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We consider the two-dimension&@D) J,-J, classicalXY model on a square lattice. In the frustrated phase
corresponding td,>J,/2, an Ising-like order parameter emerges by an “order due to disorder” effect. This
leads to a discreté, symmetry plus thé&J (1) global one. Using a powerful algorithm we show that the system
undergoes two transitions at different but still very close temperatures, one of Kosterlitz-Thilesype
and another one which does not belong to the expected Ising universality class. A new analysis of the KT
transition has been developed in order to avoid the use of the nonuniversal helicity jump and to allow the
computation of the exponents without a precise determination of the critical temperature. Moreover, our huge
number of data enables us to exhibit the existence of large finite size effects explaining the dispersed results
found in the literature concerning the more studied frustratedX2Dmodels.

. INTRODUCTION model: the 2D,;-J, XY model on a square lattice which, as
will be shown, is in the same universality class as the models
The ground state of a large class of two-dimensional clasguoted abovéor more precisely has the same problematic
sical frustratedXY models have the particularity to exhibit The Hamiltonian reads
both continuous and discre® degeneracy simultaneously
in the ground state. It results in the appearance of a new _ .
Ising-like order parameter, in addition to the continuous H= Jl(% S'SJ+J2<<kE,|>> S @)
U(1) symmetry. The most famous example exhibiting such
behaviors is certainly the fully frustrate@y model (FFEXY),
which was originally introduced by Villain as a frustrated = _31%:) cod 6 — ‘9j)+32<<k|>> cog Ox—6)), 2
XY model without disordet.In this model, thez, symmetry ' ’
is associated with the two types of chirality ordering. ThiswhereS are two component classical vectors of unit length,
model is also of great interest because it describes a supetith J;,J,>0, () and(()) indicate, respectively, the sum
conducting array of Josephson junctions under an extern&ver nearest neighbors and next to nearest neighbors. When
transverse magnetic field such that the flux per plaquette i8J;>J, the ground state is ferromagnetic. It leads to a
half the quantum flug. For fifteen years, extensiv@ssen- Kosterlitz-ThoulesKT) transition at the temperatufBr
tially numerica) works have been carried out on the¥ef  ~m(J;—2J,)/2.*° This temperature is obtained from the
(Refs. 3-10 and also on some related models such as th&illain treatment of the Hamiltoniar{1l) (see Ref. 17 for
triangular antiferromagnetiX Y model!* the helical XY  detaily. However, when 2,<J,, the ground state consists
model!? and the Coulomb gas system of half-integerof two independent/2x /2 sublattices with antiferromag-
charged®* The interplay between the two transitions cannetic (AF) order. The ground state enery= —2NJ, does
lead a priori to two transitions, namely, a Kosterlitz- not depend onp, an angle parametrizing the relative orien-
Thouless one and an Ising one. Nevertheless, the entangl&tions between both sublattices. This nontrivial degeneracy
ment between the two order parameters considerably complis lifted by thermal fluctuations and a collinear orderiegr-
cates the analysis. The nature of the phase diagram is stilesponding to¢p=0 or =) is selected® The two possible
rather unconclusive and controversial. Three different sceground states are depicted in Fig. 1. The angléhus plays
narios have been advocated: either the two transitions occuar role analogous to the chiral order parameter. This selection
at the same point and eventually merge to give a new unimechanism is one of the most famous “order due to disor-
versality clas$:’ or the two transitions occur at different der” effects® in the sense that fluctuations bring a kind of
points and are of Ising and Kosterlitz-Thouless types plusrder by lifting this extra continuous symmetry. The result-
some strong finite size effectd?® or finally the two transi- ing symmetry is therefor&)(1)x Z,. Monte Carlo simula-
tions are effectively separated but the transition associated tions predict only a low temperature phase with a nematic
the chiral order parameter is not of Ising tyb&'* The most  ordering and a disordered high temperature ph&&eThe
recent numerical studies are in favor of the last scenariocritical behavior has, as far as we know, only been partially
Nonetheless, without strong analytical support, the problenexplored in Ref. 19. Unfortunately, the results are very ap-
is still completely open. proximate and no definite conclusion on the presence of one
The purpose of the present article is other. We want tar two transitions or on their universality classes has been
clarify the critical behavior of a less studied frustradéd  given. In this work, we have carried out extensive numerical
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tice variables built with the anisotropic ternVX6,V*6,

J, - VY6,VY6,) are not well defined due to the strong fluctua-
tions between the two sublattices which tend to decouple in
i o, the infrared limit(see Ref. 16 for more detaljlSThe simplest
Ik way to take into account the coupling between the two sub-

lattices is to replace the anisotropic term in E8). by the
local spin waves effect, i.e., by—0.3223, cos[6,(r)
—0,(r)]. This term is just the local version @#). Such a
treatment has already been used by Garel and co-workers for
helimagnet¥ and also by Chandrat al. for the J;-J,

FIG. 1. Ground state of th&;-J, XY model for 2J,>J,. Heisenberg modéf By applying the Villain transformation

to the first two terms in Eq3) and using

k=1 K=+1

Monte Carlo(MC) simulations on thd;-J, XY model using
algorithms which allow us to obtain very accurate and robust

results. expth cosp[ 61(r) — (1) 1} = 2, explipS(N[ 6(r)
We now give the outline of the paper. Section Il contains s
a brief summary of analytical results.showing the re!ations _ GZ(F)]HnySSZ(Fr)},
between thd;-J, XY model and the IsingcY model, which
is a generic model used to describe the universality class of ®)

frustratedXY models with symmetrZ, XU (1) such as the ) _ o 2 .
FEXY. In Sec. Ill, we present our numerical results and theMith p=2 andys=h/2=0.08.%, we obtain
analysis of some critical exponents. Finally, Sec. IV is de-
voted to the discussion of the results and to a brief conclu- Jz

sion. The estimation of statistical and systematic errors has 2= 2 2 2 D6,D0, ex;{ T E 2
been relegated to the Appendix.

(i) (s} SO T %2

Il. 33-J, XY AND ISING-XY MODEL ><{[V“¢9i(f)—27T”i"(f)]2}+iDEr {S(N[6a(1)

In this section, we sum up the main analytical results
concerning thel;-J, XY model. We essentially focus on the —0,5(r)]+In ySSZ(F)}) . (6)
more interesting frustrated phase correspondingJo>21,,
where the ground state consists of two independent sublat- . . ) ) o
tices. Thermal fluctuations select a collinear ordetfhgnd ~ Then{® (i=1,2) are integer link variables living on the two
we have two kinds of domains represented in Fig. 1. The firsfliagonal sublattices. By integrating on angular variables, we
step, following Chandrat al,?’ is to perform a gradient ex- €asily find
pansion of the classical enerdiy). The problem is now

translated in a new one on aX2) square lattice, but now [r—r’] ,
with two spins 1 and 2 per vertices pointing in the same Aeff= E, mBIMa(r)In——M,(r")
directions. The new classical actiohreads rer

r=r’|

+7BI;My(r)In Mo(r’)—ip[Mq(r)

2] - -
A== 2 (V024 (F 0,2+ 2\ cosd(V0,7°0,
r

—-VY6,VY6,)], (3) +Ma(r)]O|r—r"|S(r’)
where we have defined=J,/2J,<1 and introduced the p2 Ir—r|
lattice derivatives/*, VY .18 The signature of the) (1) degen- +—5(r)In S(r') |+, [Iny1(Mp)3(r)
eracy now lies in the strong anisotropy betweerand y 2mp a r
directions. The co& labels the different possible classical FIny,(M)2(r) +InyS2(r)], %)

ground states al=0. Notice that, if we do the Gaussian
integration over the angular variables, we recover the resul

18 Rﬁ/here we have introduced the vortex variablés,
of Henley;® namely,

= e*’V#n/" corresponding to vortices on the two sublattices.

J; cos) 2 The fugacities are as usual considered as genuine variables
A~ const- 0.32( >3 , (4 defined initially byy°=exp(—7?B3,/2). The interactior® is
2 defined by O|r—r’|=arctang—y'/x—x’), and verifies
proving that a collinear ordering is selected when minimiz-dy In|r —r'|=—4,0|r—r’|. This action corresponds to two
ing the free energycos)=*1]. coupledXY models. Under real space renormalization group

Let us now include the effects of the vortices. The mosttransformations, the coupling term is strongly relevant and
natural way to include them would be to apply the Villain locks the phase difference i8,(r)=6,(r)+km with k
transformation to all quadratic terms in the acti@h Sucha =0,1%! It leads in the strong coupling limit to an effective
treatment is quite tedious and inappropriate because the vomodel whose Hamiltonian has the following form:
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T T I1. MONTE CARLO ANALYSIS
A. Observables

ORDERED i As explained above we can define two order parameters
corresponding to the two symmetrig€1) andZ,. The first

one is the total magnetizatiod defined by the sum of all
spins; the second is the chiralitydefined by the sum of all

2r chiralities x; defined on each cell by

DISORDERED 1
ki=7(S=SJ(§~S), ©

where (,j,k,l) are the four corners of one cell with diagonal
(i,k) and (j,I). The two ground states depicted in Fig. 1
0 2 4 6 havexi==*1.
A We have studied our system in the finite size scaling re-
FIG. 2. Phase diagram of the Ising¥ model. Solid and dotted gion where the correlation length is much larger than the

lines indicate continuous and first-order transitions, respectively. Iattlce size. The quantities needed for our analysis are de-
fined below. For each temperature we calculate,

B w_ N(M?)
H._XY_—% [A(1+0i0;)cod 6,— 6;)+ Cao;]. (8) e (10)
2 2

The value ofA and C depend on the initial values df X“zw, (11
=f(J4,J,) andBJ,. This model referred to as the Isingy¥ B
model in the literature has been largely debated. This Ising- N( 2
XY model is believed to describe the critical behavior of all x5=£, (12)
frustratedX'Y models quoted in the introduction. The phase kgT
diagram has been obtained numerically by Granato and
co-workeré? and has been reproduced for convenience in VK_<KE> _(E (13)
Fig. 2. Three different phases can be distinguished: the upper (k) (E),
right corner phase corresponds to the low temperature or-
dered phase, the lower left corner phase is the high tempera- . (K?E)
ture disordered one, and the intermediate one is Ising ordered V2:<K—2> —(E), (14)
but XY disorderednamely with free vortices Above point
P, the Ising andXY transitions are well separated and mix " (MZE)
under P. The question concerning the transigponderP is Vs LY —(E), (15
still under debate. A recent work of Lest al. seems to in-
dicate that the two transitions never merge completely but (M%
get closert® Nevertheless, the Ising-like magnetization expo- UM=1- ——5, (16)
nent has been found to be different from 1 and continuously (M%)
varying along the line PT).?2 We have shown that the 4
J1-J, XY model should also be described by the IskYy- Urk=1— (") (17)
model and should therefore correspond to a curve crossing 3<K2>2’

T S o e o S oS 1t eneroyy is e magnet suscepbiy pr
betwéen b.3,) and (A,C), the form of this curve and its site, V, , are cumulants used to obtain the critical exponent
: e2) e . . v, U are the fourth order cumulants, ae- -) means the
intersection with the segmen®{l) is unaccessible. More- thermal average

over, when varyingl,/J;, we shall obtain a different inter- '
section point as it was first noted in Ref. 16. Nevertheless, it

opens the possibility that the critical exponenshould vary

with the ratio J,/J; as in the analysis of Granato and  We use in this work the standard Metropolis algorithm. At
co-workeré? or of Lee et al!® Similar considerations have each site a new random orientation for the spin is chosen.
been made in the study of a generalized frustrat®dmodel  The interaction energy between this spin and its neighbors is
where an extra parameter has been adféth clear conclu-  then calculated. If lower than the energy of the old state, the
sion concerning the nature of the phase transitions can thereew state is accepted; otherwise, it is accepted only with a
fore be drawn at this level. The purpose of the next section iprobability p according to the standard Metropolis algorithm.
therefore to answer these questions with the help of exten- However, the critical slowing down is important and we
sive Monte Carlo simulations. Moreover, it can also be reimprove the speed of the simulation using the local over-
garded as an indirect way of studying the Isky¥-model relaxation algorithm (OR).?® This algorithm consists in
and other related models. choosing the new orientation of the spin such that the energy

B. Algorithm
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TABLE I. Autocorrelation times for the chirality for =30 as a T ;
function of the number of over-relaxation steps NOR. 10000 1
NOR Ty 7.(1+NOR/6)
0 2569) 2569) 1000 | z=2.29(4) |
2 18.94) 25.1(5)
3 14.52) 21.13)
4 12.32) 20.53)
5 11.21) 20.52) 100 | |
6 10.22) 20.33)
7 9.52) 20.53)
10 8.41) 22.42)
15 7.5@4) 26.21) 10 ® ‘ . .

10 50 100 150 |
remains unchanged. FotY spins the only possibility is to

take the symmetric of the old spin to the local fi¢glde sum FIG. 3. Real autocorrelation time for the standard Metropolis
of the neighbors This algorithm is obviously nonergodic, algorithm(circle) and in combination with the over-relaxation algo-
i.e., all states cannot be reached. It must thus be used fifhm (squarg.

combination with the standard Metropolis algoritiMET).

Therefore, at each stefpegarded as one uhitve use one hitude larger than previous studies and, combined with a
MET step and a certain number of steps of over-relaxatiofetter algorithm, produces a better estimate of the thermody-
(NOR) algorithm. The larger the NOR, the smaller the auto-namic quantities.

correlation time(the number of steps between two indepen- Our errors are calculated with the help of the jackknife
dent configurations but then the larger the time needed for Proceduré?’ When compiling the different resuits from pre-
each step is. We have thus to choose the best NOR to miniious studies we have noticed that the errors reported are
mize the real autocorrelation time. This depends on the timéUuite often strongly underestimated. Therefore we have pre-
needed for each algorithm. In our implementation the Me-sented in the appendix our method to evaluate the errors
tropolis algorithm is six times larger than the over-relaxationcoming from the simulation and in particular a simplified
algorithm. method of the jackknife procedure.

In order to calculate the autocorrelation time we follow ~We use in this work the histogram MC technique devel-
the procedure explained in the Appendix. In Table | weoped by Ferrenberg and Swendgéf From a simulation
present the results of the autocorrelation timéor different ~ done atTy, this technique allows to obtain thermodynamic
NOR at the critical temperaturg for a lattice sizeL=30  quantities aff close toTy,.
andJ,/J;=0.7. The second column giveg while the third
column gives the real autocorrelation time (1+NOR/6), C. Phase diagram
i.e., the quantity to be minimized. The value NOR/5=6 We h f d imulati : ina th
seems to fit best. We have checked that this ratio does not ‘"¢ nave periormed many simuiations n varying the
change significantly for sizels=20 andL =40, which is in value ofJ,/J; to obtain the critical temperatufe, which is

agreement with the argument of Adtéwhere the best NOR represented in Fig. 4. The transition fy/J,<0.5 is a stan-

should be proportional to the correlation length, i.e., to theda.rd Kosterlit;-ThouIess transitio.n.in gg_reement_ Wit.h Fheo-
lattice size in the finite size scaling region ' ' retical predictions. Fod,/J;>0.5 it is difficult to discrimi-

In Fig. 3 we have shown in a log-log scale the real chiral-nate between the hypothesis of one or two transitions

ity autocorrelation time function of the lattice size for NOR f:naarea:g?l?réhgislg\;\é:gjpeﬁ;gge \?veemhaz:ifeauﬁgfgr%n:jézie dzljgrt]o
=0 and NOR=L/5. For larger lattice sizes the gain is more P P :

than a factor 30 using the over-relaxation algorithm. The
critical exponentz defined byr~L? is 2.294) without the
use of the OR algorithm and is in agreement with the result
on the Villain lattice 2.31(Ref. 25 but in disagreement with
the dynamic approach of Luet al.® who obtained 2.1(@).
We note for this last case that an errorzifeads to errors in

TABLE Il. Number of Monte Carlo steps to thermaliZg, and

to averageT,, as a function of the size of the lattide 7, are
%alculated with shorter MC runs. The last column gives the number
of “independent” measures which are, at least, one or two orders
greater than previous studies.

the other exponents. _ L tup t, " to /7
In the following the simulations have been done using
NOR=L/5 for each Metropolis algorithm. For each simula- 20 5.10 20.10 7.9513) 2510
tion, we use a number, measurements, made after an up-40 5.16 15.1¢ 13.196) 110
dating timet,,, is carried out for equilibration. For each size, 60 7.16 18.1¢ 19.1717) 910
between three and six different initial configuratidnsdered 80 8.16 18.1¢ 25.5433) 710
or random have been tested to be sure that our system is nat00 1.16 16.16 31.6650) 51¢
trapped into a metastable state. In Table Il we present some20 2.16 20.16 40.610) 510
details of our simulations. We want to stress that the numbersg 3.16 32.16 50.915) 6 10

of Monte Carlo steps used in this work is one order of mag
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0 ! 0.561
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FIG. 4. Phase qiagram for the-J, m0d6|'_F°r2]2<j]1 we f_ind FIG. 6. CrossingT plotted vs inverse logarithm of the scale
the normal Kosterlitz-Thouless transition. Lines are just guides forfactor b=L'/L. The upper part of the figure correspondsUs

the eyes. Our study is done fd5/J,=0.7 (black circle. while the lower part tdJM. In the latter case the size=60 is not

shown for clarity. We obtain T{=0.56465(8) and Tg"

focus on the particular valug=0.7J,=1 (black circlg in —0.56271(5) with a linear fitsee text for comments

the remainder of this work. It is worth noticing that Fernan-

dezet al® have done their calculation fab=J,=1. s,
As was first emphasized in Sec. Il, it is possible that the — =1. (18
exponents could vary with the ratib, /J;.1° This should be UL T=T,

consistent with the picture proposed by Granato and co- . . L
workers for the Ising<Y modef? and by Leeet al® Nev- Due to the presence of residual corrections to finite size scal-

ertheless, the first step is to perform very highly accurat ng, one has actually to extrapolate the results taking the

. - _l . .
Monte Carlo simulations at some fixed value Bf/J; to imit (In b) H.O in the upper part of Fig. 6. We observe a
show the existence of two close transitions, and check thaﬁ?rong correction for the small sizes. However for the largest

the chiral magnetic exponentis clearly different from 1.  Sizes the fit seems good enough and we can extrapbfais

T£=0.5646%8). 19
D. Z, symmetry ¢ €8) 19

The estimate for the universal quantity; at the critical

We concentrate first on the breakdown of #yesymme- :
temperature is

try with the order parameter defined in Eq(9). To find the

critical temperaturd . we r.eco_rd the variation df “ with T UX=0.62697). (20)

for various system sizes in Fig. 5 and then locafeat the . _ _ _ _

intersection of these cunvissince the ratio oU* for two ~ ThiS value is far away from the two-dimensional Ising value

different lattice sizes. and L’=bL should be 1 afrs, Ui °~0.6117°which is a strong indication that the univer-

namely, sality class associated to the chirality order parameter is not
of Ising type. We will verify this prediction studying now the

. - critical exponents.

0.66 At T=T¢ the critical exponents can be determined by
v log—log fits. We obtainv* from Vi and V3 (Fig. 7), y*/v*
0.64 from x* andy5 (Fig. 8), and8“/v* from « (see Fig. 9. We
observe in all these figures a strong correction to a direct
0.62 power law. It is worth noticing, however, that; shows
smaller corrections. Using only the thréfeur for X5) larg-
0.60 est terms we obtain:
0.58 | v*=0.79520), (21
0.56 | v*[v*=1.75Q10), (22
0.54 B<l1v=0.12710). (23
0.560

0.564 0.568

[,- The uncertainty ofT¢ is included in the estimation of the

y errors. The large values in our errors come from the use of

FIG. 5. Binder's parametet” for the Ising order parameter only a few sizes for our fits. If we had used more, the expo-
function of the temperature for various sizesThe arrow shows nents would change and, for exampl€,would grow to 0.91

the temperature of simulatioh,=0.565. using all the sizes. The nonobservation of the corrections in
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4.0 -0.8
30 1 1 -09 | 1
20 | ]
1.0} ]
10 | ]
L L I —1.1 L L 1
3.0 4.0 5.0 3.0 4.0 5.0

InL

FIG. 9. Values of ) as function ofL in a log-log scale aT .
The value of the slopes giveg/v*. We observe strong corrections

tions for small sizes. Only the three largest sizes are used for thf\xf\’/rhthe sn:alr: S|zest.h0nlyt_thetth(;eet I?r%estl sizes are used”f ortt:e f'ttﬁ
fits. When not shown, the estimated statistical errors are smalle €n not shown, the estimated statstical errors are smafler than the

than the symbol. symbol.

FIG. 7. Values ofVy andV5 function ofL in a log-log scale at
Ts . The value of the slopes givesit/ We observe strong correc-

previous studies could explain the very disparate results olfitical exponents fully compatible with Eq&21)—(23). We
tained in various studies of different frustrated Xy mod-  have noticed that the exponents have a tendency to move
els (between 0.76 to 0.90We note that we have used many aWay from the ferromagnetic Ising values when the size
more statisticgdue in one part to a better algorithm, and in 9rows and this seems to exclude a crossover to the ferromag-
another part to longer simulationthan previous workgbe- netic Ising fixed point for Iarger S|_ze(smless it occurs at
tween one or two orders of magnitude monehich enables Very large and not yet accessible size ,
us to observe the finite size corrections. Moreover, we expect 1he values given in Eqs21)—(23) use the properties of
that the critical exponents written above could vary with thethe free energy at the critical temperature. But an errdicin
ratio J,/J;. It therefore makes difficult quantitative compari- leads to an error in the exponents; it is therefore interesting
sons with other studies. Nevertheless, we can safely state thi find them without the help of ¢ . This can be done using
an Ising universality class is excluded. If we try to introducethe whole finite size scaling region and the method given in
a correction to calculate the exponents, for example, such &ef. 31. It consists of plotting, for example, the susceptibility
Vi=(1+ L*w)LUV“, we obtain w=1.0(2) and values for X<L~=7""" as a function ofU*, choosing the exponents as
the curves collapse. This fit is stronger than the fit at the

10.0
9.0
8.0
7.0

6.0

critical temperature insofar as it does not depend only on
results atT; but on a large region of temperature. However
the errors are a little bit larger. We show in Fig. 10-12 the
results for three choices of*/v*. Obviously the result

v Iv=1.76 is the best one. With this method we arrive at
v*lv*=1.76(2) which is compatible with the resg#2) and
thus constitutes an indirect check of the critical temperature.
We have verified, using cumulants andV, and(«), that

the results forv™ and B*/v* are compatible with Eq9421)

5.0 and(23).
From the scaling relation
4.0
3.0 | 1 ylvi=2—7" (24)
2.0

InL we obtainzy*“=0.251). Theresults are summarized in Table
n 1.

FIG. 8. Values ofy* and 5 function ofL in a log-log scale at In conclusion, the chirality order parameter does not seem
T5 and x at TV . The value of the slopes giveglv=2— 7. We to belong to the standard two-dimensional Ising universality
observe strong corrections for the small sizesyforOnly the three Ckis?- Such a conclusion has already been reached in many
largest sizes are used for the fit fpf while only the smallest sizes Studies of frustrate’Y models. Nevertheless, due to the fact
L=20 andL =40 are discarded for the fits fors and y}' . When  that the exponents could b#/J; dependent, we cannot
not shown, the estimated statistical errors are smaller than the synsafely compare the results we get for thgJ, XY model
bol. with other frustratedXY models. However, we observe that
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YWV =179
0.080 T . . . 0.080
XL A
0.070 + 1 0.070 - 1
0.060 1 0.060 1
0.050 1 0.050 - 1
0.040 1 0.040 - 1
0.030 1 0.030 + 1
0.020 1 I ( ( 1 0.020 1 1 1 L L (
052 054 056 058 060 062 0.64 052 054 056 058 060 062 0.64
U u
FIG. 10. y*L~ """ function of U* with y*/v*=1.79 for the FIG. 12. x“L~"""" function of U* with y*/v*=1.73 for the
sizesL =60, 80, 100, 120, and 150. The curves do not collapse irsizesL=60, 80, 100, 120, and 150. The curves do not collapse
one curve. in one curve.

the exponents vary strongly if corrections are not taken intdrhe best method to obtain reliable results is to use the jump
account and we suspect that this is also the case in the othef the helicity parameter defined by the answer of the system
models studied. to a twist in one direction. The knowledge of the jump at the
If the transition belongs to a new universality class, thecritical temperature allows to obtairll, with good
use of Binder's cumulant at the critical temperatye precision>? However, in our problem the presence of the
could be a new approach to track it. It should be very interchirality order parameter coupled with topological defects
esting to test this idea in other systems like the Villain or theleads to a nonuniversal jump. This fact explains why this
triangular models. transition is usually not explored in Monte Carlo simulations
of frustratedXY models or, when it is, why results are not
E. U(1) symmetry very accurate. In the following study we will use a method
introduced in Ref. 33 using Binder’'s cumulant to study this
fransition. It was proved in this article that, contrary to com-
mon belief, the Binder cumulant for ferromagneXy’ sys-
tems crosses for different sizes, thus allowing a rough esti-
mate of the critical temperature and especially of the
exponentn without precise knowledge of the critical tem-

We now focus on the phase transition associated to th
U(1) symmetry, i.e., to th&XY spins. The usual ferromag-
netic XY model undergoes a Kosterlitz-Thouless phase tran
sition driven by the unbounding of vortex-antivortex pairs.

YN =176 perature.
0.080 : : : : : We proceed in a similar way as for the Ising order param-
€ eter, replacingc by M. We record the variation df™ (26)
X with the temperature for various system sizes in Fig. 13. We
0.070 F i want to underline the differences between the result) 6f
(Fig. 5 andUM, which are plotted with the same scal#'
0.060 . shows a crossing on a smaller region thafy and at least
one order of magnitude less than the stand@¥dnodel(see
0.050 | | Fig. 1 of Ref. 33. We then locate the intersection of these
curves and plot the results in the lower part of Fig. 6.
Let us first consider a power law behaviorat-T, for
0.040 - 1 this system. In this case we have to consider a linear fit for
(Inb)"1—0. We observe corrections for the smallest size
0.030 | - L =20 but the others seem to converge to the temperature
M_
0O s om0 os sz o o -
) ) ) ) ) ) U Second, we consider the behavior to be exponential as in

the standarKY model. In this case Fig. 2 of Ref. 33 shows

FIG. 11. y“L """ as function ofU* with y*/v*=1.76 for the  that a linear fit could be wrong and that a “crossover” to a
sizesL=60, 80, 100, 120, and 150. The curves collapse in ondlifferent critical temperature could be observed for ladger
curve. i.e., greater sizes. However, contrary to the ferromagnétic
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TABLE lll. Summary of our results for the Ising symmetrgZ4) and theXY symmetryU(1).

Symmetry T, U, v ylv n Blv
Zy 0.5646%8) 0.62697) 0.79520) 1.75Q10) 0.25010) 2 0.127110)
u(1) 0.562715) 0.6385) 0.923)° 0.3455)

&Calculated using 2 7= y/v.
®For a power law behavior.

model, the region of crossing is very small and the differenthe critical exponen¥ can be calculated with the cumulant
linear fits tend only to one critical temperature. Therefore wev (15). We have obtained™=0.923). With the finite

think that the linear fit works well enough. Moreover, in the size scaling method we were not able to compute the expo-
following we will show strong arguments in favor of the nentv in the case of an exponential behavior.

temperature?25).

As for the Ising order parameter, the calculation of the

With the help of the critical temperature we have found anexponents have been done at the critical temperature but an

estimate ofUM at TY fitting the value with a lawU"
=UM+alL "’ We obtain

u¥=0.6395). (26)

By log-log fit we calculate some exponents. The expongnt
could be obtained by a fit with(g" shown in Fig. 8. We
obtain here

error in T leads to errors in the exponents; it is thus inter-
esting to find them without the help @' . This can be done
using the same method as described before. We have shown
in Ref. 33 that this method is accurate enough in order to
obtain » whatever the type of the behavior(jsower law or
exponentigl. In Figs. 14—-16 we show our results for three
values ofyM. Obviously the value;!=0.33 is the best and

we are able to obtain

_ M_
2— yM=1.6575), (27) M=0.332), (29)

7M=0.34595). (28)  which is compatible with Eq(28). Moreover, this result is a
The fit has been done discarding the two smallest sizes (strong indication that our chqice of the critical temperature_is
=20 andL =40) that show small corrections. This value is €O"ect: Indeed, another choice leads to other noncompatible
different from the standarXY case wherey=0.25. Notice ~€xponents. For ex&mple, had we chodgh= T(=0.56465,
also that it is in contradiction with the result of Monte Carlo W& would obtainz™(T=Tc)=0.47, which is incompatible
simulations in the high temperature region obtained by Jos¥ith Ed. (29).

and co-worker&for the FFXY (which is believed to be inthe ~ TO sum up, we have computed for the first time the criti-
same universality class as our modelhere »~0.20 was €@l exponent;”=0.345(5) for the Kosterlitz-Thouless tran-
found. To our knowledge, it seems one of the first times thigSition using the finite size scaling region in Monte Carlo
exponent is calculated using finite size scaling. From a theSimulations. We have given strong arguments that, in our
oretical point of view the KT transition has an exponential 'ange of sizes, the critical temperature for this transition is

behavior, i.e., a correlation length of the fogn- exg By(T
—To™"]; however, a power law behavior such &s (T
—T.) ¥ cannot be excludedumerically In the latter case

0.66 | ]
7
0.64 |
0.62
0.60 |
0.58 |

0.56

L=150

0.54
0.560

0.568

0.564 L

E]

FIG. 13. Binder's parametas™ for the U(1) order parameter
function of the temperature for various sizesThe arrow shows
the temperature of simulatiofigc=0.565. The scales are similar to
those of Fig. 5.

less than the critical temperature corresponding to the Ising-

= 0.31

0.63
U

1-1 1 L L 1
058 059 060 061 0.62 0.64

FIG. 14. yML2~7" function of UM with »=0.31 for the sizes
L=60, 80, 100, 120, and 150. The curves do not collapse in one
curve.
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"= 0.33 the particular ratial,/J;=0.7. Our main conclusion is that
this system undergoes two distinct and separate transitions.
The first one is of Kosterlitz-Thouless type with an exponent
7n=0.3455), different from the ferromagnetic case, whereas
the second onéassociated to the chirality order paramgter
seems to be in a non-Ising universality class. The tempera-
tures of transitions and the values of the critical exponents
are summarized in Table Il It is worth mentioning that the
estimate of the exponents can be obtained without the help of
a precise determination of the critical temperatures. The val-
ues of the critical exponents associated to the Ising symmetry
are consistent with those obtained in various recent works for
different frustrated XY models*®8°15 Nevertheless, our
analysis has been done &/J,=0.7. We expect that the
exponents we obtained could vary with the ratle/J,
which makes accurate comparisons difficult. Consequently,
numerically speaking, we cannot safely state that the
1'%.58 0_'59 0.60 0.61 0.I62 0.|63 0.64 J1-J, XY model is in the same universality class as other
U models quoted above. N . _
The fact that two transitions exist at two different tem-
FIG. 15. yML2~7" function of UM with »M=0.33 for the sizes Peratures and that the critical exponents of the chiral order
L=60, 80, 100, 120, and 150. The curves collapse in one curvédarameter transition is not of Ising type seems puzzling.
How could we reconciliate them? One first idea, is to use an
like transition (T <T*). Note that this is in agreement with argument by Olssdfiwhich explains these strong deviations
the phase diagram of the Ising¢ model (Fig. 2), where if ~ from the Ising universality class by a large screening length
Ref. 15. We cannot exclude, contrary to the ferromagnetic!Sing behavior. In our case, we would therefore expect, for
XY model, a power law behavior §t>T(’§" . which should be large sizes, a crossover to such behavior; for example,

characterized, besides the exponeft, by »M~0.92 and 9OWS to reach the value 1 for an infinite size. However, no
UM~0.638 ’ ’ sign of this crossover has appeared for our largest sizes (
+ ~—0.638.

=150). Obviously, such a crossover could not be excluded
CONCLUSIO for much larger size [(~1000) but does not seems very
IV. CONCLUSION plausible. Two more plausible interpretations caral@iori

In this paper we have investigated the critical behavior oformulated. One, due to Granato and Nightindatensists
the 2D, J;-J, XY model on the square lattice. We have first in invoking a new universality class for the chiral order pa-
theoretically argued that this model should be in the sam&meter. The idea of the three-state Potts model ur]iversality
universality class as the IsingY model for 2J,>J,. We  class has, for example, been recently advocated in Ref. 8.

have then carried out extensive Monte Carlo simulations fofAnother one is due to Knops and co-work&fEhese authors
have introduced a possible unstable fixed point on the critical

line PT of the phase diagram of the Ising¥ model(see Fig.
2) which is able to induce strong crossover phenomena in the

1.9

1.7 +

1.6 |

14

n'=0.35
2.1

. - - - . infrared limit. This conjecture has the advantage of explain-
x"L"z"D ing the whole set of dispersed results found in the literature.
20 | i Notably, it would explain the continuous variation of expo-
nents found by Granato and co-workers in the 1sSK)g-
modef? but also thel,/J; dependence of critical exponents
1.9 - ] in the J;,-J, XY model under consideration here. To answer
these questions, very high precision Monte Carlo simulations
18 | _ for large size systems could bring some answers to this prob-
lem. Moreover, new analytical developments are profoundly

needed.
1.7 g
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My 2— M . Mo M ) APPENDIX: CALCULATION OF ERRORS
FIG. 16. x"L“~ 7 function of U" with »"'=0.35 for the sizes

L=60, 80, 100, 120 and 150. The curves do not collapse in one We describe here our procedure to calculate statistical er-
curve. rors for the different quantities. The first stage is to find the
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1 ' (1+27/7g)

2_ 2\ 2
p() (A(K))*=((k*)— (k) )—NMC/TS , (A3)

(1+27/7) N

Ax* =)~ ()~ 7 (A9
05 1 whereNy, ¢ is the number of Monte Carlo steps to average,
75 the number of steps between two measurementsiNahd
number of lattice sites. Choosings;=1 we obtain (1
+27)/Nyc~27/Ny ¢ for large 7, while choosingrg= 7 we
get 37/Ny,c, which gives larger errors.
Problems arise when quantities are a combination of dif-
| : ferent averages, for example, the chiraljty (11). We could
0 o 7 500 t 1000 try to treat(x) and(«?) as independent quantities and esti-
mate the error by the sum of the errors of the two quantities.
FIG. 17. Autocorrelatiorp(t) for the chirality« at T=T¢. The ~ However, the result will be overestimated due to the corre-
lattice size isL =20 and the number of MC i8lyc=50 million.  lation between the two elements of the sum. To solve this
The estimatedr=116(2) is shown by an arrow. problem we can use, for example, the jackknife procedure.
We do not review this method here but just present the es-

number of independent steps in our Monte Carlo. Indeed thegential points we neetfor a more complete review see Ref.
Monte Carlo is a Markov process and therefore two consecupe).

tive steps are correlated. In order to avoid being too abstract, we show how this
method works for the susceptibility of the chirality1). For
1. Autocorrelation time clarity we choosers=1. The application for different is

We define the autocorrelation function, then straightforward. We have to define

A(0)A(t)) —(A(t))? ;:M
RO RO (A1) " Rye 1 (a5
— Nuc(k®)—«{

where A(t) is a thermodynamic quantity ( x™, .

x ...). Anexample is shown in Fig. 17 for the chiraliky T No—1 (AB)
. . MC

at the temperatur&=Tg and for a lattice siz& =20. Ny¢c

=50 million steps of Metropolis algorithm are used after N

discarding 1 million steps to thermalize the system. We cal- ;:(?Zt_;t?)ﬁ, (A7)

culate the autocorrelation time following the procedure of B

. i i 3
Ref. 34 by 7=2 (), wheret; is calculated in a self wheret designs the MC step andy, ¢ the total number of

consjstent way ap(t)<0.01, yvhich CoerSpondS m~57- MC steps. Our estimate for the susceptibility and the error
In this case the value we get is systematically underestimategi|| pe given by

for less than 1%. It is important to stop the summation be-
cause the variance of is of the order of the number of

p(t)=

Npc
summation {;) and thus the error proportional tgt;. Ma- b . (A8)
dras and Sokat have proposed an estimation of the error: Nmc =1
Ar~2(2t+1) Ny (A2) Ny 1 Wme
MC —
_ _ A~ 2 (a—x0(1+2n).  (A9)
However, this formula seems to underestimate the result. In- Mc t=1

deed we calculater(A7) function of the number of MC .

steps. We obtain 1@8), 1122), and 116.28) for 1, 10, and If we save the chirality at each MC step the formulas are not
50 million, respectively. Obviously the errors are underesti-difficult to apply. However, we need a large hard disc to
mated (104-5<116.2-0.8). Therefore, in order to com- Store the data. For example, if we wanted to save the 32
pute the errors for we make several simulations for differ- Million steps for the simulation of the size=150 we would

ent initial configurations and use the results as independef€n need 72 bytes for each step to save the energy, the

guantities to calculate the average and estimate the error. magn_etization, and the_z Chi_rality, which implies more than
two gigabytes. To avoid this problem, we could only save

the data everys= , but then the size of the file would still
be more than ten million bytes. Moreover we would lose

The second step after having computed the autocorrelanformation and therefore errors would be greater. We pro-
tion time 7 is to calculate the error in each quantity. As they pose now a way which allows to obtain a good estimate
depend only on a single average such as the chirality or thaithout the problem of large storage and with minor changes
susceptibilityxs (12), the result is straightforwart®: in the program.

2. Statistical errors



6124 D. LOISON AND P. SIMON PRB 61

We use a development for large=Ny,c/(1+27) (which - (1+27 " o a6 "2, 8
is always the case in MCchoosingrs=1. In this case for- U Ny, [4< )7 = Ak ) (KW K®) +8(k)(k°)
mula (A8)—(A9) becomes, keeping only the dominant term,
N —<K2>2(K4>2], (A12)
~ (k) =)= (A10)
B , (120 [(kE)?((K*E?) _ (K*E) (kP ,
Ax2~ (1+27)[< 4= (k2) 24+ 4K) (k) = (K)?) o o7\ (B 50 ™ 7] T
X~ K K K K K
5 <KE>/<KE2> (kE)
N |2 BT (A19
a0 g (a1
kgT
The chirality conserves its initial form while the error is the AV,=AV, substituingx by «?. (A14)
sum of the two errorgof («?) and{«)?) subtracted by the
third term which represents the correlation between them. )
We note that this procedure induces a small change in the 3. Systematic errors
program: we have only to save in the histogréed) plus the In addition to statistical errors, we have to take care of

values of(x) and(«?). To test our formula we have com- systematic errors. There are essentially two kinds: one due to
puted the susceptibility associated to the chirdlity) and its  the correlation between the random number and one due to
errors calculated in three ways. We perform the simulatiorthe use of the histogram technique.
with a lattice sizeL=20 with four steps of the over- The first one appears when we use a bad random genera-
relaxation algorithm between each Monte Carlo, for one mil-tor. In this case the period of the random numbers could be
lion steps. In this case the autocorrelation time is about &ery small and could thus introduce correlations between
(see Table II. The first method consists in saving at eachdata. One example is the linear congruential generator used
step the energy, the magnetization, and the chirality, the sedy many physicists for Monte Carlo simulations. For certain
ond in saving the data only at eaclstep, while the third in  choices of the initial parameter, the period could be very
using the approximate formul@All). We obtain, respec- small(less than 2000and therefore could induce systematic
tively, x“=11.228), 11.2310), and 11.228). The three errors. We use in this work a random generator with a period
methods give compatible results but the third one gives thef more than 100 million found in Ref. 36.
best estimate with the smallest storage sg@me hundred A second source of systematic error comes from the his-
thousand bytes togram technique and the difference between the temperature
We give hereafter the results of our calculation for theof simulation and the temperature where the quantities are
Binder parameter$16),(17) and the cumulany; and V, computed?’ 2 In our simulation this difference is kept less

(13),(14): than 0.005 in order to minimize this effect.
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