Crystal field, magnetic anisotropy, and excitations in rare-earth hexaborides

Gennadi Uimin

Landau Institute for Theoretical Physics, Chernogolovka, 142432 Moscow Region, Russia

Wolfram Brenig

Institut für Theoretische Physik, Technische Universität Braunschweig, 38106 Braunschweig, Germany (Received 1 March 1999; revised manuscript received 4 June 1999)

We clarify the role of crystalline electric field (CEF) induced magnetic anisotropy in the ground state and spin-wave spectrum of cubic rare-earth materials with dominating isotropic magnetic exchange interactions. In particular we study the hexaboride NdB_6 which is shown to exhibit strong spin-quadrupolar coupling. The CEF scheme is analyzed and a noncollinear magnetization response is found. The spin orientation in the antiferromagnetically ordered ground state is identified. Moreover, the spin excitations are evaluated and in agreement with inelastic neutron scattering a suppression of one of the two magnetic modes in the strong-coupling regime is predicted.

INTRODUCTION

Over the past two decades cubic rare-earth hexaborides RB_6 (R, rare-earth element) with CaB_6 -type crystal structure have been at the center of numerous studies of materials with crystalline-electric-field (CEF) driven, nontrivial ordering phenomena. Among these compounds, CeB₆ (e.g., Ref. 1) serves as a prototypical system which exhibits an impressively complex phase diagram. In this material the CEF of cubic symmetry selects the Γ_8 quartet to be the ground state of the Ce^{3+} ions ($\mathcal{J}=5/2$). The latter quartet is well separated from the next-highest Γ_7 doublet by an energy gap of the order of 540 K.² Thus, on a low-energy scale, the physics of CeB6 is reasonably well described by projecting onto the Γ_8 subspace. Similar systems with Γ_8 ground states can be realized starting from the right side of the rare-earth series, i.e., invoking compounds of cubic symmetry with Yb3+ or Tm^{2+} ions, whose incomplete f shell contains 13 electron or one f hole. In accordance with Hund's rule and contrast to the Ce case, however, the Γ_8 basis has to be constructed from a $\mathcal{J}=7/2$ multiplet, breaking direct electron-hole symmetry thereby.

In this paper we will focus on the hexaboride NdB_6 . Although investigated in detail experimentally by inelastic neutron scattering (INS),^{3,4} the anisotropy of the magnetically ordered state below the temperature T_C of order $T_C \approx 8.6$ K (Refs. 5 and 4) remains unclear as well as the existence of only a single magnetic mode as observed by INS. The aim of our work is to consider these open issues.

CRYSTALLINE ELECTRIC FIELD

The CEF level scheme of the Nd³+ multiplet (three f electrons, $\mathcal{J}=9/2$, S=3/2, and L=6) is consistent with the sequence $\Gamma_8^{(2)}(0~\mathrm{K})$ - $\Gamma_8^{(1)}(135~\mathrm{K})$ - $\Gamma_6(278~\mathrm{K})$.³ Similar to CeB₆ the energy gap separating the lowest quartet is large enough to restrict the Hilbert space to $\Gamma_8^{(2)}$ only. The basis states of this Γ_8 manifold are

$$\psi_{+\uparrow} = v_1 | + 9/2 \rangle + v_2 | + 1/2 \rangle + v_3 | -7/2 \rangle,$$

$$\psi_{-\uparrow} = w_1 | + 5/2 \rangle + w_2 | -3/2 \rangle,$$

$$(1)$$

$$\psi_{+\downarrow} = v_1 | -9/2 \rangle + v_2 | -1/2 \rangle + v_3 | +7/2 \rangle,$$

$$\psi_{-\downarrow} = w_1 | -5/2 \rangle + w_2 | +3/2 \rangle.$$
(2)

The coefficients v_i and w_i are derived from the Stevens operator formulation of the CEF Hamiltonian⁶ using the CEF parameters reported in the literature.³ For NdB₆ one finds

$$v_1 = 0.1437$$
, $v_2 = -0.3615$, $v_3 = 0.9212$,
 $w_1 = -0.9223$, $w_2 = 0.3865$. (3)

The states in Eqs. (1) and (2) have been labeled such that the second index denotes a "spin"-like projection, whereas the first index stands for two "orbital"-like components which reflect the different shapes of the electron wave functions. This leads to a description of the quartet in terms of two Pauli matrices σ and τ . ^{8–10}

$$\sigma^{z}\psi_{\tau\pm} = \pm 1/2\psi_{\tau\pm} , \quad \sigma^{\pm}\psi_{\tau\mp} = \psi_{\tau\pm} ,$$

$$\tau^{z}\psi_{+\sigma} = \pm 1/2\psi_{+\sigma} , \quad \tau^{\pm}\psi_{\pm\sigma} = \psi_{+\sigma} .$$

Now the magnetic-moment operator can be represented in terms of σ and τ by

$$M_{\alpha} = \mu_{B}(\xi + 2\eta T_{\alpha})\sigma_{\alpha} \quad (\alpha = x, y, z). \tag{4}$$

Here T is a vector with components

$$T_x = -\frac{1}{2}\tau_z + \frac{\sqrt{3}}{2}\tau_x$$
, $T_y = -\frac{1}{2}\tau_z - \frac{\sqrt{3}}{2}\tau_x$, $T_z = \tau_z$, (5)

which transforms according to the Γ_3 representation.

Evaluating the $\mathcal{J}=9/2$ angular momentum matrix elements in the Γ_8 basis (1) and comparing with Eq. (4) the values of ξ and η for NdB₆ are obtained as

$$\xi = -0.661, \quad \eta = -6.857.$$
 (6)

This identifies NdB₆ as a system with strong coupling of the magnetic and quadrupolar degrees of freedom $(|\eta| \gg |\xi|)$. Note that for Γ_8 states with one f electron (hole) ξ and η are universal and do *not* depend on the CEF splitting parameters. For Ce³⁺, ξ =2 and η =8/7; for Yb³⁺ and Tm²⁺, ξ =-8/3 and η =-32/21. Therefore CeB₆ and possible Yb and Tm candidates exhibit rather weak spin-quadrupolar coupling with a characteristic parameter $\eta/(2\xi)$ =2/7.

EXCHANGE ANISOTROPY

In this section we clarify the spin orientation in the magnetically ordered ground state. Most likely, the dominant interaction in NdB₆ is of isotropic magnetic exchange type. However, due to the Γ_8 ground state, a CEF induced magnetic anisotropy exists which *depends on the ratio* ξ/η . This can be understood by considering the single-ion Zeeman interaction, i.e., $-\Sigma_\alpha H_\alpha M_\alpha$ in an external magnetic field **H**. Inserting M_α from Eq. (4) one obtains a 4×4 matrix which is easy to diagonalize with eigenvalues λ ,

$$\lambda = \pm \sqrt{\xi^2 + \eta^2 \pm |\eta| \sqrt{(3\eta^2/2 - 2\xi^2) - 3F(\mathbf{n})(\eta^2/2 - 2\xi^2)}},$$
(7)

measured in units of $g \mu_B H/2$. This clearly manifests a cubic anisotropy through the function $F(\mathbf{n})$:

$$F(\mathbf{n}) = n_x^4 + n_y^4 + n_z^4, \quad \mathbf{n} = \mathbf{H}/H.$$
 (8)

The anisotropy results in a noncollinearity of the magnetic field and the magnetization for any general orientation of **H**. Exceptions are the directions [111], [110], and [001] and their crystallographic equivalents. Energetically favorable states are related either to the cubic axes ([001] type), if $|\eta| < 2|\xi|$, or the cubic diagonals ([111] type), if $|\eta| > 2|\xi|$. The anisotropy caused by the CEF disappears, if $|\eta| = 2|\xi|$. Therefore, we may conclude that Ce^{3+} , Yb^{3+} , and Tm^{2+} Γ_8 compounds tend to exhibit "easy axis" anisotropy [$\eta/(2\xi) = 2/7$], whereas for Nd³⁺ in NdB₆ we have $\eta/(2\xi) \approx 5.19$ which results in "easy diagonal" anisotropy.

Within a mean-field treatment of the exchange interaction

$$-\sum_{\mathbf{R},\mathbf{R}'} J_{\mathbf{R}\mathbf{R}'} \mathbf{S}_{\mathbf{R}'} \cdot \mathbf{S}_{\mathbf{R}'}, \qquad (9)$$

where $J_{\mathbf{R}\mathbf{R}'}$ is the exchange integral and $\mathbf{S}_{\mathbf{R}}$ the spin at site \mathbf{R} , the magnetic field in Eq. (7) and (8) has to be replaced by the Weiss field $J_0\langle\mathbf{S}\rangle/(g\,\mu_B)$ with $J_0=\Sigma_{\mathbf{R}'}J_{\mathbf{R}\mathbf{R}'}$ if ferromagnetic exchange is dominant. The Landé factor in NdB₆ is g=8/11. For bipartite antiferromagnetism (AFM), the Weiss field on sublattice A is proportional to $-J_0\langle\mathbf{S}_A\rangle+J_1\langle\mathbf{S}_B\rangle$ with $J_{0(1)}=(-)\Sigma_{\mathbf{R}'}J_{\mathbf{R}\mathbf{R}'}$ for \mathbf{R} and \mathbf{R}' on equal (opposite) sublattices. On sublattice B, one should replace $A \leftrightarrow B$.

Therefore, in conclusion, we expect [111] orientational ordering in the ground state of NdB₆ if isotropic exchange interactions are dominant.¹¹

MAGNETIC EXCITATIONS

In this section we focus on the spin dynamics by considering the time-dependent magnetic susceptibility

$$\chi_{\alpha\beta}^{S}(\mathbf{k},t) = i\Theta(t)\langle [S_{\alpha\mathbf{k}}(t), S_{\beta-\mathbf{k}}]\rangle. \tag{10}$$

Lower Greek indices of χ and the spin operator refer to x, y, z and boldface vectors \mathbf{k} denote the momentum. We use a spin operator rescaled by η^{-1} , i.e., $S_{\alpha\mathbf{k}} = M_{\alpha\mathbf{k}}/(g\,\mu_B\,\eta)$. Therefore the dependence of the magnetic spectrum on the CEF can be expressed solely in terms of the ratio ξ/η . To evaluate Eq. (10) we proceed via a mean-field analysis consistent with AFM ordering⁵ on a bipartite lattice. Rather than employing the Pauli-matrix representation⁸⁻¹⁰ of Eq. (10) we perform this analysis using a dyadic basis to express the spin operator within the Γ_8 manifold:¹²

$$S_{\alpha \mathbf{k}} = \frac{1}{\sqrt{2}} S_{\alpha}^{\mu \nu} (a_{\mathbf{k}}^{\mu \nu} + b_{\mathbf{k}}^{\mu \nu}),$$

$$a_{\mathbf{k}}^{\mu\nu} = \sqrt{\frac{2}{N}} \sum_{\mathbf{R}} e^{-i\mathbf{k}\cdot\mathbf{R}} a_{\mathbf{R}}^{\mu\nu}, \qquad (11)$$

where a summation over repeated indices is implied for the remainder of this paper, $b_{\mathbf{k}}^{\mu\nu}$ is defined analogous to $a_{\mathbf{k}}^{\mu\nu}$ with, however, $\mathbf{R} \rightarrow \mathbf{R}'$, and

$$a_{\mathbf{R}}^{\mu\nu} = |\mu\mathbf{R}\rangle\langle\nu\mathbf{R}|, \quad b_{\mathbf{R}'}^{\mu\nu} = |\mu\mathbf{R}'\rangle\langle\nu\mathbf{R}'|$$
 (12)

are the dyades on sites \mathbf{R} (\mathbf{R}') of the magnetic A (B) sublattice. $|\mu\rangle$ are the eigenstates of the z component of the spin in the Γ_8 manifold $S_{\alpha=z}|\mu\rangle=s_{\mu}|\mu\rangle$. The spin should be quantized along (against) the [111] direction of the Weissfield on the A (B) sublattice sites. $S_{\alpha}^{\ \mu\nu}$ are the matrix elements of the spin corresponding to the latter quantization direction. The dyadic transition operators $a_{\mathbf{k}}^{\mu\nu}$ and $b_{\mathbf{k}}^{\mu\nu}$ with $\mu,\nu=1,...,4$ can be recast into a 32-component operator $A_{\mathbf{k}}^{\gamma=1,...,32}=\{a_{\mathbf{k}}^{(1,1),...,(4,4)},b_{\mathbf{k}}^{(1,1),...,(4,4)}\}$ with a corresponding 32×32 matrix susceptibility of the $A_{\mathbf{k}}^{\gamma}$ operators

$$\chi^{\mu\nu}(\mathbf{k},t) = i\Theta(t)\langle [A_{\mathbf{k}}^{\mu}(t), A_{\mathbf{k}}^{\nu\dagger}] \rangle. \tag{13}$$

The original magnetic susceptibility (10) can be obtained from this by projecting the dyades onto the magnetic moment

$$\chi_{\alpha\beta}(\mathbf{k},t) = \frac{1}{2} \chi^{\mu\nu}(\mathbf{k},t) C^{\nu\mu}_{\beta\alpha}, \qquad (14)$$

where $C_{\beta\alpha}^{\nu\mu} = v_{\beta}^{\nu\star}v_{\alpha}^{\mu}$ with $v_{\alpha=x,y,z}^{\mu=1,\dots,32} = \{S_{\alpha}^{(1,1),\dots,(4,4)}, S_{\alpha}^{(1,1),\dots,(4,4)}\}$ is a 32-component vector for each spin component α .

To proceed we evaluate the equation of motion (EQM) of the dyadic susceptibility:

$$i\partial_{t}\chi^{\mu\nu}(\mathbf{k},t) = -\delta(t)\langle [A_{\mathbf{k}}^{\mu}, A_{\mathbf{k}}^{\nu\dagger}]\rangle + i\Theta(t)\langle [[A_{\mathbf{k}}^{\mu}(t), H], A_{\mathbf{k}}^{\nu\dagger}]\rangle.$$
(15)

In this paper we concentrate on the spin dynamics for next-neighbor (NN) AFM exchange couplings J only. Therefore, setting $J \, \eta^2/g^2$ to unity the Hamiltonian in terms of the dyades reads

$$H = \sum_{\mathbf{R},\mathbf{l}} S_{\alpha}^{\mu\nu} S_{\alpha}^{\lambda\sigma} a_{\mathbf{R}}^{\mu\nu} b_{\mathbf{R}+\mathbf{l}}^{\lambda\sigma}, \tag{16}$$

where \mathbf{l} runs over the NN sites of \mathbf{R} . The real-space representation of the commutator on the right-hand side of the EQM is evaluated using the algebra of the dyades, yielding

$$[a_{\mathbf{R}}^{\mu\nu}, H] = \sum_{\mathbf{l}} (S_{\alpha}^{\nu\omega} a_{\mathbf{R}}^{\mu\omega} - S_{\alpha}^{\omega\mu} a_{\mathbf{R}}^{\omega\nu}) S_{\alpha}^{\lambda\sigma} b_{\mathbf{R}+\mathbf{l}}^{\lambda\sigma}.$$
(17)

An analogous expression results on the B sublattice. On the mean-field level the EQMs are closed by factorizing all quadratic terms in Eq. (17) according to the scheme $a_{\bf R}^{\mu\nu}b_{\bf R'}^{\lambda\sigma}=\langle a_{\bf R}^{\mu\nu}\rangle b_{\bf R'}^{\lambda\sigma}+a_{\bf R}^{\mu\nu}\langle b_{\bf R'}^{\lambda\sigma}\rangle$. Moreover, "up" ("down") [111] polarization on the A (B) sublattice is enforced by setting

$$\langle a_{\mathbf{R}}^{\mu\nu} \rangle = \delta^{\mu 1} \delta^{\nu 1}, \quad \langle b_{\mathbf{R}'}^{\mu\nu} \rangle = \delta^{\mu 4} \delta^{\nu 4}.$$
 (18)

In momentum space the linearization results in

$$[a_{\mathbf{k}}^{\mu\nu}, H] = z S_{\alpha}^{44} (S_{\alpha}^{\nu\sigma} \delta^{\mu\lambda} - S_{\alpha}^{\lambda\mu} \delta^{\nu\sigma}) a_{\mathbf{k}}^{\lambda\sigma}$$

$$+ z \gamma_{\mathbf{k}} (\delta^{1\mu} S_{\alpha}^{\nu 1} - S_{\alpha}^{1\mu} \delta^{\nu 1}) S_{\alpha}^{\lambda\sigma} b_{\mathbf{k}}^{\lambda\sigma}$$

$$= z (L_{\mathbf{k}11}^{\mu\nu\lambda\sigma} a_{\mathbf{k}}^{\lambda\sigma} + L_{\mathbf{k}12}^{\mu\nu\lambda\sigma} b_{\mathbf{k}}^{\lambda\sigma}),$$
(19)

where z is the coordination number and $z\gamma_{\bf k}=\Sigma_{\bf l}e^{i{\bf k}\cdot{\bf l}}$. A similar equation arises for $[b_{\bf k}^{\mu\nu},H]$ introducing two additional 16×16 matrices $L_{\bf k}^{\mu\nu\lambda\sigma}$ and $L_{\bf k}^{\mu\nu\lambda\sigma}$. Switching to frequency space the EQMs can be solved as

$$\chi_{\alpha\beta}^{S}(\mathbf{k},\omega) = -\operatorname{Tr}[(\omega \mathbf{1} - z\mathbf{L}_{\mathbf{k}})^{-1}\boldsymbol{\chi}_{0}]^{\mu\nu}[\mathbf{C}_{\beta\alpha}^{T}]^{\mu\nu}, \quad (20)$$

where boldface symbols refer to matrix notation in a 32 \times 32 space. $\mathbf{L_k}$ is set by $L_{\mathbf{k},ij}^{\mu\nu\lambda\sigma}$ with i,j = 1,2 labeling four 16×16 subblocks. Similarly χ_0 consists of four subblocks $\chi_{0,ij}^{\mu\nu\lambda\sigma}$ with $\chi_{0,i\neq j}^{\mu\nu\lambda\sigma}$ and $\chi_{0,11(22)}^{\mu\nu\lambda\sigma}=\delta^{\nu\sigma}\delta^{\mu1(4)}\delta^{\lambda1(4)}-\delta^{\lambda\mu}\delta^{\sigma1(4)}\delta^{\nu1(4)}.$

Equation (20) allows for substantial simplifications. First, all diagonal dyades, i.e., $a(b)_{\mathbf{k}}^{\mu\mu}$, commute with H. Second, the linearized form of Eq. (17) for the nondiagonal dyades, i.e., for $a(b)_{\mathbf{k}}^{\mu\nu}$ with $\mu \neq \nu$, is diagonal with respect to $\mu\nu$ and remains local for nearly all pairs $\mu\nu$. This follows from the identity

$$S_{\alpha}^{11(44)}S_{\alpha}^{\mu\nu}=0.$$
 (21)

The only set of dyades which couple dispersively via the EQMs is

$$B_{\mathbf{k}}^{\gamma=1,\dots,4} = \{ a_{\mathbf{k}}^{(1,2)}, a_{\mathbf{k}}^{(3,1)}, b_{\mathbf{k}}^{(3,4)}, b_{\mathbf{k}}^{(4,2)} \}, \tag{22}$$

and the corresponding Hermitian conjugate set $B_{\mathbf{k}}^{\gamma=1,\dots,4\dagger}$. From the preceding discussion it is conceivable that the complete spin dynamics can be expressed in terms of the physically *relevant dyades* $B_{\mathbf{k}}^{\gamma=1,\dots,4(\dagger)}$ only. In fact, after some elementary rearrangements of the matrix EQM (20), the longitudinal spin susceptibility, which, due to cubic symmetry, is identical to the three-trace $\chi_{\alpha\alpha}^{S}(\mathbf{k},\omega)$, simplifies to

$$\chi_{\alpha\alpha}^{S}(\mathbf{k},\omega) = -\operatorname{Tr}[D^{-1}N], \tag{23}$$

where the dynamical matrix D and the static susceptibility-matrix N are identical to $[(\omega/z)\mathbf{1}-\mathbf{L_k}]$ and $\chi_0\mathbf{C}_{\alpha\alpha}/z$ restricted to within the four-dimensional subspace spanned by Eq. (22). The complex conjugate dyades $B_k^{\mu\dagger}$ introduce an

overall prefactor of 2 only. After some algebra we find that D and N are determined by five parameters a, b, c, d, and e through

$$D = \begin{bmatrix} w - a & 0 & -c \gamma_{k} & -e \gamma_{k} \\ 0 & w - b & -e \gamma_{k} & -d \gamma_{k} \\ c \gamma_{k} & -e \gamma_{k} & w + a & 0 \\ -e \gamma_{k} & d \gamma_{k} & 0 & w + b \end{bmatrix},$$

$$N = \frac{1}{z} \begin{bmatrix} c & -e & c & e \\ e & -d & e & d \\ -c & e & -c & -e \\ e & -d & e & d \end{bmatrix}, \tag{24}$$

with $w = \omega/z$ and

$$a = S_{\alpha}^{44} (S_{\alpha}^{22} - S_{\alpha}^{11}), \quad b = S_{\alpha}^{44} (S_{\alpha}^{11} - S_{\alpha}^{33}),$$

$$c = S_{\alpha}^{21} S_{\alpha}^{34}, \quad d = -S_{\alpha}^{13} S_{\alpha}^{42}, \quad e = -S_{\alpha}^{13} S_{\alpha}^{34} = \sqrt{cd}. \quad (25)$$

With this the longitudinal spin susceptibility of Eq. (23) is obtained readily as

$$\chi_{\alpha\alpha}^{S}(\mathbf{k},\omega) = \frac{Z(\mathbf{k},w)/z}{(w^2 - w_1^2)(w^2 - w_2^2)},$$
 (26)

where the weight factor $Z(\mathbf{k}, w)$ given by

$$Z(\mathbf{k}, w) = 2[ac - bd - (c - d)^{2} \gamma_{\mathbf{k}}]w^{2} + (ad - bc)[ab + (ad - bc)\gamma_{\mathbf{k}}], \qquad (27)$$

and the excitation energies $\pm w_{1,2}(\mathbf{k})$ are being set by the roots of the biquadratic equation

$$w^{4} + w^{2}[(c-d)^{2}\gamma_{\mathbf{k}} - (a^{2} + b^{2})] + a^{2}b^{2} - (ad - bc)^{2}\gamma_{\mathbf{k}} = 0.$$
(28)

FIG. 1. Dispersion and weight of spin excitations.

In Fig. 1 the dispersion as well as the weight $R_{1,2}(\mathbf{k})$ $=\chi_{\alpha\alpha}^{S}(\mathbf{k},\omega)(\omega-\omega_{1,2}(\mathbf{k})|_{\omega=\omega_{1,2}(\mathbf{k})}$ of the two positivefrequency modes is depicted along a path in the Brillouin zone (BZ) ranging from k = (1,1,1) to (0,0,0) to (1,0,0) for various values of the anisotropy ratio ξ/η . This figure clarifies the concluding issue aimed at in this paper, i.e., the observation of only a single excitation mode in NdB₆. Based on the eigenvalues (7) two excitations of comparable energy are expected in the Weiss field of the AFM state at ξ/η ≪1. However, Fig. 1 shows that only a single mode carries significant weight at small ξ/η . Furthermore, in agreement with the spectrum of a single-ion pseudospin $\mathcal{J}=3/2$, the system exhibits a single-mode spin-wave-like excitation at the isotropic point $2\xi = \eta$. Only for intermediate anisotropy do both modes show sizable weight at any given point in the BZ.

CONCLUSION

In summary we have considered rare-earth (RE) compounds of cubic symmetry with a Γ_8 -quartet ground state of the RE ions. Particular emphasis has been put on the hexaboride NdB₆. Analyzing the CEF splitting we have identified NdB₆ to be a genuine example of a system with strongly coupled magnetic and quadrupolar degrees of freedom.

We have studied the CEF induced intrinsic magnetic anisotropy superimposed onto an isotropic exchange interaction revealing that NdB₆ should display magnetic anisotropy of a different type, i.e., "easy diagonal," as compared to Ce

or Yb compounds which show "easy axis" anisotropy.

The magnetic anisotropy leads to a noncollinear M vs H behavior and it is tempting to speculate that angular-dependent magnetization measurements on the corresponding RE cubic compounds, as well as diluted systems, e.g., $La_{1-x}Ce_xB_6$, should be able to detect this behavior.

We have evaluated the magnetic excitations in the AFM state of an "easy diagonal" type using a dyadic operator approach. For systems with strong spin-quadrupolar coupling this method is superior⁷ to less controlled pseudoparticle descriptions which are applicable to the weak-coupling system CeB₆ and are based on the conventional σ - τ Pauli-matrix representation (4). In accordance with the number of independent Pauli matrices (σ and τ), we find two branches of spin excitations. However, the spectral weights in the two magnetic channels are very different in a strongly coupled spin-quadrupolar system. In fact, in the $\xi = 0$ limit one channel disappears completely. This is reminiscent of the INS data on NdB₆ (Ref. 4) which display only one branch of spin excitations. Although derived by a linearization of the EQMs we believe that our results are quite robust against nonlinear corrections since the spin-wave spectrum in the nonisotropic case is gapful. This should diminish the relevance of quantum fluctuations.

Finally, regarding a direct comparison to experimental data we note that NdB₆ displays a [0,0,1/2] wave vector of the AFM modulation. This requires the inclusion of longerrange exchange interactions which have been neglected in this paper. These will be studied elsewhere.⁷

¹J.M. Effantin et al., J. Magn. Magn. Mater. 47/48, 145 (1985).

²E. Zirngiebl *et al.*, Phys. Rev. B **30**, 4052 (1984).

³M. Loewenhaupt and M. Prager, Z. Phys. B: Condens. Matter **62**, 195 (1986).

⁴W.A.C. Erkelens, L. P. Regnault, J. Rossat-Mignod, M. Gordon, S. Kunii, T. Kasuya, and C. Vettier, J. Phys. (Paris), Colloq. 49, C8-457 (1988).

⁵P. Burlet, J. M. Effantin, J. Rossat-Mignod, S. Kunii, and T. Kasuya, J. Phys. (Paris), Colloq. 49, C8 (1988).

⁶K.R. Lea, M.J.M. Leask, and W.P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962); M.T. Hutchings, Solid State Phys. 16, 227

^{(1964).}

⁷G. Uimin and W. Brenig (unpublished).

⁸F.J. Ohkawa, J. Phys. Soc. Jpn. **54**, 3909 (1985).

⁹G. Uimin, Y. Kuramoto, and N. Fukushima, Solid State Commun. 97, 595 (1996).

¹⁰R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. **66**, 1741 (1997)

¹¹This has to be contrasted against claims of [001] polarization in Ref. 4 which deserve additional confirmation.

¹²E.g., K.W. Becker, P. Fulde, and J. Keller, Z. Phys. B 28, 9 (1977).