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Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials
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Employing the Keldysh diagram technique, we calculate the electron-phonon energy relaxation rate in a
conductor with the vibrating and staticd-correlated random electron-scattering potentials. If the scattering
potential is completely dragged by phonons, this model yields the Schmid’s result for the inelastic electron-
scattering ratete-ph

21 . At low temperatures the effective interaction decreases due to disorder, andte-ph
21 }T4l ~l

is the electron mean-free path!. In the presense of the static potential, quantum interference of numerous
scattering processes drastically changes the effective electron-phonon interaction. In particular, at low tem-
peratures the interaction increases, andte-ph

21 }T2/ l . Along with an enhancement of the interaction, which is
observed in disordered metallic films and semiconducting structures at low temperatures, the suggested model
allows us to explain the strong sensitivity of the electron relaxation rate to the microscopic quality of a
particular film.
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I. INTRODUCTION

Electron-phonon scattering plays a key role in the desc
tion of many phenomena, such as electron dephasing,
removal from hot electrons, superconducting branch imb
ance relaxation, etc. Although well characterized in cle
bulk conductors, the current understanding in disordered
nanoscale systems is limited.

Electron scattering from impurities and boundaries
stroys the single-particle picture of electron-phonon inter
tion. Along with the process of ‘‘pure’’ electron-phono
scattering, which takes place in pure conductors, there is
other basic process, namely, the inelastic electron scatte
from vibrating impurities, defects, and boundaries. Toget
with elastic electron scattering and pure electron-pho
scattering, this mechanism generates a wide variety of in
ference processes. If the electron-scattering potential~impu-
rities, defects, and boundaries! is completely dragged by
phonons, the inelastic electron-impurity scattering may
excluded by a unitary transformation to a frame of referen
which moves with the phonon mode under considerati
Exploiting this transformation, Schmid1 has found that in the
presence of strong disorder (qTl ,1,qT is the wave vector of
a thermal phonon! the electron-phonon interaction becom
weaker, and the energy relaxation ratete-ph

21 is of the order of
(qTl )t0

21}T4l (t0
21}T3 is the relaxation rate in pure mate

rial!. As emphasized in Refs. 2–4, this conclusion is con
tent with the Pippard’s famous result for the ultrasonic
tenuation coefficient. It was also demonstrated2,5 that the
correct calculations lead to Schmid’s result and the Pipp
formula independent of the reference frame used.

Detailed studies show that many experimental results m
be understood in the frame of the available theory.6–8 How-
ever, a set of low-temperature observations is in strong
agreement with current theoretical understanding of
electron-phonon interaction in disordered conductors.
hancement of the interaction due to disorder has been fo
in two-dimensional electron gas~2DEG! in GaAs/Al-Ga-As
heterojunctions withl 50.320.8 mm below 0.5 K,9 and in
bulk Ti12xAl x alloys with values ofl ranged from 0.26 to 1.1
PRB 610163-1829/2000/61~9!/6041~7!/$15.00
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nm at T53 –10 K.10 The T2 dependence of the relaxatio
rate is widely observed in experiments. In some cases it m
be associated with the contribution of transverse phonon
the pure limit qTl .1, predicted by the theory. Recen
measurements11 show that this dependence takes place e
in the deep impure limitqTl;0.01, whereT4 dependence is
expected.

As the current theory is self-consistent, the search for r
sons behind this discrepancy should turn to the model
sumptions. Many-body corrections to phonon states w
considered in Ref. 12. It has been found that the modifica
of the electron relaxation rate occurs only under a stro
phonon damping. On the electronic side, the main mo
assumption of the current theory is that the scattering po
tial is completely dragged by phonons. This assumption m
be wrong for structures with heavy defects and tough bou
aries. That is why one can expect the relaxation rate to
modified in nonhomogeneous conductors and nanos
structures.

To study the effects of incomplete drag of scatterers
phonons we consider the model taking into account the
brating and staticd-correlated random-scattering potentia
One of the effects originating from elastic electron scatter
is well understood now. The diffusion motion of electro
makes the interaction time longer, which enhances an in
action. Renormalization of the ‘‘pure’’ electron-phonon ve
tex due to electron-impurity scattering has been calculate
Ref. 13. Here we study all electron-phonon interference p
cesses, with taking into account the renormalization of
vertices as well as the modification of electron screening
to disorder.

The outline of this paper is as follows. Starting with ba
vertices of electron scattering from phonons, the static
vibrating potentials, we consider screening of these verti
and build effective vertices of the electron-phonon inter
tion in Sec. II. The energy relaxation rate in a disorder
conductor is calculated in Sec. III. Discussion of our ma
results and comparison with experiment are presented in
IV.
6041 ©2000 The American Physical Society
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II. MODEL HAMILTONIAN AND EFFECTIVE VERTICES

We consider electron scattering from the static and vib
ing potentials, assuming that the vibrating potential is co
pletely dragged by thermal phonons. To keep terminology
previous papers and distinguish between these potentials
attribute the vibrating potential to ‘‘impurities.’’ Keeping in
mind that the vibrating potential has static and dynamic co
ponents, we associate elastic electron-impurity scattering
inelastic electron-impurity scattering with the static and d
namic components correspondently. Thus, the electron
mentum relaxation rate~elastic relaxation rate! is determined
by the static potential and the static component of electr
impurity potential. Inelastic electron-impurity scatterin
~scattering of electrons from vibrating impurities! induces a
new channel of the electron-phonon interaction. Screenin
the bare electron-phonon interaction as well as some inte
tion processes generated by the inelastic electron-impu
scattering is strongly dependent on the elastic relaxation r
Because of a significant effect of elastic electron scatte
on the dielectric function, we should start our considerat
with bare~unscreened! vertices.

Following Refs. 2 and 5, we study the Hamiltonian, whi
includes electron-electron (Ve-e

o ) and bare electron-phono
(B°) scattering, elastic (Ve-imp

o ) and inelastic~g°! electron
scattering from impurities dragged by phonons. With ad
tional static potential (Vst), this Hamiltonian has a form

Hint5~1/2! (
p,p8,k

Ve-e
o ~k!cp

†cp8
† cp81kcp2k

1(
p,q

Bo~q!cp1q
† cp~bq,n1bÀq,n

† !1(
p,k

Vst~k!cp
†cp2k

1 (
p,k,Ra

Ve-imp
o ~k!cp

†cp2kexp~2 ikRa!

1 (
p,k,q,Ra

go~k,q!cp
†cp2k~bq,n1bÀq,n

† !

3exp@2 i ~k2q!Ra#, ~1!

wherecp
† is the electron creation operator,bq,n

† is the creation
operator of a phonon with a wave vectorq and polarization
index n, andRa are the equilibrium positions of impurities
which are dragged by phonons.

The unscreened vertices of electron-electron, electr
impurity, and electron-phonon scattering are given by

Ve-e
o ~k!5

4pe2

k2 , Ve-imp
o ~k!52

4pe2~Zimp2Zion!

k2
,

~2!

Bo~q!52
iVe-ion

o ~q!Nqen

~2rvq!1/2
, Ve-ion

o ~q!52
4pZion

q2
, ~3!

whereVe-im
o is the bare electron-impurity scattering potenti

en is the phonon polarization vector,N is the number of unit
cells,r is the density.

The bare vertex of inelastic electron-impurity scattering
given by2,5
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go~k,q!52 iVe-imp
o ~ken!/~2rvq!1/2. ~4!

The vertices of elastic and inelastic electron-impurity scat
ing describe processes with large electron momentum tr
ferred to impurities (k;pF). In the casekl@1, the dielectric
function corresponds to the static limit,

e~k!511k2/k2, k254pe2n, n5mpF /p2. ~5!

Therefore, the screened impurity potential is given by

Ve-imp
s 524p~Zimp2Zion!/k2. ~6!

The screened vertex of inelastic electron-impurity scatter
is obtained from Eq.~4! by substitutingVe-imp

o by Ve-imp
s .

Assuming that the static potential is already screened,
add it to the screened impurity potential, as it is shown
Fig. 1. Then the electron momentum relaxation rate is de
mined by the total potential:V5Vst1Ve-imp

s .
To build effective vertices and consider the electro

phonon relaxation we employ the Keldysh diagramma
technique.14 In the Keldysh technique for nonequilibrium
processes the electron and phonon Green functions~G and
D!, the electron self-energy~S! and the polarization operato
~P! are represented by matrices

Ĝ5S 0 GA

GR GCD , D̂5S 0 DA

DR DCD , ~7!

Ŝ5S SC SR

SA 0 D , P̂5S PC PR

PA 0 D , ~8!

whereA andR stand for advanced and retarded compone
of the matrix function andC corresponds to the kinetic com
ponent.

The retarded~advanced! component of the electron Gree
function taking into account the elastic electron scattering
given by

G0
R~p,e!5@G0

A~p,e!#* 5~e2jp1 i /2t!21, ~9!

where jp5(p22pF
2)/2m. The total momentum relaxation

rate, 1/t, is determined by electron scattering from impuriti
and also from the static potential. In the diagrammatic p
sentation shown in Fig. 1, the momentum relaxation rate
given by the imaginary part of the electron self-energy d

FIG. 1. Electron vertices and self-energies describing ela
electron scattering from impurities and the static potential.
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PRB 61 6043ELECTRON-PHONON INTERACTION IN DISORDERED . . .
gramSel , which includes both the static impurity potentia
Ve-imp

s , and additional static potential,Vst . Thus, we have

1/t52 ImSel
A , l 5vFt. ~10!

It is convenient to describe the potential of vibrating im
purities by the corresponding electron momentum relaxa
rate,

t̃215pnNim~Ve-im
s !2, l̃ 5vFt̃, ~11!

whereNim is the concentration of impurities dragged by the
mal phonons. In other words, the electron momentum re
ation rate with respect to scattering from impurities is giv
by the electron self-energyS imp , shown on Fig. 1. As we
will see, the parameter

k5t/ t̃5 l / l̃ ~12!

plays a key role in modification of the electron-phonon
teraction.

The retarded component of the phonon Green function

DR~q,v!5~v2vq1 i0!211~v1vq1 i0!21. ~13!

Studying the electron energy relaxation in an impure c
ductor, we focus our attention on the time scale, which
much longer than the electron momentum relaxation timet.
Then the kinetic Green function may be presented as

GC~p,e!5~2ne11!2i ImGA~p,e!, ~14!

wherene is the isotropic electron distribution function.
We assume that the phonon subsystem is in equilibri

It is realized at temperaturesT>10 K due to large heat ca
pacity of phonons, or in thin films, if the phonon escape ti
is shorter than the phonon-electron relaxation time. In eq
librium,

DC~q,v!5~2Nv11!2i ImDR~q,v!, ~15!

whereNv5@exp(v/T)21#21 is the phonon equilibrium dis
tribution function.

In the Keldysh technique all bare vertices, as well as
screened vertixg~k,q! are multiplied by the tensor

Ki j
1 5d i j /A2, Ki j

2 5~sx! i j /A2, ~16!

with an upper phonon index and lower electron indices.
what follows, we will present only vertex components wi
phonon indexk52. In the canonical collision integral, thes
components give a term, which is proportional
(2Nv11)(ne1v2ne).

Now we consider screening of the electron-phonon ver
B(q,v) with a small value of the transferred momentu
q;T/u. Screening of the electron-electron potential in t
frame of random phase approximation is presented in Fig
the corresponding equation has a form

VR~q,v!5@VA~q,v!#* 5Ve-e
o ~q!/eR~q,v!, ~17!

eR~q,v!512Ve-e
o ~q!P0

A~q,v!, ~18!

where the electron polarization operator shown in Fig. 2
given by
n
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P0
A~q,v!52n

12z0* ~q,v!2 ivtz0* ~q,v!

12z0* ~q,v!
. ~19!

Here we introduce the following notations for integrals
electrons Green functions

zn5
1

pntE dp

~2p!3
GA~p,e!GR~p1q,e1v!yn, ~20!

wherey5(p•q)/(pq). Note, that

z15~12z01 ivtz0!/~ iql !, ~21!

z25
12 ivt

~ql !2 ~12z01 ivtz0!. ~22!

Screening of the vertex of bare electron-phonon inter
tion is shown in Fig. 2. Using Eqs.~3!, ~18!, and ~29!, we
obtain the screened vertexB(q,v),

Bi j
2 5

~Bo! i j
2

eA~q,v!
5

ig

A2

12z0*

12z0* 2 ivtz0*
, ~23!

where the constantg coincides with coupling constant in
pure metals:

g5
2eF

3

q•en

~2rv!1/2
~24!

Now, following Ref. 2, we build effective vertices show
in Fig. 3. The vertexG, taking into account elastic and in
elastic electron-impurity scattering, is

G11
2 5

p•en

t̃~rv!1/2
~ne2ne1v!, ~25!

for k52; all other components are zero.

FIG. 2. Screening of the electron-electron potential (Ve-e
o ) and

vertex of bare electron-phonon interaction~B°!.

FIG. 3. Effective vertices of the electron-phonon interacti
g,G,L, andg.
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6044 PRB 61A. SERGEEV AND V. MITIN
Using the vertexG i j
k , one can build the vertexLi j

k . As it is
seen from Fig. 2, the vertexLi j

k in the limit of strong screen-
ing is given by

Li j
2 52

ivPF~t/ t̃ !z1*

12~12 ivt!z0*

d i j

2~rv!1/2
5

g

A2

3vt

ql

t

t̃
d i j .

~26!

The verticesBi j
k andLi j

k have the same index structure
the Keldysh space. Summing up these vertices, we get
vertexgi j

k with components

gi j
2 5

ig

A2
F11 ivtS z0*

12z0* 2 ivtz0*
2

3

~ql !2

t

t̃
D Gd i j .

~27!

The verticesG i j
k andgi j

k are strongly renormalized due t
elastic electron scattering. To calculate the renormalized
tex, one needs to introduce the vertexl i j

k with the one
electron-impurity scattering and to solve an equation sho
in Fig. 4 for the vertexL i j

k ~the vertexG i j
k has a vector

character; it cannot be renormalized directly!. Using Eqs.
~25! and ~27!, we find

l11
2 5

2ig

A2
S z0*

12z0* 2 ivtz0*
2

3

~ql !2

t

t̃
D ~12z0* !~ne2ne1v!,

~28!

L11
2 5

2ig

A2
S z0*

12z0* 2 ivtz0*
2

3

~ql !2

t

t̃
D ~ne2ne1v!.

~29!

Thus, we have found effective verticesg,G,g,L, which
will be used in the next section to calculate the electr
phonon relaxation rate.

III. ELECTRON ENERGY RELAXATION

The kinetic equation for the electron distribution functio
ne has a form13

dne

dt
5

i

pnE dp

~2p!3
ImGA~p,e!@2i ~2ne21!ImSA~p,e!

2SC~p,e!#, ~30!

FIG. 4. VertexL, obtained after renormalization of verticesG
andg due to elastic electron scattering.
he

r-

n

-

where the right-hand side of the last equation is the collis
integral I (e) expressed through the electron self-ener
@SA(C) is the advanced~kinetic! electron-phonon self-
energy#. All possible electron-phonon self-energy diagram
with verticesg,G,g,L are presented in Fig. 5.

Let us first consider the interaction of electrons and tra
verse phonons. Only the first and second diagrams with
ticesg andG give contributions to this interaction. The co
lision integral based on the first self-energy diagram w
two verticesg~k,q! is

I 1~e!5
8

pnE dpdkdqdv

~2p!9
@g~k,q!#2R~e,v!

3ImDR~q,v!ImGA~p,e!ImGA~p1k,e1v!,

~31!

R~e,v!5Nvne~12ne1v!2~11Nv!~12ne!ne1v .
~32!

Integrating, we present the result in a form

I 1~e!5
3p2b tT

2

~pFut!~pFl !

t

t̃
E dvqR~e,vq!F1 , ~33!

whereF1(q)51, and the dimensionless coupling constan
given by

b t5b l S ul

ut
D 2

5S 2eF

3 D 2 n

2rut
2 , ~34!

whereut( l ) is the transverse~longitudinal! sound velocity.
The contribution of the second diagram may be also p

sented in a form of Eq.~33!, whereF1 is changed by

F252
3

2

t

t̃
@z0~q,vq!2z2~q,vq!#. ~35!

For Debye phonon spectrumvq,,qvF , and z0(q,vq)
5z0(ql)5arctan(ql)/(ql). Therefore,F2 depends only on
the one dimensionless parameterx5ql,

F t~x!5F11F2511
t

t̃

3x23~x211!arctan~x!

2x3 .

~36!

FIG. 5. Electron self-energy diagrams.
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The inelastic electron relaxation rate is determined as

1

te-ph~e!
52

dI ~e!

dne)
~ne5ne

eq!, ~37!

where ne
eq is the equilibrium distribution function. Using

Eqs. ~30!, ~33!, and ~36!, we present the energy relaxatio
rate of electrons interacting with transverse phonons as

1

te-t.ph~0!
5

3p2b tT
2

~pFut!~pFl !

t

t̃
Ft~qTl !, ~38!

Ft~z!5
4

p2E
0

At
dxF t~xz!~Nx1nx

eq!x, ~39!

whereAt( l )5uDl /ut( l )z (uD is the Debye temperature!.
If T,,uD , the functionFt(qTl ) is

Ft~qTl !5H 1, Tl.ut

S 12
t

t̃
D 1

p2

10

t

t̃
~qTl !2, Tl,ut .

~40!

Now we consider the interaction of electrons and longi
dinal phonons. In the pure material the interaction is
scribed by the third diagram. In the general case this diag
is given by

I 3~e!5
8

pnE dpdqdv

~2p!7
ImGA~p,e!Im GA~p1q,e

1v!ImDR~q,v!~g!2R~e,v!. ~41!

Integrating, we present the result as

I 3~e!52
b lT

3

~pFul !
2E dvqR~e,vq!F3 , ~42!

where F35qlz0(q,vq), and the dimensionless couplin
constant isb l5b tut

2/ul
2 . Contributions of all other diagram

may be presented in the form of Eq.~42! with the following
functionsF i(ql):

F1~y!5
3

y

t

t̃
, F2~y!52

9z2*

y S t

t̃
D 2

, ~43!

F4~y!5F6~y!53i z1*
t

t̃
, ~44!

F5~y!5yz0* S z0*

12z0*
2

3

y2

t

t̃
D , ~45!

F7~y!53i z1*
t

t̃
S z0*

12z0*
2

3

y2

t

t̃
D . ~46!

Other diagrams give zero contribution.
Finally, the energy relaxation rate of electrons interact

with longitudinal phonons is
-
-
m

g

1

te-l .ph~0!
5

7pz~3!

2

b lT
3

~pFul !
2 Fl~qTl !, ~47!

Fl~z!5
2

7z~3!
E

0

Al
dxF l~xz!~Nx1nx!x

2, ~48!

F l~x!5
2

p S x arctan~x!

x2arctan~x!
2

3

x

t

t̃
D . ~49!

In the limiting cases the functionFl(qTl ) is given by

Fl5H 1, Tl.ul

2p3

35z~3!
~qTl !1

3p

7z~3!S 12
t

t̃
D ~qtl !

21, Tl,ul .

~50!

According to Eqs. ~38! and ~47! in the impure case
(Tl,ul ,ut), the electron-phonon scattering rate is

1

te2ph~0!
5

p4T4

5
~pFl !S b l

~pFul !
3 1

3b t

2~pFut!
3

t

t̃
D

1
3p2T2

2pFl S 12
t

t̃
D S b l

pFul
1

2b t

pFut

t

t̃
D . ~51!

IV. DISCUSSION

We have calculated the electron energy relaxation rat
a disordered conductor with the static and vibrating rando
scattering potentials. Our main results are presented by
~38! and~47!. The relative part of the vibrating potential wit
respect to the total potential is given by the parame
k5t/ t̃. If the whole potential is dragged by phononsk
51), we reproduce the Pippard’s equations for sound atte
ation @Eqs. ~36! and ~50!#, and the Schmid results for th
electron relaxation rate. Ifk,12(Tl/u)2, the relaxation rate
drastically changes at low temperatures. According to
~51!, it follows theT2/ l law.

If the scattering potential is static (k50), then only lon-
gitudinal phonons interact with electrons, and again at l
temperatures 1/te2ph}T2/ l . However, our results are differ
ent from the impurity renormalization of the pure electro
phonon vertex.13 In particular, predicted in Ref. 13, modifi
cation of the energy relaxation rate toT4 law at ultralow
temperaturesT;ul

2/vF
2t ~wherevq;Dq2) is absent in our

model. Taking into account screening of bare electro
phonon vertex, we found that the diffusion factoriv1Dq2

in the renomalized vertex is canceled by the same facto
the dielectric function.

It is important to note that transverse phonons dominat
the relaxation over a wide temperature range, ifk
.(ut /ul)

3/2;0.05. In the case of incomplete drag of sca
terers, the relaxation rate showsT2/ l law in both asymptot-
ics,

1

te-t.ph~0!
5

3p2b tT
2

~pFut!~pFl !
3H k, T@ut / l

k~12k!, T!ut / l .
~52!
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6046 PRB 61A. SERGEEV AND V. MITIN
At the intermediate temperatures,T;ut / l , the exponent in
the temperature dependence is larger than 2.

To illustrate our results, we calculate the electron-phon
relaxation rate in Au films. We use the following paramete
of Au, taken from Ref. 6:ul53.23105 cm/s, ut51.2
3105 cm/s,vF5143107 cm/s,b l50.2, andb t51.4. Tem-
perature dependence of the electron-phonon relaxation
in the Au film with the electron mean free pathl 53 nm is
presented in Fig. 6. As it was stressed in Ref. 6, in cond
tors with a small value of the electron mean-free path
electron interaction with transverse phonons due to vibra
impurities significantly dominates over the interaction w
longitudinal phonons. This relation between contributions
transverse and longitudinal phonons may be altered onl
very small values ofk(k,0.05), which will not be consid-
ered here. On Fig. 6 we present the relaxation rate fok
50.5,0.9, and 1. If the scattering potential is complet
dragged by phonons (k51), the relaxation rate
is proportional toT4 at T<3 K, and toT2 at T>20 K. Low-
temperature behavior is changed drastically in the cas
incomplete drag. Even thoughk50.9, theT2 dependence is
clearly seen atT<2 K. At the intermediate temperatures th
function goes from oneT2 asymptote to another.

Figure 7 shows the dependence of the electron-pho

FIG. 6. Temperature dependence of the electron-phonon en
relaxation rate in Au films with the electron mean free pa

l 53 nm and different values of the parameterk5t/ t̃:k51 ~com-
plete drag of the scattering potential!, solid curve;k50.9, dashed
curve; andk50.5, dotted curve. Dashed-dotted curve is the con
bution of longitudinal phonons (k51).

FIG. 7. Dependence of the electron-phonon relaxation rate
the electron mean free path~l! in Au films: solid curve,T51
K,k50.9; dashed curve,T51 K,k51; dotted curve,T50.1 K,k
50.9; and dashed-dotted curve,T50.1 K,k51.
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relaxation rate on the electron mean free path. As we
cussed, ifk51, the interaction with transverse phonons r
sults in the relaxation rate, which is proportional toT4l at
low temperatures and toT2/ l in the pure limit T.ut / l .
Therefore, atk51 the l dependence is nonmonotonic with
maximum atl;ut /T. As seen, atT51 K, this maximum
corresponds tol .20 nm. In the case of incomplete drag
scatterers by phonons, the relaxation rate decreases in
samples. Note, that theT4 temperature dependence atk51 is
accompanied byl 1 dependence, whileT2 dependence a
k50.9 is attended byl 21 dependence.

The dependence of the relaxation rate on the paramek
at T50.5 and 1 K isshown in Fig. 8. According to Eq.~52!,
if k is not very close to 0 or 1, it is given by the functio
f (k)5k(12k) with a prefactor, which is proportional to
T2/ l . At very smallk, the relaxation rate is determined by th
contribution of longitudinal phonons. Atk close to 1, accord-
ing to Eq. ~51! the relaxation rate is given by theT4 term.
Thus, the relaxation rate drastically drops in the regionk
,(ut /ul)

3 andk.12(qTl )2 .
Now we discuss experimental data. TheT2 temperature

dependence of the electron-phonon scattering rate has
observed experimentally in various materials with
small value of the electron mean-free path: Au,15–18 Ag and
Mg,18 Nb,19 W,8 CuCr,20 Ti12xSnx ,Ti12xGex,
Ti0.972xSn0.03Scx ,10,11,21,22 and Sn12xCux .23 In relatively
pure materials (l .10 nm), at temperaturesT>10 K this
temperature dependence may be attributed to the interac
with transverse phonons in the clean limit of the Schm
theory (qTl>1). However, in Refs. 10, 11, and 17 theT2

dependence has been found in the deep impure limit (qTl ,
,1). In our model these data correspond to the incomp
drag of impurities and defects in the investigated materi
The T4 temperature dependence is rarely observed
experiments.24,25As we have seen, such dependence requ
values of the parameterk to be very close to 1. Observed a
low temperaturesT3 dependencies26–28 are likely an indica-
tion of the transition region (qTl;1) for transverse phonon
~see Fig. 6! rather than of the clean limit for longitudina
phonons.

Interpretation of effects of disorder on the relaxation ra
is more complicated. Additional impurities and defects m
change not only the electron mean free path, but also
parameterk. However, in any case the enhancement of
electron-phonon interaction in disordered samples eviden
in favor of incomplete drag of the scattering potential

gy

-

n

FIG. 8. Dependence of the electron-phonon relaxation rate
the parameterk: solid curve,T51 K; dashed curve,T50.5 K.
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phonons. Increase of the relaxation rate due to disorder
been observed in metallic films10 and semiconducting low
dimensional structures.9 In particular, theT2/ l dependence
has been observed in TiAl and TiSn films.10,22 Some experi-
mental data10 show that the relaxation rate is very sensiti
to the microscopic quality of a particular sample: it depen
not only on the electron mean free path, but also on
character of impurities and defects. In our model, the ex
to which the scatterers are dragged by phonons is given
the parameterk5t/ t̃, which may be used as a fitting param
eter to describe experimental results over a wide tempera
range. Experiments with pure metallic nanostructures at
temperatures would be also useful to study modification
the electron-phonon interaction due to electron-bound
scattering.
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The strong dependence of the electron-phonon interac
on the impurity and defect concentration as well as on
character of scatterers opens possibilities to control the e
tron relaxation rate. At low temperatures, we expect a
crease in the relaxation rate due to substitutional disor
and an increase due to heavy scatterers, such as colu
defects. Disorder-controlled electron-phonon relaxation
very perspective for many applications of thin-film electro
ics, such as hot-electron detectors and switches.29,30
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