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Quantum phase transitions for the Haldane system in higher dimensions:
A mixed-spin cluster expansion approach

Akihisa Koga and Norio Kawakami
Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

~Received 21 October 1999!

We present a mixed-spin cluster expansion method to discuss the quantum phase transitions for the Haldane
system in two and three dimensions. By mapping thes51 antiferromagnetic spin model on square and cubic
lattices to the equivalent mixed-spin model, we study the competition among the Haldane, the dimer, and the
magnetically ordered phases. The mixed-spin cluster expansion proposed here realizes the notion of the va-
lence bond solid in a perturbation theory. This method allows us to directly deal with the Haldane phase, which
may not be reached by standard series expansion methods. The zero-temperature phase diagram is thus deter-
mined rather precisely for the two- and three-dimensional Haldane systems.
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I. INTRODUCTION

Low-dimensional spin systems with the spin gap for t
excitation spectrum have been extensively studied since
Haldane conjecture,1 which clarified that the gap formatio
in the integer-spin Heisenberg chain reflects the topolog
nature of spins. Recent extensive experimental and theo
cal investigations on the stability of the Haldane syst
against various perturbations have been providing a var
of interesting topics. The instability of the spin-gap phase
the s51 spin models has been studied in detail so far
one-dimensional~1D! systems. For instance, the effect of t
bond alternation is understood qualitatively well by the no
linear sigma model,2 as well as the valence bond solid~VBS!
approach.3 The accurate critical point between the dimer a
the Haldane phases has been further obtained by the s
expansion,4 the exact diagonalization,5,6 the quantum Monte
Carlo simulations,7 and the density matrix renormalizatio
group ~DMRG!.5 On the other hand, thes51 spin systems
with the 2D or 3D structures have not been studied so w
although the effects of the antiferromagnetic correlations
to the interchain couplings should be important for real m
terials. So far, Sakai and Takahashi8 investigated a quasi-1D
s51 spin system by combining the mean field theory w
the exact diagonalization results for the spin chain, and g
a rough estimate for the phase-transition point to the anti
romagnetic phase.

In this paper, we systematically study how the Halda
and the dimer phases for thes51 antiferromagnetic chain
are driven to the magnetically ordered phase in 2D and
systems by exploiting the series expansion techniques
particular, we propose amixed-spin cluster expansionby
mapping thes51 spin model to the equivalent mixed-sp
model, which allows us to deal with the Haldane phase. T
approach is a realization of the notion of the VBS in a p
turbation theory. We determine the phase diagram rather
cisely both for the 2D and 3D cases by computing the s
excitation gap and the staggered susceptibility.

II. MODEL HAMILTONIAN

Let us first consider thes51 antiferromagnetic quantum
spin system on a 2D square lattice, which is described by
Hamiltonian
PRB 610163-1829/2000/61~9!/6133~5!/$15.00
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@G iSi , j•Si 11,j1JSi , j•Si , j 11#, ~1!

whereJ is the interchain coupling andSi , j is thes51 opera-
tor at the (i , j )th site in the (x2y) plane. Here we have
introduced the bond-alternation parametera(0<a<1)
along thex direction, G i51(a) for even ~odd! i. All the
exchange couplings are assumed to be antiferromagneti

We employ the series expansion method developed
Singh, Gelfand, and Huse.9,10 Since this method combine
the conventional perturbation theory with the cluster exp
sion, it has an advantage to deal with the spin system
higher dimensions even for the cases for which the relia
results are difficult to be obtained by the exact diagonali
tion, the DMRG, etc. In fact, the series expansion meth
has been successfully applied to the 2D spin systems
various structures,9,11 Kondo lattice,12 bilayer systems,13,14

etc. However, to apply the series expansion technique to
present system including the Haldane phase, a nontri
generalization is needed, since a naive cluster expansion
not describe the Haldane state. For instance, the dimer
is adiabatically connected to the isolateds51 dimers, but
the Haldane state does not have its analogue in the isol
local singlets composed of severals51 spins. To overcome
this problem, we wish to recall the notion of the VBS3

which captures the essence of the Haldane-gap formation
realize this idea in the series expansion, we first divide h
of the s51 spins into twos51/2 spins as schematicall
shown in Fig. 1,15 and map the system to the mixed-sp
system which is equivalent to the original model except fo
trivial isolated excited mode. As a starting configuration
the perturbative expansion, we can then consider two ty
of the mixed-spin cluster singlets formed by the solid lines
Figs. 1~b! and 1~c!. It is seen that by starting from the con
figuration ~b! we can directly deal with the Haldane pha
since it has the structure of the Haldane state in the V
picture, whereas if the configuration~c! is chosen, we natu-
rally end up with the standard dimer expansion. The ab
mapping thus gives us an important message thatthe
Haldane phase is adiabatically connected to the isola
mixed-spin singlet states in Fig. 1(b), and thereby can
6133 ©2000 The American Physical Society
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treated by the mixed-spin cluster expansion method.The re-
sulting cluster expansion around the isolated mixed-spin
glets should provide a quite powerful method, which enab
us to deal with the competition among the Haldane pha
the dimer phase and the magnetically ordered phase in
and 3D systems.

III. QUANTUM PHASE TRANSITIONS

We first discuss the quantum phase transitions among
Haldane phase, the dimer phase and the antiferromag
phase for the 2Ds51 spin system with bond alternation. I
the end of this section, we further apply the cluster expans
method to the 3Ds51 Haldane system.

A. Haldane phase

In order to apply the mixed-spin cluster expansion to
Haldane phase in 2D, we first convert thes51 spin model
into the effective mixed-spin model shown in Fig. 2. In th
figure, the large~small! circle represents thes51(s51/2)
spin. The bold solid, the thin solid and the dashed lines
dicate the coupling constant 1,l andJl, respectively. Here
an auxiliary parameterl, which changes from 0 to 1, i
introduced to perform the cluster expansion. In this figu
the model without bond alternation is drawn for simplicit
We note that the mixed-spin system reproduces the orig
2D spin system atl51. To perform the cluster expansio
the Hamiltonian is first divided into two parts asH5H0
1lH1, where

FIG. 1. ~a! The s51 spin chain, which is decomposed into~b!
the mixed-spin chain in the Haldane phase and into~c! that in the
dimer phase. Large and small solid circles represent thes51 spin
ands51/2 spins, respectively. The solid lines in~b! and~c! indicate
the strong bonds which make local singlets whereas the da
lines the weak bonds which are treated perturbatively.

FIG. 2. ~a! The 2Ds51 spin model and~b! the corresponding
mixed-spin system.
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(2) #, ~2!

H15(
i , j

Fs2i , j
(2)

•S2i 11,j1aS2i 11,j•s2i 12,j
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wheres(1)(s(2)) is thes51/2 operator which represents on
of the decomposed spins, andm(n) runs from 1 to 2. The
first termH0 is the unperturbed Hamiltonian which stabilize
the isolated mixed-spin cluster singlets. The correspond
mixed-spin cluster has the configuration, 1/2+1+1/2, which is
formed by the antiferromagnetic couplings 1 anda. These
isolated clusters have the singlet ground state with the s
gapD5(3a132A9214a19a2)/4. The perturbed partH1
of the Hamiltonian labeled byl connects these isolate
mixed-spin singlets to form a 2D network and thus enhan
the antiferromagnetic correlation. We compute the stagge
susceptibilityxAF , and the singlet-triplet excitation gapD at
the ordering wave vector. These quantities are then expan
as a power series inl. We finally determine the phas
boundary by the divergent staggered susceptibility and
vanishing spin gap, which are estimated by applying
Padéapproximants16 to the quantities obtained up to the fi
nite order inl.

To confirm how well our mixed-spin cluster approac
works, we first investigate thes51 spin chain without bond
alternation. Performing the mixed-spin cluster expansion,
calculate the ground state energyEg , the staggered suscep
tibility xAF and the singlet-triplet excitation gapD up to the
eleventh, the fifth and the seventh order, respectively. At fi
sight, the order in the series for the staggered susceptib
and the excitation gap might not be high enough to prod
the accurate values atl51 ~the Haldane point! by means of
the ordinary differential methods.16 It is remarkable, how-
ever, that there exists an additional symmetry property l
Q(l)5lQ(1/l) for each physical quantityQ in our effec-
tive mixed-spin chain. This symmetry relation follows fro
the invariance under interchanging the solid line and the b
ken line in Fig. 1~b!. This enables us to expand the quant
Q as a power series even aroundl51 as Q(l)5(Qn(l
21)n, where the symmetry property described above yie
the following relations:

Q15
1

2
Q0 , Q352

1

2
Q2 , Q55

1

4
Q22

3

2
Q4 , . . . . ~4!

Fitting this power series with that obtained by the clus
expansion, we calculateQ0 and thus obtain the rather accu
rate values,Eg521.4022, xAF519.6 andD50.404, which
are compared with those of the Monte Carlo simulatio
Eg521.401560.0005, D50.41 in Ref. 17, and also the ex
act diagonalizationD50.41160.001, xAF518.461.3 in
Ref. 18.

To observe the quantum phase transition on a 2D lat
by increasing the interchain couplings, we evaluate
singlet-triplet excitation gapD by means of the mixed-spin
cluster expansion up to the fifth order inl for various
choices ofa andJ.
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Taking the isotropic case (a51) as an example, we
briefly explain how to determine the phase boundary
tween the Haldane and the magnetically ordered phases
the power series obtained. By applying several differ
kinds of Dlog Pade´ approximants we first deduce the pha
boundaries in (J2l) plane for the mixed-spin system, a
shown in Fig. 3. Recall that this mixed-spin system rep
duces the original Haldane system only in the casel51
~dashed line!. By exploiting the values ofJ for which the
phase boundary intersects thel51 line in Fig. 3, we obtain
the critical valueJc50.05660.001 for the phase transitio
point in the original Haldane system. Our results fora51
are much more accurate than those of the mean field th
combined with the exact diagonalization,8 which claimed the
critical value to beJc.0.025.

We note here that the obtained critical exponentn51.86
60.08 is different from the valuen50.7119 expected for the
3D classical Heisenberg model.20 This does not imply that
the universality class of the quantum phase transition for
original Haldane system is different from that of the 3D cla
sical Heisenberg model. In our approach, by dividing ths
51 spin into twos51/2 spins and further introducing a
auxiliary parameterl, we convert the original 2Ds51
model into the effective mixed-spin model on a complica
lattice structure. This model reproduces the originals51
Haldane model only for the specific value ofl51, but for
general couplings ofl, it does not have any corresponden
to the s51 spin model. It should be noted that an unus
exponentn51.8660.08 shows up for the phase transitio
when we change thisauxiliary parameterl rather than the
original couplingsJ anda. Therefore, an apparently unusu
exponent we have encountered comes from the nontr
decomposition into the mixed-spin system, which does
contradict the well-known result that the quantum pha
transition for the 2Ds51 system belongs to the 3D classic
Heisenberg model.20

By the similar procedure, we determine the phase bou
ary shown by the dots with error bars in Fig. 4. The er
bars come from the different values obtained by differ
biased Pade´ approximants employed:@1/2#, @2/1#, @2/2#,
@2/3#, @3/2# approximants. Since the error bars increase w
the decrease ofa away from unity, it seems difficult to de
termine the phase boundary in the region close to the di
phase. However, it is to be noted that this phase diag

FIG. 3. Phase boundaries obtained for 2D mixed-spin sys
without bond alternation (a51). The solid lines indicate the
boundaries obtained by different kinds of the Dlog Pade´ approxi-
mants~@1/1#, @1/2#, @1/3#, @2/1#, @2/2# approximants!, where the left
~right! side of the boundary is in the Haldane~magnetically or-
dered! phase. Note that only whenl51 ~dashed line!, this mixed-
spin model is reduced to the original Haldane system.
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should have the symmetry property asJ(a)5aJ(1/a). Tak-
ing this into account, we can thus determine rather precis
the phase boundary between the Haldane phase and th
tiferromagnetic phase, which is drawn by the solid line
Fig. 4. We shall see momentarily that the critical point b
tween the dimer and the Haldane phases determined in
procedure is consistent with that obtained by the dimer
pansion.

B. Dimer phase

Let us now turn to the dimer phase. In this case, o
mixed-spin cluster expansion is equivalent to the stand
dimer expansion.10 We perform the dimer expansion of th
staggered susceptibility and the spin gap up to the fifth
the sixth order inl for variousJ, respectively. To estimate
the phase boundary which separates the dimer phase an
antiferromagnetic phase, we use the ordinary P´
approximants16 as well as the biased Pade´ approximants, for
which the phase transition is assumed to belong to the
versality class of the 3D classical Heisenberg model.20 Using
these Pade´ approximants, we arrive at the phase diagra
shown in Fig. 4. WhenJ50 with small a, the system is
reduced to the isolateds51 bond-alternating chain, which i
known to have disordered ground state with the spin gap
to the dimer singlet. Increasing the parameterJ and a, the
antiferromagnetic correlation grows up, and the quant
phase transition to the magnetically ordered state occurs.
wish to note that the critical point (a,J)5(0.59,0), which is
determined from the series expansion of the spin gap, s
rates the Haldane phase, the dimer phase and the antif
magnetically ordered phase in Fig. 4. Since the system in
case is reduced to the independents51 spin chains with
bond alternation, our numerical results reproduce the w
known fact4–7 that the ground state of the reduced chain w
ac50.59 is in a critical phase with neither the spin gap n
the long-range order. To confirm how accurate our results
2D cases are, we have directly analyzed the spin chainJ
50) by applying the Dlog Pade´ approximants to the spin
gap computed up to the eighth order. This givesac50.612
60.004, which is close to the value 0.59 obtained above,
also to 0.6060.01 obtained by DMRG.5 Judging from these
results, we can say that our phase boundary determine

m
FIG. 4. Phase diagram for the 2Ds51 quantum spin system

with bond alternationa. The phase boundary between the Halda
phase and the ordered phase is determined by the mixed-spin c
expansion. The left solid~the left dashed! phase boundary aroun
the dimer phase is determined by the dimer expansion with
biased@2/3# Padéapproximants for the excitation gap~the staggered
susceptibility!.
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the excitation gap in Fig. 4 is quite accurate, while that
the staggered susceptibility has a slight deviation o
around the critical point.

C. Dispersion relation

In order to demonstrate that our approach is also powe
to compute the elementary excitation with finite momen
we show the calculated dispersion relation in Fig. 5 along
specific line of J50. Reflecting the isolated spin-single
structure, the Brillouin zone becomes half of the origin
one. In the dimer phase 0,a,ac , using the first order in-
homogeneous differential method,16 we can obtain the dis
persion relation. Here, to obtain the dispersion for
Haldane phase, we have again made use of the additi
symmetry property inherent in the effective mixed-sp
model mentioned above. It is to be emphasized that su
precise dispersion is obtained within the lower-order per
bations, which is indeed due to the additional symmetry
have used.

D. Phase diagram for the 3D case

We now move to the 3D system. The advantage of
approach is particularly remarkable for the 3D problem
cause other numerical methods may often meet some d
culties to treat a large system in the 3D case. We cons
here a cubic lattice system by adding the interchain c
plingsJ in thez direction to the spin model discussed abov
By extending our treatment to the 3D system, we thus st
the competition between the two kind of gapped states
the antiferromagnetic state. Applying the dimer expansion
calculate the spin gap and the staggered susceptibility u
the fifth order and using the Dlog@2/2# Padéapproximants,
we first determine the phase boundary which separates
dimer and the antiferromagnetic ordered phase in Fig
Whena50, our system reproduces thes51 bilayer Heisen-
berg model. Increasing the interdimer couplingJ from zero,
the antiferromagnetic correlation grows up and the quan
phase transition occurs atJc50.14360.006. We note tha

FIG. 5. Dispersion relations of the spin-triplet excited states
the s51 chain with bond alternationa. The results fora50,0.3
and ac(50.59) are obtained by the dimer expansion, while
other for the Haldane phase is obtained by the mixed-spin clu
expansion with the help of a symmetry property~see the text!.
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the quantum phase transitions in the bilayer model have
ready been studied by Gelfandet al.14 with the series expan
sion method. On the other hand, to observe the phase tra
tion from the Haldane phase to the ordered phase, we fur
perform the mixed-spin cluster expansion up to the fou
order for both of the above quantities. In the homogene
case (a51), by analyzing the data in terms of various Dlo
Padé approximants we end up with the critical pointJc
50.02660.001, which is consistent with those of the no
linear s model approach21 and the mean field theory com
bined with the numerical method.8 The phase diagram thu
determined is shown in Fig. 6.

IV. SUMMARY

We have investigated the quantum phase transitions
the s51 quantum systems with the 2D and 3D structur
Using the series expansion, we have discussed how
dimer phase and the Haldane phase realized in 1D com
with the magnetically ordered phase in higher dimensions
particular, we have proposed an approach based on
mixed-spin cluster expansion which realizes the idea of
VBS in the perturbation theory. This approach has mad
possible to treat the Haldane phase in the series expan
framework, which was not dealt with so far by ordinary s
ries expansion methods. For the spin chain case, we h
obtained fairly good results comparable to other numer
methods.17,18 For the 2D and 3D cases, the phase diagr
has been determined rather precisely by making use o
additional symmetry property in the effective mixed-sp
model. It is quite interesting to further apply the mixed-sp
cluster approach to the frustrated case, the anisotropic c
etc., in quasi-1D Haldane systems, which is now under c
sideration.
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