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Nonlinear second- and first-sound wave equations in3He-4He mixtures

Masoud Mohazzab* and Norbert Mulders
Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716

~Received 6 July 1999!

We derive nonlinear Burgers equations for first and second sound in mixtures of3He-4He, using a reductive
perturbation method and obtain expressions for the nonlinear and dissipation coefficients. We further find a
diffusion equation for a coupled temperature-concentration mode. The amplitude of first~second! sound gen-
erated from second~first! sound in mixtures is also derived. Our derivation includes the dependence of
thermodynamical quantities on temperature, pressure, and3He concentration, and is valid up to a first order in
terms of the isobaric expansion coefficient. We show that close to thel line the nonlinearity of second sound
in mixtures is enhanced as compared with pure4He.
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I. INTRODUCTION

Second-sound measurements provide a convenient wa
investigate both static and dynamic critical properties of
superfluid transition in4He as well as in4He-3He mixtures.1,2

They can provide information on the superfluid density a
second-sound damping deep into the critical region.3 How-
ever, in this region second sound propagation beco
highly nonlinear. Near thel line, the nonlinear coefficient is
negative and its magnitude diverges.4–6 Hence, even a smal
amplitude wave quickly develops trailing shock. This effe
is especially pronounced near the mixture tricritical poin7

Therefore, to obtain useful information from a second sou
measurement it has to be analyzed within the framework
suitable nonlinear model. In principle, such a model is p
vided by the superfluid thermohydrodynamic equations f
mulated first by Khalatnikov.8 However, these form a com
plicated system of coupled partial differential equatio
~PDE’s!, not in itself directly suitable for data analysis, an
some approximation scheme is necessary. The genera
proach is to try to decouple the equations, and to ob
simple wave equations for each of the modes of the syst
which nevertheless capture the essential nonlinearities.
pure4He this program is fairly easily implemented,8 because
the propagating modes, first and second sound, are to a
approximation orthogonal. Oscillations in the temperat
are accompanied by essentially negligible oscillations in
pressure, and vice versa. This is primarily the result o
small thermal expansion coefficient. In3He-4He mixtures,
however, the situation is more complicated. Second soun
mixtures involves significant oscillations in the3He concen-
tration X. Thus, while in pure4He the nonlinear coefficien
can readily be obtained setting the expansion coefficien
zero, in mixtures a more careful approach is necessary.

A systematic way to derive appropriate nonlinear wa
equations from the complete two fluid thermohydrodynam
equations is provided by the reductive perturbation met
~RPM!, developed by Taniutiet al.9 This method leads to a
set of Burgers equations10 for the sound modes. It also give
explicit expressions for the nonlinear and damping coe
cients,a andm, in terms of the static and transport properti
of the mixture, without the need to make drastic simplific
tions of the hydrodynamic equations. The objective of t
PRB 610163-1829/2000/61~1!/609~9!/$15.00
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paper is to obtain expressions for the nonlinear and diss
tion coefficients for the second- and first-sound modes in
framework of hydrodynamics. Therefore expressions for
nonlinear and damping coefficient for second~first! sound
a2 (a1),m2 (m1) are obtained.~Here and in the following we
use the subscript 1 for first sound, 2 for second sound.! We
also find that the hydrodynamic equations contain a diffus
mode for mixtures. The nonlinear coefficients are pur
functions of the static properties of the fluid, which are re
sonably well known. The damping coefficients, however,
functions of the transport coefficients such as the ther
conductivity and the mass diffusion constant. Many~but not
all! of the transport coefficients for mixtures have been
perimentally investigated during the past decades.11,12 The
diffusive mode depends on the effective thermal condu
ivity and static properties, on which we have enou
information.11

The organization of this paper is as follows. In Sec. II w
summarize the results of the RPM. We then show in Sec
how the hydrodynamic equations are brought into a RP
form. In Sec. IV A we present the results fora2 andm2 , and
their limiting expression nearl line. In Sec. IV B the non-
linear and dissipation coefficients for first sound is derive
In Sec. IV C a diffusion equation for a coupled temperatu
concentration mode is derived. In Sec. V we show that fi
~second! sound can be generated from second~first! sound in
mixtures and calculate their local amplitude. In Sec. VI w
conclude the paper by pointing out the summary of the m
results. Appendix A contains the matrix forms of the hydr
dynamic equations. The superfluid hydrodynamic equati
are more compactly formulated in terms of the specific
tropy and the mass fraction of3He, rather than in terms o
molar quantities. Since the experimental results are usu
reported on a per mole basis, we include a conversion ta
in an Appendix B, together with a table of the various sy
bols defined in this paper and some numerical values
different parameters.

II. METHOD OF PERTURBATIVE SOLUTION OF
NONLINEAR WAVE EQUATION

Consider a set of general one dimensional parabolic p
tial differential equations written as
609 ©2000 The American Physical Society
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]

]t
U1A

]

]x
U1K1

]

]x S K2

]

]x
U D50 ~1!

in which U is a vector with then componentsui andA and
Ki aren3n matrices that depend on those components.
set of PDE’s can be decoupled using an expansion of
vectorU and the matrixA aroundU0 , an unperturbed vecto

U5U ~0!1«U ~1!1«2U ~2!1¯ ,

A5A~U0!1«A1~U !uU5U0
1¯

5A~0!1«U ~1!
•¹uA~0!1¯ ,

where« is the parameter of expansion. Using this expans
for U and the coordinate transformation known as Gardn
Morikawa transformations,

j5«~x2l i
~0!t !,t5«2t ~2!

the matrix equation~1! decouples into a set of equations f
a scalar functionf (1)

]

]t
f i

~1!1a1f i
~1!

]

]j
f i

~1!1m i

]2

]j2 f i
~1!50. ~3!

Here,l i
(0) are the eigenvalues of the matrixA(0), andRi are

the corresponding eigenvectors. Thel i
(0) are the propagation

velocities for the modes of the linearized, dissipationless s
tem. The functionsf i

(1) can be viewed as the expansion c
efficients forU (1), U (1)5S if i

(1)Ri .
The reductive perturbation method provides us with

plicit expressions for the nonlinear and damping coefficie
in terms of the eigenvectors, and the first derivatives ofl (0)

with respect to the fieldr i . In what follows, we choose the
representation̂Li u and uRi& to distinguish between left an
right eigenvectors. Then, we have

a i5^¹ul i
~0!uRi&, ~4!

wherel i
(0) is the eigenvalue for the matrixA corresponding

to the eigenvectoruRi&, ^¹uu5(]/]u1 ,]/]u2 ,...,]/]un),
and the dissipation coefficientm i is

m i5
^Li uK0uRi&

^Li uRi&
, ~5!

whereK05(K1K2)uU5U0
.

In the original coordinate frame~x,t! the PDE becomes

]

]t
f1~l i

~0!1af!
]

]x
f1m

]2

]x
f50, ~6!

where we have dropped the~1! superscript and the subscrip
i for simplicity. Equation~6! is a Burgers10,13equation with a
nonlinear coefficienta and a dissipation coefficientm. l i

(0) is
the speed of the wave when the nonlinearitya is suppressed
to zero. For an initially symmetric pulse, a shock front
formed whena.0, in the opposite case a shock tail dev
ops.
e
e

n
r-

s-

-
s

-

III. SUPERFLUID HYDRODYNAMICS IN MIXTURES

As the starting point for our derivation we take the dis
pative superfluid hydrodynamic equations given by8

]r

]t
1¹• j50, ~7!

] j i

]t
1

]p ik

]xk
5

]

]xk
FhS ]vni

]xk
1

]vnk

]xi
2

2

3
d ik

]vnk

]xk
D G

1
]

]xi
@z1¹•~ j2rvn!1z2¹•vn#, ~8!

]

]t
~rc!1¹•~rcvn!5¹FrDS ¹c1

kT

T
¹T1

kP

P
¹PD G ,

~9!

]

]t
rs1¹Frsvn1

1

T S q2
Zg

r D G50, ~10!

]

]t
vs1¹S m2

Z

r
c1

1

2
vs

2D5¹@z3¹•~ j2rvn!

1z4¹•vn#. ~11!

Herej5rv5rnvn1rsvs ,vn(vs) is the velocity of normal
~super!fluid component,rn (rs) is the density of the norma
~super!fluid component,r is the density of the mixture,v is
the fluid velocity. For future use we also define the count
flow velocity, w5vn2vs . The generalized pressure is
given by p ik5Pd ik1rnvnivnk1rsvsivsk , s is the specific
entropy,c is the mass concentration of3He in the mixture,T
is the temperature,Z is the chemical potential difference o
4He and 3He, Z5r(m32m4), the z i are second viscosity
coefficients, andh is the first viscosity coefficient and w
have

dm5
1

r
dP2sdT1

Z

r
dc2

1

2

rn

r
dw2. ~12!

The correction to the density and entropy up to the orderw2

can be found from Eq.~12! to be

r~T,c,P,w!5r~T,c,P!1
1

2
w2r2

]

]P

rn

r
, ~13!

s~T,c,P,w!5s~T,c,P!1
1

2
w2

]

]T

rn

r
, ~14!

wherew5vn2vs is the counterflow velocity. The heat flu
and impurity current in Eq.~10! are

2q5T2F ]

]T S Z

rTD2
kT

T

]

]c S Z

rTD Gg1k¹T ~15!

and

2g5rDS ¹c1
kT

T
¹T1

kP

P
¹PD , ~16!

whereD is the diffusion coefficient,k is the thermal conduc-
tivity, kTD is the thermal diffusion coefficient, andkpD is
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the coefficient of barodiffusion. Note that here we have
made any assumptions for the dependence of the therm
namical quantities so that they can depend on concentra
and pressure as well as temperature.

Next, we write the resulting equations in a matrix form

B
]

]t
U1A8

]

]x
U1

]

]x S K8
]

]x
U D50, ~17!

where the vectorU is

U5S P
T
c
v
w

D ~18!

the 535 matricesB, A8, andK8 are given in Appendix A.
To put Eq.~17! into Eq. ~1!, we multiply the former by

the inverse ofB from left. The matrixA of Eq. ~1! is given
by

A5B21A8. ~19!

The complete inversion ofB and evaluation of Eq.~19! is
rather cumbersome. However, since we only need the ei
vectors and eigenvalues ofA(0), and the first derivative of
the latter with respect to the fields, it suffices to keep term
A that are at most linear inv andw. We expand matrixA to
first order inw andv, as

A5A~0!1wA~1w!1vA~1v !. ~20!

The calculation details of matricesA(0), A(1w), andA(1v) can
be found in Appendix A.

The zero order~in v and w! eigenvalues for each of th
modes are calculated from

A~0!uR&5l~0!uR&, ~21!

and the first order of perturbation is given by

l~1w!5
1

^LuR&
^LuA~1w!uR&, ~22!

l~1v !5
1

^LuR&
^LuA~1v !uR&. ~23!

The nonlinear coefficient,a, can then be found by evaluatin
Eq. ~4!

a5
]l~0!

]P
r 11

]l~0!

]T
r 21

]l~0!

]c
r 31l~1v !r 41l~1w!r 5 , ~24!

wherer i are the components of the vectoruR&. The dissipa-
tion coefficient can be calculated using

m i5
^Li uB21K8uRi&

^Li uRi&
~25!

~note that in the low-temperature literature the second so
dampingm i is usually defined asm i5

21
2 Di!.
t
y-

on

n-

in

d

IV. RESULTS

A. Second sound in mixtures

The matrixA in Eq. ~19! has four nonzero eigenvalue
namely 6u20 and 6u10, the velocities of left and right
propagating second and first sound. The fifth eigenvalu
zero, corresponding to a diffusive mode. We will first prese
the results for second sound. For the second-sound velo
we find

u20
2 5

rs

rn S s̄2

]s

]T

1c2
]

]c

Z

r D ~11d!21, ~26!

where

d5
rs

rn
F S c

r

]r

]cD 2

12ŝ̄
1

r

]r

]T

c

r

]r

]cG.
rs

r S c

r

]r

]c
1 ŝ̄

1

r

]r

]TD 2

.

Here

s̄5s2c
]s

]c
and ŝ̄5

s̄

]s/]T
.

The limit c50 gives

u20
2 uc505

rs

rn
s2S ]s

]TD 21

~27!

which is the velocity of second sound in pure4He. With b
5(1/r)(]r/]T)50, Eq. ~26! reduce to the expression de
rived by Khalatnikov.8 The importance of considering th
thermal expansion coefficientb in 4He is stressed in Ref. 14

The right eigenvector for the second-sound mode is

uR2&53
rsu20bG

rs

r

1

u20
ŝ̄q

c
rs

r

1

u20

rs

r
bG

1

4 , ~28!

where

q512bx
u20

2

s̄
G,

G5S 12
u20

2

]P/]r D 21

'F12S u20

u10
D 2G21

,

b5x1 ŝ̄b, and x5
c

r

]r

]c
.

This eigenvector is normalized with respect to the coun
flow velocity, w, and thereforef in Eq. ~6!, representsw.
This normalization is of course not unique. A transformati
to an equation for one of the other fields,P, T, etc., is easily
accomplished by scaling with the appropriate componen
uR2&. This leaves the overall structure of the Burgers eq
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612 PRB 61MASOUD MOHAZZAB AND NORBERT MULDERS
tion unchanged, but leads to a rescaling of the nonlin
coefficient. It is thus necessary to givea a subscript to indi-
cate to which of the otherwise equivalent Burgers equati
it belongs. For example, the nonlinear coefficient for a B
gers equation for the temperature amplitudeaT is related to
that for the counterflow velocityaw by

a2T5u20

r

rs

ŝ̄21

q~11bG!
a2vn

. ~29!

Using the relation betweenw andvn ,

vn5
rs

r
~11bG!w, ~30!

which can be found from the definitions ofw andv in terms
of vn andvs , anduR2&, we find

a2w5
rs

r
~11bG!a2vn

. ~31!

Using Eq.~22! the value for the first order corrections to th
eigenvalue for the second-sound mode becomes

l~1w!^L2uR2&5jTŝ̄F2
r

rn
2Gd2xb

u20
2

s̄

r

rn
S 22

rs

r
Gx2D G

1jPru20
2 GbS 2

r

rn
2GdD1cjcS r

rn
2GdD

14
rs

rn
~11Gb!1

rs

r
G~11bG!d ~32!

where

jP5
]

]P

rs

r
,jT5

]

]T

rs

r
, and jc5

]

]c

rs

r
,

and

l~1v !^L2uR2&521Gb1G@2G2~11Gb!#d, ~33!

where ^L2uR2&522Gd12G2d. In the limit u20!u10,
^L2uR2&521d. Substituting the second sound velocityu20

for l (0) in Eq. ~24!, and using the eigenvector~28! for the
second sound mode, the expression for the nonlinear co
cient for second sound in mixtures becomes

a2w5u20

]u20

]P
rsb1

rs

r

1

u20

]u20

]T
ŝ̄q1

c

u20

]u20

]c

rs

r

1
rs

r
bl~1v !1l~1w!, ~34!

wherel (1w) and l (1v) are given in Eqs.~32! and ~33!, re-
spectively.

For the purpose of studies of critical phenomena~nearl
line! we reduce the coefficienta2 by using the asymptotica
behavior rs!rn'r,d!1,u20

2 !u10
2 ']P/]r. Here we also

drop the dependence ofr on T ~Ref. 17! ~i.e., b50!. The
expression for the nonlinear coefficient of second sound
this limit in terms of molar concentrationX, which is in a
more convenient form for experimental purposes, becom
ar

s
-

ffi-

in

s

a2vn
5

Ms

M4

S̄T

CXP
S 1

u20

]u20

]T
1

1

rs /r

]

]T

rs

r D
1

Ms

M4
XS 1

u20

]u20

]X
1

1

2

1

rs /r

]

]X

rs

r D ~35!

in which the diverging terms are

]

]T

rs

r
,

]

]X

rs

r
,
]u20

]T
, and

]u20

]X
.

HereCXP is the specific heat of mixtures at constant conc
tration and pressure.16,1 The ratioS̄T/CXP is larger for mix-
tures specially close to the tricritical point. Therefore t
nonlinear coefficient is negative and large close to thel line
and the concentration terms enhance the nonlinearity.

The asymptotic behavior of superfluid density is given
rs /r5k(X)tl

f (X) , wheref (X)'2/3 andk(X) change slowly
as a function of concentrationX.2,1 Therefore close to thel
line ~but X,0.55!, the asymptotic form ofa2vn

in terms of
reduced parameters becomes

a2vn
'2

Ms

M4

T

Tl

S̄

CXP
tl

21, ~36!

where tl512T/Tl . However, near the tricritical poin
k(X)5k0xt

1/31 and therefore

a2vn
'2

Ms

M4
S T

Tl

S̄

CXP
tl

211
X

Xt
xt

21D , ~37!

where xt512X/Xt and Xt is concentration of3He at the
tricritical point. Therefore the nonlinearity is more noticeab
near the tricritical point.

For the case of pure4He, i.e.,c50, the corrections to the
second sound mode eigenvalue@Eq. ~32! and ~33!# become

l~1w!uc505jTŝG2
r

rn
1jPru2rbG3

r

rn
12

rs

rn
G2~11bG!,

~38!

wherebuc505bs(]s/]T)P
2 and

l~1v !uc505G2~11bG/2!. ~39!

Therefore the nonlinear coefficient simplifies to

a2wuc505u20

]u20

]P
rsbŝ̄1

rs

r

1

u20

]u20

]T
ŝ̄1jTŝG2

r

rn

1jPru20
2 rbG3

r

rn
12

rs

rn
G2~11bG!1

rs

r
bG3

3S 11
1

2
bG D , ~40!

which in the limit b50 andu20!u10 reduces to the Khalat
nikov’s expressiona2w K hal8 5s(]T/]d)ln@u20

2 (]s/]T)#.8,5

The dissipation coefficient is calculated from the Eq.~25!.
The general expression form2 is very long and not illumi-
nating, however, it is more useful to get the expression cl
to the l line. Therefore the dissipation coefficient can
simplified to
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22m25
rs

rn
H F S 4

3
h1z2D ~11b!/r2~z11z4!G~11b!

2rz3J 1
k

T

rs

rn

ŝ̄2

ru20
2 1

rs /rn

u20
2

]

]c

Z

r
DF S kT

T
ŝ̄1cD 2

1
kP

P
pu20

2 brS kT

T
ŝ̄1cD G ~41!

which is also valid above thel line for He-L. Therefore
above thel line the equation for second sound become
diffusion equation with Eq.~41! as its diffusion parameter.

The dissipation coefficient for the pure He-II lim
(c50) will become

22m2uc505S 1

]s/]TD S k

Tr
D1F S 4

3
h1z2D ~11bG!/r2rz3

2~z11z4!G rs

rn
~11bG! ~42!

with kP D50 and kT D50 for c50, which is consistent
with the existing results for pure4He ~Ref. 15! whenb50.

Therefore we have derived a nonlinear second-so
equation

]w

]t
1~u201a2ww!

]w

]x
2m2

]2w

]x2 50. ~43!

In terms of a measurable quantity for example the temp
ture amplitudeT8, the Burgers equation is similar to Eq.~43!
but with a2w replaced bya2T

]T8

]t
1~u201a2TT8!

]T8

]x
2m2

]2T8

]x2 50, ~44!

wherea2T is given by Eq.~29!.

B. First sound

For the first-sound velocity we find

u10
2 5

]P

]r
~11d!1u20

2 d. ~45!
a

d

a-

The right eigenvector for the first sound mode of matrixA
~19! is

uR1&51
ru10

2
rs

rn

b

u10
ŝ̄2b

u10

]s/]T

11~rs /r!xb

11d

2c
rs

r
b/u10

1

2
r

rn
b

2 . ~46!

For first sound, nonlinear effects only become significa
close to the transition. Neglecting the expansion coefficie
b, terms of order (rs /r)2, and usingu20!u10, the perturba-
tive corrections to the eigenvalue become

l~1w!5x2
rrs

rn
2 ~jTŝ̄1cjc!2xu10

2 r2

rn
2 jP22x

rs

rn
S 12

rs

rn
x D

~47!

and

l~1v !512
x

11d
. ~48!

With these results anduR1& ~46! the nonlinear coefficient can
be calculated which gives

a1v52
rsr

2

rn
3

bx2

11d
~jTŝ̄1cjc!1

r2

rn
3

xu10
2

11d
jP

1S 2
rsr

rn
2 21D x

11d
111ru10

]u10

]P

2
rs

rn

b

u10
S ŝ̄

]u10

]T
1c

]u10

]c D , ~49!

whereu10
2 '(]P/]r)(11d) is the velocity~squared! of first

sound andr 2 is the second component of the eigenvec
uR1& Eq. ~46!. The dissipation becomes
22~11d!m15
rs

rn
bz11S 122

rs

rn
bD S 4

3
h1z2D Y r1z3S rs

rn
D 2

~b1bŝ̄!xr1z4Fb
rsr

rn
2 1S rs

rn
D 2

bŝ̄G
1

k

T

ŝ̄2

rs̄2 S b2u10
2 12xb

rs

rn
s̄ D12S kT

T D 2 D

c2 bxS ŝ̄

s̄
u20

2 2 ŝ̄3
rs

rn
D 1

kP

P

kT

T

D

c2 rŝ̄u10
2

3Fbŝ̄2
rn

rs
u20

2 2S u20

u10
D 2

~b1u10
2 x2b/s̄ !1

rs

rn
bŝ̄ G1

kT

T

D

c
xu10

2 ŝ̄

s̄ Fb12S u20

u10
D 2

b1
rs

rn
s̄~x2 ŝ̄b!/u10

2 G
1

kP

P

D

c
ru10

2 Fx2bS u20

u10
D 2

1 ŝ̄ s̄b
rs

rn
/u10

2 G1
rs

rn
Dxb. ~50!
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614 PRB 61MASOUD MOHAZZAB AND NORBERT MULDERS
The Burgers equation for first sound will then become

]v
]t

1~u101a1vv !
]v
]x

2m1

]2v
]x2 50, ~51!

]P

]t
1S u101

1

ru10
a1vpD ]P

]x
2m1

]P

]x2 50. ~52!

Note that the relation betweena1v anda1P is

a1P5
1

ru10
a1v . ~53!

For pure4He, the nonlinear coefficient becomes

a1vuc50511ru10

]u10

]P
~54!

which is equivalent to the Khalatnikov’s result that giv
a1P for pure 4He,8,5,6

The first sound dissipation coefficient for pure4He be-
comes

22m1uc505
rs

rn
bz11

4

3

~h1z2!

r
1

k

T
b2u10

2 1

rS ]s

]TD 2

1z4Fb
rsr

rn
2 1S rs

rn
D 2

bŝG rs

rn
, ~55!

where hereb5bŝ.

C. The diffusive mode

The fifth eigenvalue of the matrixA(0) is zero, and the
corresponding eigenvector is given by

uR5)5F0,2
c

s̄

]

]c

Z

r
,1,0,0G , ~56!

wherefrom the nonlinear coefficient results in

a550. ~57!

Therefore this corresponds to a mode which descri
temperature-concentration diffusion, whileP58 , v5 and w5

remain zero. Calculation of dissipation coefficient results

S 11
c2

ŝ̄ s̄

]

]c

Z

r Dm55
c2

Trs̄2 S ]

]c

Z

r Dkeff12
s

s̄2 cDTFc
]

]c

s

c

1
kT

T

]

]c

Z

r G , ~58!

where

keff5k1rD
T

~]/]c!~Z/r! Fc
]

]c

s

c
1

kT

T

]

]c

Z

r G2

. ~59!

Therefore for the fifth mode the equation for concentrat
will become

]c58

]t
5m5

]2c58

]x2 ~60!
s

n

and

T5852
c

s

]

]c

Z

r
c58 .

V. GENERATION OF FIRST SOUND FROM SECOND
SOUND AND VICE VERSA

As shown in previous sections, first~second! sound mode
carries not only pressure~temperature! fluctuations, but also
temperature~pressure! and concentration fluctuations too
Using the eigenvector for each mode we can find the re
tions between each fields.

Using Eq.~28! we see that for the second sound mode
temperature, concentration and pressure fluctuations are

T285
rs

r

ŝ̄

u20
F12S xb

u20
2

s D Gw2 , ~61!

c285
c

u20

rs

r
w2 , ~62!

and

P285u20rsG~ŝ̄b1x!w2 , ~63!

wherew2 ~i.e., counterflow velocity! is the solution to Bur-
gers equation~43!. The expression for the pressure fluctu
tions of the second sound can also be expressed as

P285u20
2 bGr

1

ŝ̄
S 12xb

u20
2

s̄
D 21

T28 . ~64!

The fluctuations in temperature and concentration resul
fluctuations in the total density, which in tern, cause the pr
sure to fluctuate. Therefore it is possible to measure the p
sure fluctuations~i.e. first sound! of second sound instead o
temperature for the detection of second sound in mixtu
However the pressure amplitude is suppressed by a facto
u20

2 as compared with the amplitude of the temperature fl
tuation. For example for a temperature amplitude of abou
mK, one may expect to have a pressure amplitude of ab
10 Pa.

The temperature and concentration amplitudes due to
sound mode can also be calculated using the eigenvecto
~46!,

T1852S rs

rn

b

u10
ŝ̄1b

u10

]s/]T

11~rs /r!xb

11d D 1

ru10
P18 ~65!

and

c185c
rs

r2

b

u10
2 P18 , ~66!
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whereu10 is the velocity of first sound andP18 is the first-
sound pressure amplitude. Therefore one can mea
second-sound thermal wave form incoming first-sound p
sure fluctuations.

VI. CONCLUSION

In this work we have systematically derived nonline
wave equations for the propagation of second and first so
in 3He-4He mixtures, with their limit for pure4He. Our deri-
vation is valid to first order in the expansion coefficientb,
and velocitiesv and w. Using the reductive perturbatio
method we showed that the second- and first-sound w
equations are Burgers equations and we derived expres
for the nonlinear coefficientsa2 anda1 , and the dissipation
coefficientm2 andm1 . We observed thata2 for mixtures is
larger than pure4He and therefore second sound in mixtur
propagates highly nonlinearly close to the transition tempe
tures. This nonlinear is even more pronounced close to
tricritical point. We also found a diffusive mode for
coupled impurity-temperature in mixtures and derived its d
fusion parameter.

As a final remark, the derived value fora2 can also be
used to find the velocity of second sound in the presenc
a heat current in mixtures. In this casew05Q/rs(1
1bG)ST, whereQ is the heat current andw0 is the resulting
counterflow velocity of course this discussion does not c
sider the change in the critical temperature in the presenc
a heat current.

ACKNOWLEDGMENTS

This work was performed under contract with the Jet P
pulsion Laboratory in support of the EXperiments Along C
existence near Tricriticality~EXACT! flight experiment. We
thank Melora Larson for useful comments.

APPENDIX A

This appendix contains the expressions for the matrice
Sec. III of this paper. At the linear limit, i.e., forw50 and
v50, the matricesB andA8 are

B~0!53
]r

]P

]r

]T

]r

]c
0 0

0 0 0 r 0

r
]s

]P
r

]s

]T
r

]s

]c
0 0

0 0 r 0 0

0 0 0 1 2
rn

r

4 , ~A1!
re
s-

r
nd

ve
ns

a-
e

-

of

-
of

-
-

of

A8~0!

53
0 0 0 r

]P

]r
A158

~0!

0 0 0 2b
]P

]r

]T

]s
A258

~0!

0 0 0 0 c
rs

r

1

r
0 0 0 0

2
1

rn
x

r

rn
s̄ c

r

rn

]

]c

Z

r
0 0

4 ,

~A2!

where

A158
~0!52rs

@bs̄2~]s/]T!x#

~]r/]P!~]s/]T!
, A258

~0!5S 1

r

]r

]P
s̄1bx D

3
]P

]r

]T

]s
, b5

1

r S ]r

]TD
c,P

and x5
c

r S ]r

]cD
P,T

.

The matricesB andA8 can be expanded around their bac
ground i.e., Eqs.~A1! and ~A2! as

B5B~0!1wB~1w!1vB~1v !,

A85A8~0!1wA8~1w!1vA8~1v !,

where

B~1w!53
0 0 0 r 0

1 0 0 0 0

0 0 0 0 srs

0 0 0 0 crs

11x

r
2s̄ 2c

]

]c

Z

r
0 0

4 , B~1v !50,

~A3!

A8~1w!5F 0 0 0 0 2jPr2

0 0 0 0 0

0 0 0 0 2rjT

0 0 0 0 0

jP jT jc 0 0

G , ~A4!
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A8~1v !

53
0 0 0 0 0

0 0 0 0 2
rnrs

r

]~srs!

]P

]~srs!

]T

]~srs!

]c
0 0

c
]rs

]P
c

]rs

]T
rs1c

]rs

]c
0 0

0 0 0 2
rn

r
2

rnrs

r2 .

4 .

~A5!

The first order correction terms to the matrixA is calculated
from

A~1v !5B~0!21
A8~1v !, ~A6!

A~1w!5B~0!21
A8~1w!2B~0!21

B~1w!B~0!21
A8~0!. ~A7!

The dissipation matrix evaluated atw50 limit becomes

K8523
0 0 0 0 0

0 0 0
4

3
h1z2 K258

2
kPc

P
2

kTc

T
1

k

T
2c 0 0

kP

P
rD

kT

T
rD rD 0 0

0 0 0 z4 K558

4 ,

~A8!

where

K258 5
rs

r S 4

3
h2rz11z2D ,

K558 5
rs

r
~z42z3r!, c5rDS ]

]T

Z

r
2

kT

T

]

]c

Z

r D ,

and D is the diffusion coefficient. The matrixK is found
from the matrix operationK5B21K8.

APPENDIX B

This appendix contains definitions of some terms and
breviations used in the paper and the conversion of so
quantities defined in this paper fromc into X

b5
1

r S ]r

]TD
P,c

. ~B1!

The measurements of thermal expansivityb for pure4He has
extensively been reported by Maynard19 and Niemela and
Donnelly.20 The range of variation ofb strongly depends on
temperature as well as pressure. From Ref. 19 we see
near the superfluid transition temperature,b'20.023(1/K)
at SVP andb'20.14(1/K) at 25 atm. Therefore one shou
-
e

at

consider the corrections due to the thermal expansion c
ficient specially at higher pressure.14 The data for the therma
expansion coefficient in mixtures of3He-4He are reported in
Refs. 17 and 18 at saturated vapor pressure. The the
expansion is larger than the case of pure4He even at lower
temperature so it is very important to consider it.

x5
c

r S ]r

]cD
P,T

5
Ms

M4
xX,xX5

X

r S ]r

]XD
P,T

and numericallyx'1.

jP5
]

]P

rs

r
,jT5

]

]T

rs

r
,jc5

]

]c

rs

r

these parameters diverge nearTl .
The parameterd defined in this paper is the generalizatio

of the original definition of Khlatnikov,8 to the case when the
thermal expansion is considered

d5
rs

rn
b2,

where b5x1 ŝ̄b5Ms /M4@xX1(S̄T/CXP)b# and at the
limit of pure 4He it becomesbuc505bs(]T/]s)P . The re-
lation between the entropy per moles and entropy per gram
S is given by

S5sMs .

Furthermore

S̄~T,X!5S2XS ]S

]XD
TP

,

c
]s

]c
5

X

M4
S ]S

]x
1S

M42M3

Ms
D ,

and

s̄5s2c
]s

]c
5

1

M4
S̄

The numerical data for the entropy is reported in Ref. 16
The potentialZ is expressed in terms of chemical pote

tials of 3He and4He as8

Z5r~m32m4!.

The speeds of second and first sound are

u20
2 5

Ms

M4
2

rs

rn
F S̄2T

CXP
1X2S ]F

]X D
TP

G ~11d!21,

u10
2 5

]P

]r
~11d!1u20

2 d.

The speed of second sound isu20'u0520(m/s) below Tl.
However, close toTl it approaches zero asu205u0@(Tl

2T)/T#1/3. The speed of first sound isu10'240(m/s) and
therefore the ratiou10/u20!1 close toTl

1. There the factorG
defined as
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G5S 12
u20

2

]P/]r D 21

'F12S u20

u10
D 2G21

becomes numericallyG'110.01 inside the superfluid region
andG'1 nearTl .

The quantityq is defined as a correction to the temper
ture component of the second-sound mode eigenvector

q512bx
u20

2

s̄
G512Msxxb

u20
2

S̄
G.

Here M3 , M4 , andMs5M3X1M4(12X) stand for molar
mass of3He, 4He and a mixture with concentrationX, re-
spectively. The molar concentrationX or the mass concen-
y

-

tration c5(M3 /Ms)X are zero for the case of pure4He.
The relations for concentration susceptibility and entro

are

c2]c

Z

r
5

Ms

M4
2 X2

]F

]X
,

s̄2

]s/]T
5

Ms

M4
2

S̄2T

CXP
,

ŝ̄5
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5

Ms

M4

S̄T

CXP
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