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Recent measurements on ion-conducting glasses have revealed that conductivity spectra for various tem-
peraturesT and ionic concentrations can be superimposed onto a common master curve by an appropriate
rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior,
we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a
wide range of botil andn values. While the model can account for the changes in ionic activation energies
upon changing, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical
n and sufficiently lowT values, a fairly good data collapse is obtained analogous to that found in experiment.

[. INTRODUCTION closer inspection of the relation between! and ¢(0) was
done later independently by Barton, Nakajima, and
Electrical conduction processes in disordered solids showamikawd (BNN) on a variety of ionic and transition metal
a remarkable similiarity with respect to their low-frequency oxide glasses with the result
dielectric loss behavidr.For frequenciesw smaller than
some crossover frequency 1, the real parto’(w) of the o(0)7=peoAe’, @

complex CondUCtiVity&(w)ZU'(w)_+iff"(w_) is constant  wherep is a material-dependent constant of order one and
[0 (w)=0(0)=0yc for wr<1], while for higher frequen- Ae’=¢'(0)—e.=—¢,'lim  o"(w)/w is the dielectric

. )= 0d . .
cies wr>1, o’ (w) increases monotonously with, until at strength. Equatiofl) is commonly referred to as the

typical phonon frequencies above 100-GHz vibrational CONBNN relation

tnl::ut!onz tk;ecome (jomtmant. Thle d|sp(,ar5|vi paslrt Cf{‘rr]' be char- The question if and to what extent these common features
acterized byapproximatepower laws,o”’ (o)~ ®, with ex- conductivity spectra in disordered solids can be cast into a

ponentss=0.6-0.8, wheres tends to increase weakly with e rsa| scaling form has been debated for a long time. In
increasing frequencat fixed temperatur&) and decreasing ¢t if - is the only relevant time scale in the system and

temperatu_re(at fixed fre_quencyu). In fact, at low tempera- A€’ n/T with n being the charge-carrier concentratiohis
tures or high frequencies the exponestisecomes close to is the simplest behavior one can expect based on the

one. Alternatively, this general behavior may be discussed "ﬂuctuation—dissipation theoreirthe BNN relation suggests a
terms of the complex dielectric functior(w)=—¢€'(w) scaling form

+ie'(w)=e.+io(w)lege,, Wheree is the vacuum per-
mittivity and e,, the high-frequency dielectric constant. () an

For ionically conducting glasses in particular, it was m:F(wT), ™= 50T (]
pointed out by Isardalready in 1962 that~* and o(0) are
proportional with an almost universal constant of proportion-where « is a constant of order unity. This type of scaling
ality. More precisely, it was found that the peak frequencybehavior will henceforth be referred to as the BNN scaling.
wp in the “dielectric polarization partTo’(w)—o0(0)]/® Various theories of charge-carrier transport in disordered
of the loss spectrum is proportional &¢0). However, since systems have been developed over the past 30 years, and
any reasonable definition of ! yields values comparable to already within the classical pair approximatfoand the
wp, we do not distinguish betweea, and 7! here. A continuous-time random-wallCTRW) mode? the possibil-
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ity of scaling was considered. The problem has been invessingle curvé® not only for various temperatures, but also for
tigated in more detail then by a number of authors. Summervarious modifier contents~n. However, it was found al¢d
field suggestefi,based on the extended pair approximationthat the dielectric strength scales &8’ «<x**~n3, in con-
(EPA),’ that the real par’(w) in doped crystalline and frast to the assumption e’ <n/T made when deriving the
amorphous semiconductors should follow E2). (but with-  BNN scaling(2). This implies that the imaginary part cannot
out considering the dependence obn the charge-carrier obey the BNN scaling because of causality requirements
concentrationn). Tests of this s;_caling ansatz for data on (Kramers-Kronig relations Moreover, in Ref. 20 alkali ger-
evaporated amorphous germanitfor 51 K<T<102 K)  manate glasses have been studied owealues varying by a
and doped crystalline silicoffor 1 K<T<10 K) in afre-  actor of ten, and it was found that the BNN scaling has to be
quency range 10°-~10° kHz, showed a good data collapse modified in order to obtain a data collapse for this large
for various temperatures and indeed almost the same scaliRggncentration range. We therefore have to consider the ob-
function F(wr) for doped crystalline silicon and amorphous gerved data collapse im(w) as an effective one.
germaniunf. Hunt’ suggested a scaling behavior for the real  The effective scaling behavior is nevertheless quite re-
part o'(w) using an “augmented pair approximation” at markable, since the activation enerfy of the dc conduc-
intermediate frequencies and a “cluster theory” at low fre- tivity o(0) [and hence the activation energy fort«a(0)]
quencies, and discussed the degree of universality of thgsyally decreases logarithmicdf?® with ionic concentra-
BNN relation. _ o _ tion n, E;=A—Blogn, for typical n~10?'—10?> cm™3.
Dyre'® studied a special electric-circuit model resemb“”gAccordingly, one finds a quite complicated explicit depen-
a discretized form of Maxwell's equations for a medium with yence of the crossover timeon n, r~nl-B/keT
spatially fluctuating dielectric function. By treating this |t js important to note that these experimental findings for
model in the effective-medium approximatidEMA), he — jonically conducting glasses cannot be explained by the ran-
showed that at low temperatures the complex conductivityygmy, free-energy barrier model, since in this model the con-

o(w) can be written as ductivity is proportional ton but does not steeply increase
. A with n aso(0)~n®*eT . The perhaps simplest approach that
olw) [o(w)) . allows one to account for a concentration dependendg,of
WOQ a(0) “loT, 4 s a model of particles hopping in a lattice witite energy

] o disorder (see Refs. 24—26 and belpwvhere only one par-
where 7 1/To(0). This low-temperature limit of the EMA  jcje can occupy a given lattice sitEermi statistics In or-

was first derived by Bryksitt and verified to hold true for der to see if such a model also yields the BNN scality
various distributions of the impedances in the electric circuit, o perform Monte Carlo simulations for Gaussian-
model;? thus providing a possible explanation for the ex-gistributed site energies in a range of concentratiosd
perimentally observed “quasiuniversality.” Bryksin's equa- temperaturesT both extending over almost two orders of
tion (3) also results from an EMA treatment of a microscopicmagnitude_ We find that the model can account for the loga-
hopping modéf-*®with uniformly distributed random free- (itnmic dependence o, on n, but in general exhibits no
energy barriers at low (see also Ref. J4and it predicts @ gffective BNN scaling behavior corresponding to E8).
unique scaling function F(z) being determined by powever, for typical ionic concentrations and sufficiently

F(2)logF(@=iz. _ _ low temperatures an effective BNN scaling behavior is found
The Bryksin scaling function was shown to describe thej, agreement with experiment.

normalized real part’ (w)/o(0) of various materials fairly
well,*® both for electronic conductor&.g.,n-doped crystal-
line silicon or amorphous germaniyrand ionic conductors
(e.g., sodium silicate glass or the glass former
0.4CaNQ@-0.6KNG;). It must be noted, however, that the  The jump motion of particles in a lattice with site-energy
EMA fails to predict the correct dc conductiviy(0). The  disorder is a standard model for describing hopping transport
low-temperature activation enerdy,= —log[To(0)] result-  in disordered systenfé.We choose here a simple cubic lat-
ing from the EMA is not in accordance with the value ob- tice with spacinga and assign to each lattice siténdepen-
tained from a critical percolation-path analySiswhich is  dently a random energy; drawn from a Gaussian distribu-
known to become exact at low temperatdfgsee also the tion Y(e) with zero mean and varianoeﬁ. The particles
results in Sec. lll beloy Only with a rescaled dc conduc- jump among nearest-neighbor sites and the jump rate from
tivity may the EMA be regarded as a valuable concept tosite i to a vacant neighboring sitg is W(e;,s;)
describe conductivity spectra in strongly disordered systems= min(L,exp—(e;—&)/ksT]) with » being an attempt fre-
For a long time the BNN scalin@®) has never been tested quency(Metropolis transition ratéslf the neighboring sitg
with respect to changes in charge-carrier concentration s occupied, the jump rate is zero. The size of the lattid€’is
until Roling et al. recently studiedr(w) for various ionically ~ and periodic boundary conditions are used. At equilibrium,
conducting glassé$!® (see also the recent study of the probability for a site with energy to be occupied is
Sidebottord®). In these materials, in contrast to most othergiven by the Fermi distribution f(g)=[1+ex{d(e
systems, the concentration of charge carri@nsbile ions —w)kgT]~ 2, where the concentratioo=na® per lattice
can be varied to a large extent. Roliegal. found that the site determines the chemical potential through
real parts of conductivity spectra in sodium borate glasses=(a/L)33;f(e;)=/de ¢(e)f(e). For T—0, f(e) ap-
with compositionsxNa,O(1—x)B,0; (and also other types proaches the step functidife) = 6[e;(c) —e] [0(x) =1 for
of ionic glasse¥) can be superimposed fairly well onto a x=0 and zero elsewith the Fermi energy;(c) given by

II. HOPPING MOTION AND TRANSPORT QUANTITIES
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FIG. 1. Plot of (8),(d) D(t)/Dg vs vt, (b),(&) o’ (w)/ag Vs wlv, and (c),(f) " (w)/cy VS wlv (do=ne?Dy/ksT). In (B—(c) the

concentration is fixed; =0.02, and the temperature is varied,/ kgT=

2 (full square$, 3 (open diamonds 4 (full triangle), 5 (open starg

6 (full circles), and 7(open squargswhile in (d)—(f) the temperature is fixeds, /kgT=6, and the concentration is variezk 0.005 (full
starg, 0.01(open circleg 0.02(full square$, 0.04(open diamonds 0.08(full triangles, and 0.16/open stars The solid lines ina@) and(d)

represent the fits used for the Laplace transform.

erfeq(c)/2Y?0, ]=2c—1, (4)

where erf() denotes the error function.

In order to analyze the mobility of the particles for vari-
ous concentrations and temperature$ we determine the
mean-square displaceme(it?(t)) of a tracer particle by
means of Monte Carlo simulatioR%and calculate the time-
dependent diffusion coefficierd (t) =(r?(t))/6t. D(t) ap-
proaches the short-time diffusion consténg for t—0, and
the long-time diffusion constantD, for t—o. The

frequency-dependent conductivity}(w) is, to a good
approximatiorf° given by

R ne? w?

o(w)=— KeT geir:; fOOC(rZ(t)) exp(iwt—et) dt, (5)

and approaches o(0)=(ne’/kgT)D., and o(x)
=(ne’/kgT)Dg in the low- and high-frequency limits, re-
spectively.

The short-time or high-frequency dynamics is governed 05t (v)

by the mean jump rate of a particle,

<w>=fds‘”(gcf(8)f dsw(e')[1—f(s'>]vv<s,s'>(,)
6

which determineD =(W)a?/6. ForkgT>|gq(c)| we can
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FIG. 2. (a) Plot of cD,,/Dgy vs o,/kgT for concentrations
=0.001(open triangles0.005(full starg, 0.01(open circleg 0.02
(full squareg, 0.04 (open diamonds 0.08 (full triangles, and 0.16
(open stars The solid line indicates the high-temperature activation

use the high-temperature expansion of the chemical poterenergy(Ref. 33 Eq= o, /2. The dashed lines are the fits used to

tial,  w=kgT{log[c/(1—C)]+(c—1/2) (o, IKgT)2+O(0r, /
ksT)3} to evaluate Eq(6) and obtain

(W}~v(1—c)(l—08). (7)

7Tl/2kBT

determine the activation enerdy,. (b) Plot of the activation en-
ergy E, /o, vs c. The open circles represent the values obtained
from the Monte Carlo simulation shown {@a), while the solid line
marks the result from the critical path analysis. The dashed line is a
fit with respect to a logarithmic dependence Bf on c, E;=A

—B log(c) with A=0.23 andB=0.37.
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FIG. 3. Scaling plot ofa),(d) D(t)/D., vst/7, (b),(e) o' (w)/ oy VS w7, and(c),(f) " (w)/ oy VS wT, for the data presented in Fig. 1.

At low temperaturekgT=<|s¢(c)| we can replace(g) by  —g(c). Here,s is the highest energy, which at least has to
the step function in Eqg.(6) and it follows that be encountered by a particle when it wants to move between
(W)= (4vic)exd(o,/ksT)?]erfcE_erfcE,  with  E.  two (far distanj sites close to the Fermi level. According to
=2 "0, IkgT&4(C)/0,) [erfe(-)=1—erf(-) denotes percolation theorP3 [°¢ y(e)de=[1+erf(e)]/2=p,

the complementary error functipn For kgT<min(e¥  \yhere p,=0.3117 denotes the percolation threshold in the
lei(c)].[eg(c)]), in particular, we then find, by using simple cubic lattice. Solving numerically far, we obtain

erfc(x) ~ exp(—x2)/ 7% for x— + o, e.=—0.491r, and hence
kgT)\? = -
w2 (k1) (0o, ® E,=—0.4910,— &¢(C). 9
2mc\ o €

For c—0, g¢c)— —o, such that the implicit equation
Note that (W) is not thermally activated in this low- erfeq(c)/2Y%0,]=2c—1 for si(c) can be simplified to
temperature limit. This is a desirable feature of the modelexp{—[&(c)/(2Y%0,) 1%} = — 27Y%c[ e4(c)/(2Y?0,)], which
since the high-frequency conductivity is indeed only weaklyyields

temperature dependent in ionically conducting glagsesl

other disordered hopping systems ef(c)l o, =—2"] ~log(2m"%c[ — log(27%c) V) ]2
By contrast, the long-time diffusion constant or dc con-

ductivity is thermally actlvated_ at_ low temperatue3,, Il RESULTS AND DISCUSSION

xo(0)xexp(—E,/kgT). The activation energy, can, at

sufficiently low c({¢[ e¢(c) 1kgT}*3<1), be calculated from Figure 1 shows the Monte Carlo results @(t) (in units

the critical path analyst§ as the difference between the criti- of D,=va?) and the real and imaginary parts (») and
cal energye. and the Fermi energyq(c), i.e., E;=¢. o¢”(w) of the conductivity(in units of co=ne’D,/kgT) be-

D()/Dew 6'(0) /0 6"(0)/Cac
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FIG. 4. Scaling plot ofa) D(t)/D., vst/, (b) o' (w)/ o4 VS wr, and(c) ¢"(w)/ o4 VS wr, for (c,o, /kgT)=(0.02,6) (open triangles
(0.02,% (open stars (0.04,6 (open circley (0.04,7 (open squargs(0.08,7 (open diamonds and(0.08,8 (open upside-down triangles
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ing calculated fronD(t) by numerical a Laplace transforma- to network modifier contents of 5—40 mol % which are most
tion according to Eq(5). In the upper figure$Figs. a)— interesting for applications

1(c)], the curves refer to a fixed concentratios 0.02 and Let us now discuss as to what extent the data can be
various (inverse temperatures ranging fromr_/kgT=2 to  superimposed by a BNN scaling ansatz as in(@y.To this

7, while in the lower figuregFigs. 1(d)-1(f)] the tempera- end the data in Fig. 1 are plotted in a scaled form in Fig. 3.
ture is held fixedo, /kgT=6, and the concentration is var- As can be seen from Figs(88—3(c), the data for fixed and

ied betweerc=0.005 andc=0.16. The overall behavior of variousT do not collapse onto one master curve. The BNN
the complex conductivityr(w) compares fairly well with ~ Scaling with respect to various concentrations at fiked)

that found in the experiments. There exists a crossover timgmperatureT is significantly bettefFigs. 3d)-3(f)], but it

7, such that the real pait’ () is almost constant fopr<1, IS important to note that this approximate scaling behavior
o' (0)=0(0). Forer>1, ¢’ () increases monotonously with C€ases to be present at highiers, /kgT<5. We conclude
 until for w=wy, it reaches the high-frequency plateau pe-that th_e hard-core Iam_ce gas with Ga_ussmn site-energy dis-
ing determined byW) (see Sec. Il In real materials this Order in general exhibits no BNN scaling.

high-frequency plateau is usually masked by phonon excita- However, the d_ata_collapse for.the_lowest temperatures
tions, but may be resolved by substracting the vibrational?=/ksT=6 and 7 in Figs. 3a)—3(c) is fairly good. In order
contributions® The dispersive part of the spectrum for® to see if this hplds true also for ot.hervalues, let us first
<w<wy; can be described by an approximate power law afsStimate Wh_at is a typical range of ionic concentrations used
sufficiently low temperature§o, /ksT<4, see Fig. (b)] in the experiments. For this purpose one might consider so-

with typical exponentsin the range 0.5-0.8. The imaginary dium silicate glassoezNaQO(lo— X)SiO, with modifier con-
part o’ (w) behaves similar tar' () in the dispersive re- tentsx between 10% and 40%. By assuming about 10 sites

gime  '<w<wy, ie., o"(o)~S, while in the dc- and  PET silicon to exist, we would have=2x/[1Q(1—x)]
high-frequency limits it rapidly approaches zero, since the=0-01 andc=0.13 forx=0.1 andx=0.4, respectively. For

phase shift between current and electric field approaches ratj]esec values we always found an approximate BNN scaling
idly 0 and , respectively. or o, /kgT=6. A scaling plot combining various low and

Figure 2a) displays Arrhenius plots 0fryT>cD../Dq typic'al c values is shown' in Fig. 4. The quality of the ap--
for variousc. The linear behavior of the curves at IdwT ~ Proximate data collapse is not as good as the one found in
<o, (see the dashed lines in the figurallows us to experiment, but might become better at lowerIn fact,

determiné® the activation energ§, whose dependence an WheT‘ cqnsidering typical activation energies far ionic con-
is shown in Fig. 2o) (in a semilogarithmic pldt This de- duction in glasses of 0.3 to 1 eV, one should assume similar

pendence is in good agreement with the behavior predictef!ues foro.; [see Fig. 20)], and accordinglyr, /kgT<10 at

by the critical path analysigsee the solid line in Fig.®)]. oM temperaturét_ms, hov_vever, is true only whgn r_1eg|ect-
As indicated by the dashed line in Fig(b, the data forc ing the Coulomb interaction between the mobile ions, see
=0.01 can be approximated by a logarithmic dependencgef' 349.
E./o.=A—Blogc, in accordance with the experimental
findings. We also see that for low concentratians0.01,

the data start to fall off the straight dashed line. This is ex-

pected to occur in view of the lowdimit of &¢(c) discussed We thank K. Funke, M. D. Ingram, and B. Roling for very
after Eq.(9). The behavior is not in contradiction with the helpful discussions. M.P. and P.M. gratefully acknowledge
experimental situation, however, since in ionically conduct-financial support from the Alexander-von-Humboldt Founda-
ing glasses the logarithmic dependence of, is typically  tion (Feodor-Lynen Prograjrand the Deutsche Forschungs-
found at relatively high ionic concentratiofisorresponding gemeinschaftMa 1636/2-1, respectively.
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