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Anomalous electronic conductance in quasicrystals
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Subtle quantum interference effects in one-dimensional quasicrystals are reported. Quite opposite to their
metallic counterparts, quasiperiodic systems are shown to exhibit interesting variations of their conducting
properties upon disruption of their long-range order. A sudden phason change in the structure leads to a series
of transitions that proceed from extremely simple and regular to highly complex self-similar resistive patterns.
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I. INTRODUCTION

In spite of intense and continuous effort, the understa
ing of the exotic electronic properties of quasicrystals1 re-
mains unsatisfactory, although quasicrystalline mater
have already been used in miscellaneous conc
applications.2,3 The role of quasiperiodic order on electron
transport and localization is revealed by unexpected exp
mental findings, in both model and real quasiperiodic s
tems, but so far no coherent theoretical framework has b
achieved.4–7 By way of an example, one of the most distin
tive features of quasicrystals is the enhancement of their c
ducting ability upon increase of static~structural disorder! or
dynamic excitations~phonons!. This has been strongly sup
ported by a wealth of experimental evidence4 and has often
been characterized in the literature as a novel property. F
a theoretical point of view, heuristic arguments5,8 and nu-
merical investigations@such as the ones on the Landau
conductance for quasiperiodic Penrose lattices9 and on Kubo
formula for three-dimensional~3D!-quasiperiodic models10#
lead to a rather incomplete understanding of the obser
properties which range from anomalously metallic behavi
to insulating ones.11

It is generally argued that a specific ‘‘geometric localiz
tion process’’ takes place in quasicrystals~maintained by
critical states12,13! and that local disruptions of the corre
sponding mesoscopic order reduce the relevant quantum
terferences, resulting in an increase of conductivity. Pion
works of M. Kohmoto12 on multifractal properties of critica
states in 1D-quasiperiodic chains have been recently
lowed by renewed focus on the relation between localiza
features of such states and their ability to conduct elec
current.14 The variety of critical states discussed in the lite
ture does not resolve questions on the relation between
calization properties and transport ability. Moreover, the
fect of disorder on top of these states is an even m
complicated problem on which very scarce rigorous res
are available. This issue has been addressed in the conte
1D quasiperiodic potentials, for which tight-binding~TB! as
well as continuous Kro¨nig-Penney models have led to simp
treatments of quantum transport in the presence of a par
lar phason-type disorder.15 Furthermore, attempts to rigor
PRB 610163-1829/2000/61~9!/6048~9!/$15.00
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ously establish analytical results in high-dimensional qua
periodic systems have been facing limitations desp
interesting early results.16

In what follows, we review, clarify, and elaborate furth
on exact results carried out in 1D imperfect quasiperio
systems with a specific type of phason disorder. We fi
interesting variations of transmission properties that are
result of quantum interference in the presence of a sud
phason change in the quasiperiodic structure.

Section II discusses an exact treatment of a 1D quasip
odic chain with phason disorder in a TB context. The resu
show that the transmission behavior undergoes strong qu
periodic fluctuations with system size. Section III review
and elaborates on the exact treatment of a richer sys
namely a continuous quasiperiodic chain, by placing app
priate emphasis on ways to better represent its multifra
electronic properties. We find subtle interference effects
phason disorder that lead to transmission properties that w
missed in the TB treatment. A qualitative phase diagr
with a series of transitions is drawn, and Sec. IV presents
conclusions.

II. INTEREFERENCE EFFECTS IN 1D QUASIPERIODIC
SYSTEMS WITH DISORDER

Introduction of disorder could be typically made throug
randomizing of site or hopping energies~in a TB context!,
with the subsequent occurence of Anderson localization
the infinite chain limit. For finite systems, localizatio
lengths may be much larger than the system size, so
conductance fluctuations as a function of energy of tunne
electrons~from the leads to the system! retain their self-
similar character and still follow a power-law behavior wi
respect to the system size, even upon introduction of diso
as much as 10% of the total bandwith.17 Alternatively, the
particular order present in a system with long-range qua
eriodicity suggests the possible presence of unique type
defects, known as phason defects. Their geometric defini
and properties have been subjected to many studies,18 al-
though some aspects remain controversial. It seems na
to consider how such types of defects, inherent to these
tems and viewed as disruptions of quasiperiodic order, w
6048 ©2000 The American Physical Society
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PRB 61 6049ANOMALOUS ELECTRONIC CONDUCTANCE IN QUASICRYSTALS
generically reduce or improve transport properties, and un
what conditions this may happen. It is the aim of this work
contribute to such a more general and fundamental un
standing of electronic transport properties in quasicrysta

For 1D-quasiperiodic systems, the simplest phason de
that could be considered is of a step form in the hypersp
construction of the quasicrystal, something that amounts
local ‘‘patching’’ of two different quasiperiodic chains. In a
earlier study, such phason-defects were introduced by
authors15 and their role on the Landauer conductance w
discussed. We here review the main points in a TB cont

Tight-binding models~TBM’s! of perfect quasiperiodic
chains have been extensively studied both analytically
numerically for some particular values of energy, and
results have provided typical features of localization in q
siperiodic structures, such as power-law decrease of w
functions or power-law bounded resistances.12 However, in
spite of leading to interesting analytical results, TBM’s
not permit the investigation of energy-dependent proper
of quantum dynamics and electronic transport. The works
Kollar and Su¨to,19 and Baake, Joseph, and Kramer20 pointed
out the limitations of TBM, and a manifestation of this w
shown15 in the consideration of effects of phason-type dis
der on electronic localization and transmission. Let us re
the most common TB system,15 the so-called off-diagona
TB Hamiltonian, namely

H5(
n

tn~ un&^n11u1un11&^nu!.

This corresponds to vanishing site energies, and to hop
elementstn that take two possible valuestA and tB ~or for
symbolic convenienceA andB) arranged in a Fibonacci se
quence ABAABABAABAAB . . . . The Schrödinger equa-
tion in this so-called site representation then reads, in ma
language,

S cn11

cn D 5Mn•S cn

cn21D 5Mn•Mn21•••M1•S c1

c0D
[Pn•S c1

c0D ~1!

with transfer matrices

Mn5S E

tn
2

tn21

tn D and Pn5)
n

Mi ~2!

i 51
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and with cn denoting the value of the wave function fo
energyE at siten.

The Fibonacci arrangement of the hopping elements
be described in closed form by21 tn5 f (un) where un is a
kind of phase given byun5n/t1u0(mod1), with t the
golden mean@t5(A511)/2#. For the usual Fibonacci chai
we haveu050 and then

f ~u!5tA for 1/t2<u,1,5tB for 0<u,1/t2.

The quasiperiodic chain corresponding to an initial pha
u05m/t is associated with the Fibonacci sequence star
at themth site of the usual one.~It should be noted here tha
by changing the initial phaseu0 randomly between 0 and 1
statistical studies of the localization and transport proper
of Fibonacci chains have been performed!.21,22The particular
phason-defect studied in this work is an abrupt geome
transition between two chains, one withu050, and one with
u052/t. This breaks the long-range quasiperiodic order
the usual Fibonacci chain, and can be viewed as a kind
disorder, the consequences of which are reviewed below

To study the transmission problem through such a ch
with N hopping elements, we imagine connecting our fin
system on the left and on the right with leads, represented
periodic chains of periodtB ~hencetN5t05text5tB) @see
Fig. 1 where a small chain with five sites~four hopping
elements! is shown#. But in order to avoid surface effects w
must take particular care about having a system size s
that the connection withtB on its right end looks like a
continuation of the Fibonacci order. It is easy to see that
leads to restrictions on the possible values of the system
N. For both cases of Fibonacci chains withu50 and u
52/t, the allowed values are N( i 51,2,3,4 . . . )
54,12,17,25,33,38,46,51,59, . . . , where the integeri counts
the permitted possibilities and will be important in the fo
lowing discussion.@Note that the difference between tw
consecutive allowed numbers follows a Fibonacci seque
of the numbers 8 and 5 (8,5,8,8,5,8,5,8 . . . ).]

FIG. 1. ChainN54: ABAA connected with perfect leads.
1 0

I: ~B!ABAABABAABAABAB AABABAABAABABAABAABABAA ~B!u050,

II: ~B!AABABAABAABABAA BABAABAABABAABAABABAABA ~B!u052/t,

III: ~B!ABAABABAABAABA BBABAABAABABAABAABABAABA ~B!.
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6050 PRB 61STEPHAN ROCHE AND KONSTANTINOS MOULOPOULOS
The construction of a phason is illustrated above for aN
529 chain~where the phason defect has been introduce
the 16th element!. Defining g5tA /tB , the transfer matrix
can be evaluated analytically and from this the Landa
resistances can be obtained.~Recall that the Landauer resis
tance of a finite chainN and for fermions with spin 1/2 is
given by rN5(h/2e2)(R/T) whereT is the fraction of tun-
neling electrons transmitted from the system to the ri
lead, andR is the reflected one!. For a tight-binding model
and for E50 the resistance is related to the total transf
matrix elements by rN5 1

4 @PN
2 (1,1)1PN

2 (1,2)1PN
2 (2,1)

1PN
2 (2,2)22# @for real matrixP, and in units ofh/2e2)].

For simplicity we give here the results only forE50. De-
fining the matricesA,B,C by

A5S 0 2
1

g

g 0 D B5S g 0

0
1

gD C5B•A5S 0 21

1 0 D ,

~3!

one can easily see that the product ofMi ’s in PN appears in
an inverted Fibonacci order. Moreover, noticing thatC•A
5C, A•C5(C•A)21 and C 252l, one shows thatPN is
given byC t(N)

•A s(N), namely

PN5S 0 21

1 0 D t(N)

•S g 0

0
1

gD
s(N)

, ~4!

where t(N) and s(N) are integers~dependent onN) which
are described by a recursive relation.@For N equal to a Fi-
bonacci numberN5$F1 ,F2 , . . . ,FN21 ,FN%, Kubo and
Goda21 have investigated the statistical properties ofs(N)
which are directly related to the characteristic exponents
self-similar wave functions; for example, by takin
(c0 ,c21)5(2 i ,1), it is possible to show thatucnu2

5g22s(N)3(21)t(N)
] .

For the usual Fibonacci chain~called ‘‘perfect’’ in what
follows! the resistance can thus be written in closed form,
result being

~rN!per f5S gs(N)2g2s(N)

2 D 2

. ~5!

The integers(N) is a fluctuating function ofN around
zero, and its absolute value is illustrated in Fig. 2; note tha
displays a self-similar pattern. Whenevers(N0)50, trans-
mission is perfect (T51). For general energies, closely r
lated quantities to rN are the Lyapunov exponent
~LE!gN(E) for finite length systems, which provide an es
mate of the dispersion of the energy spectrum. If at a gi
energy value, the Lyapunov exponent turns out to be non
nishing, it means that either the corresponding states are
calized, with localization length related to the inverse of t
LE, or that the energy is lying in a gap.23 LE as functions of
energy are determined24 by rN(E)5(h/2e2)exp@gN(E)3N#.
Energies lying outside the spectrum are easily identified w
stronger Lyapunov exponent as illustrated in Fig. 3. T
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Cantor nature of the spectrum~characterized by zero LE! is
revealed by the corresponding self-similar pattern of the d
tribution of finite LE zones.

After this brief review of the perfect chain, we now reca
the effect of phason defect on the Landauer resistanc15

Taking the position of the defect~denoted byxP from now
on! as an internal degree of freedom, it can be shown15 that,
in this TBM, the properties of the matricesA,B,C are inde-
pendent ofxP . By simple manipulations of transfer matrice
it can then be demonstrated that the total transfer ma
associated with the chain with one phason and with sys
sizeN( i ) is the same as the one without phason but with s
N( i 12). Accordingly, a general result can be written dow
if PN for the perfect chain is

FIG. 2. Multifractal distribution ofus(N)u for the Fibonacci
chain of 800 sites~for E50).

FIG. 3. Lyapunov exponents as a function of energy for a
bonacci chain.
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PRB 61 6051ANOMALOUS ELECTRONIC CONDUCTANCE IN QUASICRYSTALS
PN( i )uper f5S a b

c dD ~6!

~where it is always eithera5d50, or b5c50), then,PN
for the chain with the single defect will be

PN( i )ude f5PN( i 12)uper f

52S 0 2g

1 0 D •S 0 2
1

g

1 0 D •S a b

c dD . ~7!

The Landauer resistance of the defected system is
shown to be15

~rN!de f5S gs(N)212g2s(N)11

2 D 2

. ~8!

By comparing the resistances~5! and~8! one concludes that
at least forE50, the sign of (rN)per f2(rN)de f is fluctuating
as a function of chain length, which in turn implies tha
statistically speaking, the phason defect does not alter
transport properties in the thermodynamic limitN→`.

Finally, to determine the role of more than one phas
defects, we consider the sequence constructed following
same defect type~of a step form in hyperspace! but now
maximizing the number of defects allowed for each sizeN
~multiphason case!. We then once again calculate analy
cally the Landauer resistancerNumult . By way of illustration,
for chains withN54 andN517, one has one possible defe
of this type in the former, and four of them in the latter:

~B!2ABBA2~B!,

~B!2ABBABBAABABBABBAA 2~B!.

With the same transfer matricesA,B previously intro-
duced and by noticing that the blocks BAABAB and BA
simply lead to the matricesA and2B[B̃, respectively, we
show that the products that determinePN now follow the
Fibonacci order, namely

PN5A, AB̃, AB̃A,AB̃AAB̃,AB̃AAB̃AB̃A,

AB̃AAB̃AB̃AAB̃AAB̃, . . . .

Using this, the analytical form ofrNumult is finally shown to
be

~rN!mult5S g s̃(N)2g2 s̃(N)

2
D 2

~9!

with s̃(N) a new integer function ofN, also determined re
cursively. An interesting point to observe is that the functi
rNuper f2rNude f for a single phason defect changes its sign
each stepN( i )→N( i 11), whereasrNuper f2rNumult exhibits
fluctuations on a much larger range. By way of an exam
chains with sizes respectively equal toN( i 51,2,3,4,
5•••17)552203 sites followrNuper f2rNumult>0, whereas
the behavior is opposite for chains with 330 to 456 sites,
so forth.
en

he

n
he

t

,

d

In conclusion, in this TBM and at least forE50, even the
highest density of phason defects does not break down
localization mechanism which does remain basically
same in the limitN→`, and is associated to quasiperiod
fluctuations of the Landauer resistance as a function
length ~in fact, these fluctuations turn out to asymptotica
follow a power-law behavior in the infinite length limit!. In
the next section, an exact continuous model will yield resu
that, in fact,do depend onxP and that display an interestin
structure. The absence of such structure in a TBM should
attributed to loss of the relevant long-range interference
fects, due to truncation errors inherent to any TB approxim
tion.

III. LANDAUER RESISTANCE OF A KRO¨ NIG-PENNEY
MODEL WITH PHASONS

We now discuss an exact continuous model that does
suffer from the known truncation errors of the TB approx
mation. In this continuous model we first review the ma
calculations as earlier described by the authors.15 We then
perform power-spectra calculations of the Landauer re
tance interference patterns, in order to clarify the relat
between localization properties and transmission ability
critical states.

In the Krönig-Penney model,25 the potential describing
the interaction of the electron with the lattice is represen
by a sum of Diracd-function potentials with intensityVn
localized atxn , namely V(x)5(nVnd(x2xn), the xn ,Vn
being chosen as either correlated or uncorrelated variab
In between two successive scattering centers, the solutio
the Schro¨dinger equation is a linear combination of tw
plane waves: C(x)5Aneik(x2xn)1Bne2 ik(x2xn) (xn<x
<xn11), the 1D wave vectork.0 being related to the en
ergyE throughE5\2k2/2m. In the Krönig-Penney model, a
solution of the problem is constructed by imposing contin
ity conditions for the wave function and its derivative on t
scattering centers. For the sake of simplicity, we choose
case where the intensity of scattering potentials is cons
(Vn5l), whereas the scattering centers are quasiperiodic
spaced $(xn2xn21)%5$a,b%5$t,1%: a set of these two
lengths arranged in a Fibonacci sequence. The problem
then be described by transfer matrices as follows:

S An11

Bn11D 5L~n!•S An

BnD ~10!

with

L~n!5S S 12
il

2kDeik(xn112xn) 2
il

2k
eik(xn112xn)

il

2k
e2 ik(xn112xn) S 11

il

2kDe2 ik(xn112xn)D .

~11!
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Within this framework, it is known that the Landauer res
tance of a system of sizeN is given byrN5uPN(1,2)u2, now
with PN[L(N)•••L(1). On theother hand, a renormaliza
tion group associated with the Fibonacci chain enables
map the electronic spectrum to a dynamical system defi
by the traces of the transfer matrices~the well-known trace
map12!. This trace map provides a quantity~usually denoted
by I ) that remains invariant during the renormalizatio
group flow. In continuous models such as the one we disc
here, this quantityI is energy dependent, something that is
sharp contrast to what one obtains for a TBM.26 In our case,
one findsI (k)5l2sin2k(a2b)/4k2 whose zeros are given b
ks5np/(a2b), with n integer. These points, referred to
conducting points, are especially interesting since they c
respond to the commutation of the transfer matric
@Pn ,Pn11#50 given that20

4I 125Tr~Pn•Pn11•Pn
21

•Pn11
21 !.

But even more than this, the elementary matricesL also
commute: the general result for the commutator15

FIG. 4. Energy-dependent phase diagram.

FIG. 5. Landauer resistance as a function of phason positionxP ,
for «51024, N533, andm51.
-

to
d

ss

r-
,

@L~Dx5a!,L~Dx5b!#5l
eik(a2b)

4k2 ~12e2ik(b2a)!

3S l l22ik

2l22ik 2l D ~12!

vanishes fork5ks5np/(a2b). For such energies therefore
one can change the order of the hopping elements with
affecting the transmission properties. In fact, the resista
can be written down analytically atks , namely

rNuk5ks
5S l

2ks
D 2sin2Nw

sin2w
, ~13!

w being a phase dependent onks
2 and l, and defined by

ucoswu5ucosksa1l/2kssinksau, or equivalently by ucoswu
5ucosksb1l/2kssinksbu ~both are valid fork5ks). The ana-
lytical form of rNu

k5ks

indicates that whenN→`, the Land-

auer resistance oscillates but remains bounded, so tha
energiesks

2 correspond to states that lead to best transmiss
~recall that localized states would display exponential
crease of resistance with length!. @It has also been shown19,20

that at these points we have the highest density~a clustering!
of energy eigenvalues in the infinite limit.# Following our
earlier discussion,15 we restrict our study to energiesk2

5(ks1«)2, i.e., in the vicinity of ks @hereafterks5np/(t
21) ~i.e. a5t,b51) is taken without loss of generality#.
We then proceed with the numerical determination ofrN
with the help of appropriate products of the two basic ma
ces:

FIG. 6. Landauer resistances as a function of phason pos
xP (N52000,P5472) with «5@1029,1026#, for m51 ~upper
curve! and m55 ~lower curve!. For higher values of«, then rN

→` which indicates that energy lies within a gap, or may be as
ciated with a localized state.
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LA5S S 12
il

2kDeikt 2
il

2k
eikt

il

2k
e2 ikt S 11

il

2kDe2 iktD
LB5S S 12

il

2kDeik 2
il

2k
eik

il

2k
e2 ik S 11

il

2kDe2 ikD . ~14!

Then by choosingl so that rNuk5ks
50 exactly atk5ks

~namely enforcing a conducting behavior at these special
ergies, for either a perfect or a defected chain!, leads toN
21 values for l, given by ls52ks(cosws2cosks)/sinks
with the phase ws defined by ws5(mp)/N with m
51, . . . ,N21. The N21 values ofws are symmetrically
distributed aroundp/2 and cover densely the entire upp
half of the trigonometric plane when increasingN.15 Recall-
ing thatxP is taken as the position of phason defect (BB) in
the chain, withxPP@1,P# an integer andP the maximum
number of defect-positions for a given chain, we now su
marize the main resulting patterns15 for rN(xP ,ws ,«) and
m
ll

pl

e
tie
n-

-

also present their power spectra.~It is important to empha-
size thatrN doesdepend onxP in contrast to the approximat
TBM of the previous section.!

In the above results the numerical accuracy is alw
checked throughdetPN51 which determines the resolution
The Landauer resistance calculated ink5ks is always found
to be;10212–10213 and thus determines the numerical u
certainty onrN . The main results for both perfect and d
fected chains are sketched on the phase diagram in Fig
where several features can be identified. First, note tha
interesting pseudosymmetry is observed aroundp/2 for
rN(xP ,m,«) which doesnot correspond to any symmetry i
the scattering potential~see Figs. 4 and 5 for illustrations!.

In the zones labeled as zoneI the phason defect reduce
the resistance for energies sufficiently close to the cond
ing points~see Figs. 5 and 6!. Two symmetrical such zone
are m,N24P, and m.4P with rNuper f(xP ,m,«)
.rNude f(xP ,m,«). In other words, for these values of pa
rameters the Fibonacci chain becomes more conducting u
introduction of local phason. This effect is a pure result
quantum interference at zero temperature and has b
shown for tunneling energies close to the ones of conduc
points, being therefore representative of the behavior of e
trons that contribute to the conduction mechanism. We ill
trate these behaviors writing down all the eight different
equivalent defected chains for a system of 34 sites~or N
533):
FIBO:22B22ABAABABAABAABABAABABAABAABABAABAA22B22,

De f1:22B22ABBABAABAABABAABABAABAABABAABAABA22B22,

De f2:22B22ABAABABBAABABAABABAABAABABAABAABA22B22,

De f3:22B22ABAABABAABBABAABABAABAABABAABAABA22B22,

De f4:22B22ABAABABAABAABABBABAABAABABAABAABA22B22,

De f5:22B22ABAABABAABAABABAABABBAABABAABAABA22B22,

De f6:22B22ABAABABAABAABABAABABAABBABAABAABA22B22,

De f7:22B22ABAABABAABAABABAABABAABAABABBAABA22B22,

De f8:22B22ABAABABAABAABABAABABAABAABABAABBA22B22.
lay

ils
of

well
s
ite
It is interesting that, although for such a small syste
the resistance of the defected samples above does not fo
a simple pattern as a function of the defect positionxP

~see Fig. 5!, the resultingrNude f(xP ,m,k) for long chains
approaches a continuous limit which is given by a sim
oscillatory form, namely rNude f(xP ,m,k)
;a(m/P)sin@(2mp/P)xP#. This is further illustrated in Fig. 6
for chains withN52000, andm51,5.

Subtleties in the relations between the spatial structur
critical states and their corresponding transport proper
have been discussed recently by Macia´14 by analyzing the
ow

e

of
s

power spectra of phonon modes. Here, we also disp
power spectra~Figs. 7 and 11–13! for the different resistance
patterns, that provide a different way of exhibiting the deta
of the electronic interference resulting from the presence
the phason disorder.

The power spectrum of them55 resistance is given in
Fig. 7, where the only eigenfrequency appearing agrees
with m/P55/47250.0106.~Superimposed small oscillation
are an unphysical effect due to a Fourier transform of a fin
signal.!

Let us now move to zoneII . For N24P,m,4P, the
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6054 PRB 61STEPHAN ROCHE AND KONSTANTINOS MOULOPOULOS
resistance patterns become more complex but recur
simple (m2P) periodic oscillatory patterns are foun
around the valuesws5$(N24P)/N, (N23P)/N, (N
22P)/N, (N2P)/N%p and symetrically forw̃s5$4P/N,
3P/N, 2P/N, P/N%p. In these regions of parameter spac
there is a genuine transition from systematic increase to
crease~and vice versa! of the electronic resistance upon in
troduction of local phason, as illustrated in Fig. 8.

Finally, there is a zoneIII aroundw;p/2, where self-
similar patterns are observed, and these suggest
rNu III (xP) reveal critical states which are robust against p
son disorder as found in the TBM case. The typical patte
represented in Fig. 9 present oscillations of the resista

FIG. 7. Power spectrum of the pattern given in the inset form
55 and same parameters as in previous figure.

FIG. 8. Regular evolution of interference pattern form5P,P
11,P12, andN52000, P5472. Forws5Pp/N, Fibonacci chain
is always less resistive than the imperfect one, whereas transi
occur for m5P11,P12, . . . . Dashed curves are the values f
Fibonacci chains with same parameterm as in the corresponding
imperfect one.
nt

,
e-

at
-
s

ce

where smaller oscillations seem to be superimposed by s
coefficientss(n) like the ones appearing in Sec. II. In Fig
10, the case with 3000 sites is shown, with different valu
of the scattering potential in the vicinity of the symmet
point w5p/2. ~For m51497, the potential isl;3.918, for
m51498 it isl;3.929, and 3.941 form51499.) The pat-
terns exhibit only small differences with each other, and th
Fourier spectrum is almost identical~see below!. The power
spectra of those patterns are given in Figs. 11 and 12,
they show that superimposed frequencies are identical
different values ofm. The highest frequency is given byn
50.5 which is related to the change ofrN(xP→xP11) ~here
xP11 denotes the next allowed position of the defect!. In
corresponding figures five unambiguous frequencies h
been clearly identified and namednn51,5. This indicates that

ns

FIG. 9. Typical Landauer resistance in zoneIII , displaying self-
similar patterns as described in the text.

FIG. 10. Interferences pattern for several values of scatte
potentials close tow;p/2 ~horizontal axis represents the defe
positionxP).
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all these apparently critical patterns are in fact described
the same function, which seems to be a superposition
several independent frequencies convoluted with a func
defined by a series ofs(n)-type coefficients.

So far the analysis concerned energies very close to
ducting points, and we found simple forms emerging forrN
and its power spectra, resulting from a superposition of s
eral frequencies. One of the interesting findings is the form
tion of zonesI , II , III and the observation that the comple
ity of the patterns is increasing as we move through zone
ascending order~always up to the pseudosymmetry arou
w5p/2). For larger energies we seem to get to a truly c
otic regime, where we find fluctuations such as those sho
in the inset of Fig. 13. As energies get farther from condu
ing pointsks5p/(t21) the resistance is sharply increasi
by several orders of magnitude. The power spectrum in s
cases reveals many more eigenfrequencies, with the inte

FIG. 11. Self-similar interference pattern forN53207, P
5757, andm51605. Stability is ensured from«51023 down to
the numerical resolution limit.

FIG. 12. Same as previous figure with differentm.
y
of
n

n-

v-
-

in

-
n

t-

ch
st-

ing emergence of frequencies with similar amplitudes
beled byn and v ~that share some resemblance with t
‘‘twin peaks’’ introduced recently14 for phonons, an issue
that deserves further investigation!. In all these cases the
behaviors of the Landauer resistance of the perfect Fibon
chain versus the imperfect one follows complicated rand
fluctuations.

The different behaviors found in this study of the contin
ous model suggest that in some cases local disruption
long-range quasiperiodic order has improved the conduc
ability of the chain in a systematic manner. Analyzing t
interference patterns of the Landauer resistance as a fun
of energy and of the phason-defect position suggests
extendedness~as a localization property of available states
such energies! has also been simultaneously improved. Th
is manifested by a bounded and simple oscillatory pattern
the resistance, similar to what is found for extended eig
states in periodic systems.

In conclusion of this section, several important poin
should be re-emphasized: our study concerned the trans
sion behavior around the special conducting pointsks , that
seem to be the location of highest density
eigenenergies19,20 and can therefore be relevant to real sy
tems. The Kro¨nig-Penney model has been able to unra
subtle quantum interference effects of phason disorder
localization and transmission properties that were misse
the treatment of TBM. Here following earlier results,15 we
have found that, although multiphason defects in TBM
not seem to alter the transmission ability of correspond
states, for continuous models, interesting interference
terns are revealed byrN as a function of the defect positio
and the distance fromks . Furthermore their power-spectr
analysis is proposed as an original way to determine h
phason defects affect simultaneously localization and tra
port modes.

IV. CONCLUSION

Several interesting features occurring in the electro
transport properties of 1D quasicrystals have been repor

FIG. 13. Landauer resistance interference pattern for«50.5,
N52000, andP5472.
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Quantum interferences have been shown to generate inte
ing resistance patterns, which are modified in even m
ways by phason defects, viewed as a natural disruption
quasicrystalline order. A qualitative phase diagram has b
drawn with a series of transitions that proceed from exce
ingly simple and regular to highly complex self-similar r
sistive patterns. It is an open question whether such patt
e

is

Le

.

2

n

st-
re
of
en
d-

ns

in 1D systems may survive or partly retain their character
higher dimension.
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