfilled. Then, in the so-called strong exchange limit, the
S A A, B By A Ay E Totdeg. jsotropic spin Hamiltonian of Eq(2) is a reasonable first
0 15 27 927 42 22 19 35 111 approximation and the energy splittings due to the ZFS term
1 93 78 78 66 54 51 105 315 'ESrnbdattir:)?] %ﬁ:(;?;n temntan be calculated by first-order per-
2 igg E; ii; gg 18011 ;j 128 g;‘;’ In particular, this _is actually the _sit_uation _encoun_tered in

the molecular Fgferric wheels consisting of six Fil ) ions

4 144 150 150 165 106 97 203 609 forming a regular hexagon. Their low-lying energy spectrum
> 158 143 143 137 100 91 195 281 and magnetic anisotropy was investigated recently in detail
6 121 124 124 136 90 81 167 505 and could be successfully interpreted by the spin Hamil-
‘ tonian of Eq.(1) in the strong exchange limit>2The in-
15 1 0 0 0 1 0 0 1

terpretation required an evaluation of the matrix elements
(SMa|TJIS'M’a’), where|SMa) denotes the zero-order
wave functions andy the kth component of an irreducible

O(345612|SM S S,5145,S555514255356 Sse) tensor operator of rang. The calculation of the matrix ele-
ments was found to be rather involved, but just tractable for
=(— 1SSt RS Y (28, 50t 1 the Fg ferric wheels®?
S1425 However, since the ZFS term is left invariant by the per-

Sy Su S mutationsR, spin permutational symmetry here also allows
5 14 1425 . .
x2S . +1 us to reduce the computational efforts. For the Feric
1425 {836 S 3425] wheels theS=1 zero-order stat¢lMa), e.g., is a linear
B St Sont S+ Sant Soran S combination of 315 spin wave functiofsM g) (see Table
X (= 1)%5" 147 ST ST a6 S2s0 II). Thus a total of 3158315=99225 terms need to be cal-
X |SM S,S,S. .S , (13 ~culated in order to evaluate the matrix element
| SMS56536545151451405% 5,520 IMa|TJ|1M ' @). The number of terms can be reduced sig-
with similar results for the other operators. The classificatiomificantly by using spin permutational symmetry. For in-
§cheme for a regular ring of s=5/2 spin centers is given stance, by applyindd, symmetry only a total of 93+ 78
in Table Il for D, andDj. . +78%+66°=25173 terms arisésee Table), corresponding
The above discussion shows that in general the result ab a reduction by a factor of 4. Since spin permutational
the application of an operat@®(R) to the stat§SMB) can  symmetry additionally reduces the time for the computation

be expressed by one single spin wave function, which, howef the zero-order basis functions, a significant overall time
ever, is coupled according to a different coupling schem&aving is achieved.

than|SMB) if the operatolO(R) does not leave the coupling

scheme invariant. In that case, the resulting spin wave func-

tion can be expanded into spin functiofMB’) using the V. ADDITIONAL ASPECTS
Wigner-6j symbols. Obviously, this approach allows us to

deal with the spin permutational symmetry of any isotropic. VoW all information has been provided, which is required
spin Hamiltonian. to deal with the spin permutational symmetry of any arbi-

trary spin Hamiltonian. However, in this paragraph some ad-
ditional aspects will be elaborated.
Let us consider a regular ring of eigBt 3/2 spin centers
For an interpretation of the experimental results of realwith isotropic coupling. The appropriate spin Hamiltonian
molecular cluster complexes a ZFS term due to ligand-fielcheeds not to be written down explicitly because it is similar
or dipole-dipole interactions has to be retained in the spino Eq. (9). In Table lll parts of the classification schemes

B. Strong exchange limit

TABLE lll. Parts of the classification scheme for the octanuclear cluster 84tl3/2 for all spin centers
intheD,, D,, Dy, andDg group.

D, D, D, Dg
A A A, B, B, A, A, B, B, E A A, B, B, E;, E, E,

364 124 80 80 80 74 30 50 50 80 37 15 15 37 50 40 40
1,000 220 260 260 260 100 140 120 120 260 52 68 72 48 120 130 130
1,400 380 340 340 340 200 160 180 180 340 102 78 82 98 180 170 170
1,505 353 384 384 384 168 199 185 185 384 87 96 103 81 185 192 192
1,351 361 330 330 330 189 158 172 172 330 98 76 82 91 172 165 165
1,044 246 266 266 266 118 138 128 128 266 62 66 72 56 128 133 133
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TABLE IV. Typical computation times required for an octa- importance. Actually, Table IV demonstrates that here spin
nuclear ring withS=3/2 for all spin centers. The calculations were permutational symmetry is quite effective in saving compu-
performed on a 233 MHz Pentium Il PC. The times for setting uptation time.
the matrices, for the calculation of the energy values, and for the Contrary to the situation for the spin wave functions, the
complete run are given. The values in the brackets refer to calculagsg|cylation of the matrix elements of using the product
tions where both energy values and eigenvectors were computed,yaye functiong{M;!) costs very little time compared to the
diagonalization. Thus, for dealing with clusters where total

Symmetry Energies Spi . :
, - pin symmetry cannot be applied, e.g., for systems in the
group Matrices _(energ.&eigenves. Total weak exchange limit, it is more convenient to use [{é;})
D, 402 s 558 4614393 963 (63690 3 as has been done in paragraph Ill for the tetranuclear cluster.
D, 385 s 27 42701 8 416 s(3254 3 The above discussion shows that in the cases where the
D, 502 s 11 4969 9 523 (1549 § time for setting up the matrices is only a fraction of the
D 499 s 7 5(249 § 526 $(795 9 overall computation time, spin permutational symmetry pro-

vides its full power. It leads not only to a saving of memory
but also to an efficient reduction of computation time.

applyingD;, D,, D, andDg are shown. Table IV presents _So far,' situ_ations were encountered V\_/here Fhe isotrqpic
the computation times typically required on a fast PC for theSPin Hamiltonian Eq(2) was not diagonal in the intermedi-
calculation of the representation matrices and the energy vafi€ SPIn quantum numbers being abbreviategbijlowever, -
ues. It is seen that the time for the energy values is reduce €@ses where the spin Hamiltonian commutes with all in-
drastically, as expected, while the time consumption for sett€rmediate spin quantum numbers the calcyulanon of the en-
ting up the representation matrices remains almost constarfif9y values is quite easy since then Kambe's vector coupling
For the higher symmetries thay, almost all of the compu- Method can be applietl. But even ifH does not commute
tation time is actually wasted for setting up the representaith all intermediate spin quantum numbers, one can take
tion matrices and not for the calculation of the energy values2dvantage of this further symmetry. If the same octanuclear
Therefore, the great advantage of applying spin permutar-'_”g as above is considered with an additional spin center
tional symmetry to the calculation of the spectra of isotropicSituated at the center of the octagon, the exchange term of the
spin Hamiltonians lies in a saving of memory and less in a>Pin Hamiltonian is of the form

reduction of computation time.

The considerable time required for setting up the matrices
is due to the fact that for the calculation of the matrix ele-
ments (CSMB|H|TSMB’) the wave functions|T'SMB)
have to be expanded into spin functid®&Mg) [see Eq(5)] It is obvious thatH; and therebyH commutes with both
and that for the calculation of SMBIH|SMB’) many S andS,_g=3% ;S . ThusH; can be written as
Wigner-6j symbols need to be evaluated. Actually, the times
presented in Table IV were only achieved after having ’ J’
implemented the following idea. Using the rearrangement HJ:_\](E S-St SS'SI> _?(82_55_5578)1
theorem, the great orthogonality relation, and the unitarity of =1
the irreducible representatioffSpne can simplify the calcu- (16

lation of the matrix element&l” 'n|H|T{’n") to and the energy levels can be calculated from the energy val-
uesEg(S; _g,a) of the octanuclear ring according to

7 8
HJ:—J(;s~3+1+sa-sl)—~l'sg~<§ls). (15)

(rPalHITPn)=

|j)2 ' |
Jd r'DrRri(r’ J’
) 2z PRI E(S.Sy.S1-g,@)=Eg(Sy-g.0) ~ 5 [S(S+1)—So(Sy+1)

X(n|O(R)HO(R")|n") ~S;_g(S;_g+1)]. (a7

=IHJE T(R)(N[HO(R)[n"). (14)  For the calculation of théEg(S, 5,a) spin permutational
R symmetry can of course be exploited as above.
Finally, the efficiency of spin permutational symmetry in
Heren abbreviates additional quantum numbers. EquatiorPlock factorizing the Hamiltonian matrix shall be estimated.
(14) demonstrates that the double sum can be reduced tolkis obvious that the sum over the dimensions of all blocks
single sum over all group elements with a correspondingives the total numbeN of states, whereby taking into ac-
drastic reduction of computation time. count that a block corresponding tol adimensional repre-
However, in order to calculate, e.g., the ZFS in the strongsentationI' ) has to be countet|-times. l.e,N=3;X;,
exchange limit or the inelastic neutron-scattering crosswhere X; is the dimension of the block corresponding to
section one needs not only the energy values, but also tHe!). An inspection of Eq(7) and Tables Il and IIl suggests
eigenvectors. Typical times for the calculation of both thethat the dimension of the blocks can be roughly approxi-
energy values and the eigenvectors are given in brackets imated byX;=I;X, i.e., the dimension of the blocks corre-
Table IV. Since the calculation of the eigenvectors requiresponding to a one-dimensional representation is roughly
much more time than the energy values, the computatiothat for a two-dimensional representation is rough¥; 2nd
time for setting up the representation matrices is of minorso on. Sincezjljzzh, X can be calculated as
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N dling various different spin Hamiltonian terms and permuta-
X=1 (18)  tional symmetries was demonstrated for several cluster mod-
els. So was it possible to take advantage of the full symmetry
Equation(18) provides a simple estimation of the block di- of an octanuclear ring cluster, i.e., Bf. It has been shown

mensions with an accuracy of about 50%. that the method actually can be applied to any arbitrary spin
Hamiltonian. It is believed that the presented techniques will
VI. CONCLUSION be useful for the interpretation of the physical properties of a

. reat variety of different high-nuclearity spin clusters.
In summary, a general and efficient procedure has bee% y 9 Y sp

presented that allows us to block factorize the matrix repre-
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