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Anomalous electronic conductance in quasicrystals
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Subtle quantum interference effects in one-dimensional quasicrystals are reported. Quite opposite to their
metallic counterparts, quasiperiodic systems are shown to exhibit interesting variations of their conducting
properties upon disruption of their long-range order. A sudden phason change in the structure leads to a series
of transitions that proceed from extremely simple and regular to highly complex self-similar resistive patterns.

[. INTRODUCTION ously establish analytical results in high-dimensional quasi-
periodic systems have been facing limitations despite
In spite of intense and continuous effort, the understandinteresting early resulté.

ing of the exotic electronic properties of quasicryétas. In what follows, we review, clarify, and elaborate further
mains unsatisfactory, although quasicrystalline material®n exact results carried out in 1D imperfect quasiperiodic
have already been used in miscellaneous concretdystems with a specific type of phason disorder. We find
applications*® The role of quasiperiodic order on electronic interesting variations of transmission properties that are the
transport and localization is revealed by unexpected experi€sult of quantum interference in the presence of a sudden
mental findings, in both model and real quasiperiodic sysfhason change in the quasiperiodic structure.
tems, but so far no coherent theoretical framework has been Section Il discusses an exact treatment of a 1D quasiperi-
achieved"™’ By way of an example, one of the most distinc- 0dic chain with phason disorder in a TB context. The results
tive features of quasicrystals is the enhancement of their corshow that the transmission behavior undergoes strong quasi-
ducting ab|||ty upon increase of Staﬂstructurm disordéror periodic fluctuations with system size. Section Il reviews
dynamic excitationgphonong. This has been strongly sup- and elaborates on the exact treatment of a richer system,
ported by a wealth of experimental evidehead has often namely a continuous quasiperiodic chain, by placing appro-
been characterized in the literature as a novel property. Frofriate emphasis on ways to better represent its multifractal
a theoretical point of view, heuristic argumetftsand nu-  €lectronic properties. We find subtle interference effects of
merical investigationgsuch as the ones on the LandauerpPhason disorder that lead to transmission properties that were
conductance for quasiperiodic Penrose latficesl on Kubo Missed in the TB treatment. A qualitative phase diagram
formula for three-dimensionaBD)-quasiperiodic modet§] with a series of transitions is drawn, and Sec. |V presents our
lead to a rather incomplete understanding of the observegonclusions.
properties which range from anomalously metallic behaviors

. . 1
to insulating ones: Il. INTEREFERENCE EFFECTS IN 1D QUASIPERIODIC

_ It is generf?lly argued tha_t a spec_ific “georr_]etri_c localiza- SYSTEMS WITH DISORDER
tion process” takes place in quasicrystdfeaintained by
critical state¥>'3 and that local disruptions of the corre-  Introduction of disorder could be typically made through

sponding mesoscopic order reduce the relevant quantum imandomizing of site or hopping energiéa a TB contex},
terferences, resulting in an increase of conductivity. Pioneewith the subsequent occurence of Anderson localization in
works of M. Kohmotd? on multifractal properties of critical the infinite chain limit. For finite systems, localization
states in 1D-quasiperiodic chains have been recently follengths may be much larger than the system size, so that
lowed by renewed focus on the relation between localizatiortonductance fluctuations as a function of energy of tunneling
features of such states and their ability to conduct electrielectrons(from the leads to the systgnmetain their self-
current'* The variety of critical states discussed in the litera-similar character and still follow a power-law behavior with
ture does not resolve questions on the relation between laespect to the system size, even upon introduction of disorder
calization properties and transport ability. Moreover, the ef-as much as 10% of the total bandwlthAlternatively, the

fect of disorder on top of these states is an even mor@articular order present in a system with long-range quasip-
complicated problem on which very scarce rigorous result®riodicity suggests the possible presence of unique types of
are available. This issue has been addressed in the contextaéfects, known as phason defects. Their geometric definition
1D quasiperiodic potentials, for which tight-bindii§B) as  and properties have been subjected to many std@lias,

well as continuous Knoig-Penney models have led to simple though some aspects remain controversial. It seems natural
treatments of quantum transport in the presence of a particue consider how such types of defects, inherent to these sys-
lar phason-type disordér. Furthermore, attempts to rigor- tems and viewed as disruptions of quasiperiodic order, will
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generically reduce or improve transport properties, and under
what conditions this may happen. It is the aim of this work to
contribute to such a more general and fundamental under-
standing of electronic transport properties in quasicrystals.
For 1D-quasiperiodic systems, the simplest phason defect tetp | |ta t; ta ta
that could be considered is of a step form in the hyperspace
construction of the quasicrystal, something that amounts to a
local “patching” of two different quasiperiodic chains. In an
earlier study, such phason-defects were introduced by the FIG. 1. ChainN=4: ABAA connected with perfect leads.
authors® and their role on the Landauer conductance was
discussed. We here review the main points in a TB contextang with 4, denoting the value of the wave function for
Tight-binding models(TBM's) of perfect quasiperiodic  energyE at siten.
ChainS ha.Ve been eXtenSiVely Studied bOth analytica”y a.nd The Fibonacci arrangement Of the hopp|ng e|ements can
numerically for some particular values of energy, and theye described in closed form Byt,=f(8,) where 6, is a
results have provided typical features of localization in quatjng of phase given byd,=n/r+ 6,(modl), with 7 the

siper?odic structures, such as powe_r-law decrease of_ Wavgolden mearfi 7= (\5+ 1)/2]. For the usual Fibonacci chain
functions or power-law bounded resistan&esiowever, in we haved,=0 and then

spite of leading to interesting analytical results, TBM's do

not permit the investigation of energy-dependent properties

of quantum dynamics and electronic transport. The works of f(9)=t, for 1r?<0<1,=tg for 0<H<1/7.
Kollar and Sito,'° and Baake, Joseph, and Kraffgwointed
out the limitations of TBM, and a manifestation of this was T - ; -
showrt® in the consideration of effects of phason-type disor—The quasiperiodic chain corresponding to an initial phase

der on electronic localization and transmission. Let us recal o=m/7 is associated with the Fibonacci sequence starting
! Izal Ission. Let u t themth site of the usual onélt should be noted here that,
the most common TB systef,the so-called off-diagonal

oo by changing the initial phase, randomly between 0 and 1,
TB Hamiltonian, namely statistical studies of the localization and transport properties
of Fibonacci chains have been performé&t??The particular
H= >, to(In)(n+1|+|n+1)n|). phason-defect studied in this work is an abrupt geometric
. transition between two chains, one with=0, and one with
This corresponds to vanishing site energies, and to hoppingo=2/7. This breaks the long-range quasiperiodic order of
elementst, that take two possible valugg andtg (or for ~ the usual Fibonacci chain, and can be viewed as a kind of
symbolic conveniencA andB) arranged in a Fibonacci se- disorder, the consequences of which are reviewed below.

text=B

quence ABAABABAABAAB ... . The Schralinger equa- To study the transmission problem through such a chain
tion in this so-called site representation then reads, in matrixvith N hopping elements, we imagine connecting our finite
language, system on the left and on the right with leads, represented by

periodic chains of periodg (hencety=ty=t.=1g) [S€€
Fig. 1 where a small chain with five sitgour hopping

/) n P elementsis showr]. But in order to avoid surface effects we
gy | =Mn| gy | SMa-Maog Moy must take particular care about having a system size such
that the connection witlig on its right end looks like a

continuation of the Fibonacci order. It is easy to see that this
l/fl) leads to restrictions on the possible values of the system size

=P, Yo (1) N. For both cases of Fibonacci chains with=0 and 6
=2/r, the allowed values are N(i=1,2,34...)
with transfer matrices =4,12,17_,25,33,38345_,_51,59. . ,where 'ghe intege’r_counts
the permitted possibilities and will be important in the fol-
E th_1 lowing discussion[Note that the difference between two
T n consecutive allowed numbers follows a Fibonacci sequence
M= 1” On and Pn=i1_[1 M; (2)  of the numbers 8 and 5 (8,5,8,8,5,8,5, . ).]

I:  (B)ABAABABAABAABAB AABABAABAABABAABAABABAA (B)6,=0,

II: (B)AABABAABAABABAA BABAABAABABAABAABABAABA (B)6y=2/t,

Ill:  (B)ABAABABAABAABA BBABAABAABABAABAABABAABA (B).
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The construction of a phason is illustrated above foN a
=29 chain(where the phason defect has been introduced a
the 16th element Defining y=t,/tg, the transfer matrix
can be evaluated analytically and from this the Landauer
resistances can be obtainéRecall that the Landauer resis-
tance of a finite chaiN and for fermions with spin 1/2 is
given by py=(h/2e?)(R/T) whereT is the fraction of tun-
neling electrons transmitted from the system to the right
lead, andR is the reflected one For a tight-binding model
and forE=0 the resistance is related to the total transfer-
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matrix elements by py=3[PZ(1,1)+ P3(1,2)+P3(2,1)
+Pﬁ,(2,2)— 2] [for real matrixP, and in units ofh/2e?)].
For simplicity we give here the results only f&r=0. De-
fining the matricesA4,5,C by

0 -1

1 0

©)

one can easily see that the product\fs in Py appears in
an inverted Fibonacci order. Moreover, noticing tldat4d
=C, A-C=(C-A)" ! and C?=—1, one shows thaPy is
given byC'™. 45N namely

0 -1\t [ 7
PN=<1 o) 1o

wheret(N) ands(N) are integergdependent oiN) which

C=B-A=

0
A= B= oi
Y

s(N)

: (4)

Rl O
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FIG. 2. Multifractal distribution of|s(N)| for the Fibonacci
chain of 800 sitegfor E=0).

Cantor nature of the spectrufharacterized by zero DHs
revealed by the corresponding self-similar pattern of the dis-
tribution of finite LE zones.

After this brief review of the perfect chain, we now recall
the effect of phason defect on the Landauer resistéhce.
Taking the position of the defe¢tlenoted byxp from now
on) as an internal degree of freedom, it can be shwimat,
in this TBM, the properties of the matrice$, 5,C are inde-
pendent oikp . By simple manipulations of transfer matrices,
it can then be demonstrated that the total transfer matrix
associated with the chain with one phason and with system
sizeN(i) is the same as the one without phason but with size
N(i +2). Accordingly, a general result can be written down:
if Py for the perfect chain is

are described by a recursive relatigfor N equal to a Fi-
bonacci numberN={F,,F,, ... Fy_1,Fn}, Kubo and
Goda?! have investigated the statistical propertiessofl)
which are directly related to the characteristic exponents of
self-similar wave functions; for example, by taking
(Yo, _1)=(—1i,1), it is possible to show thafy,|?
= 25X (=1

For the usual Fibonacci chaifcalled “perfect” in what
follows) the resistance can thus be written in closed form, the
result being

0.10

S(N) _ .,—s(N)\ 2
Y Y
—) . (5)

(PN)perf:( 2

0.05
The integers(N) is a fluctuating function ofN around

zero, and its absolute value is illustrated in Fig. 2; note that it
displays a self-similar pattern. Whenevg(Ny) =0, trans-
mission is perfect T=1). For general energies, closely re-
lated quantities topy are the Lyapunov exponents
(LE)yn(E) for finite length systems, which provide an esti-
mate of the dispersion of the energy spectrum. If at a given
energy value, the Lyapunov exponent turns out to be nonvay g,
nishing, it means that either the corresponding states are lo
calized, with localization length related to the inverse of the
LE, or that the energy is lying in a g&pLE as functions of
energy are determinétiby py(E) = (h/2e?)exf w(E)XN].

Energies lying outside the spectrum are easily identified with FIG. 3. Lyapunov exponents as a function of energy for a Fi-

Y (E)

0.015

0

stronger Lyapunov exponent as illustrated in Fig. 3. Thebonacci chain.

Energy
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localization mechanism which does remain basically the
same in the limitN—o<0, and is associated to quasiperiodic
fluctuations of the Landauer resistance as a function of
length (in fact, these fluctuations turn out to asymptotically
follow a power-law behavior in the infinite length limitin

the next section, an exact continuous model will yield results

0 —y 0 _ 1 a b that, in fact,do depend orxp and that display an interesting

U N R O

a b In conclusion, in this TBM and at least f&r=0, even the
PN(i)|perf: c d) (6) highest density of phason defects does not break down the

(where it is always eithea=d=0, or b=c=0), then,Py
for the chain with the single defect will be

PN(i)|def: PN(i+2)|perf

structure. The absence of such structure in a TBM should be
attributed to loss of the relevant long-range interference ef-
fects, due to truncation errors inherent to any TB approxima-

tion.
The Landauer resistance of the defected system is then

shown to bé&®

c d

2 Ill. LANDAUER RESISTANCE OF A KRO NIG-PENNEY

s(N)—1__ ,y—s(N)+1
(8) MODEL WITH PHASONS

(PN)def:<y >

We now discuss an exact continuous model that does not
suffer from the known truncation errors of the TB approxi-
mation. In this continuous model we first review the main
calculations as earlier described by the autforg/e then
S A serform power-spectra calculations of the Landauer resis-
transport properties in the thermodynamic liit- . tance interference patterns, in order to clarify the relation

Finally, to detc_armlne the role of more than one pr.“"‘sorl:)etween localization properties and transmission ability of
defects, we consider the sequence constructed following th

same defect typéof a step form in hyperspagdut now Giitica states.
maximizing the number of defects allowed for each dire In the Kronig-Penney modef the potential describing

ltioh We th . lculat Vi the interaction of the electron with the lattice is represented
(multiphason cage € then once again calcuiate analytl- by a sum of Diracé-function potentials with intensity/,
cally the Landauer resistanpg |, i:- By way of illustration,

. L B : localized atx,,, namelyV(x)=2,V,8(X—X,), the x,,V,
for chams W!thN_A' andN=17, one has one _possmle defect being chosen as either correlated or uncorrelated variables.
of this type in the former, and four of them in the latter:

In between two successive scattering centers, the solution of

By comparing the resistancés) and(8) one concludes that,
at least forE=0, the sign of pn) peri— (Pn)get IS fluctuating

as a function of chain length, which in turn implies that,
statistically speaking, the phason defect does not alter th

the Schrdinger equation is a linear combination of two
B)—ABBA —(B), . :
(B) (B) plane waves: ¥(x)=A,ek* %)+ B e kx=xn) (x <x
(B)— ABBABBAABABBABBAA —(B). <Xp+1), the 1D wave vectok>0 being related to the en-

ergy E throughE =%2k?/2m. In the Kranig-Penney model, a
With the same transfer matrice4,3 previously intro-  solution of the problem is constructed by imposing continu-
duced and by noticing that the blocks BAABAB and BAB ity conditions for the wave function and its derivative on the
simply lead to the matricesl and — B=35, respectively, we scattering centers. For the sake of simplicity, we choose the

show that the products that determifg now follow the  €@Se where the intensity of scattering potentials is constant
Fibonacci order, namely (V,=\), whereas the scattering centers are quasiperiodically

spaced{(x,—X,_1)}={a,b}={r,1}: a set of these two
Py=A, AB, ABA, ABAAB, ABAABABA lengths arranged in a Fibonacci sequence. The problem can
T ’ ’ ' then be described by transfer matrices as follows:
ABAABABAABAAB, . .. .

Using this, the analytical form gfy|my is finally shown to
be

Ant1 An

=A<n>-(5n (10

Bn+l

S(N) _ 2

y y s

(PN)muIt:(f 9

with

with 's(N) a new integer function oN, also determined re-

cursively. An interesting point to observe is that the function
pN|perf—pN|def for a single phason defect changes its sign at

each stepN(i)—N(i+ 1), wherea| pers— pnlmuit €xhibits

fluctuations on a much larger range. By way of an example,A(n):
chains with sizes respectively equal tN(i=1,2,3,4, in i -
5...17)=5-203 sites followpy| pert— pn|mui=0, whereas k€ HCtns17%0)
the behavior is opposite for chains with 330 to 456 sites, and

so forth. 11

iny| o in
— | aik(Xp+1—Xn) — _ alk(Xnr1—Xp)
1 Zk)e 2k °©

iA

1+ ﬂ e_ik(xml_xn)
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D=n2 0.20700

P

I I I N 0.20695

(N-2P) W/ N
I I 0.20690
3P mt/N

(NP) TN 0.20685

0.20680
0 100 200 300 400
0.03310
Py 0.03309
_ 0.03308
FIG. 4. Energy-dependent phase diagram.
0.03307
0'033060 100 200 300 400
Within this framework, it is known that the Landauer resis- X,
tance of a system of siz¢ is given bypy=|Py(1,2)|%, now
with Py=A(N)---A(1). On theother hand, a renormaliza- FIG. 6. Landauer resistances as a function of phason position

tion group associated with the Fibonacci chain enables tsp (N=2000P=472) with £=[10"°,10 °], for m=1 (upper
map the electronic spectrum to a dynamical system defineglrve andm=5 (lower curve. For higher values o, then py

by the traces of the transfer matricgke well-known trace ~— Which indicates that energy lies within a gap, or may be asso-
map-?). This trace map provides a quantitysually denoted ciated with a localized state.

by I) that remains invariant during the renormalization-

group flow. In continuous models such as the one we discuss

here, this quantity is energy dependent, something that is in elk(a=b) .

sharp contrast to what one obtains for a TBMn our case, [A(Ax=a),A(Ax=Db)]=\ e (1—e?k(b=a))

one findsl (k) = \?sir’k(a—b)/4k? whose zeros are given by

ks=nw/(a—b), with n integer. These points, referred to as Y N —2ik

conducting points, are especially interesting since they cor- % : (12)
- i —\N—2ik -\

respond to the commutation of the transfer matrices,

[P,,P,:1]=0 given that®

vanishes fok=ks=n/(a—Db). For such energies therefore,
one can change the order of the hopping elements without
affecting the transmission properties. In fact, the resistance
can be written down analytically &, namely

A1+2=Tr(P,-Pnyq-Pr 1P,

But even more than this, the elementary matricesalso
commute: the general result for the commuthtor

| _( N )ZsinzNgo 13
PN k=ks 2ks sinch ,
Py ) i
00515 | | ¢ being a phase dependent ké and \, and defined by
' |cos¢|=|coska+N2kssinkga|, or equivalently by [cose|
q =|coskdb+N/2ksinkd| (both are valid fork=kg). The ana-
lytical form of py| indicates that wheiN—c<, the Land-
K=k
0.0505 | 1

auer resistance oscillates but remains bounded, so that the
energie§<§ correspond to states that lead to best transmission
(recall that localized states would display exponential in-
0.0495 | | crease of resistance with lengtfit has also been showt?®
that at these points we have the highest dersitylustering
of energy eigenvalues in the infinite limitFollowing our
earlier discussioh> we restrict our study to energids’
0.0485 3 s p =(ks+¢&)?, i.e., in the vicinity ofks [hereafterks=nmu/(r
X, —1) (i.e. a=1,b=1) is taken without loss of generality
We then proceed with the numerical determinationpgf
FIG. 5. Landauer resistance as a function of phason positiopn ~ with the help of appropriate products of the two basic matri-
for e=10"%, N=33, andm=1. ces:
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N N also present their power spect(#. is important to empha-
1- 2k e - ﬂe' T size thatpy doesdepend orxp in contrast to the approximate
TBM of the previous sectioi.
Ap= in ix _ In the above results the numerical accuracy is always
ﬂe*'kf 1+ ﬂ) e k7 checked througldetPy=1 which determines the resolution.
The Landauer resistance calculatekinks is always found
to be ~102-10 12 and thus determines the numerical un-
N N certainty onpy . The main results for both perfect and de-
“ok/& T fected chains are sketched on the phase diagram in Fig. 4,
where several features can be identified. First, note that an
Ag= in in N (14) interesting pseudosymmetry is observed arount® for
ﬁe"k 1+ 2k e 'k pn(Xp,m,e) which doesnot correspond to any symmetry in

the scattering potentidkee Figs. 4 and 5 for illustrations

In the zones labeled as zohehe phason defect reduces
) the resistance for energies sufficiently close to the conduct-
Then by choosingy so thatpyli-¢ =0 exactly atk=ks  ing points(see Figs. 5 and)6Two symmetrical such zones
(namely enforcing a conducting behavior at these special erare m<N—4P, and m>4P with py|peri(Xp,m,e)
ergies, for either a perfect or a defected chaleads toN > pnlaef(Xp,m,e). In other words, for these values of pa-
—1 values for\, given by Ag=2kg(cosgs—cosky)/sinks  rameters the Fibonacci chain becomes more conducting upon
with the phase ¢s defined by @s=(ma)/N with m introduction of local phason. This effect is a pure result of

=1,...N—1. The N—1 values ofps are symmetrically quantum interference at zero temperature and has been
distributed aroundr/2 and cover densely the entire upper shown for tunneling energies close to the ones of conducting
half of the trigonometric plane when increasiNg® Recall-  points, being therefore representative of the behavior of elec-

ing thatxp is taken as the position of phason defeBBj in  trons that contribute to the conduction mechanism. We illus-
the chain, withxpe[1,P] an integer and® the maximum trate these behaviors writing down all the eight different in-
number of defect-positions for a given chain, we now sum-equivalent defected chains for a system of 34 sit@sN
marize the main resulting pattefisor py(xp,¢s,e) and  =33):

FIBO:——B——-ABAABABAABAABABAABABAABAABABAABAAB— —,
Defl:— —-B——-ABBABAABAABABAABABAABAABABAABAABAB-— —,
Def2:——-B——-ABAABABAABABAABABAABAABABAABAABA-B— —,
Def3:——B— —-ABAABABASBBABAABABAABAABABAABAABA-B— —,
Def4:—-B——-ABAABABAABAABBBABAABAABABAABAABA—-B— —,
Def5:— —-B——-ABAABABAABAABABAABBBAABABAABAABA —B— —,
Def6:— —B——-ABAABABAABAABABAABABABABAABAABA- —B— —,
Def7:——B— —-ABAABABAABAABABAABABAABAABBAABA--B— —,

Def8:— -B——-ABAABABAABAABABAABABAABAABABBBA— —-B— —.

It is interesting that, although for such a small systempower spectra of phonon modes. Here, we also display
the resistance of the defected samples above does not follopower spectréFigs. 7 and 11-1)3or the different resistance

a simple pattern as a function of the defect positigh  patterns, that provide a different way of exhibiting the details
(see Fig. 5, the resultingpy|qei(Xp,m,k) for long chains of the electronic interference resulting from the presence of
approaches a continuous limit which is given by a simplethe phason disorder.

oscillatory form, namely pnlaei(Xp,m,K) The power spectrum of then=5 resistance is given in
~a(m/P)sin (2m=/P)xp]. This is further illustrated in Fig. 6 Fig. 7, where the only eigenfrequency appearing agrees well
for chains withN=2000, andn=1,5. with m/P=5/472=0.0106.(Superimposed small oscillations

Subtleties in the relations between the spatial structure adire an unphysical effect due to a Fourier transform of a finite
critical states and their corresponding transport propertiesignal)
have been discussed recently by Matiay analyzing the Let us now move to zond . For N—4P<m<4P, the
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0.03 6
00331 [ ] o Py;=0.03011+ o 1110
-5 N o
3.0110
0.03309 1 910”7
002 0.03308 g s o™
: 3.10 0 200 400 600 800
003307 .
g 0.03306 =5
5 0 100 200 300 400 500 29910
2
£ o001 %
V =5/472=0.0106
29810°
J)ﬂ Py =0034429+ o N=3207
0 ‘/V‘VAVAVV.VVVVVVVV VYV _5 m=1605
0.00 0.05 0.10 0.15 0.20 29710
0 200 400 600 800
Frequency Xp
FIG. 7. Power spectrum of the pattern given in the insetnfior FIG. 9. Typical Landauer resistance in zdte, displaying self-
=5 and same parameters as in previous figure. similar patterns as described in the text.

resistance patterns become more complex but recurreqpere smaller oscillations seem to be superimposed by some
simple (m—P) periodic oscillatory patterns are found cqefficientss(n) like the ones appearing in Sec. II. In Fig.
around the valueses={(N—4P)/N, (N=3P)/N, (N 10 the case with 3000 sites is shown, with different values
—2P)/N, (N=P)/N}7 and symetrically foros={4P/N,  of the scattering potential in the vicinity of the symmetry
3P/N, 2P/N, P/N}. In these regions of parameter space,point ¢ = /2. (For m= 1497, the potential i& ~3.918, for
there is a genuine transition from systematic increase to den=1498 it is\ ~3.929, and 3.941 fom=1499.) The pat-
crease(and vice verspof the electronic resistance upon in- terns exhibit only small differences with each other, and their
troduction of local phason, as illustrated in Fig. 8. Fourier spectrum is almost identid@ee below. The power
Finally, there is a zonéll around¢~m/2, where self- spectra of those patterns are given in Figs. 11 and 12, and
similar patterns are observed, and these suggest thgiey show that superimposed frequencies are identical for
pnlu(xp) reveal critical states which are robust against phadifferent values ofm. The highest frequency is given by
son disorder as found in the TBM case. The typical patterns=0.5 which is related to the change @f(xp— Xp. 1) (here
represented in Fig. 9 present oscillations of the resistancg,, ; denotes the next allowed position of the defedh
corresponding figures five unambiguous frequencies have

3.410" : : : : been clearly identified and nameg_, 5. This indicates that
pN
3.310_4 0.0299222
pN 0.02992195
m=1497
~4 00299217
3.210
0.02992145
00299212
4 0 200 400 600
3.110 0.03011276
0.03011256 _
-4 m=1498
3.10 0.03011236
0.03011216
-4 200 400 600
2910 N ) , ) 0.030332
0 100 200 300 400 0.0303319
Xp 0.0303318 m=1499
FIG. 8. Regular evolution of interference pattern foe=P,P 0.0303317
+1,P+2, andN=2000,P=472. Fores=P/N, Fibonacci chain 00303316 - ps o =
is always less resistive than the imperfect one, whereas transitions
occur form=P+1,P+2,.... Dashed curves are the values for FIG. 10. Interferences pattern for several values of scattering

Fibonacci chains with same parameteras in the corresponding potentials close tap~ /2 (horizontal axis represents the defect
imperfect one. positionxp).
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FIG. 11. Self-similar interference pattern foi=3207, P FIG. 13. Landauer resistance interference patternsfer0.5,

=757, andm=1605. Stability is ensured from=10"3 down to  N=2000, andP=472.

the numerical resolution limit. . . . L .
ing emergence of frequencies with similar amplitudes la-

.. . . beled by v and o (that share some resemblance with the
all these apparently critical patterns are in fact described bytwin peaks” introduced recentlf for phonons, an issue

the sa?*!e dfuncugn, tV\f’h'Ch Seems to b? ? dsupter:po?mor;_ O[iwat deserves further investigatiorin all these cases the
several independent frequencies convoluted with a TUNClo o ayiors of the Landauer resistance of the perfect Fibonacci

defined by a series _(B‘(n)-type coeff|0|er_1ts. chain versus the imperfect one follows complicated random
So far the analysis concerned energies very close to COff,ctuations
ducting points, and we found simple forms emerging gQr '

di lting f J : The different behaviors found in this study of the continu-
and its power spectra, resulting from a superposition of SeVg, o mgdel suggest that in some cases local disruption of

gral frequencies. One of the interesting findings is the formafong-range quasiperiodic order has improved the conducting
tion ;)fhzonesi, I, I.” .and th? observation tha:}the Ck?mplex',ability of the chain in a systematic manner. Analyzing the
ity of the patterns is increasing as we move through Zones Ifqterence patterns of the Landauer resistance as a function

ascending ordefalways up to the pseudosymmetry around ot energy and of the phason-defect position suggests that

¢=m/2). For larger energies we seem to get t0 a truly Chag,endednestas a localization property of available states at
otic regime, where we find fluctuations such as those show

. : ; ) Buch energigshas also been simultaneously improved. This
in the inset of Fig. 13. As energies get farther from conductig mapitested by a bounded and simple oscillatory pattern for
ing pointsks=/(7—1) the resistance is sharply increasing ye resistance, similar to what is found for extended eigen-
by several orders of magnitude. The power spectrum in suclies in periodic systems

cases reveals many more eigenfrequencies, with the interest- |, -onclusion of this section, several important points
should be re-emphasized: our study concerned the transmis-

310° 110~ sion behavior around the special conducting polqts that
P seem to be the location of highest density of
V002 g0 N eigenenergiéS*° and can therefore be relevant to real sys-
tems. The Kraig-Penney model has been able to unravel
0 subtle quantum interference effects of phason disorder on
210" localization and transmission properties that were missed in
E s10°® the treatment of TBM. Here following earlier resutfsye
& have found that, although multiphason defects in TBM do
§ g not seem to alter the transmission ability of corresponding
) 0 100 200 300 [ 400 states, for continuous models, interesting interference pat-
E 110 X terns are revealed byy as a function of the defect position
Vv, =0.177 V=05 and the distance frorkg. Furthermore their power-spectra
analysis is proposed as an original way to determine how
V3 =0.2644 phason defects affect simultaneously localization and trans-
port modes.
WUL’W W T S «_J L A
00 0.1 02 03 0

4 0.5 0.6 IV. CONCLUSION
Frequency

Several interesting features occurring in the electronic
FIG. 12. Same as previous figure with different transport properties of 1D quasicrystals have been reported.
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Quantum interferences have been shown to generate interest-1D systems may survive or partly retain their character in
ing resistance patterns, which are modified in even mordigher dimension.
ways by phason defects, viewed as a natural disruption of ACKNOWLEDGMENTS
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