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Hopping transport in the presence of site-energy disorder: Temperature and concentration
scaling of conductivity spectra
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Recent measurements on ion-conducting glasses have revealed that conductivity spectra for various tem-
peraturesT and ionic concentrationsn can be superimposed onto a common master curve by an appropriate
rescaling of the conductivity and frequency. In order to understand the origin of the observed scaling behavior,
we investigate by Monte Carlo simulations the diffusion of particles in a lattice with site energy disorder for a
wide range of bothT andn values. While the model can account for the changes in ionic activation energies
upon changingn, it in general yields conductivity spectra that exhibit no scaling behavior. However, for typical
n and sufficiently lowT values, a fairly good data collapse is obtained analogous to that found in experiment.
o
cy

on
ha

h

d

as

n
c

o

nd
l

nd

e

res
to a
. In
nd

the
a

g
g.
red

and
I. INTRODUCTION

Electrical conduction processes in disordered solids sh
a remarkable similiarity with respect to their low-frequen
dielectric loss behavior.1 For frequenciesv smaller than
some crossover frequencyt21, the real parts8(v) of the

complex conductivityŝ(v)5s8(v)1 is9(v) is constant
@s8(v)5s(0)5sdc for vt!1#, while for higher frequen-
cies vt.1, s8~v! increases monotonously withv, until at
typical phonon frequencies above 100-GHz vibrational c
tributions become dominant. The dispersive part can be c
acterized byapproximatepower laws,s8(v);vs, with ex-
ponentss.0.6– 0.8, wheres tends to increase weakly wit
increasing frequency~at fixed temperatureT) and decreasing
temperature~at fixed frequencyv!. In fact, at low tempera-
tures or high frequencies the exponentss becomes close to
one. Alternatively, this general behavior may be discusse
terms of the complex dielectric functionê(v)5e8(v)
1 i e9(v)5e`1 i ŝ(v)/e0e` , wheree0 is the vacuum per-
mittivity and e` the high-frequency dielectric constant.

For ionically conducting glasses in particular, it w
pointed out by Isard2 already in 1962 thatt21 ands~0! are
proportional with an almost universal constant of proportio
ality. More precisely, it was found that the peak frequen
vp in the ‘‘dielectric polarization part’’@s8(v)2s(0)#/v
of the loss spectrum is proportional tos~0!. However, since
any reasonable definition oft21 yields values comparable t
vp , we do not distinguish betweenvp and t21 here. A
PRB 610163-1829/2000/61~9!/6057~6!/$15.00
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closer inspection of the relation betweent21 and s~0! was
done later independently by Barton, Nakajima, a
Namikawa3 ~BNN! on a variety of ionic and transition meta
oxide glasses with the result

s~0!t5pe0De8, ~1!

wherep is a material-dependent constant of order one a
De85e8(0)2e`52e0

21 lim
v→0

s9(v)/v is the dielectric

loss strength. Equation~1! is commonly referred to as th
BNN relation.

The question if and to what extent these common featu
of conductivity spectra in disordered solids can be cast in
universal scaling form has been debated for a long time
fact, if t is the only relevant time scale in the system a
De8}n/T with n being the charge-carrier concentration~this
is the simplest behavior one can expect based on
fluctuation-dissipation theorem!, the BNN relation suggests
scaling form

ŝ~v!

s~0!
5F~vt!, t5

an

s~0!T
, ~2!

where a is a constant of order unity. This type of scalin
behavior will henceforth be referred to as the BNN scalin

Various theories of charge-carrier transport in disorde
systems have been developed over the past 30 years,
already within the classical pair approximation4 and the
continuous-time random-walk~CTRW! model5 the possibil-
6057 ©2000 The American Physical Society
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ity of scaling was considered. The problem has been inv
tigated in more detail then by a number of authors. Summ
field suggested,6 based on the extended pair approximati
~EPA!,7 that the real parts8(v) in doped crystalline and
amorphous semiconductors should follow Eq.~2! ~but with-
out considering the dependence oft on the charge-carrie
concentrationn!. Tests of this scaling ansatz for data o
evaporated amorphous germanium~for 51 K,T,102 K)
and doped crystalline silicon~for 1 K,T,10 K) in a fre-
quency range 1023– 105 kHz, showed a good data collaps
for various temperatures and indeed almost the same sc
functionF(vt) for doped crystalline silicon and amorphou
germanium.8 Hunt9 suggested a scaling behavior for the re
part s8(v) using an ‘‘augmented pair approximation’’ a
intermediate frequencies and a ‘‘cluster theory’’ at low fr
quencies, and discussed the degree of universality of
BNN relation.

Dyre10 studied a special electric-circuit model resembli
a discretized form of Maxwell’s equations for a medium w
spatially fluctuating dielectric function. By treating th
model in the effective-medium approximation~EMA!, he
showed that at low temperatures the complex conducti
ŝ(v) can be written as

ŝ~v!

s~0!
logS ŝ~v!

s~0!
D 5 ivt, ~3!

wheret}1/Ts(0). This low-temperature limit of the EMA
was first derived by Bryksin11 and verified to hold true for
various distributions of the impedances in the electric circ
model,10 thus providing a possible explanation for the e
perimentally observed ‘‘quasiuniversality.’’ Bryksin’s equ
tion ~3! also results from an EMA treatment of a microscop
hopping model12,13 with uniformly distributed random free
energy barriers at lowT ~see also Ref. 14!, and it predicts a
unique scaling function F(z) being determined by
F(z)logF(z)5iz.

The Bryksin scaling function was shown to describe
normalized real parts8(v)/s(0) of various materials fairly
well,15 both for electronic conductors~e.g.,n-doped crystal-
line silicon or amorphous germanium! and ionic conductors
~e.g., sodium silicate glass or the glass form
0.4CaNO3•0.6KNO3). It must be noted, however, that th
EMA fails to predict the correct dc conductivitys~0!. The
low-temperature activation energyEa}2 log@Ts(0)# result-
ing from the EMA is not in accordance with the value o
tained from a critical percolation-path analysis,16 which is
known to become exact at low temperatures17 ~see also the
results in Sec. III below!. Only with a rescaled dc conduc
tivity may the EMA be regarded as a valuable concept
describe conductivity spectra in strongly disordered syste

For a long time the BNN scaling~2! has never been teste
with respect to changes in charge-carrier concentrationn,
until Rolinget al. recently studiedŝ(v) for various ionically
conducting glasses18,19 ~see also the recent study o
Sidebottom20!. In these materials, in contrast to most oth
systems, the concentration of charge carriers~mobile ions!
can be varied to a large extent. Rolinget al. found that the
real parts of conductivity spectra in sodium borate glass
with compositionsxNa2O(12x)B2O3 ~and also other types
of ionic glasses19! can be superimposed fairly well onto
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single curve21 not only for various temperatures, but also f
various modifier contentsx;n. However, it was found also19

that the dielectric strength scales asDe8}x1/3;n1/3, in con-
trast to the assumptionDe8}n/T made when deriving the
BNN scaling~2!. This implies that the imaginary part cann
obey the BNN scaling because of causality requireme
~Kramers-Kronig relations!. Moreover, in Ref. 20 alkali ger-
manate glasses have been studied overn values varying by a
factor of ten, and it was found that the BNN scaling has to
modified in order to obtain a data collapse for this lar
concentration range. We therefore have to consider the
served data collapse ins(v) as an effective one.

The effective scaling behavior is nevertheless quite
markable, since the activation energyEa of the dc conduc-
tivity s~0! @and hence the activation energy fort21}s(0)#
usually decreases logarithmically22,23 with ionic concentra-
tion n, Ea5A2B logn, for typical n'102121022 cm23 .
Accordingly, one finds a quite complicated explicit depe
dence of the crossover timet on n, t;n12B/kBT .

It is important to note that these experimental findings
ionically conducting glasses cannot be explained by the r
dom free-energy barrier model, since in this model the c
ductivity is proportional ton but does not steeply increas
with n ass(0);nB/kBT . The perhaps simplest approach th
allows one to account for a concentration dependence oEa
is a model of particles hopping in a lattice withsite energy
disorder ~see Refs. 24–26 and below!, where only one par-
ticle can occupy a given lattice site~Fermi statistics!. In or-
der to see if such a model also yields the BNN scaling~2!,
we perform Monte Carlo simulations for Gaussia
distributed site energies in a range of concentrationsn and
temperaturesT both extending over almost two orders
magnitude. We find that the model can account for the lo
rithmic dependence ofEa on n, but in general exhibits no
effective BNN scaling behavior corresponding to Eq.~2!.
However, for typical ionic concentrations and sufficient
low temperatures an effective BNN scaling behavior is fou
in agreement with experiment.

II. HOPPING MOTION AND TRANSPORT QUANTITIES

The jump motion of particles in a lattice with site-energ
disorder is a standard model for describing hopping trans
in disordered systems.27 We choose here a simple cubic la
tice with spacinga and assign to each lattice sitei indepen-
dently a random energy« i drawn from a Gaussian distribu
tion c~«! with zero mean and variances«

2 . The particles
jump among nearest-neighbor sites and the jump rate f
site i to a vacant neighboring sitej is W(« i ,« j )
5n min(1,exp@2(«j2«i)/kBT#) with n being an attempt fre-
quency~Metropolis transition rates!. If the neighboring sitej
is occupied, the jump rate is zero. The size of the lattice isL3

and periodic boundary conditions are used. At equilibriu
the probability for a site with energy« to be occupied is
given by the Fermi distribution f («)5@11exp@(«
2m)/kBT#21, where the concentrationc5na3 per lattice
site determines the chemical potential throughc
5(a/L)3( i f (« i)>*d« c(«) f («). For T→0, f («) ap-
proaches the step functionf («)5u@« f(c)2«# @u(x)51 for
x>0 and zero else# with the Fermi energy« f(c) given by
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FIG. 1. Plot of ~a!,~d! D(t)/D0 vs nt, ~b!,~e! s8(v)/s0 vs v/n, and ~c!,~f! s9(v)/s0 vs v/n (s05ne2D0 /kBT). In ~a!–~c! the
concentration is fixed,c50.02, and the temperature is varied,s« /kBT52 ~full squares!, 3 ~open diamonds!, 4 ~full triangle!, 5 ~open stars!,
6 ~full circles!, and 7~open squares!, while in ~d!–~f! the temperature is fixed,s« /kBT56, and the concentration is varied,c50.005~full
stars!, 0.01~open circles!, 0.02~full squares!, 0.04~open diamonds!, 0.08~full triangles!, and 0.16~open stars!. The solid lines in~a! and~d!
represent the fits used for the Laplace transform.
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erf@« f~c!/21/2s«#52c21, ~4!

where erf(•) denotes the error function.
In order to analyze the mobility of the particles for va

ous concentrationsc and temperaturesT we determine the
mean-square displacement^r 2(t)& of a tracer particle by
means of Monte Carlo simulations,28 and calculate the time
dependent diffusion coefficientD(t)5^r 2(t)&/6t. D(t) ap-
proaches the short-time diffusion constantDst for t→0, and
the long-time diffusion constantD` for t→`. The
frequency-dependent conductivityŝ(v) is, to a good
approximation,29 given by

ŝ~v!52
ne2

kBT

v2

6
lim

e→01

E
0

`

^r 2~ t !& exp~ ivt2et ! dt, ~5!

and approaches s(0)5(ne2/kBT)D` and s(`)
5(ne2/kBT)Dst in the low- and high-frequency limits, re
spectively.

The short-time or high-frequency dynamics is govern
by the mean jump rate of a particle,

^W&5E d«
c~«! f ~«!

c E d«8c~«8! @12 f ~«8!# W~«,«8!,

~6!

which determinesDst5^W&a2/6. For kBT@u« f(c)u we can
use the high-temperature expansion of the chemical po
tial, m5kBT$ log@c/(12c)#1(c21/2)(s« /kBT)21O(s« /
kBT)3% to evaluate Eq.~6! and obtain

^W&.n~12c!S 12
s«

p1/2kBT
D . ~7!
d

n-

FIG. 2. ~a! Plot of cD` /D0 vs s« /kBT for concentrationsc
50.001~open triangles! 0.005~full stars!, 0.01~open circles!, 0.02
~full squares!, 0.04~open diamonds!, 0.08~full triangles!, and 0.16
~open stars!. The solid line indicates the high-temperature activati
energy~Ref. 33! E05s« /p1/2. The dashed lines are the fits used
determine the activation energyEa. ~b! Plot of the activation en-
ergy Ea/s« vs c. The open circles represent the values obtain
from the Monte Carlo simulation shown in~a!, while the solid line
marks the result from the critical path analysis. The dashed line
fit with respect to a logarithmic dependence ofEa on c, Ea5A
2B log(c) with A>0.23 andB>0.37.
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FIG. 3. Scaling plot of~a!,~d! D(t)/D` vs t/t, ~b!,~e! s8(v)/sdc vs vt, and~c!,~f! s9(v)/sdc vs vt, for the data presented in Fig. 1
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At low temperatureskBT&u« f(c)u we can replacef («) by
the step function in Eq. ~6! and it follows that
^W&5(4n/c)exp@(s« /kBT)2#erfcE2erfcE1 with E6

5221/2(s« /kBT6« f(c)/s«) @erfc(•)512erf(•) denotes
the complementary error function#. For kBT!min(s«

2/
u«f(c)u,u« f(c)u), in particular, we then find, by using
erfc(x);exp(2x2)/p1/2x for x→1`,

^W&.
n

2pc S kBT

s«
D 2

exp@2« f~c!2/s«
2#. ~8!

Note that ^W& is not thermally activated in this low
temperature limit. This is a desirable feature of the mod
since the high-frequency conductivity is indeed only wea
temperature dependent in ionically conducting glasses~and
other disordered hopping systems!.

By contrast, the long-time diffusion constant or dc co
ductivity is thermally activated at low temperatues,D`

}s(0)}exp(2Ea/kBT). The activation energyEa can, at
sufficiently lowc($c@« f(c)#kBT%1/3!1), be calculated from
the critical path analysis16 as the difference between the crit
cal energy «c and the Fermi energy« f(c), i.e., Ea5«c
l,

-

2« f(c). Here,«c is the highest energy, which at least has
be encountered by a particle when it wants to move betw
two ~far distant! sites close to the Fermi level. According t
percolation theory30,31 *

2`
«c c(«)d«5@11erf(«c)#/25pc ,

where pc>0.3117 denotes the percolation threshold in t
simple cubic lattice. Solving numerically for«c we obtain
«c>20.491s« and hence

Ea.20.491s«2« f~c!. ~9!

For c→0, « f(c)→2`, such that the implicit equation
erf@« f(c)/21/2s«#52c21 for « f(c) can be simplified to
exp$2@«f(c)/(21/2s«)#2%.22p1/2c@« f(c)/(21/2s«)#, which
yields

« f~c!/s«.221/2@2 log~2p1/2c@2 log~2p1/2c!#1/2!#1/2.

III. RESULTS AND DISCUSSION

Figure 1 shows the Monte Carlo results forD(t) ~in units
of D0[na2) and the real and imaginary partss8(v) and
s9(v) of the conductivity~in units ofs0[ne2D0 /kBT) be-
FIG. 4. Scaling plot of~a! D(t)/D` vs t/t, ~b! s8(v)/sdc vs vt, and~c! s9(v)/sdc vs vt, for (c,s« /kBT)5(0.02,6)~open triangles!,
~0.02,7! ~open stars!, ~0.04,6! ~open circles!, ~0.04,7! ~open squares!, ~0.08,7! ~open diamonds!, and~0.08,8! ~open upside-down triangles!.
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ing calculated fromD(t) by numerical a Laplace transforma
tion according to Eq.~5!. In the upper figures@Figs. 1~a!–
1~c!#, the curves refer to a fixed concentrationc50.02 and
various ~inverse! temperatures ranging froms« /kBT52 to
7, while in the lower figures@Figs. 1~d!–1~f!# the tempera-
ture is held fixed,s« /kBT56, and the concentration is va
ied betweenc50.005 andc50.16. The overall behavior o
the complex conductivityŝ(v) compares fairly well with
that found in the experiments. There exists a crossover t
t, such that the real parts8(v) is almost constant forvt!1,
s8~v!.s~0!. Forvt.1, s8(v) increases monotonously wit
v until for v.vhf it reaches the high-frequency plateau b
ing determined bŷ W& ~see Sec. II!. In real materials this
high-frequency plateau is usually masked by phonon exc
tions, but may be resolved by substracting the vibratio
contributions.32 The dispersive part of the spectrum fort21

!v!vhf can be described by an approximate power law
sufficiently low temperatures@s« /kBT&4, see Fig. 1~b!#
with typical exponentss in the range 0.5–0.8. The imaginar
part s9(v) behaves similar tos8(v) in the dispersive re-
gime t21!v!vhf , i.e., s9(v);vs, while in the dc- and
high-frequency limits it rapidly approaches zero, since
phase shift between current and electric field approaches
idly 0 andp, respectively.

Figure 2~a! displays Arrhenius plots ofsdcT}cD` /D0
for variousc. The linear behavior of the curves at lowkBT
!s« ~see the dashed lines in the figure! allows us to
determine33 the activation energyEa whose dependence onc
is shown in Fig. 2~b! ~in a semilogarithmic plot!. This de-
pendence is in good agreement with the behavior predi
by the critical path analysis@see the solid line in Fig. 2~b!#.
As indicated by the dashed line in Fig. 2~b!, the data forc
*0.01 can be approximated by a logarithmic depende
Ea/s«5A2B logc, in accordance with the experiment
findings. We also see that for low concentrationsc&0.01,
the data start to fall off the straight dashed line. This is
pected to occur in view of the low-c limit of « f(c) discussed
after Eq.~9!. The behavior is not in contradiction with th
experimental situation, however, since in ionically condu
ing glasses the logarithmicc dependence ofEa is typically
found at relatively high ionic concentrations~corresponding
7
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to network modifier contents of 5–40 mol % which are mo
interesting for applications!.

Let us now discuss as to what extent the data can
superimposed by a BNN scaling ansatz as in Eq.~2!. To this
end the data in Fig. 1 are plotted in a scaled form in Fig.
As can be seen from Figs. 3~a!–3~c!, the data for fixedc and
variousT do not collapse onto one master curve. The BN
scaling with respect to various concentrations at fixed~low!
temperatureT is significantly better@Figs. 3~d!–3~f!#, but it
is important to note that this approximate scaling behav
ceases to be present at higherT, s« /kBT&5. We conclude
that the hard-core lattice gas with Gaussian site-energy
order in general exhibits no BNN scaling.

However, the data collapse for the lowest temperatu
(s« /kBT56 and 7! in Figs. 3~a!–3~c! is fairly good. In order
to see if this holds true also for otherc values, let us first
estimate what is a typical range of ionic concentrations u
in the experiments. For this purpose one might consider
dium silicate glassesxNa2O(12x)SiO2 with modifier con-
tentsx between 10% and 40%. By assuming about 10 s
per silicon to exist, we would havec52x/@10(12x)#
>0.01 andc>0.13 forx50.1 andx50.4, respectively. For
thesec values we always found an approximate BNN scali
for s« /kBT*6. A scaling plot combining various lowT and
typical c values is shown in Fig. 4. The quality of the a
proximate data collapse is not as good as the one foun
experiment, but might become better at lowerT. In fact,
when considering typical activation energies for ionic co
duction in glasses of 0.3 to 1 eV, one should assume sim
values fors« @see Fig. 2~b!#, and accordinglys« /kBT<10 at
room temperature~this, however, is true only when neglec
ing the Coulomb interaction between the mobile ions, s
Ref. 34!.
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