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Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials
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Employing the Keldysh diagram technique, we calculate the electron-phonon energy relaxation rate in a
conductor with the vibrating and stati&correlated random electron-scattering potentials. If the scattering
potential is completely dragged by phonons, this model yields the Schmid’s result for the inelastic electron-
scattering rater.. ;h. At low temperatures the effective interaction decreases due to disorder,. épdT 4
is the electron mean-free pathHn the presense of the static potential, quantum interference of numerous
scattering processes drastically changes the effective electron-phonon interaction. In particular, at low tem-
peratures the interaction increases, a@_ﬂhXTzll. Along with an enhancement of the interaction, which is
observed in disordered metallic films and semiconducting structures at low temperatures, the suggested model
allows us to explain the strong sensitivity of the electron relaxation rate to the microscopic quality of a
particular film.

I. INTRODUCTION nm at T=3-10 K1° The T2 dependence of the relaxation
rate is widely observed in experiments. In some cases it may
Electron-phonon scattering plays a key role in the descrippe associated with the contribution of transverse phonons in
tion of many phenomena, such as electron dephasing, he@fe pure limit q/>1, predicted by the theory. Recent
removal from hot electrons, superconducting branch imbalyeasurements show that this dependence takes place even

ance relaxation, etc. Although well characterized in clear]n the deep impure limig;l ~0.01, whereT* dependence is
bulk conductors, the current understanding in disordered angxpected '

narllztl)scslensysti{nﬁr:s I:‘Tl:r?di.m it nd boundaries d As the current theory is self-consistent, the search for rea-
ectron scatlering from Impurities a oundarles de<5,ns behind this discrepancy should turn to the model as-
stroys the single-particle picture of electron-phonon interac-

tion. Along with the process of “pure” electron-phonon sumptions. Many-body corrections to phonon states were

scattering, which takes place in pure conductors, there is th%on5|dered in Ref. 12. I_t has been found that the modification
other basic process, namely, the inelastic electron scatterirftf ("€ €lectron relaxation rate occurs only under a strong
from vibrating impurities, defects, and boundaries. TogethePonon damping. On the electronic side, the main model
with elastic electron scattering and pure electron-phonoﬁssympt'on of the current theory is that th.e scatterlng poten-
scattering, this mechanism generates a wide variety of intefi@l is completely dragged by phonons. This assumption may
ference processes. If the electron-scattering potefitrgiu- be wrong for structures with heavy defects and tough bound-
rities, defects, and boundarjess completely dragged by aries. That is why one can expect the relaxation rate to be
phonons, the inelastic electron-impurity scattering may benodified in nonhomogeneous conductors and nanoscale
excluded by a unitary transformation to a frame of referencestructures.

which moves with the phonon mode under consideration. To study the effects of incomplete drag of scatterers by
Exploiting this transformation, Schntithas found that in the phonons we consider the model taking into account the vi-
presence of strong disordey{ <1,g7 is the wave vector of brating and static>-correlated random-scattering potentials.
a thermal phononthe electron-phonon interaction becomesOne of the effects originating from elastic electron scattering
weaker, and the energy relaxation ragql,h is of the order of is well understood now. The diffusion motion of electrons
(qrl) 7o 1= T4l (74 ' T is the relaxation rate in pure mate- makes the interaction time longer, which enhances an inter-
rial). As emphasized in Refs. 2—4, this conclusion is consisaction. Renormalization of the “pure” electron-phonon ver-
tent with the Pippard’s famous result for the ultrasonic at-tex due to electron-impurity scattering has been calculated in
tenuation coefficient. It was also demonstratedhat the Ref. 13. Here we study all electron-phonon interference pro-
correct calculations lead to Schmid’s result and the Pippardesses, with taking into account the renormalization of all

formula independent of the reference frame used. vertices as well as the modification of electron screening due
Detailed studies show that many experimental results mato disorder.
be understood in the frame of the available théofytHow- The outline of this paper is as follows. Starting with bare

ever, a set of low-temperature observations is in strong disvertices of electron scattering from phonons, the static and
agreement with current theoretical understanding of thevibrating potentials, we consider screening of these vertices
electron-phonon interaction in disordered conductors. Enand build effective vertices of the electron-phonon interac-
hancement of the interaction due to disorder has been fourtibn in Sec. Il. The energy relaxation rate in a disordered
in two-dimensional electron gd2DEG) in GaAs/Al-Ga-As  conductor is calculated in Sec. Ill. Discussion of our main
heterojunctions witH =0.3—0.8 um below 0.5 K® and in  results and comparison with experiment are presented in Sec.
bulk Ti,_,Al, alloys with values of ranged from 0.26 to 1.1 IV.
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Il. MODEL HAMILTONIAN AND EFFECTIVE VERTICES

We consider electron scattering from the static and vibrat-

ing potentials, assuming that the vibrating potential is com- + —
pletely dragged by thermal phonons. To keep terminology of /\ /\

previous papers and distinguish between these potentials, we
attribute the vibrating potential to “impurities.” Keeping in

mind that the vibrating potential has static and dynamic com- ' S LV Y
ponents, we associate elastic electron-impurity scattering and e-1mp st T
inelastic electron-impurity scattering with the static and dy- LTI
namic components correspondently. Thus, the electron mo- ! )‘\ iy
mentum relaxation rateelastic relaxation rajas determined ) 3

by the static potential and the static component of electron- imp el

impurity potential. Inelastic electron-impurity scattering
(scattering of electrons from vibrating impuritjesduces a

new channel of the electron-phonon interaction. Screening
the bare electron-phonon interaction as well as some interac-
tion processes generated by the inelastic electron-impurity

scattering is strongly dependent on the elastic relaxation rate,q yertices of elastic and inelastic electron-impurity scatter-
Because of a significant effect of elastic electron scattermgng describe processes with large electron momentum trans-
on the dielectric function, we should start our considerationferred to impurities kK~ pe). In the casél>1, the dielectric

with bare(unscreenedvertices. : ; T
. _— ., function corresponds to the static limit,
Following Refs. 2 and 5, we study the Hamiltonian, which P

includes electron-electronvf,) and bare electron-phonon e(k)=1+«%K%, k?=4me?v, v=mpe/m2 (5
(B°) scattering, elastic\(g,,) and inelastic(y®) electron _ _ o
scattering from impurities dragged by phonons. With addi-Therefore, the screened impurity potential is given by
tional static potential {s;), this Hamiltonian has a form

FIG. 1. Electron vertices and self-energies describing elastic
0elzlectron scattering from impurities and the static potential.

e-im

Y(K,Q) = =1V imp(ken)/ (2pwq) ™. (4)

Vaimp= —4m(Zimp— Zion)! K°. (6)
Hi=(1/2) 2 VO (k)CTCT'C ' +kCp— The screened vertex of inelastic electron-impurity scattering
nt ook TR Tk is obtained from Eq(4) by substitutingVg,,, by Vaimp-

Assuming that the static potential is already screened, we
+> B°(q)Cg+qCp(bq,n+ bT_q,n)+z Vst(k)cgcpfk add it to the screened impurity potential, as it is shown in
p.d p.k Fig. 1. Then the electron momentum relaxation rate is deter-
mined by the total potentiaV/=Vg+ Vg i),
+ > Vg_imp(k)c;cp,kexq—ikRa) To build effective vertices and consider the electron-
P.kRy phonon relaxation we employ the Keldysh diagrammatic
techniquet* In the Keldysh technique for nonequilibrium

+ E 70(k,q)c;§cp_k(bq,n+ bT_q’n) processes the electron and phonon Green funciiGnand
p.k.a,R, D), the electron self-energ.) and the polarization operator

xex —i(k—q)R,], 1) (P) are represented by matrices

Wherecg is the electron creation operatdx;n is the creation o o ¢ o o Db* )

operator of a phonon with a wave veciprand polarization \GR G°¢)’ “\pR D¢’

indexn, andR, are the equilibrium positions of impurities,

which are dragged by phonons. . [3C 3R _ [PC PR

The unscreened vertices of electron-electron, electron- 2= sA g |’ P= PA o | (8)

impurity, and electron-phonon scattering are given by
whereA andR stand for advanced and retarded components

o Ame? o 477e2(zimp_zion) of the matrix function andC corresponds to the kinetic com-
VeelK) =777 Veimp(k) =~ K2 : ponent.

) The retardedadvanceyicomponent of the electron Green

function taking into account the elastic electron scattering is
_ iven b
goq) - Ve ONGe o Az S
q 1/2 ’ e-ion q 2 ’ R _ A * _ H -1
(2pwq) q Go(p,€)=[Gqo(p,€)]* =(e—&p+il27) ™7, 9
whereVg ;. is the bare electron-impurity scattering potential, where &p= (p?— pé)/2m. The total momentum relaxation

e, is the phonon polarization vectdy, is the number of unit rate, 1f, is determined by electron scattering from impurities
cells, p is the density. and also from the static potential. In the diagrammatic pre-

The bare vertex of inelastic electron-impurity scattering issentation shown in Fig. 1, the momentum relaxation rate is
given by given by the imaginary part of the electron self-energy dia-
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gram.,, which includes both the static impurity potential, ’V\/ - AN+

Ve, and additional static potentiaV,;;. Thus, we have s o o R
Ve—e = Ve—e + Ve—e p Ve—e

e-imp?
Ur=2 ImS5,, I=ver. (10)

k _
It is convenient to describe the potential of vibrating im- Bij = /V( = Aﬁ‘(
purities by the corresponding electron momentum relaxation +

rate,

~_q s o 7 ~ FIG. 2. Screening of the electron-electron potenthdd () and
7 =mvNin(Veim)®,  1=veT, (13) vertex of bare electron-phonon interacti@f).

whereN;,, is the concentration of impurities dragged by ther- . ] .
mal phonons. In other words, the electron momentum relax- PAq, )= — 1-45(9,0) —iw{s(q,0) 19
ation rate with respect to scattering from impurities is given old,® v '

_ 1-{5(q,0)
by the electron self-energ¥m,, shown on Fig. 1. As we , . ) )
will see, the parameter Here we introduce the following notations for integrals of

electrons Green functions

k=7lr=I/T (12)

1 p

plays a key role in modification of the electron-phonon in- §n—mj7f 3

teraction. (2m)
The retarded component of the phonon Green functions igsherey= (p- q)/(pq). Note, that

€)GR(p+q,e+w)y", (20

DR(g,@)=(0—wq+i0) '+ (w+wg+i0) "t (13 L1=(1—¢o+iwTi)(iql), (21)
Studying the electron energy relaxation in an impure con- 1—iwT
ductor, we focus our attention on the time scale, which is §2=W(1—§0+iw7§0). (22

much longer than the electron momentum relaxation time

Then the kinetic Green function may be presented as Screening of the vertex of bare electron-phonon interac-

C _ : A tion is shown in Fig. 2. Using Eq$3), (18), and (29), we
Gr(p.e)=(2n+ )21 ImGT(p€), (149 obtain the screened vert®(q, ),
wheren, is the isotropic electron distribution function.
We assume that the phonon subsystem is in equilibrium. 5 (B°)i2j ig 1-43
It is realized at temperaturés=10 K due to large heat ca- Bi=—=a :E - —iwrl®’ (23
pacity of phonons, or in thin films, if the phonon escape time €(q.0) 0 0
is shorter than the phonon-electron relaxation time. In equiwhere the constang coincides with coupling constant in
librium, pure metals:

D¢(q,0)=(2N,+1)2i ImDR(q,w), (15) 2¢r Q-

= — 24
whereN,_=[exp/T)—1] ! is the phonon equilibrium dis- 9 3 (2pw)t? 249
tribution function.

In the Keldysh technique all bare vertices, as well as the Now, following Ref. 2, we build effective vertices shown

screened vertix/(k,q) are multiplied by the tensor in Fig. 3. The vertex’, taking into account elastic and in-
elastic electron-impurity scattering, is
Kii=8;/V2, Ki=(00;/\2, (16)
with an upper phonon index and lower electron indices. In il ~p—en(n Nty (25)
what follows, we will present only vertex components with (pw)'?

phonon index=2. In the canonical collision integral, these .
. . : . for k=2; all other components are zero.

components give a term, which is proportional to
(2Nw+ 1)(ne+w_ ne)'

Now we consider screening of the electron-phonon vertex
B(q,w) with a small value of the transferred momentum,
g~T/u. Screening of the electron-electron potential in the
frame of random phase approximation is presented in Fig. 2;

the corresponding equation has a form /i K R

VR(G,0) =[VA(Q,0)]* = V2o(q)/ (g, 0), 1 L= "GNl

R(q.w)=1- V2 () PA(q,0), (18) g= "M =B+L

where the electron polarization operator shown in Fig. 2 is FIG. 3. Effective vertices of the electron-phonon interaction
given by v,I',L, andg.
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A= 1 2 3
4 5
A= T, T,
\\\\9/’,, \\\\7”1

FIG. 4. VertexA, obtained after renormalization of vertic€s % ﬁgs &3

andg due to elastic electron scattering.

FIG. 5. Electron self-energy diagrams.
Using the verte>FIJ , one can build the vertelxk Asitis

seen from Fig. 2, the vertelxﬁ in the limit of strong screen- Wwhere the right-hand side of the last equation is the collision

ing is given by integral 1(e) expressed through the electron self-energy
_ [SAC) is the advanced(kinetic) electron-phonon self-
L2 iwPe(7/7)Y 8ij g 3T 75 energy. All possible electron-phonon self-energy diagrams
ij = 1 (10 2(pw)1’2_ 2 al 5 ij - with verticesvy,I',g,A are presented in Fig. 5.

26) Let us first consider the_ interaction of eleptrons and' trans-
verse phonons. Only the first and second diagrams with ver-
The vemcesBk and Lk have the same index structure in tic€Sy andI give contributions to this interaction. The col-
the Keldysh space Summlng up these vertices, we get tHision integral based on the first self-energy diagram with
vertexgikj with components two verticesyk,q) is

dpdkdqdw

PO PO B 3 Z) 5 ()= — [ PECXEL L PR e w)
2 1- {5 —iorl] (qh? %) |70 ™y (2m)®
(27) X IMDR(q,w)IMGA(p, €) IMGA(p+K, e+ w),
The verticesl“h- and gh- are strongly renormalized due to (31
elastic electron scattering. To calculate the renormalized ver-
tex, one needs to introduce the vertef with the one R(€,0)=Nyn(1=Ng ) = (1+N,)(1-nJngy, .
electron-impurity scattering and to solve an equation shown (32

in Fig. 4 for the vertexAf (the vertexT'; has a vector Integrating, we present the result in a form
character; it cannot be renormalized diregtilJsing Egs.

(25) and (27), we find 32 B, T?
|1(6) m fd(z)qR(E wq)Cbl, (33)
2ig I PEU) (PED)
M= \/— 1-—iwrld C(qh? (1 £6)(Ne=Nery), whered,(q)=1, and the dimensionless coupling constant is
(28) given by
i " U ZEF 2 14
2ig & 3 7 Bi= B( ) —(—) —, (34)
2 _“9 _ -’ _ |
All_ \/E(l_gg_lwq_gg (qI)Z';_)(ne n5+w)' 3 Zput

(290  whereuy, is the transverséongitudina) sound velocity.
The contribution of the second diagram may be also pre-

Thus, we have found effective verticgsI',g,A, which  sented in a form of Eq(33), whered, is changed by
will be used in the next section to calculate the electron-

phonon relaxation rate. 37
2=~ 5=[4o(q0q) ~£2(q,09) |- (35
Ill. ELECTRON ENERGY RELAXATION T

The kinetic equation for the electron distribution function ~ For Debye phonon spectrum,<<qug, and{q(q, wq)
n, has a form® ={o(ql)=arctan@ll)/(gl). Therefore,®, depends only on

the one dimensionless paramexet ql,
dn, i

6)[2i(2n_—1)Im3A(p, 3x—3(x?+1)arctarix
dat ) (2w ( ) (p,€) By(x) =Dyt Dyl T ( 2X3) [ )
T

—3%p,e)], (30) (36)
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The inelastic electron relaxation rate is determined as

1 bl(e
Tep(e) | ang e

=ngY, 37)

where nf% is the equilibrium distribution function. Using
Egs. (30), (33), and(36), we present the energy relaxation
rate of electrons interacting with transverse phonons as

1 B 3w T 1
7'e—t.ph(o) a (PeU) (Pel) 7

Fu(arl), (38)

4 (A
Ft(z):?fo dx®(x2) (Ny+ngHx, (39

whereAy= pl/uyyz (6p is the Debye temperature
If T<<@p, the functionF(qg+l) is

ELECTRON-PHONON INTERACTION IN DISORDERE.. . .
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1 773 BT
Te-l.ph(o)_ 2 (peuy)?

Fi(ar), (47)

_ 2 A 2
H(z)—mfo dx®,(xz)(Ny+ny)x*, (48)

® 2 x arctarix) 37 49
)= ) x5 “9
In the limiting cases the functioR,(q+l) is given by
1, T|>U|
Fi= 2773( " 37 . r( hL Ti<u
35¢(3) T 73| ) :

(50
According to Egs.(38) and (47) in the impure case

1, TI>u, . .
, (TI<uy,uy), the electron-phonon scattering rate is
F = T\ 7w 40
dar) 1-=|+-==(a7)? TI<u. 40 474
107, 1 o T ) B N 3B T
. . . . 7'efph(o) 5 F (pFUI)3 2(p,:ut)3;
Now we consider the interaction of electrons and longitu-
dinal phonons. In the pure material the interaction is de- 37272 \[ B 2B, T
scribed by the third diagram. In the general case this diagram + T - = —u+ o=l (51)
is given by Pk T PrU PrU; 7
8 ( dpdgdw A A IV. DISCUSSION
I3(e)= — IMG”(p,e)Im G*(p+q,e

TV (277)7
+ w)IMDR(q,)(9)?R(€,w). (41

Integrating, we present the result as

T3
|3(6)=—(Lz

TN dwgR(€,0q) P35, (42

where ®;=ql{¢(q,wq), and the dimensionless coupling
constant isB, =,8tut2/uI . Contributions of all other diagrams

may be presented in the form of E@2) with the following
functions®;(ql):

37 95 [ r 2
q)l(Y):)—/»qT_, (132()/):—7 = (43
<I>4<y>=<1>6(y>=3iz’;%, (44)
&3
Ps(y) =y} ( o F%) , (45)
B (y)=3i g{g(i— 32~Z> . (46)
1= Yy

Other diagrams give zero contribution.

Finally, the energy relaxation rate of electrons interacting

with longitudinal phonons is

We have calculated the electron energy relaxation rate in
a disordered conductor with the static and vibrating random-
scattering potentials. Our main results are presented by Egs.
(38) and(47). The relative part of the vibrating potential with
respect to the total potential is given by the parameter

k=1/7. If the whole potential is dragged by phononis (
=1), we reproduce the Pippard’s equations for sound attenu-
ation [Egs. (36) and (50)], and the Schmid results for the
electron relaxation rate. K<1—(Tl/u)?, the relaxation rate
drastically changes at low temperatures. According to Eq.
(51), it follows the T?/1 law.

If the scattering potential is stati&k€0), then only lon-
gitudinal phonons interact with electrons, and again at low
temperatures Ié_phocTzll. However, our results are differ-
ent from the impurity renormalization of the pure electron-
phonon vertexX? In particular, predicted in Ref. 13, modifi-
cation of the energy relaxation rate T law at ultralow
temperatured ~uf/vEr (wherew,~Dg?) is absent in our
model. Taking into account screening of bare electron-
phonon vertex, we found that the diffusion factes+Dgq?
in the renomalized vertex is canceled by the same factor in
the dielectric function.

It is important to note that transverse phonons dominate in
the relaxation over a wide temperature range, kif
> (u,/u;)%/2~0.05. In the case of incomplete drag of scat-
terers, the relaxation rate showW$/l law in both asymptot-
ics,

1 3723 T? K, T>u,/l
= X (52
Tetph(0)  (PEUD(PED) [ k(1-K), T<u/l.




6046 A. SERGEEV AND V. MITIN PRB 61

10
Au, I=3rm  TA = .
A 3x10
10"
— "‘ 8
o 108 w 2x10
"E ot il
o 10 ©® 1x10°
10°
o1 , 15 00 02 04 06 08 1.0
T (K) k

FIG. 8. Dependence of the electron-phonon relaxation rate on

FIG. 6. Temperature dependence of the electron-phonon enerq}l]e parametek: solid curve, T=1 K. dashed curveT=0.5 K

relaxation rate in Au films with the electron mean free path
=3 nm and different values of the parameker 7/7:k=1 (com-
plete drag of the scattering potenjiasolid curve;k=0.9, dashed
curve; andk=0.5, dotted curve. Dashed-dotted curve is the contri-
bution of longitudinal phononskE1).

relaxation rate on the electron mean free path. As we dis-

cussed, ifk=1, the interaction with transverse phonons re-

sults in the relaxation rate, which is proportional Tél at

low temperatures and td@%/| in the pure limit T>u,/I.

At the intermediate temperatureB~u,/l, the exponent in Therlefore, ak=1 thel dependencels nonm(_)notomp with a
maximum atl~u,/T. As seen, alf=1 K, this maximum

the temperature dependence is larger than 2. N )

To illustrate our results, we calculate the eIectron—phononCorresloonds t#=20 nm. In the case of incomplete drag of
relaxation rate in Au films. We use the following parametersscatterers by phonon_; the relaxation rate decreases.m pure
of Au, taken from Ref. 6:u=3.2<10° cm/s, u,=1.2 samples. Note, that thE' temperature dependencekat 1 is

X 10° cm/s,vp=14x 10 cm/s, B, =0.2, andB,=1.4. Tem accompanied byl! dependence, whilé? dependence at
yWUVE— I T Y t— = - _ H —1
N : =0.9 is attended by~ dependence.
perature dependence of the electron-phonon relaxation rat% The dependence of the relaxation rate on the pararketer

in the Au film with the electron mean free pathk3 nm is - . i .
presented in Fig. 6. As it was stressed in Ref. 6, in conducf:"tT_o'5 and 1 K isshown in Fig. 8. According to Eq52),

tors with a small value of the electron mean-free path thi Kis not very close to 0 or 1, it is given by the function

electron interaction with transverse phonons due to vibratin (ZI;I) _Ak(l_k) W'm( ah preflactop Wh'Ch. "Z propqru%nsl tﬁ
impurities significantly dominates over the interaction with . t\{ery sma .’t ere axation rate Is determined by the
longitudinal phonons. This relation between contributions Otcontrlbutlon of Iongltudlna! phonon§. /k.tclose to 1, accord-
transverse and longitudinal phonons may be altered only g to Eq.(5D) thg relaxation rgte IS given b.y e term.
very small values ok(k<0.05), which will not be consid- hus, the relaxation rate drastically drops in the regikns

3 _ 2
ered here. On Fig. 6 we present the relaxation ratekfor <(’l\1t/u') ar(;(_:ik>1 (qTI)_ ’ tal data. THR t ‘
=0.5,0.9, and 1. If the scattering potential is completely ow We dISCUSS experimental data. lemperature
dragged by phonons k1), the relaxation rate dependence of the electron-phonon scattering rate has been

is proportional toT4 at T<3 K. and toT2 at T=20 K. Low- observed experimentally in various materials with a
S proportional ot & 3 K and toT” a ° all value of the electron mean-free path: ‘Rt Ag and

temperature behavior is changed drastically in the case 8 19 8 20 . i
incomplete drag. Even thoudt= 0.9, theT? dependence is (ﬁg Nb, 10}4\{"2122 gnudcré@ C-:I-ngiiz)és?r(mi-rrléﬁxti(\;/z’)/
~Cu,.

clearly seen aT<2 K. At the intermediate temperatures the Tio.g7-xSTh.035G, .
function goes from ond@? asymptote to another. pure materials I(>10 nm), at temper_ature§> 10 K_ this _
Hamperature dependence may be attributed to the interaction

Figure 7 shows the dependence of the electron-phonowith transverse phonons in the clean limit of the Schmid
theory @¢/=1). However, in Refs. 10, 11, and 17 tfig
dependence has been found in the deep impure liggit<
<1). In our model these data correspond to the incomplete
drag of impurities and defects in the investigated materials.
The T* temperature dependence is rarely observed in
experiment$+2° As we have seen, such dependence requires
values of the parametérto be very close to 1. Observed at
low temperatured® dependencié§=28are likely an indica-
tion of the transition regiond;l ~1) for transverse phonons
(see Fig. 6 rather than of the clean limit for longitudinal
phonons.

Interpretation of effects of disorder on the relaxation rate
is more complicated. Additional impurities and defects may

FIG. 7. Dependence of the electron-phonon relaxation rate oghange not only the electron mean free path, but also the
the electron mean free patlh) in Au films: solid curve,T=1  parametek. However, in any case the enhancement of the
K,k=0.9; dashed curveT=1 K,k=1; dotted curveT=0.1 Kk electron-phonon interaction in disordered samples evidences
=0.9; and dashed-dotted curves=0.1 K,k=1. in favor of incomplete drag of the scattering potential by

Mean free path (nm)
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phonons. Increase of the relaxation rate due to disorder has The strong dependence of the electron-phonon interaction
been observed in metallic filffsand semiconducting low- on the impurity and defect concentration as well as on the
dimensional structuresin particular, theT?/I dependence character of scatterers opens possibilities to control the elec-
has been observed in TiAl and TiSn filtfs?? Some experi-  tron relaxation rate. At low temperatures, we expect a de-
mental dat&’ show that the relaxation rate is very sensitive crease in the relaxation rate due to substitutional disorder,
to the microscopic quality of a particular sample: it dependsand an increase due to heavy scatterers, such as columnar
not only on the electron mean free path, but also on thgjefects. Disorder-controlled electron-phonon relaxation is
character of impurities and defects. In our model, the extenfery perspective for many applications of thin-film electron-
to which the scatterers are dragged by phonons is given bi\és, such as hot-electron detectors and switcReS.

the parametek= /7, which may be used as a fitting param-

eter to describe experimental results over a wide temperature

range. Experiments with pure metallic nanostructures at low ACKNOWLEDGMENTS

temperatures would be also useful to study modification of
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