PHYSICAL REVIEW B VOLUME 61, NUMBER 9 1 MARCH 2000-I

Quantum phase transitions for the Haldane system in higher dimensions:
A mixed-spin cluster expansion approach

Akihisa Koga and Norio Kawakami
Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
(Received 21 October 1999

We present a mixed-spin cluster expansion method to discuss the quantum phase transitions for the Haldane
system in two and three dimensions. By mappingshkel antiferromagnetic spin model on square and cubic
lattices to the equivalent mixed-spin model, we study the competition among the Haldane, the dimer, and the
magnetically ordered phases. The mixed-spin cluster expansion proposed here realizes the notion of the va-
lence bond solid in a perturbation theory. This method allows us to directly deal with the Haldane phase, which
may not be reached by standard series expansion methods. The zero-temperature phase diagram is thus deter-
mined rather precisely for the two- and three-dimensional Haldane systems.

I. INTRODUCTION

H=2 [TiS;-S+1,+3S- S j+1l, (1)
Low-dimensional spin systems with the spin gap for the o
excitation spectrum have been extensively studied since the
Haldane conjecturewhich clarified that the gap formation whereJ is the interchain coupling an§ ; is thes=1 opera-

in the integer-spin Heisenberg chain reflects the topologicalor at the (,j)th site in the k—y) plane. Here we have
nature of spins. Recent extensive experimental and theoretintroduced the bond-alternation parameta(0<a<1)

cal investigations on the stability of the Haldane systemalong thex direction, I';=1(«) for even (odd i. All the
against various perturbations have been providing a varietéxchange couplings are assumed to be antiferromagnetic.
of interesting topics. The instability of the spin-gap phase in e employ the series expansion method developed by
the s=1 spin models has been studied in detail so far forSingh, Gelfand, and HuSe? Since this method combines
one-dimensional1D) systems. For instance, the effect of the e conventional perturbation theory with the cluster expan-
bond alternation is understood qualitatively well by the NON-gjon, it has an advantage to deal with the spin system in

linear sigma modelas well as the valence bond sollBS) higher dimensions even for the cases for which the reliable

approacﬁ. The accurate critical point between the dimer and.results are difficult to be obtained by the exact diagonaliza-

the Haldane phases has been further obtained by the serigs . .

. : o n, the DMRG, etc. In fact, the series expansion method
expansiorf, the exact diagonalizatioh® the quantum Monte : ’ - . .
Carlo simulations, and the density matrix renormalization hag been SUCCESSIllJ”y applied _to 1t2he_2D spin SVSIGQ}E with

various structure$!! Kondo lattice!? bilayer systems$®

group (DMRG).® On the other hand, the=1 spin systems ) : .
with the 2D or 3D structures have not been studied so well€{¢: HOwever, to apply the series expansion technique to the

although the effects of the antiferromagnetic correlations du@"€Sent system including the Haldane phase, a nontrivial
to the interchain couplings should be important for real ma.9eneralization is needed, since a naive cluster expansion may
terials. So far, Sakai and Takahdsimvestigated a quasi-1D ot describe the Haldane state. For instance, the dimer state
s=1 Spin System by Combining the mean field theory W|th|S adiabatically connected to the isolatsd 1 dimers, but

the exact diagonalization results for the spin chain, and gavéhe Haldane state does not have its analogue in the isolated
a rough estimate for the phase-transition point to the antiferlocal singlets composed of sevesa+ 1 spins. To overcome
romagnetic phase. this problem, we wish to recall the notion of the VBS,

In this paper, we systematically study how the Haldanewhich captures the essence of the Haldane-gap formation. To
and the dimer phases for tlee=1 antiferromagnetic chain realize this idea in the series expansion, we first divide half
are driven to the magnetically ordered phase in 2D and 3f the s=1 spins into twos=1/2 spins as schematically
systems by exploiting the series expansion techniques. Ishown in Fig. 13° and map the system to the mixed-spin
particular, we propose anixed-spin cluster expansioby  system which is equivalent to the original model except for a
mapping thes=1 spin model to the equivalent mixed-spin trivial isolated excited mode. As a starting configuration in
model, which allows us to deal with the Haldane phase. Thighe perturbative expansion, we can then consider two types
approach is a realization of the notion of the VBS in & per-of the mixed-spin cluster singlets formed by the solid lines in
tL_eratlon theory. We determine the phase d|agram rather Presigs. 4b) and X0). It is seen that by starting from the con-
cisely both for the 2D and 3D cases by computing the spittjg ration (b) we can directly deal with the Haldane phase
excitation gap and the staggered susceptibility. since it has the structure of the Haldane state in the VBS
picture, whereas if the configuratidn) is chosen, we natu-
rally end up with the standard dimer expansion. The above

Let us first consider the=1 antiferromagnetic quantum mapping thus gives us an important message tihat
spin system on a 2D square lattice, which is described by thelaldane phase is adiabatically connected to the isolated
Hamiltonian mixed-spin singlet states in Fig. 1(b), and thereby can be

Il. MODEL HAMILTONIAN
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FIG. 1. (a) Thes=1 spin chain, which is decomposed irtn mn
the mixed-spin chain in the Haldane phase and {ojdhat in the Wheres(l)(s(z)) is the s=1/2 operator which represents one
dimer phase. Large and small solid circles represensthg spin  of the decomposed spins, ani{n) runs from 1 to 2. The
ands=1/2 spins, respectively. The solid lines(ln and(c) indicate ~  first termH, is the unperturbed Hamiltonian which stabilizes
the strong bonds which make local singlets whereas the dashegfle isolated mixed-spin cluster singlets. The corresponding
lines the weak bonds which are treated perturbatively. mixed-spin cluster has the configuration,<l/21/2, which is

. . . formed by the antiferromagnetic couplings 1 a#d These
treated by the mixed-spin cluster expansion metfitu re- isolated clusters have the singlet ground state with the spin

sulting cluster expansion around the isolated mixed-spin sin- _ — [9—14a+9a2

glets should provide a quite powerful method, which enabled2PA = (3a+ 3~ y9—1da+9a7)/4. The perturbed paH,

us to deal with the competition among the Haldane phaseOf. the Hf”‘m'.'ton'a” labeled by connects these isolated
ixed-spin singlets to form a 2D network and thus enhances

the dimer phase and the magnetically ordered phase in 2 . . :
e antiferromagnetic correlation. We compute the staggered
and 3D systems. o . . o
susceptibilityyag, and the singlet-triplet excitation gayp at
the ordering wave vector. These quantities are then expanded
Il. QUANTUM PHASE TRANSITIONS as a power series in. We finally determine the phase

We first discuss the quantum phase transitions among tHgoundary by the divergent staggered susceptibility and the
Haldane phase, the dimer phase and the antiferromagneti@nishing spin gap, which are estimated by applying the
phase for the 23=1 spin system with bond alternation. In Padeapproximant¥’ to the quantities obtained up to the fi-

the end of this section, we further apply the cluster expansioRite order inA. . .
method to the 30s=1 Haldane system. To confirm how well our mixed-spin cluster approach

works, we first investigate the=1 spin chain without bond
alternation. Performing the mixed-spin cluster expansion, we
_ _ _ calculate the ground state enery, the staggered suscep-
In order to apply the mixed-spin cluster expansion to theibility y - and the singlet-triplet excitation gap up to the
Haldane phase in 2D, we first convert the 1 spin model eleventh, the fifth and the seventh order, respectively. At first
into the effective mixed-spin model shown in Fig. 2. In this sight, the order in the series for the staggered susceptibility
figure, the large(smal) circle represents the=1(s=1/2)  and the excitation gap might not be high enough to produce
spin. The bold solid, the thin solid and the dashed lines inthe accurate values at=1 (the Haldane pointby means of
dicate the coupling constant\land J\, respectively. Here the ordinary differential method$. It is remarkable, how-
an auxiliary parametek, which changes from 0 to 1, is ever, that there exists an additional symmetry property like
introduced to perform the cluster expansion. In this figureQ(\)=\Q(1/\) for each physical quantitQ in our effec-
the model without bond alternation is drawn for simplicity. tive mixed-spin chain. This symmetry relation follows from
We note that the mixed-spin system reproduces the originahe invariance under interchanging the solid line and the bro-
2D spin system ak=1. To perform the cluster expansion, ken line in Fig. 1b). This enables us to expand the quantity
the Hamiltonian is first divided into two parts &=H, Q as a power series even arouRd=1 asQ(\)==Q,(A
+\H31, where —1)", where the symmetry property described above yields
the following relations:

A. Haldane phase

1 1 1 3
Q1:§Q01 Q3:_§Q21 QsZZQz_EQA, N )

Fitting this power series with that obtained by the cluster
expansion, we calculai®, and thus obtain the rather accu-
rate valuesEy= —1.4022, xyar=19.6 andA =0.404, which
are compared with those of the Monte Carlo simulations:
Ey=—1.4015-0.0005, A=0.41in Ref. 17, and also the ex-
act diagonalizationA=0.411+0.001, yaAr=18.4£1.3 in
Ref. 18.

To observe the quantum phase transition on a 2D lattice
by increasing the interchain couplings, we evaluate the
singlet-triplet excitation gapA by means of the mixed-spin

FIG. 2. (@ The 2Ds=1 spin model andb) the corresponding cluster expansion up to the fifth order i for various
mixed-spin system. choices ofa andJ.
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FIG. 3. Phase boundaries obtained for 2D mixed-spin system

without bond alternation ¢=1). The solid lines indicate the FIG. 4. Phase diagram for the 28=1 quantum spin system
boundaries obtained by different kinds of the Dlog Pageroxi-  with bond alternationr. The phase boundary between the Haldane
mants([1/1], [1/2], [1/3], [2/1], [2/2] approximants where the left  phase and the ordered phase is determined by the mixed-spin cluster
(right) side of the boundary is in the Haldaimagnetically or-  expansion. The left solidthe left dashedphase boundary around
dered phase. Note that only when=1 (dashed ling this mixed-  the dimer phase is determined by the dimer expansion with the
spin model is reduced to the original Haldane system. biased 2/3] Padeapproximants for the excitation géihe staggered
susceptibility.

Taking the isotropic caseo{=1) as an example, we
briefly explain how to determine the phase boundary beshould have the symmetry property Xsv) = aJ(1/a). Tak-
tween the Haldane and the magnetically ordered phases frofng this into account, we can thus determine rather precisely
the power series obtained. By applying several differenthe phase boundary between the Haldane phase and the an-
kinds of Dlog Padeapproximants we first deduce the phasetiferromagnetic phase, which is drawn by the solid line in
boundaries in {—\) plane for the mixed-spin system, as Fig. 4. We shall see momentarily that the critical point be-
shown in Fig. 3. Recall that this mixed-spin system reprotween the dimer and the Haldane phases determined in this
duces the original Haldane system only in the casel  procedure is consistent with that obtained by the dimer ex-
(dashed ling By exploiting the values of for which the  pansion.
phase boundary intersects the=1 line in Fig. 3, we obtain
the critical valueJ.=0.056=0.001 for the phase transition
point in the original Haldane system. Our results &0+ 1
are much more accurate than those of the mean field theory Let us now turn to the dimer phase. In this case, our
combined with the exact diagonalizati®mhich claimed the mixed-spin cluster expansion is equivalent to the standard
critical value to bel.>0.025. dimer expansiof® We perform the dimer expansion of the

We note here that the obtained critical exponert1.86  staggered susceptibility and the spin gap up to the fifth and
+0.08 is different from the value=0.71'° expected for the the sixth order im\ for variousJ, respectively. To estimate
3D classical Heisenberg mod@lThis does not imply that the phase boundary which separates the dimer phase and the
the universality class of the quantum phase transition for thantiferromagnetic phase, we use the ordinary "Pade
original Haldane system is different from that of the 3D clas-approximant¥ as well as the biased Padpproximants, for
sical Heisenberg model. In our approach, by dividing she which the phase transition is assumed to belong to the uni-
=1 spin into twos=1/2 spins and further introducing an versality class of the 3D classical Heisenberg médelsing
auxiliary parameter, we convert the original 20s=1  these Padepproximants, we arrive at the phase diagram
model into the effective mixed-spin model on a complicatedshown in Fig. 4. WhenJ=0 with small «, the system is
lattice structure. This model reproduces the origisall reduced to the isolates=1 bond-alternating chain, which is
Haldane model only for the specific value ®f1, but for  known to have disordered ground state with the spin gap due
general couplings oX, it does not have any correspondenceto the dimer singlet. Increasing the parameteaind «, the
to thes=1 spin model. It should be noted that an unusualantiferromagnetic correlation grows up, and the quantum
exponentr=1.86+0.08 shows up for the phase transition phase transition to the magnetically ordered state occurs. We
when we change thiauxiliary parametern rather than the wish to note that the critical pointa(,J)=(0.59,0), which is
original couplings] and . Therefore, an apparently unusual determined from the series expansion of the spin gap, sepa-
exponent we have encountered comes from the nontrividiates the Haldane phase, the dimer phase and the antiferro-
decomposition into the mixed-spin system, which does nomagnetically ordered phase in Fig. 4. Since the system in this
contradict the well-known result that the quantum phasecase is reduced to the independertl spin chains with
transition for the 2Ds=1 system belongs to the 3D classical bond alternation, our numerical results reproduce the well-
Heisenberg modéf known fact~’ that the ground state of the reduced chain with

By the similar procedure, we determine the phase bounde.=0.59 is in a critical phase with neither the spin gap nor
ary shown by the dots with error bars in Fig. 4. The errorthe long-range order. To confirm how accurate our results for
bars come from the different values obtained by differen2D cases are, we have directly analyzed the spin chain (
biased Padeapproximants employedf1/2], [2/1], [2/2], =0) by applying the Dlog Padapproximants to the spin
[2/3], [3/2] approximants. Since the error bars increase withgap computed up to the eighth order. This gives=0.612
the decrease a¥ away from unity, it seems difficult to de- =*0.004, which is close to the value 0.59 obtained above, and
termine the phase boundary in the region close to the dimealso to 0.66: 0.01 obtained by DMRG.Judging from these
phase. However, it is to be noted that this phase diagramesults, we can say that our phase boundary determined by

B. Dimer phase
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FIG. 5. Dispersion relations of the spin-triplet excited states for FIG. 6. Phase diagram for the 353=1 spin system with bond
the s=1 chain with bond alternatiow. The results fora=0,0.3 alternationa.
and a.(=0.59) are obtained by the dimer expansion, while the
other for the Haldane phase is obtained by the mixed-spin clustethe quantum phase transitions in the bilayer model have al-
expansion with the help of a symmetry propefsge the tejt ready been studied by Gelfaed al}* with the series expan-

sion method. On the other hand, to observe the phase transi-

the excitation gap in Fig. 4 is quite accurate, while that bytion from the Haldane phase to the ordered phase, we further
the staggered susceptibility has a slight deviation onlyperform the mixed-spin cluster expansion up to the fourth

around the critical point. order for both of the above quantities. In the homogeneous
case @=1), by analyzing the data in terms of various Dlog
C. Dispersion relation Pade approximants we end up with the critical poidt

In order to demonstrate that our approach is also powerfuf” 0-026+0.001, which is consistent with those of the non-
to compute the elementary excitation with finite momentainéar o model appro:_;téfjr and the mean field theory com-
we show the calculated dispersion relation in Fig. 5 along th&ined with the numerical _meth(?dThe phase diagram thus
specific line of J=0. Reflecting the isolated spin-singlet detérmined is shown in Fig. 6.
structure, the Brillouin zone becomes half of the original
one. In the dimer phase<Oa< a., using the first order in- IV. SUMMARY

homogeneous differential methdlwe can obtain the dis- _ _ .
persion relation. Here, to obtain the dispersion for the VW€ have investigated the quantum phase transitions for

Haldane phase, we have again made use of the additiontcne, S= 1hquant.um system; with thf] 2D adr_1d 3b sctirur(l:turesh
symmetry property inherent in the effective mixed-spinUSIng the series expansion, we have discussed how the

model mentioned above. It is to be emphasized that such &mer phase and the Haldane phase realized in 1D compete

precise dispersion is obtained within the lower-order perturyvIth the magnetically ordered phase in higher dimensions. In

bations, which is indeed due to the additional symmetry wearticular, we have proposed an approach based on the
have used. mixed-spin cluster expansion which realizes the idea of the

VBS in the perturbation theory. This approach has made it
possible to treat the Haldane phase in the series expansion
framework, which was not dealt with so far by ordinary se-
We now move to the 3D system. The advantage of ouries expansion methods. For the spin chain case, we have
approach is particularly remarkable for the 3D problem be-obtained fairly good results comparable to other numerical
cause other numerical methods may often meet some diffimethods-"*® For the 2D and 3D cases, the phase diagram
culties to treat a large system in the 3D case. We considdras been determined rather precisely by making use of an
here a cubic lattice system by adding the interchain couadditional symmetry property in the effective mixed-spin
plings J in the z direction to the spin model discussed above.model. It is quite interesting to further apply the mixed-spin
By extending our treatment to the 3D system, we thus studgluster approach to the frustrated case, the anisotropic case,
the competition between the two kind of gapped states andtc., in quasi-1D Haldane systems, which is now under con-
the antiferromagnetic state. Applying the dimer expansion teideration.
calculate the spin gap and the staggered susceptibility up to
the fifth order and using the DIg®/2] Padeapproximants,
we first determine the phase boundary which separates the
dimer and the antiferromagnetic ordered phase in Fig. 6. The work was partly supported by a Grant-in-Aid from
Whena=0, our system reproduces the 1 bilayer Heisen- the Ministry of Education, Science, Sports, and Culture.
berg model. Increasing the interdimer couplihffom zero,  A.K. was supported by the Japan Society for the Promotion
the antiferromagnetic correlation grows up and the quantunof Science. A part of numerical computations in this work
phase transition occurs dt=0.143+0.006. We note that was carried out at the Yukawa Institute Computer Facility.

D. Phase diagram for the 3D case
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