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Nonlinear second- and first-sound wave equations iffiHe-*He mixtures
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We derive nonlinear Burgers equations for first and second sound in mixtufete8He, using a reductive
perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a
diffusion equation for a coupled temperature-concentration mode. The amplitude ¢édirsndl sound gen-
erated from secondfirst) sound in mixtures is also derived. Our derivation includes the dependence of
thermodynamical quantities on temperature, pressure’dadoncentration, and is valid up to a first order in
terms of the isobaric expansion coefficient. We show that close ta time the nonlinearity of second sound
in mixtures is enhanced as compared with ptie.

[. INTRODUCTION paper is to obtain expressions for the nonlinear and dissipa-
tion coefficients for the second- and first-sound modes in the
Second-sound measurements provide a convenient way feamework of hydrodynamics. Therefore expressions for the
investigate both static and dynamic critical properties of thenonlinear and damping coefficient for secoffulst) sound
superfluid transition ifHe as well as ifHe-*He mixtures?>  a, (@1),u2 (11) are obtained(Here and in the following we
They can provide information on the superfluid density anduse the subscript 1 for first sound, 2 for second sgute
second-sound damping deep into the critical redittow-  also find that the hydrodynamic equations contain a diffusive
ever, in this region second sound propagation become¥ode for mixtures. The nonlinear coefficients are purely
highly nonlinear. Near th& line, the nonlinear coefficient is functions of the static properties of the fluid, which are rea-
negative and its magnitude divergbé,Hence, even a small sonably well known. The damping coefficients, however, are
amplitude wave quickly develops trailing shock. This effectfunctions of the transport coefficients such as the thermal
is especially pronounced near the mixture tricritical pdint. conductivity and the mass diffusion constant. Mahyt not
Therefore, to obtain useful information from a second soundill) of the transport coefficients for mixtures have been ex-
measurement it has to be analyzed within the framework of @erimentally investigated during the past decddé$.The
suitable nonlinear model. In principle, such a model is pro-diffusive mode depends on the effective thermal conduct-
vided by the superfluid thermohydrodynamic equations fordvity and static properties, on which we have enough
mulated first by Khalatniko.However, these form a com- information**
plicated system of coupled partial differential equations The organization of this paper is as follows. In Sec. Il we
(PDE’s), not in itself directly suitable for data analysis, and summarize the results of the RPM. We then show in Sec. Il
some approximation scheme is necessary. The general apew the hydrodynamic equations are brought into a RPM
proach is to try to decouple the equations, and to obtaifiorm. In Sec. IV A we present the results feg andu,, and
simple wave equations for each of the modes of the systentheir limiting expression neax line. In Sec. IV B the non-
which nevertheless capture the essential nonlinearities. Fdinear and dissipation coefficients for first sound is derived.
pure*He this program is fairly easily implement@decause In Sec. IV C a diffusion equation for a coupled temperature-
the propagating modes, first and second sound, are to a gogancentration mode is derived. In Sec. V we show that first
approximation orthogonal. Oscillations in the temperaturglsecond sound can be generated from secdiirdt) sound in
are accompanied by essentially negligible oscillations in themixtures and calculate their local amplitude. In Sec. VI we
pressure, and vice versa. This is primarily the result of sconclude the paper by pointing out the summary of the main
small thermal expansion coefficient. fiHe-*He mixtures, results. Appendix A contains the matrix forms of the hydro-
however, the situation is more complicated. Second sound idynamic equations. The superfluid hydrodynamic equations
mixtures involves significant oscillations in tfiele concen- are more compactly formulated in terms of the specific en-
tration X. Thus, while in pure’He the nonlinear coefficient tropy and the mass fraction dHe, rather than in terms of
can readily be obtained setting the expansion coefficient ténolar quantities. Since the experimental results are usually
zero, in mixtures a more careful approach is necessary. reported on a per mole basis, we include a conversion table
A systematic way to derive appropriate nonlinear wavein an Appendix B, together with a table of the various sym-
equations from the complete two fluid thermohydrodynamicbols defined in this paper and some numerical values for
equations is provided by the reductive perturbation methodlifferent parameters.
(RPM), developed by Taniutet al® This method leads to a
set c_)f_Burgers e.quatioH%for the sc_)und modes. It a!so gives. Il. METHOD OF PERTURBATIVE SOLUTION OF
exphcn expressions for the nonlllnear and damping cogfﬁ— NONLINEAR WAVE EQUATION
cients,« andy, in terms of the static and transport properties
of the mixture, without the need to make drastic simplifica- Consider a set of general one dimensional parabolic par-
tions of the hydrodynamic equations. The objective of thistial differential equations written as
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9 9 9 ( J ) I1l. SUPERFLUID HYDRODYNAMICS IN MIXTURES
—U+A—-U+K;— |Ky—=U|=0 1 . . I o
ot IX Lox | " 2ax @ As the starting point for our derivation we take the dissi-

. . . ) pative superfluid hydrodynamic equations giveff by
in which U is a vector with then componentss; and A and

K; arenXn matrices that depend on those components. The ap .
set of PDE’s can be decoupled using an expansion of the ZTVi=0 (7)
vectorU and the matriXA aroundU,, an unperturbed vector

(9] i (97Tik _ J

E IX B IX

K Xy X 3 Ik IX

&Vni + &Vnk 2 &Vnk)

U=UO4eUD4g2y@ ...

A:A(U0)+8A1(U)|U=U +-- J )
’ o [V (=pv) TV Vel (®)
A+ ULy AO ... i

wheree is the parameter of expansion. Using this expansion 7 (pC)+ V- (pCVn)=V[pD( Vot $ VT+ % Vp) }

for U and the coordinate transformation known as Gardner- dt
Morikawa transformations, 9

§=8(X—)\i(0)t),7'=82t 2

1 Zg
povnt = q—T =0, (10

i +V
at P
the matrix equatioril) decouples into a set of equations for
a scalar functionp® d z 1, .

— VstV /*L_;C+§Vs =V[{3V-(j—pvn)

) ot

d d d
0 U o =0 (@ R TART

_ Herej=pv=p,V,+ psVs,Vn(Vs) is the velocity of normal

Here,\(”) are the eigenvalues of the mat”, andR; are (supejfluid componentp, (ps) is the density of the normal
the corresponding eigenvectors. TH€’ are the propagation (supejfluid componentp is the density of the mixturey is
velocities for the modes of the linearized, dissipationless syste fluid velocity. For future use we also define the counter-
tem. The functions;&i(l) can be viewed as the expansion co-flow velocity, w=v,—Vs. The generalized pressure is
efficients foru®, UM=3,sM)R; . given by =P i+ paVniVakt psVsiVsk, o is the specific

The reductive perturbation method provides us with ex-entropy,c is the mass concentration @fle in the mixture;T
plicit expressions for the nonlinear and damping coefficientss the temperatureZ is the chemical potential difference of
in terms of the eigenvectors, and the first derivativea @t  “He and®He, Z=p(u;— u4), the ¢; are second viscosity
with respect to the field;. In what follows, we choose the coefficients, andy is the first viscosity coefficient and we
representatiofL;| and|R;) to distinguish between left and have
right eigenvectors. Then, we have 1
Phgwe. 2

d 1dP dT+Zd
=—dP—o —dc—
B0 p 2p

a=(V\Ry), (4)
The correction to the density and entropy up to the ovder

where\;~’ is the eigenvalue for the matrik corresponding can be found from Eq(12) to be

to the eigenvector|R;), (V.|=(d/duq,dldu,,...,0ldu,),

and the dissipation coefficient; is 1 5,3 pn
p(T,C,P,W)=p(T,C,P)+§W p (?_P? (13
:<|-i|Ko|Ri> ©)
Hi <Li|Ri> ' 1 d pn
U(T,C,P,W)ZJ(T,C,P)+szﬁ;, (14)

WhereK0= (K1K2)|U:UO'
In the original coordinate fram&,t) the PDE becomes  wherew=v,— v is the counterflow velocity. The heat flux
and impurity current in Eq(10) are

d ] 92
— ¢+ (N4 ad) — ¢+ u— ¢=0, (6) Jo[Z) ko |z
at ax Ix g= {ﬁ(p—_r) ?%(p_T g+«VT (15
where we have dropped thi#) superscript and the subscript and
i for simplicity. Equation(6) is a Burger&**equation with a
nonlinear coefficientr and a dissipation coefficienpt. )\i(o) is kt Kp
the speed of the wave when the nonlinearitijs suppressed —g=pD| Vet = VT+ = VP) : (16)

to zero. For an initially symmetric pulse, a shock front is
formed whena>0, in the opposite case a shock tail devel-whereD is the diffusion coefficienty is the thermal conduc-
ops. tivity, kD is the thermal diffusion coefficient, anid,D is
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the coefficient of barodiffusion. Note that here we have not IV. RESULTS
made any assumptions for the dependence of the thermody-
namical quantities so that they can depend on concentration
and pressure as well as temperature. The matrixA in Eq. (19) has four nonzero eigenvalues,
Next, we write the resulting equations in a matrix form namely *uy, and *u;o, the velocities of left and right
propagating second and first sound. The fifth eigenvalue is

A. Second sound in mixtures

d zero, corresponding to a diffusive mode. We will first present
B_ U +A’& U+ 9% K'& U) =0, (17 the results for second sound. For the second-sound velocity
we find
where the vectob is -
2= (T2l 2 (1), 26)
P 2 py| do T acp
T aT
u=lc¢ (18 where

v

w oo (S| gt e 2] os(c o L an)?
the 5x5 matricesB, A’, andK' are given in Appendix A. Pnllpdc pdTtpdcl plpdc —pdTl

To put Eq.(17) into Eq. (1), we multiply the former by  Here
the inverse oB from left. The matrixA of Eqg. (1) is given
by — Jdo s o
O'—O'—C% an U—m.
A=B A’ (19

The limit c=0 gives
The complete inversion dB and evaluation of Eq(19) is d

rather cumbersome. However, since we only need the eigen- ps do
vectors and eigenvalues (%, and the first derivative of Uzo|c 0= o ((ﬂ-
the latter with respect to the fields, it suffices to keep terms in

Athat are at most linear im andw. We expand matrpA to ~ Which is the velocity of second sound in pufide. With 8

(27)

first order inw andv, as =(1lp)(dp/dT)=0, Eq. (26) reduce to the expression de-
rived by Khalatnikmﬁ The importance of considering the
A=AO +wAIW 4y ALV, (200 thermal expansion coefficiegin “He is stressed in Ref. 14,

) ) ) The right eigenvector for the second-sound mode is
The calculation details of matric@d®, A, andA(") can

be found in Appendix A. [ psUspl’
The zero ordefin v andw) eigenvalues for each of the ps 1 .
modes are calculated from =59
p Uz
YIR)=\IR), (21) ps 1
_ o Ry)=| c—— |, (29
and the first order of perturbation is given by p Y20
(1 1 (1w) %Sbf‘
AW LIAMWI|RY, (22)
(10 ) where
v v
q=1- B)(é) r
The nonlinear coefficienty, can then be found by evaluating o’
Eq. (4) .
-1
(0) 0 © r= ( 1- 20 | | [Y
IN IN IN - JP/o - u '
= (1v) (1w) p 10
o FTS) r1+ T r2+ ac I’3+7\ I’4+)\ I's, (24)
c dp
wherer; are the components of the veci®. The dissipa- b=x+0oB, and y= oo

tion coefficient can be calculated using
This eigenvector is normalized with respect to the counter-
(Li|BTK'|Ry) flow velocity, w, and thereforep in Eq. (6), representsw.
ﬂi:W (25 This normalization is of course not unique. A transformation
to an equation for one of the other field, T, etc., is easily
(note that in the low-temperature literature the second soundccomplished by scaling with the appropriate component of
dampingu; is usually defined ag;= D). |IR,). This leaves the overall structure of the Burgers equa-
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tion unchanged, but leads to a rescaling of the nonlinear M. ST (1 P 1 0 pe
coefficient. It is thus necessary to giwea subscript to indi- ay, = — — (— —_—t— = —)
cate to which of the otherwise equivalent Burgers equations " My Cxpluyp dT  pslp T p

it belongs. For example, the nonlinear coefficient for a Bur- Mg (1 duyy 1 1 9 pg
gers equation for the temperature amplitudeis related to + M_4 (U_zo X + > m X ;

that for the counterflow velocity,, by
in which the diverging terms are

) (39

p o’

aszuzop_Sm Qay, - (29 d ps 9 ps dup dUz

aT p X p ot X
Using the relation betweew andv,,, . . .
HereCyp is the specific heat of mixtures at constant concen-
Ps tration and pressuré:! The ratioST/Cyp is larger for mix-
Vp=— (1+bl)w, (30)  tures specially close to the tricritical point. Therefore the
P nonlinear coefficient is negative and large close toxhiae
which can be found from the definitions wfandv in terms  and the concentration terms enhance the nonlinearity.
of v, andvg, and|R,), we find The asymptotic behavior of superfluid density is given by
ps!p=k(X)tI®)  wheref(X)~2/3 andk(X) change slowly
as a function of concentratiox.?* Therefore close to tha
line (but X<0.59), the asymptotic form ot,, in terms of

reduced parameters becomes

a2W=%S (1+bD)ay, . (31

Using Eq.(22) the value for the first order corrections to the
eigenvalue for the second-sound mode becomes =
apy ~——— — =— 1t} 7, (36)
o2 (5L ML T G

o pn X where t,=1-T/T, . However, near the tricritical point
k(X) =kox;"* and therefore

)\(lw)<L2|R2>:§Tﬁ[2pﬂ_rd_Xﬁ
n

+gppu§0rb(2ﬁ—rd +cé, ﬁ—rd) B
Pn Pn Mg [T S t_l+x . -
N VI o SRR i
n M, \T, C X
+4%(1+Fb)+%r(1+bl“)d (32) 40 T e t
n

where x,=1—X/X; and X, is concentration ofHe at the

where tricritical point. Therefore the nonlinearity is more noticeable
near the tricritical point.
J ps d ps J ps For the case of puréHe, i.e.,c=0, the corrections to the
§p:ﬁ ;y'fT:ﬁ s and §c=% s second sound mode eigenvaliigg. (32) and(33)] become
and X(1W)|C:O=§T&F2pﬁ+§ppu2pr3pﬁ+2? T2(1+bT),
NW(L,|R,) =2+ Tb+T[2I —(1+Tb)]d, (33 " B (39

where (L,|R,)=2—-T'd+2I'?d. In the limit Uyy<ujq, whereb|._o= B0 (daldT)p and

(Ly|Ry)=2+d. Substituting the second sound velocity, (1v) )

for A9 in Eq. (24), and using the eigenvect¢28) for the N o=T*(1+bI'/2). (39
second sound mode, the expression for the nonlinear coeffirnerefore the nonlinear coefficient simplifies to

cient for second sound in mixtures becomes

JUog A
20 o+ §-|—6'F2£
Pn

B 5U20 ~  Ps 1
dUgg ps 1 duyp.. € duyps @2u|c=0=Uz0 op Ps U+;u_20 aT

aw=Uz0 5 Ps +;u_20(?_T aq Uy 3C p
2 3P Ps 5 Ps 3
. % A () 4\ () 34 + éppusgpbl’ . +2pn r<(1+bl)+ p bI'
where A and \(*Y) are given in Eqs(32) and (33), re- X : (40)
spectively.
For the purpose of studies of critical phenoménaarh ~ which in the limit 3=0 andu,y<u,q reduces to the Khalat-
line) we reduce the coefficient, by using the asymptotical nikov’s expressionws,, k pa= o(dT/dd)In[usy(do/ IT)].8°
behavior pg<pp~p,d<1ui<u’~dP/dp. Here we also The dissipation coefficient is calculated from the Ezf).
drop the dependence @fon T (Ref. 179 (i.e., B=0). The  The general expression far, is very long and not illumi-
expression for the nonlinear coefficient of second sound imating, however, it is more useful to get the expression close
this limit in terms of molar concentratioX, which is in a to the \ line. Therefore the dissipation coefficient can be
more convenient form for experimental purposes, becomessimplified to

1+1bF
2
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The right eigenvector for the first sound mode of mathix

p 4
—2pu,= SH(3 7+ | (1+b)/p—(41+4) |(1+D) (19) is
+Kps o pslpn 9 Z (kT = )2 Pl
P T T iy iy dop D[\ T 7T s b Uy L+(ps/p)xD
k pn Ulo (90'/(91— 1+d
uz b, +c) 41
TP Plo T @) IR,)= —c%b/um . (46)
which is also valid above th& line for He-L. Therefore 1

above the\ line the equation for second sound becomes a
diffusion equation with Eq(41) as its diffusion parameter. p
The dissipation coefficient for the pure He-ll limit - E b
(c=0) will become
1 k 4 For first sound, nonlinear effects only become significant
_2:“*2|c=0:(m) (T_> T3 (1+b)/p—pls close to the transition. Neglecting the expansion coefficient,
P B, terms of order f</p)?, and usingu,g<u;,, the perturba-

3 77+£2

Ps tive corrections to the eigenvalue become
—(L1+ ¢4 |— (1+DbI) (42
({1t o ( r ,
S
with ke D=0 andk; D=0 for c=0, which is consistent A=y 2P 2 (§T¢T+C§c) Xu10p2 &p— 2)(; (1—p—X)
with the existing results for puréHe (Ref. 15 when 8=0. " (47)
Therefore we have derived a nonlinear second-sound
equation an
IW oW Pw g _X_
T (Ugot asz) TH T T 0. (43 A 1 1+d° (48)

In terms of a measurable quantity for example the temperal\;\gtzgaif’:tézsxﬁcingf\}és(46) the nonlinear coefficient can

ture amplitudeT’, the Burgers equation is similar to E¢.3)

but with «,,, replaced bya,t o pep? by? (e oe) p? yu 10 ‘.
aT’ aT’ 8PT V3 1kd T T pi1+d
—r FUagtagrT’) —-—uo— 7 =0, (44) oo » s
wherea,r is given by Eq.(29). + Zp_ﬁ_ Viggtltruogp
B. First sound _Ps uﬁ 3;‘2#_104_(: ‘9:(:10) (49)
For the first-sound velocity we find Pn H10
5 whereu?,~(dP/dp)(1+d) is the velocity(squared of first
a . .
2 _ 2 sound andr, is the second component of the eigenvector
=— (1+d)+u5gd. 4 2 T
U1o dp (1+d)+ U (45) |R;) Eq. (46). The dissipation becomes

2 2
p p 4 psP [ Ps|® A
—2(1+d)uy=—=biy+ 1—2—Sb)(§ 7+ L /p+/:3 (b+Bo)xp+Laf b5+ ) ﬁa}
Pn Pn Pn n n
LK o? p kr\2D i ke ky D
S ¥ Ps — = =gPs) FPETY o~
tT Ez(ﬁu +2X,3pnff +2 T) = Bx|= Uzo T TP T o2 PoU1o
. Uno| 2 R i Usg
X gE—@ugo—(ﬁ’ (b+ Ul 2BI0) + 22 b+ = = yulee | B+ 2| -2 3+—0(X aB)IuZ,
Pn Tec g Uio Pn
ke D ZU[ (Uzo 2 o ps Ps
+— — pu) x—b| —=| +oob—/u,[+ = Dyb. (50)
Pc Prag X Uig Pn 10 Pn X




614 MASOUD MOHAZZAB AND NORBERT MULDERS PRB 61
The Burgers equation for first sound will then become and
v s v v 0 - .
Tt (ugo alvv)&_x M1z =Y (51) -2
g dc p
P 1 P P 0 52
—r T\ Ut —— ayyP | =~ uo5 = 0.
at puse ) ox TTax V. GENERATION OF FIRST SOUND FROM SECOND
Note that the relation betweer, and a;p is SOUND AND VICE VERSA
1 As shown in previous sections, firstecond sound mode
p=— ayy (53 carries not only pressurgemperaturgfluctuations, but also
pUy temperature(pressurg and concentration fluctuations too.
For pure“He, the nonlinear coefficient becomes Using the eigenvector for each mode we can find the rela-
tions between each fields.
Uy Using Eq.(28) we see that for the second sound mode the
a1v|c:O:1+Pu10_ap (54 temperature, concentration and pressure fluctuations are

which is equivalent to the Khalatnikov's result that gives
ayp for pure“He 2°

The first sound dissipation coefficient for pufele be-
comes

_2M1|c=o:% bfy+ %1 (7 ) +$ 2ufy ;(-T 2
o
psp [ps\? 1ps
+44 _2+(_ Bo|—, (55
Pn Pn Pn

where heréb= B¢

C. The diffusive mode

The fifth eigenvalue of the matriA(®) is zero, and the
corresponding eigenvector is given by

R:)=|0 ciz 1,0 56
|Rs)=|0, =70 00, (56)
wherefrom the nonlinear coefficient results in

a5=0. (57)

o~ 2
ps O Uzo)
Ty=——|1—| xB—] |W,, 61
p U (Xﬁ 2 (61)
C ps
Ch=— — , 62
2 Uy p 2 62
and
P5=Usopsl (G B+ X)Wy, (63)

wherew, (i.e., counterflow velocityis the solution to Bur-
gers equationf43). The expression for the pressure fluctua-
tions of the second sound can also be expressed as

2

-1
u
1—X;3$) ). (64)

’ 2 1
Po=usbl'p -

o

The fluctuations in temperature and concentration result in
fluctuations in the total density, which in tern, cause the pres-
sure to fluctuate. Therefore it is possible to measure the pres-

Therefore this Corresponds to a mode which describe§ure f|uctuati0n$i.e. first Sounaj of second sound instead of

temperature-concentration diffusion, whil, vs and ws
remain zero. Calculation of dissipation coefficient results in

temperature for the detection of second sound in mixtures.

However the pressure amplitude is suppressed by a factor of
2

usy as compared with the amplitude of the temperature fluc-
1 4 c? JZ 5 o DT J o tuation. For example for a temperature amplitude of about 10
+—— | U= | — — +2= —— i
=—dc p M5 Tpa? | dc p Keff™ 272 c C&c C %(,P(;ne may expect to have a pressure amplitude of about
ky @ Z] The temperature and concentration amplitudes due to first
T e ol (58 sound mode can also be calculated using the eigenvector Eq.
P (46),
where
2 b . u 1+ / b\ 1
o T [ ae kaz [Py o TERIPX G
Kelt= KT P lacy(Zip) |Sacc ' T ac p (59 Pn U1o dgoldT — 1+d Pl
Therefore for the fifth mode the equation for concentrationgng
will become
gl d’cl ,_ Ps P,
_ 2 Ci1=C—5 —% P, (66)
ot Moz €0 YUptu
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whereu, is the velocity of first sound an®; is the first-  A’(©
sound pressure amplitude. Therefore one can measure

second-sound thermal wave form incoming first-sound pres- 0 0 0 pﬁ Aiéo)
sure fluctuations. ap
0 0 0 _gP T 50
dp do
VI. CONCLUSION
= 0 0 0 0 cp—S ,

In this work we have systematically derived nonlinear p
wave equations for the propagation of second and first sound 1
in *He-*He mixtures, with their limit for puréHe. Our deri- - 0 0 0 0
vation is valid to first order in the expansion coefficigit P
and velocitiesv and w. Using the reductive perturbation —iX P e Cﬁi% 0 0
method we showed that the second- and first-sound wave L Pn Pn pn dC p o
equations are Burgers equations and we derived expressions (A2)

for the nonlinear coefficienta, and «;, and the dissipation
coefficientu, and ;. We observed that, for mixtures is
larger than puréHe and therefore second sound in mixtures
propagates highly nonlinearly close to the transition tempera-
tures. This nonlinear is even more pronounced close to the
trlcrmcall pomt.. We also foupd a diffusive que f_or a o [Bo— (901dT) ]
coupled impurity-temperature in mixtures and derived its dif- Alg )
fusion parameter.

As a final remark, the derived value far, can also be
used to find the velocity of second sound in the presence of x@ T 1 (0_p) and v & (tip)
a heat current in mixtures. In this cas&,=Q/p(1 dp do’ p op X b T'
+bI")ST, whereQ is the heat current andy, is the resulting

counterflow velocity of course this discussion does not con-

sider the change in the critical temperature in the presence df'e matrices8 and A" can be expanded around their back-
a heat current. ground i.e., Eqs(Al) and(A2) as

where

_ A’(O): Ea_p__{_lg )
PsCaplaP)(aalaT) ® 725 “\pap 77 PX

B=B@+wB™+yB1),
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0 0 0 p O
APPENDIX A
1 0 0 0 O
This appendix contains the expressions for the matrices of 0 0 0 0 ops
. . s (1w) — BV =0
Sec. Il of this paper. At the linear limit, i.e., fav=0 and d J
) 0 0 0 0 cps
v=0, the matrice8 andA’ are
1+y _ J Z
—- -0 —-c——-— 0 O
p dc p
9 p) J 1 ) ) (A3)
a5 9
JP JT Jc
0 0 0 »p 0
© Jo do Jo 0 0 r0 0 0 O _fPPZ-
BY=lp-5 P Poc . (AL 0 0 0 O 0
0 0 p 0 0 AMW=1 0 0 0 0 -—pér|, (A4)
0O 0 O O 0
o o o 1 -
- p Lép &1 & O 0
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A(V) consider the corrections due to the thermal expansion coef-
_ i} ficient specially at higher pressut&The data for the thermal
0 0 0 0 0 expansion coefficient in mixtures 8He-*He are reported in
PrPs Refs. 17 and 18 at saturated vapor pressure. The thermal
0 0 0 0 2 expansion is larger than the case of pfife even at lower
P temperature so it is very important to consider it.
daps) d(ops) d(ops) 0 0
e . (2] e X[
Ips aps aps pldC/pr My p\IX] ot
JP aT dJc and numericallyy~1.
0 0 0 - _pngs' g:ip_sfziﬁgzi&
- Y P - P (9P p ST &T p 1Sc Jc p
(A5) .
] ] ] these parameters diverge ndar.
The first order correction terms to the matfxs calculated The parameted defined in this paper is the generalization
from of the original definition of Khlatniko$ to the case when the
AlLV)— B<°)71A’(1V>, (A6) thermal expansion is considered
AW =g AW _g(0) ' gIWR(0) A (0) (A7) d= % b?,
n
The dissipation matrix evaluated at=0 limit becomes where b= y+ o= MS/M4[XX+(§T/CXP)IB] and at the
-0 0 0 0 01 limit of pure *He it becomes|._o=B0(dT/do)p. The re-
4 lation between the entropy per maleand entropy per gram
/ Sis given b
0 0 0 FRAKE K2s g y
S=oMjs.
o ke Kep ko 0 0 °
K==l -5 —5*+t7 ¢ - Furthermore
Ke kr _ Js
pr0 gD pD 00 S<T,X)=S—X(W) ,
TP
L O 0 0 4 Kss,
(A8) do X <ﬁ8+_ M4—M3)
cC—=— | —=+S——|,
where ac My \ dx Mg
ps [4 and
Kos=— (_ n—pl1t Lo,
p\3 _ Jdo 1 —
O=0—C—=—
o _Ps - D( 9 Z kyd z) ac My
%5 p (8a=&ap), ¥=pD| 77 p Tacp) The numerical data for the entropy is reported in Ref. 16.

The potentialZ is expressed in terms of chemical poten-

and D is the diffusion coefficient. The matriK is found tials of *He and*He a8

from the matrix operatiol =B~ 1K',
Z=p(p3— Ha).
APPENDIX B

) i . _ The speeds of second and first sound are
This appendix contains definitions of some terms and ab-

breviations used in the paper and the conversion of some My p 2T 9P
quantities defined in this paper frominto X Usg=—3 — | =— 2(—) (1+d)7L
M4 pn CXP (}]X TP
== (% ) (BY)
plaT)p .

2 P 2
u10=$ (1+d)+u5d.
The measurements of thermal expansiydtior pure*He has
extensively been reported by Mayn&tdind Niemela and The speed of second sounduigy~uy=20(m/s) below T, .
Donnelly?° The range of variation o8 strongly depends on However, close toT, it approaches zero asy,=uUg[(T\
temperature as well as pressure. From Ref. 19 we see thatT)/T]¥2. The speed of first sound is,q~240(m/s) and
near the superfluid transition temperatuges —0.023(1K) therefore the ratiai;o/u,g<1 close toT)l\. There the factol
at SVP ands~ —0.14(1K) at 25 atm. Therefore one should defined as
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uz. \ 1 2]-1 trationc=(M3/M)X are zero for the case of pufele.

20 U2o . . -

r=\1- ~1—|— The relations for concentration susceptibility and entropy
&P/(?p Ulo are

becomes numericalllj~1+0.01 inside the superfluid region

andI'~1 nearT, . Z M 9
. . . . 2 S 2
The quantityq is defined as a correction to the tempera- c (%;: M X X
ture component of the second-sound mode eigenvector 4
uj 5 a2 Mg ST

1 By o 1M gxB 2T — =5
q N XS 9aldT M2 Cyp’

HereM3;, M4, andMg=M3X+M,(1—X) stand for molar
mass of°He, “He and a mixture with concentratiox, re-

T Mng_ o

o=

spectively. The molar concentratiofior the mass concen- daldT My Cxp'l doldT’
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