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Monte Carlo analysis of the phase transitions in the two-dimensionalJ1-J2 XY model
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Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, D-14195 Berlin, Germany
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International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy
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We consider the two-dimensional~2D! J1-J2 classicalXY model on a square lattice. In the frustrated phase
corresponding toJ2.J1/2, an Ising-like order parameter emerges by an ‘‘order due to disorder’’ effect. This
leads to a discreteZ2 symmetry plus theU(1) global one. Using a powerful algorithm we show that the system
undergoes two transitions at different but still very close temperatures, one of Kosterlitz-Thouless~KT! type
and another one which does not belong to the expected Ising universality class. A new analysis of the KT
transition has been developed in order to avoid the use of the nonuniversal helicity jump and to allow the
computation of the exponents without a precise determination of the critical temperature. Moreover, our huge
number of data enables us to exhibit the existence of large finite size effects explaining the dispersed results
found in the literature concerning the more studied frustrated 2D,XY models.
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I. INTRODUCTION

The ground state of a large class of two-dimensional c
sical frustratedXY models have the particularity to exhib
both continuous and discreteZ2 degeneracy simultaneous
in the ground state. It results in the appearance of a n
Ising-like order parameter, in addition to the continuo
U(1) symmetry. The most famous example exhibiting su
behaviors is certainly the fully frustratedXY model (FFXY),
which was originally introduced by Villain as a frustrate
XY model without disorder.1 In this model, theZ2 symmetry
is associated with the two types of chirality ordering. Th
model is also of great interest because it describes a su
conducting array of Josephson junctions under an exte
transverse magnetic field such that the flux per plaquett
half the quantum flux.2 For fifteen years, extensive~essen-
tially numerical! works have been carried out on the FFXY
~Refs. 3–10! and also on some related models such as
triangular antiferromagneticXY model,11 the helical XY
model,12 and the Coulomb gas system of half-integ
charges.13,14 The interplay between the two transitions c
lead a priori to two transitions, namely, a Kosterlitz
Thouless one and an Ising one. Nevertheless, the enta
ment between the two order parameters considerably com
cates the analysis. The nature of the phase diagram is
rather unconclusive and controversial. Three different s
narios have been advocated: either the two transitions o
at the same point and eventually merge to give a new
versality class;4–7 or the two transitions occur at differen
points and are of Ising and Kosterlitz-Thouless types p
some strong finite size effects;13,15 or finally the two transi-
tions are effectively separated but the transition associate
the chiral order parameter is not of Ising type.8,9,14The most
recent numerical studies are in favor of the last scena
Nonetheless, without strong analytical support, the prob
is still completely open.

The purpose of the present article is other. We wan
clarify the critical behavior of a less studied frustratedXY
PRB 610163-1829/2000/61~9!/6114~12!/$15.00
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model: the 2D,J1-J2 XY model on a square lattice which, a
will be shown, is in the same universality class as the mod
quoted above~or more precisely has the same problemati!.
The Hamiltonian reads

H52J1(
^ i , j &

SiSj1J2 (
^^k,l &&

SkSl ~1!

52J1(
^ i , j &

cos~u i2u j !1J2 (
^^k,l &&

cos~uk2u l !, ~2!

whereSi are two component classical vectors of unit leng
with J1 ,J2.0, ^ & and ^^ && indicate, respectively, the sum
over nearest neighbors and next to nearest neighbors. W
2J1.J2 the ground state is ferromagnetic. It leads to
Kosterlitz-Thouless~KT! transition at the temperatureTKT
'p(J122J2)/2.16 This temperature is obtained from th
Villain treatment of the Hamiltonian~1! ~see Ref. 17 for
details!. However, when 2J1,J2, the ground state consist
of two independentA23A2 sublattices with antiferromag
netic ~AF! order. The ground state energyE0522NJ2 does
not depend onf, an angle parametrizing the relative orie
tations between both sublattices. This nontrivial degener
is lifted by thermal fluctuations and a collinear ordering~cor-
responding tof50 or p) is selected.18 The two possible
ground states are depicted in Fig. 1. The anglef thus plays
a role analogous to the chiral order parameter. This selec
mechanism is one of the most famous ‘‘order due to dis
der’’ effects18 in the sense that fluctuations bring a kind
order by lifting this extra continuous symmetry. The resu
ing symmetry is thereforeU(1)3Z2. Monte Carlo simula-
tions predict only a low temperature phase with a nema
ordering and a disordered high temperature phase.18,19 The
critical behavior has, as far as we know, only been partia
explored in Ref. 19. Unfortunately, the results are very a
proximate and no definite conclusion on the presence of
or two transitions or on their universality classes has b
given. In this work, we have carried out extensive numeri
6114 ©2000 The American Physical Society
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PRB 61 6115MONTE CARLO ANALYSIS OF THE PHASE . . .
Monte Carlo~MC! simulations on theJ1-J2 XY model using
algorithms which allow us to obtain very accurate and rob
results.

We now give the outline of the paper. Section II conta
a brief summary of analytical results showing the relatio
between theJ1-J2 XY model and the Ising-XY model, which
is a generic model used to describe the universality clas
frustratedXY models with symmetryZ23U(1) such as the
FFXY. In Sec. III, we present our numerical results and
analysis of some critical exponents. Finally, Sec. IV is d
voted to the discussion of the results and to a brief con
sion. The estimation of statistical and systematic errors
been relegated to the Appendix.

II. J1-J2 XY AND ISING- XY MODEL

In this section, we sum up the main analytical resu
concerning theJ1-J2 XY model. We essentially focus on th
more interesting frustrated phase corresponding to 2J2.J1,
where the ground state consists of two independent su
tices. Thermal fluctuations select a collinear ordering,18 and
we have two kinds of domains represented in Fig. 1. The
step, following Chandraet al.,20 is to perform a gradient ex
pansion of the classical energy~1!. The problem is now
translated in a new one on a (232) square lattice, but now
with two spins 1 and 2 per vertices pointing in the sa
directions. The new classical actionA reads

A52
2J2

2T (
r

@~¹W u1!21~¹W u2!212l cosf~¹xu1¹xu2

2¹yu1¹yu2!#, ~3!

where we have definedl5J1 /2J2,1 and introduced the
lattice derivatives¹x,¹y.16 The signature of theU(1) degen-
eracy now lies in the strong anisotropy betweenx and y
directions. The cosf labels the different possible classic
ground states atT50. Notice that, if we do the Gaussia
integration over the angular variables, we recover the res
of Henley,18 namely,

A;const20.32S J1 cosf

2J2
D 2

, ~4!

proving that a collinear ordering is selected when minim
ing the free energy@cos(f)561#.

Let us now include the effects of the vortices. The m
natural way to include them would be to apply the Villa
transformation to all quadratic terms in the action~3!. Such a
treatment is quite tedious and inappropriate because the

FIG. 1. Ground state of theJ1-J2 XY model for 2J2.J1.
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tice variables built with the anisotropic term (¹xu1¹xu2
2¹yu1¹yu2) are not well defined due to the strong fluctu
tions between the two sublattices which tend to decouple
the infrared limit~see Ref. 16 for more details!. The simplest
way to take into account the coupling between the two s
lattices is to replace the anisotropic term in Eq.~3! by the
local spin waves effect, i.e., by20.32l2( r cos2@u1(r)
2u2(r)#. This term is just the local version of~4!. Such a
treatment has already been used by Garel and co-worker
helimagnets12 and also by Chandraet al. for the J1-J2
Heisenberg model.20 By applying the Villain transformation
to the first two terms in Eq.~3! and using

exp$h cosp@u1~rW !2u2~rW !#%5(
S(rW)

exp$ ipS~rW !@u1~rW !

2u2~rW !#1 ln ysS
2~rWr !%,

~5!

with p52 andys5h/250.08l2, we obtain

Z5 (
$n1

m(r )%
(

$n2
m(r )%

(
S(r )

E Du1Du2 expS 2
J2

T (
r

(
i 51,2

3$@¹mu i~r !22pni
m~r !#2%1 ip(

r
$S~r !@u1~rW !

2u2~rW !#1 ln ysS
2~rW !% D . ~6!

The ni
m ( i 51,2) are integer link variables living on the tw

diagonal sublattices. By integrating on angular variables,
easily find

Ae f f5 (
rÞr 8

FpbJ2M1~r !ln
ur 2r 8u

a
M1~r 8!

1pbJ2M2~r !ln
ur 2r 8u

a
M2~r 8!2 ip@M1~r !

1M2~r !#QUr 2r 8US~r 8!

1
p2

2pb
S~r !ln

ur 2r 8u
a

S~r 8!G1(
r

@ ln y1~M1!2~r !

1 ln y2~M2!2~r !1 ln ysS
2~r !#, ~7!

where we have introduced the vortex variablesMi

5emn¹mni
n corresponding to vortices on the two sublattice

The fugacities are as usual considered as genuine varia
defined initially byyi

05exp(2p2bJ2/2). The interactionQ is
defined by Qur 2r 8u5arctan(y2y8/x2x8), and verifies
]y lnur 2r 8u52]xQur 2r 8u. This action corresponds to tw
coupledXY models. Under real space renormalization gro
transformations, the coupling term is strongly relevant a
locks the phase difference inu1(r )5u2(r )1kp with k
50,1.21 It leads in the strong coupling limit to an effectiv
model whose Hamiltonian has the following form:
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HI 2XY52(
^ i , j &

@A~11s is j !cos~u i2u j !1Cs is j #. ~8!

The value ofA and C depend on the initial values ofh
5 f (J1 ,J2) andbJ2. This model referred to as the Ising-XY
model in the literature has been largely debated. This Is
XY model is believed to describe the critical behavior of
frustratedXY models quoted in the introduction. The pha
diagram has been obtained numerically by Granato
co-workers22 and has been reproduced for convenience
Fig. 2. Three different phases can be distinguished: the u
right corner phase corresponds to the low temperature
dered phase, the lower left corner phase is the high temp
ture disordered one, and the intermediate one is Ising ord
but XY disordered~namely with free vortices!. Above point
P, the Ising andXY transitions are well separated and m
under P. The question concerning the transition~s! underP is
still under debate. A recent work of Leeet al. seems to in-
dicate that the two transitions never merge completely
get closer.15 Nevertheless, the Ising-like magnetization exp
nent has been found to be different from 1 and continuou
varying along the line (PT).22 We have shown that the
J1-J2 XY model should also be described by the Ising-XY
model and should therefore correspond to a curve cros
the line underP ~so with only one or two very close trans
tions!. Since we are not able to provide analytical relatio
between (h,J2) and (A,C), the form of this curve and its
intersection with the segment (PT) is unaccessible. More
over, when varyingJ2 /J1, we shall obtain a different inter
section point as it was first noted in Ref. 16. Nevertheles
opens the possibility that the critical exponentn should vary
with the ratio J2 /J1 as in the analysis of Granato an
co-workers22 or of Lee et al.15 Similar considerations hav
been made in the study of a generalized frustratedXY model
where an extra parameter has been added.10 No clear conclu-
sion concerning the nature of the phase transitions can th
fore be drawn at this level. The purpose of the next sectio
therefore to answer these questions with the help of ex
sive Monte Carlo simulations. Moreover, it can also be
garded as an indirect way of studying the Ising-XY model
and other related models.

FIG. 2. Phase diagram of the Ising-XY model. Solid and dotted
lines indicate continuous and first-order transitions, respectivel
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III. MONTE CARLO ANALYSIS

A. Observables

As explained above we can define two order parame
corresponding to the two symmetriesU(1) andZ2. The first
one is the total magnetizationM defined by the sum of al
spins; the second is the chiralityk defined by the sum of al
chiralitiesk i defined on each cell by

k i5
1

4
~Si2Sk!~Sj2Sl !, ~9!

where (i , j ,k,l ) are the four corners of one cell with diagon
( i ,k) and (j ,l ). The two ground states depicted in Fig.
havek i561.

We have studied our system in the finite size scaling
gion where the correlation length is much larger than
lattice size. The quantities needed for our analysis are
fined below. For each temperature we calculate,

xM5
N^M2&

kBT
, ~10!

xk5
N~^k2&2^k&2!

kBT
, ~11!

x2
k5

N^k2&
kBT

, ~12!

V1
k5

^kE&

^k&
2^E&, ~13!

V2
k5

^k2E&

^k2&
2^E&, ~14!

V2
M5

^M2E&

^M2&
2^E&, ~15!

UM512
^M4&

3^M2&2 , ~16!

Uk512
^k4&

3^k2&2 , ~17!

whereE is the energy,x is the magnetic susceptibility pe
site, V1,2 are cumulants used to obtain the critical expon
n, U are the fourth order cumulants, and^•••& means the
thermal average.

B. Algorithm

We use in this work the standard Metropolis algorithm.
each site a new random orientation for the spin is chos
The interaction energy between this spin and its neighbor
then calculated. If lower than the energy of the old state,
new state is accepted; otherwise, it is accepted only wit
probabilityp according to the standard Metropolis algorithm

However, the critical slowing down is important and w
improve the speed of the simulation using the local ov
relaxation algorithm ~OR!.23 This algorithm consists in
choosing the new orientation of the spin such that the ene
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PRB 61 6117MONTE CARLO ANALYSIS OF THE PHASE . . .
remains unchanged. ForXY spins the only possibility is to
take the symmetric of the old spin to the local field~the sum
of the neighbors!. This algorithm is obviously nonergodic
i.e., all states cannot be reached. It must thus be use
combination with the standard Metropolis algorithm~MET!.
Therefore, at each step~regarded as one unit! we use one
MET step and a certain number of steps of over-relaxa
~NOR! algorithm. The larger the NOR, the smaller the au
correlation time~the number of steps between two indepe
dent configurations!, but then the larger the time needed f
each step is. We have thus to choose the best NOR to m
mize the real autocorrelation time. This depends on the t
needed for each algorithm. In our implementation the M
tropolis algorithm is six times larger than the over-relaxat
algorithm.

In order to calculate the autocorrelation time we follo
the procedure explained in the Appendix. In Table I w
present the results of the autocorrelation timetk for different
NOR at the critical temperatureTc

k for a lattice sizeL530
andJ2 /J150.7. The second column givestk while the third
column gives the real autocorrelation timetk (11NOR/6),
i.e., the quantity to be minimized. The value NOR;L/556
seems to fit best. We have checked that this ratio does
change significantly for sizesL520 andL540, which is in
agreement with the argument of Adler24 where the best NOR
should be proportional to the correlation length, i.e., to
lattice size in the finite size scaling region.

In Fig. 3 we have shown in a log-log scale the real chir
ity autocorrelation time function of the lattice size for NO
50 and NOR5L/5. For larger lattice sizes the gain is mo
than a factor 30 using the over-relaxation algorithm. T
critical exponentz defined byt;Lz is 2.29~4! without the
use of the OR algorithm and is in agreement with the res
on the Villain lattice 2.31~Ref. 25! but in disagreement with
the dynamic approach of Luoet al.,9 who obtained 2.17~4!.
We note for this last case that an error inz leads to errors in
the other exponents.

In the following the simulations have been done us
NOR5L/5 for each Metropolis algorithm. For each simul
tion, we use a numbertav measurements, made after an u
dating timetup is carried out for equilibration. For each siz
between three and six different initial configurations~ordered
or random! have been tested to be sure that our system is
trapped into a metastable state. In Table II we present s
details of our simulations. We want to stress that the num
of Monte Carlo steps used in this work is one order of m

TABLE I. Autocorrelation times for the chirality forL530 as a
function of the number of over-relaxation steps NOR.

NOR tk tk(11NOR/6)

0 256~9! 256~9!

2 18.9~4! 25.1~5!

3 14.5~2! 21.7~3!

4 12.3~2! 20.5~3!

5 11.2~1! 20.5~2!

6 10.2~2! 20.3~3!

7 9.5~2! 20.5~3!

10 8.4~1! 22.4~2!

15 7.50~4! 26.2~1!
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nitude larger than previous studies and, combined with
better algorithm, produces a better estimate of the thermo
namic quantities.

Our errors are calculated with the help of the jackkn
procedure.26 When compiling the different results from pre
vious studies we have noticed that the errors reported
quite often strongly underestimated. Therefore we have p
sented in the appendix our method to evaluate the er
coming from the simulation and in particular a simplifie
method of the jackknife procedure.

We use in this work the histogram MC technique dev
oped by Ferrenberg and Swendsen.27,28 From a simulation
done atT0, this technique allows to obtain thermodynam
quantities atT close toT0.

C. Phase diagram

We have performed many simulations in varying t
value ofJ2 /J1 to obtain the critical temperatureTc which is
represented in Fig. 4. The transition forJ2 /J1,0.5 is a stan-
dard Kosterlitz-Thouless transition in agreement with the
retical predictions. ForJ2 /J1.0.5 it is difficult to discrimi-
nate between the hypothesis of one or two transitio
separating the low temperature nematic phase from the
temperature disordered phase. We have therefore decide

FIG. 3. Real autocorrelation time for the standard Metropo
algorithm~circle! and in combination with the over-relaxation algo
rithm ~square!.

TABLE II. Number of Monte Carlo steps to thermalizeTup and
to averageTav as a function of the size of the latticeL. tk are
calculated with shorter MC runs. The last column gives the num
of ‘‘independent’’ measures which are, at least, one or two ord
greater than previous studies.

L tup tav tk tav /tk

20 5.105 20.106 7.95~13! 2.5 106

40 5.105 15.106 13.19~6! 1 106

60 7.105 18.106 19.17~17! 9 105

80 8.105 18.106 25.58~33! 7 105

100 1.106 16.106 31.66~50! 5 105

120 2.106 20.106 40.6~10! 5105

150 3.106 32.106 50.9~15! 6 105
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6118 PRB 61D. LOISON AND P. SIMON
focus on the particular valueJ250.7,J151 ~black circle! in
the remainder of this work. It is worth noticing that Ferna
dezet al.19 have done their calculation forJ25J151.

As was first emphasized in Sec. II, it is possible that
exponents could vary with the ratioJ2 /J1.16 This should be
consistent with the picture proposed by Granato and
workers for the Ising-XY model22 and by Leeet al.15 Nev-
ertheless, the first step is to perform very highly accur
Monte Carlo simulations at some fixed value ofJ2 /J1 to
show the existence of two close transitions, and check
the chiral magnetic exponentn is clearly different from 1.

D. Z2 symmetry

We concentrate first on the breakdown of theZ2 symme-
try with the order parameterk defined in Eq.~9!. To find the
critical temperatureTc we record the variation ofUk with T
for various system sizes in Fig. 5 and then locateTc

k at the
intersection of these curves29 since the ratio ofUk for two
different lattice sizesL and L85bL should be 1 atTc

k ,
namely,

FIG. 4. Phase diagram for theJ1-J2 model. For 2J2,J1 we find
the normal Kosterlitz-Thouless transition. Lines are just guides
the eyes. Our study is done forJ2 /J150.7 ~black circle!.

FIG. 5. Binder’s parameterUk for the Ising order paramete
function of the temperature for various sizesL. The arrow shows
the temperature of simulationTs50.565.
-

e

-

e

at

UbL
k

UL
k U

T5Tc

51. ~18!

Due to the presence of residual corrections to finite size s
ing, one has actually to extrapolate the results taking
limit (ln b)21→0 in the upper part of Fig. 6. We observe
strong correction for the small sizes. However for the larg
sizes the fit seems good enough and we can extrapolateTc

k as

Tc
k50.56465~8!. ~19!

The estimate for the universal quantityU
*
k at the critical

temperature is

U
*
k 50.6269~7!. ~20!

This value is far away from the two-dimensional Ising val
U

*
Ising;0.611,30 which is a strong indication that the unive

sality class associated to the chirality order parameter is
of Ising type. We will verify this prediction studying now th
critical exponents.

At T5Tc
k the critical exponents can be determined

log–log fits. We obtainnk from V1
k andV2

k ~Fig. 7!, gk/nk

from xk andx2
k ~Fig. 8!, andbk/nk from k ~see Fig. 9!. We

observe in all these figures a strong correction to a dir
power law. It is worth noticing, however, thatX2

k shows
smaller corrections. Using only the three~four for X2

k) larg-
est terms we obtain:

nk50.795~20!, ~21!

gk/nk51.750~10!, ~22!

bk/nk50.127~10!. ~23!

The uncertainty ofTc
k is included in the estimation of the

errors. The large values in our errors come from the use
only a few sizes for our fits. If we had used more, the exp
nents would change and, for example,nk would grow to 0.91
using all the sizes. The nonobservation of the correction

r
FIG. 6. CrossingT plotted vs inverse logarithm of the sca

factor b5L8/L. The upper part of the figure corresponds toUk

while the lower part toUM. In the latter case the sizeL560 is not
shown for clarity. We obtain Tc

k50.56465(8) and Tc
M

50.56271(5) with a linear fit~see text for comments!.
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PRB 61 6119MONTE CARLO ANALYSIS OF THE PHASE . . .
previous studies could explain the very disparate results
tained in various studies of different frustrated 2DXY mod-
els ~between 0.76 to 0.90!. We note that we have used man
more statistics~due in one part to a better algorithm, and
another part to longer simulations! than previous works~be-
tween one or two orders of magnitude more!, which enables
us to observe the finite size corrections. Moreover, we exp
that the critical exponents written above could vary with t
ratio J2 /J1. It therefore makes difficult quantitative compar
sons with other studies. Nevertheless, we can safely state
an Ising universality class is excluded. If we try to introdu
a correction to calculate the exponents, for example, suc
V1

k5(11L2v)L1/nk
, we obtain v51.0(2) and values for

FIG. 7. Values ofV1
k andV2

k function of L in a log-log scale at
Tc

k . The value of the slopes gives 1/nk. We observe strong correc
tions for small sizes. Only the three largest sizes are used for
fits. When not shown, the estimated statistical errors are sm
than the symbol.

FIG. 8. Values ofxk andx2
k function of L in a log-log scale at

Tc
k and x2

M at Tc
M . The value of the slopes givesg/n522h. We

observe strong corrections for the small sizes forxk. Only the three
largest sizes are used for the fit forxk while only the smallest sizes
L520 andL540 are discarded for the fits forx2

k andx2
M . When

not shown, the estimated statistical errors are smaller than the
bol.
b-

ct

hat

as

critical exponents fully compatible with Eqs.~21!–~23!. We
have noticed that the exponents have a tendency to m
away from the ferromagnetic Ising values when the s
grows and this seems to exclude a crossover to the ferrom
netic Ising fixed point for larger sizes~unless it occurs at
very large and not yet accessible size!.

The values given in Eqs.~21!–~23! use the properties o
the free energy at the critical temperature. But an error inTc

k

leads to an error in the exponents; it is therefore interes
to find them without the help ofTc

k . This can be done using
the whole finite size scaling region and the method given
Ref. 31. It consists of plotting, for example, the susceptibil
XkL2gk/nk

as a function ofUk, choosing the exponents a
the curves collapse. This fit is stronger than the fit at
critical temperature insofar as it does not depend only
results atTc

k but on a large region of temperature. Howev
the errors are a little bit larger. We show in Fig. 10–12 t
results for three choices ofgk/nk. Obviously the result
gk/nk51.76 is the best one. With this method we arrive
gk/nk51.76(2) which is compatible with the result~22! and
thus constitutes an indirect check of the critical temperatu
We have verified, using cumulantsV1 andV2 and ^k&, that
the results fornk and bk/nk are compatible with Eqs.~21!
and ~23!.

From the scaling relation

gk/nk522hk ~24!

we obtainhk50.25(1). Theresults are summarized in Tab
III.

In conclusion, the chirality order parameter does not se
to belong to the standard two-dimensional Ising universa
class. Such a conclusion has already been reached in m
studies of frustratedXYmodels. Nevertheless, due to the fa
that the exponents could beJ2 /J1 dependent, we canno
safely compare the results we get for theJ1-J2 XY model
with other frustratedXY models. However, we observe th

he
er

m-

FIG. 9. Values of̂ k& as function ofL in a log-log scale atTc
k .

The value of the slopes givesbk/nk. We observe strong correction
for the small sizes. Only the three largest sizes are used for the
When not shown, the estimated statistical errors are smaller tha
symbol.
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the exponents vary strongly if corrections are not taken i
account and we suspect that this is also the case in the o
models studied.

If the transition belongs to a new universality class, t
use of Binder’s cumulant at the critical temperatureU

*
k

could be a new approach to track it. It should be very int
esting to test this idea in other systems like the Villain or
triangular models.

E. U„1… symmetry

We now focus on the phase transition associated to
U(1) symmetry, i.e., to theXY spins. The usual ferromag
netic XY model undergoes a Kosterlitz-Thouless phase tr
sition driven by the unbounding of vortex-antivortex pai

FIG. 10. xkL2gk/nk
function of Uk with gk/nk51.79 for the

sizesL560, 80, 100, 120, and 150. The curves do not collapse
one curve.

FIG. 11. xkL2gk/nk
as function ofUk with gk/nk51.76 for the

sizes L560, 80, 100, 120, and 150. The curves collapse in o
curve.
o
er

e

-
e

e

-
.

The best method to obtain reliable results is to use the ju
of the helicity parameter defined by the answer of the sys
to a twist in one direction. The knowledge of the jump at t
critical temperature allows to obtainTc with good
precision.32 However, in our problem the presence of th
chirality order parameter coupled with topological defe
leads to a nonuniversal jump. This fact explains why t
transition is usually not explored in Monte Carlo simulatio
of frustratedXY models or, when it is, why results are n
very accurate. In the following study we will use a meth
introduced in Ref. 33 using Binder’s cumulant to study th
transition. It was proved in this article that, contrary to co
mon belief, the Binder cumulant for ferromagneticXY sys-
tems crosses for different sizes, thus allowing a rough e
mate of the critical temperature and especially of t
exponenth without precise knowledge of the critical tem
perature.

We proceed in a similar way as for the Ising order para
eter, replacingk by M. We record the variation ofUM ~26!
with the temperature for various system sizes in Fig. 13.
want to underline the differences between the result ofUk

~Fig. 5! andUM, which are plotted with the same scale.UM

shows a crossing on a smaller region thanUk, and at least
one order of magnitude less than the standardXYmodel~see
Fig. 1 of Ref. 33!. We then locate the intersection of the
curves and plot the results in the lower part of Fig. 6.

Let us first consider a power law behavior atT.Tc for
this system. In this case we have to consider a linear fit
(ln b)21→0. We observe corrections for the smallest s
L520 but the others seem to converge to the temperatu

Tc
M50.56271~5!. ~25!

Second, we consider the behavior to be exponential a
the standardXY model. In this case Fig. 2 of Ref. 33 show
that a linear fit could be wrong and that a ‘‘crossover’’ to
different critical temperature could be observed for largerb,
i.e., greater sizes. However, contrary to the ferromagneticXY

n

e

FIG. 12. xkL2gk/nk
function of Uk with gk/nk51.73 for the

sizesL560, 80, 100, 120, and 150. The curves do not collap
in one curve.
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TABLE III. Summary of our results for the Ising symmetry (Z2) and theXY symmetryU(1).

Symmetry Tc U* n g/n h b/n

Z2 0.56465~8! 0.6269~7! 0.795~20! 1.750~10! 0.250~10! a 0.127~10!

U(1) 0.56271~5! 0.638~5! 0.92~3! b 0.345~5!

aCalculated using 22h5g/n.
bFor a power law behavior.
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model, the region of crossing is very small and the differ
linear fits tend only to one critical temperature. Therefore
think that the linear fit works well enough. Moreover, in th
following we will show strong arguments in favor of th
temperature~25!.

With the help of the critical temperature we have found
estimate ofUM at Tc

M fitting the value with a lawUM

5U
*
M1aL2u. We obtain

U
*
M50.638~5!. ~26!

By log-log fit we calculate some exponents. The exponenh
could be obtained by a fit withX2

M shown in Fig. 8. We
obtain here

22hM51.657~5!, ~27!

hM50.345~5!. ~28!

The fit has been done discarding the two smallest sizesL
520 andL540) that show small corrections. This value
different from the standardXY case whereh50.25. Notice
also that it is in contradiction with the result of Monte Car
simulations in the high temperature region obtained by J´
and co-workers6 for the FFXY ~which is believed to be in the
same universality class as our model! where h;0.20 was
found. To our knowledge, it seems one of the first times t
exponent is calculated using finite size scaling. From a t
oretical point of view the KT transition has an exponent
behavior, i.e., a correlation length of the formj; exp@B0(T
2Tc)

2n#; however, a power law behavior such asj;(T
2Tc)

2n cannot be excludednumerically. In the latter case

FIG. 13. Binder’s parameterUM for the U(1) order parameter
function of the temperature for various sizesL. The arrow shows
the temperature of simulationTs50.565. The scales are similar t
those of Fig. 5.
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the critical exponentn can be calculated with the cumulan
V2

M ~15!. We have obtainednM50.92(3). With the finite
size scaling method we were not able to compute the ex
nentn in the case of an exponential behavior.

As for the Ising order parameter, the calculation of t
exponents have been done at the critical temperature bu
error in Tc

M leads to errors in the exponents; it is thus inte
esting to find them without the help ofTc

M . This can be done
using the same method as described before. We have sh
in Ref. 33 that this method is accurate enough in order
obtainh whatever the type of the behavior is~power law or
exponential!. In Figs. 14–16 we show our results for thre
values ofhM. Obviously the valuehM50.33 is the best and
we are able to obtain

hM50.33~2!, ~29!

which is compatible with Eq.~28!. Moreover, this result is a
strong indication that our choice of the critical temperature
correct. Indeed, another choice leads to other noncompa
exponents. For example, had we chosenTc

M5Tc
k50.56465,

we would obtainhM(T5Tc)50.47, which is incompatible
with Eq. ~29!.

To sum up, we have computed for the first time the cr
cal exponenthM50.345(5) for the Kosterlitz-Thouless tran
sition using the finite size scaling region in Monte Car
simulations. We have given strong arguments that, in
range of sizes, the critical temperature for this transition
less than the critical temperature corresponding to the Is

FIG. 14. xML22hM
function ofUM with hM50.31 for the sizes

L560, 80, 100, 120, and 150. The curves do not collapse in
curve.
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like transition (Tc
M,Tc

k). Note that this is in agreement wit
the phase diagram of the Ising-XY model ~Fig. 2!, where if
the two transitions never merge, we haveTKT,TI ~see also
Ref. 15!. We cannot exclude, contrary to the ferromagne
XYmodel, a power law behavior atT.Tc

M , which should be
characterized, besides the exponenthM, by nM;0.92 and
U

*
M;0.638.

IV. CONCLUSION

In this paper we have investigated the critical behavior
the 2D,J1-J2 XY model on the square lattice. We have fir
theoretically argued that this model should be in the sa
universality class as the Ising-XY model for 2J2.J1. We
have then carried out extensive Monte Carlo simulations

FIG. 15. xML22hM
function ofUM with hM50.33 for the sizes

L560, 80, 100, 120, and 150. The curves collapse in one cu

FIG. 16. xML22hM
function ofUM with hM50.35 for the sizes

L560, 80, 100, 120 and 150. The curves do not collapse in
curve.
c
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e
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the particular ratioJ2 /J150.7. Our main conclusion is tha
this system undergoes two distinct and separate transiti
The first one is of Kosterlitz-Thouless type with an expone
h50.345(5), different from the ferromagnetic case, where
the second one~associated to the chirality order paramete!
seems to be in a non-Ising universality class. The temp
tures of transitions and the values of the critical expone
are summarized in Table III. It is worth mentioning that th
estimate of the exponents can be obtained without the hel
a precise determination of the critical temperatures. The
ues of the critical exponents associated to the Ising symm
are consistent with those obtained in various recent works
different frustratedXY models.4,6,8,9,15 Nevertheless, our
analysis has been done atJ2 /J150.7. We expect that the
exponents we obtained could vary with the ratioJ2 /J1,
which makes accurate comparisons difficult. Consequen
numerically speaking, we cannot safely state that
J1-J2 XY model is in the same universality class as oth
models quoted above.

The fact that two transitions exist at two different tem
peratures and that the critical exponents of the chiral or
parameter transition is not of Ising type seems puzzli
How could we reconciliate them? One first idea, is to use
argument by Olsson13 which explains these strong deviation
from the Ising universality class by a large screening len
~due to vortices! which prevents observing the expecte
Ising behavior. In our case, we would therefore expect,
large sizes, a crossover to such behavior; for examplen
grows to reach the value 1 for an infinite size. However,
sign of this crossover has appeared for our largest sizesL
5150). Obviously, such a crossover could not be exclud
for much larger size (L;1000) but does not seems ve
plausible. Two more plausible interpretations can bea priori
formulated. One, due to Granato and Nightingale,7 consists
in invoking a new universality class for the chiral order p
rameter. The idea of the three-state Potts model univers
class has, for example, been recently advocated in Re
Another one is due to Knops and co-workers.4 These authors
have introduced a possible unstable fixed point on the crit
line PT of the phase diagram of the Ising-XYmodel~see Fig.
2! which is able to induce strong crossover phenomena in
infrared limit. This conjecture has the advantage of expla
ing the whole set of dispersed results found in the literatu
Notably, it would explain the continuous variation of exp
nents found by Granato and co-workers in the Ising-XY
model22 but also theJ2 /J1 dependence of critical exponen
in the J1-J2 XY model under consideration here. To answ
these questions, very high precision Monte Carlo simulati
for large size systems could bring some answers to this p
lem. Moreover, new analytical developments are profoun
needed.
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APPENDIX: CALCULATION OF ERRORS

We describe here our procedure to calculate statistica
rors for the different quantities. The first stage is to find t
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number of independent steps in our Monte Carlo. Indeed
Monte Carlo is a Markov process and therefore two conse
tive steps are correlated.

1. Autocorrelation time

We define the autocorrelation function,

r~ t !5
^A~0!A~ t !&2^A~ t !&2

^A~ t !2&2^A~ t !&2 , ~A1!

where A(t) is a thermodynamic quantity (k, xM,
xk, . . . ). An example is shown in Fig. 17 for the chiralityk
at the temperatureT5Tc

k and for a lattice sizeL520. NMC

550 million steps of Metropolis algorithm are used aft
discarding 1 million steps to thermalize the system. We c
culate the autocorrelation time following the procedure
Ref. 34 by t5( t50

t f r(t), where t f is calculated in a self-
consistent way asr(t),0.01, which corresponds tot f;5t.
In this case the value we get is systematically underestim
for less than 1%. It is important to stop the summation
cause the variance oft is of the order of the number o
summation (t f) and thus the error proportional toAt f . Ma-
dras and Sokal34 have proposed an estimation of the error

Dt;A2~2 t f11!t2/NMC. ~A2!

However, this formula seems to underestimate the result
deed we calculatet(Dt) function of the number of MC
steps. We obtain 104~5!, 112~2!, and 116.2~8! for 1, 10, and
50 million, respectively. Obviously the errors are undere
mated (10415,116.220.8). Therefore, in order to com
pute the errors fort we make several simulations for diffe
ent initial configurations and use the results as indepen
quantities to calculate the average and estimate the erro

2. Statistical errors

The second step after having computed the autocorr
tion timet is to calculate the error in each quantity. As th
depend only on a single average such as the chirality or
susceptibilityx2

K ~12!, the result is straightforward:35

FIG. 17. Autocorrelationr(t) for the chiralityk at T5Tc
k . The

lattice size isL520 and the number of MC isNMC550 million.
The estimatedt5116(2) is shown by an arrow.
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~D^k&!25~^k2&2^k&2!
~112t/ts!

NMC /ts
, ~A3!

~Dx2!25~^k4&2^k2&2!
~112t/ts!

NMC /ts

N

kBT
, ~A4!

whereNMC is the number of Monte Carlo steps to averag
ts the number of steps between two measurements, andN the
number of lattice sites. Choosingts51 we obtain (1
12t)/NMC;2t/NMC for larget, while choosingts5t we
get 3t/NMC , which gives larger errors.

Problems arise when quantities are a combination of
ferent averages, for example, the chiralityxk ~11!. We could
try to treat^k& and ^k2& as independent quantities and es
mate the error by the sum of the errors of the two quantit
However, the result will be overestimated due to the cor
lation between the two elements of the sum. To solve t
problem we can use, for example, the jackknife procedu
We do not review this method here but just present the
sential points we need~for a more complete review see Re
26!.

In order to avoid being too abstract, we show how th
method works for the susceptibility of the chirality~11!. For
clarity we choosets51. The application for differentts is
then straightforward. We have to define

k̄ t5
NMC^k&2k t

NMC21
, ~A5!

k̄2
t5

NMC^k2&2k t
2

NMC21
, ~A6!

x̄ t5~ k̄2
t2k̄ t

2!
N

kBT
, ~A7!

where t designs the MC step andNMC the total number of
MC steps. Our estimate for the susceptibility and the er
will be given by

x;
1

NMC
(
t51

NMC

x̄ t , ~A8!

Dx2;
NMC21

NMC
(
t51

NMC

~ x̄ t2x!2~112t!. ~A9!

If we save the chirality at each MC step the formulas are
difficult to apply. However, we need a large hard disc
store the data. For example, if we wanted to save the
million steps for the simulation of the sizeL5150 we would
then need 72 bytes for each step to save the energy,
magnetization, and the chirality, which implies more th
two gigabytes. To avoid this problem, we could only sa
the data everyts5t, but then the size of the file would stil
be more than ten million bytes. Moreover we would lo
information and therefore errors would be greater. We p
pose now a way which allows to obtain a good estim
without the problem of large storage and with minor chang
in the program.
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We use a development for largen5NMC /(112t) ~which
is always the case in MC!, choosingts51. In this case for-
mula ~A8!–~A9! becomes, keeping only the dominant term

x;~^k2&2^k&2!
N

kBT
, ~A10!

Dx2;
~112t!

NMC
@^k4&2^k2&214^k&2~^k2&2^k&2!

24^k&~^k3&2^k2&^k&!#S N

kBTD 2

. ~A11!

The chirality conserves its initial form while the error is th
sum of the two errors~of ^k2& and ^k&2) subtracted by the
third term which represents the correlation between th
We note that this procedure induces a small change in
program: we have only to save in the histogram^k3& plus the
values of^k& and ^k2&. To test our formula we have com
puted the susceptibility associated to the chirality~11! and its
errors calculated in three ways. We perform the simulat
with a lattice sizeL520 with four steps of the over
relaxation algorithm between each Monte Carlo, for one m
lion steps. In this case the autocorrelation time is abou
~see Table II!. The first method consists in saving at ea
step the energy, the magnetization, and the chirality, the
ond in saving the data only at eacht step, while the third in
using the approximate formula~A11!. We obtain, respec
tively, xk511.22(8), 11.23~10!, and 11.22~8!. The three
methods give compatible results but the third one gives
best estimate with the smallest storage size~some hundred
thousand bytes!.

We give hereafter the results of our calculation for t
Binder parameters~16!,~17! and the cumulantV1 and V2
~13!,~14!:
e

,

.
e

n

l-
8

c-

e

DU2;
~112t!

NMC
@4^k4&324^k2&^k4&^k6&18^k2&2^k8&

2^k2&2^k4&2#, ~A12!

DV1
2;

~112t!

NMC
F ^kE&2

^k&2 S ^k2E2&

^kE&2 22
^k2E&

^kE&^k&
1

^k2&

^k&2D1^E2&

2^E&222
^kE&

^k& S ^kE2&

^kE&
2

^kE&

^k& D G , ~A13!

DV25DV1 substituingk by k2. ~A14!

3. Systematic errors

In addition to statistical errors, we have to take care
systematic errors. There are essentially two kinds: one du
the correlation between the random number and one du
the use of the histogram technique.

The first one appears when we use a bad random gen
tor. In this case the period of the random numbers could
very small and could thus introduce correlations betwe
data. One example is the linear congruential generator u
by many physicists for Monte Carlo simulations. For certa
choices of the initial parameter, the period could be ve
small ~less than 2000! and therefore could induce systema
errors. We use in this work a random generator with a per
of more than 100 million found in Ref. 36.

A second source of systematic error comes from the
togram technique and the difference between the tempera
of simulation and the temperature where the quantities
computed.37,38 In our simulation this difference is kept les
than 0.005 in order to minimize this effect.
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