
PHYSICAL REVIEW B 1 JANUARY 2000-IVOLUME 61, NUMBER 1
Crystal field, magnetic anisotropy, and excitations in rare-earth hexaborides
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We clarify the role of crystalline electric field~CEF! induced magnetic anisotropy in the ground state and
spin-wave spectrum of cubic rare-earth materials with dominating isotropic magnetic exchange interactions. In
particular we study the hexaboride NdB6 which is shown to exhibit strong spin-quadrupolar coupling. The CEF
scheme is analyzed and a noncollinear magnetization response is found. The spin orientation in the antiferro-
magnetically ordered ground state is identified. Moreover, the spin excitations are evaluated and in agreement
with inelastic neutron scattering a suppression of one of the two magnetic modes in the strong-coupling regime
is predicted.
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INTRODUCTION

Over the past two decades cubic rare-earth hexabor
RB6 (R, rare-earth element! with CaB6-type crystal structure
have been at the center of numerous studies of materials
crystalline-electric-field~CEF! driven, nontrivial ordering
phenomena. Among these compounds, CeB6 ~e.g., Ref. 1!
serves as a prototypical system which exhibits an imp
sively complex phase diagram. In this material the CEF
cubic symmetry selects theG8 quartet to be the ground sta
of the Ce31 ions (J55/2). The latter quartet is well sepa
rated from the next-highestG7 doublet by an energy gap o
the order of 540 K.2 Thus, on a low-energy scale, the physi
of CeB6 is reasonably well described by projecting onto t
G8 subspace. Similar systems withG8 ground states can b
realized starting from the right side of the rare-earth ser
i.e., invoking compounds of cubic symmetry with Yb31 or
Tm21 ions, whose incompletef shell contains 13 electron o
one f hole. In accordance with Hund’s rule and contrast
the Ce case, however, theG8 basis has to be constructe
from a J57/2 multiplet, breaking direct electron-hole sym
metry thereby.

In this paper we will focus on the hexaboride NdB6. Al-
though investigated in detail experimentally by inelastic n
tron scattering~INS!,3,4 the anisotropy of the magneticall
ordered state below the temperatureTC of order TC'8.6 K
~Refs. 5 and 4! remains unclear as well as the existence
only a single magnetic mode as observed by INS. The aim
our work is to consider these open issues.

CRYSTALLINE ELECTRIC FIELD

The CEF level scheme of the Nd31 multiplet ~three f
electrons,J59/2, S53/2, andL56) is consistent with the
sequence G8

(2)(0 K)-G8
(1)(135 K)-G6(278 K).3 Similar to

CeB6 the energy gap separating the lowest quartet is la
enough to restrict the Hilbert space toG8

(2) only. The basis
states of thisG8 manifold are
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c1↑5v1u19/2&1v2u11/2&1v3u27/2&,

c2↑5w1u15/2&1w2u23/2&, ~1!

c1↓5v1u29/2&1v2u21/2&1v3u17/2&,

c2↓5w1u25/2&1w2u13/2&. ~2!

The coefficientsv i andwi are derived from the Stevens op
erator formulation of the CEF Hamiltonian6 using the CEF
parameters reported in the literature.3 For NdB6 one finds

v150.1437, v2520.3615, v350.9212,

w1520.9223, w250.3865. ~3!

The states in Eqs.~1! and~2! have been labeled such that th
second index denotes a ‘‘spin’’-like projection, whereas t
first index stands for two ‘‘orbital’’-like components whic
reflect the different shapes of the electron wave functio
This leads to a description of the quartet in terms of t
Pauli matricess andt: 8–10

szct6561/2ct6 , s6ct75ct6 ,

tzc6s561/2c6s , t6c7s5c6s .

Now the magnetic-moment operator can be represente
terms ofs andt by

Ma5mB~j12hTa!sa ~a5x,y,z!. ~4!

HereT is a vector with components

Tx52
1

2
tz1
)

2
tx , Ty52

1

2
tz2
)

2
tx , Tz5tz , ~5!

which transforms according to theG3 representation.
Evaluating theJ59/2 angular momentum matrix ele

ments in theG8 basis~1! and comparing with Eq.~4! the
values ofj andh for NdB6 are obtained as

j520.661, h526.857. ~6!
60 ©2000 The American Physical Society
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This identifies NdB6 as a system with strong coupling of th
magnetic and quadrupolar degrees of freedom (uhu@uju).
Note that forG8 states with onef electron~hole! j andh are
universal and donot depend on the CEF splitting paramete
For Ce31, j52 andh58/7; for Yb31 and Tm21, j528/3
and h5232/21. Therefore CeB6 and possible Yb and Tm
candidates exhibit rather weak spin-quadrupolar coup
with a characteristic parameterh/(2j)52/7.

EXCHANGE ANISOTROPY

In this section we clarify the spin orientation in the ma
netically ordered ground state. Most likely, the dominant
teraction in NdB6 is of isotropic magnetic exchange type4

However, due to theG8 ground state, a CEF induced ma
netic anisotropy exists whichdepends on the ratioj/h. This
can be understood by considering the single-ion Zeeman
teraction, i.e.,2(aHaMa in an external magnetic fieldH.
InsertingMa from Eq. ~4! one obtains a 434 matrix which
is easy to diagonalize with eigenvaluesl,

l56Aj21h26uhuA~3h2/222j2!23F~n!~h2/222j2!,
~7!

measured in units ofgmBH/2. This clearly manifests a cubi
anisotropy through the functionF(n):

F~n!5nx
41ny

41nz
4 , n5H/H. ~8!

The anisotropy results in a noncollinearity of the magne
field and the magnetization for any general orientation ofH.
Exceptions are the directions@111#, @110#, and @001# and
their crystallographic equivalents. Energetically favora
states are related either to the cubic axes~@001# type!, if
uhu,2uju, or the cubic diagonals~@111# type!, if uhu
.2uju. The anisotropy caused by the CEF disappears
uhu52uju. Therefore, we may conclude that Ce31, Yb31,
and Tm21 G8 compounds tend to exhibit ‘‘easy axis’’ aniso
ropy @h/(2j)52/7#, whereas for Nd31 in NdB6 we have
h/(2j)'5.19 which results in ‘‘easy diagonal’’ anisotropy

Within a mean-field treatment of the exchange interact

2 (
R,R8

JRR8SR•SR8 , ~9!

whereJRR8 is the exchange integral andSR the spin at siteR,
the magnetic field in Eq.~7! and~8! has to be replaced by th
Weiss fieldJ0^S&/(gmB) with J05(R8JRR8 if ferromagnetic
exchange is dominant. The Lande´ factor in NdB6 is g
58/11. For bipartite antiferromagnetism~AFM!, the Weiss
field on sublatticeA is proportional to2J0^SA&1J1^SB&
with J0(1)5(2)(R8JRR8 for R and R8 on equal~opposite!
sublattices. On sublatticeB, one should replaceA↔B.

Therefore, in conclusion, we expect@111# orientational
ordering in the ground state of NdB6 if isotropic exchange
interactions are dominant.11

MAGNETIC EXCITATIONS

In this section we focus on the spin dynamics by cons
ering the time-dependent magnetic susceptibility

xab
S ~k,t !5 iQ~ t !^@Sak~ t !,Sb2k#&. ~10!
.

g

-

n-

c
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if

n

-

Lower Greek indices ofx and the spin operator refer tox, y,
z and boldface vectorsk denote the momentum. We use
spin operator rescaled byh21, i.e., Sak5Mak /(gmBh).
Therefore the dependence of the magnetic spectrum on
CEF can be expressed solely in terms of the ratioj/h. To
evaluate Eq.~10! we proceed via a mean-field analysis co
sistent with AFM ordering5 on a bipartite lattice. Rather tha
employing the Pauli-matrix representation8–10of Eq. ~10! we
perform this analysis using a dyadic basis to express the
operator within theG8 manifold:12

Sak5
1

&
Sa

mn~ak
mn1bk

mn!,

ak
mn5A2

N(
R

e2 ik•RaR
mn , ~11!

where a summation over repeated indices is implied for
remainder of this paper,bk

mn is defined analogous toak
mn

with, however,R→R8, and

aR
mn5umR&^nRu, bR8

mn
5umR8&^nR8u ~12!

are the dyades on sitesR (R8) of the magneticA (B) sub-
lattice.um& are the eigenstates of thez component of the spin
in the G8 manifold Sa5zum&5smum&. The spin should be
quantized along (against)the @111# direction of the Weiss-
field on theA (B) sublattice sites.Sa

mn are the matrix ele-
ments of the spin corresponding to the latter quantizat
direction. The dyadic transition operatorsak

mn andbk
mn with

m,n51,...,4 can be recast into a 32-component opera
Ak

g51,...,325$ak
(1,1),...,(4,4),bk

(1,1),...,(4,4)% with a corresponding
32332 matrix susceptibility of theAk

g operators

xmn~k,t !5 iQ~ t !^@Ak
m~ t !,Ak

n†#&. ~13!

The original magnetic susceptibility~10! can be obtained
from this by projecting the dyades onto the magnetic m
ment

xab~k,t !5
1

2
xmn~k,t !Cba

nm , ~14!

where Cba
nm5vb

n!va
m with va5x,y,z

m51,...,325$Sa
(1,1),...,(4,4),

Sa
(1,1),...,(4,4)% is a 32-component vector for each spin comp

nenta.
To proceed we evaluate the equation of motion~EQM! of

the dyadic susceptibility:

i ] tx
mn~k,t !52d~ t !^@Ak

m ,Ak
n†#&

1 iQ~ t !^@@Ak
m~ t !,H#,Ak

n†#&. ~15!

In this paper we concentrate on the spin dynamics for ne
neighbor~NN! AFM exchange couplingsJ only. Therefore,
settingJh2/g2 to unity the Hamiltonian in terms of the dy
ades reads

H5(
R,l

Sa
mnSa

lsaR
mnbR1 l

ls , ~16!
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where l runs over the NN sites ofR. The real-space repre
sentation of the commutator on the right-hand side of
EQM is evaluated using the algebra of the dyades, yield

@aR
mn ,H#5(

l
~Sa

nvaR
mv2Sa

vmaR
vn!Sa

lsbR1 l
ls . ~17!

An analogous expression results on theB sublattice. On the
mean-field level the EQMs are closed by factorizing all qu
dratic terms in Eq.~17! according to the schemeaR

mnbR8
ls

5^aR
mn&bR8

ls
1aR

mn^bR8
ls&. Moreover, ‘‘up’’ ~‘‘down’’ ! @111#

polarization on theA (B) sublattice is enforced by setting

^aR
mn&5dm1dn1, ^bR8

mn&5dm4dn4. ~18!

In momentum space the linearization results in

@ak
mn ,H#5zSa

44~Sa
nsdml2Sa

lmdns!ak
ls

1zgk~d1mSa
n12Sa

1mdn1!Sa
lsbk

ls

5z~Lk11
mnlsak

ls1Lk12
mnlsbk

ls!, ~19!

where z is the coordination number andzgk5( le
ik• l. A

similar equation arises for@bk
mn ,H# introducing two addi-

tional 16316 matricesLk22
mnls andLk21

mnls . Switching to fre-
quency space the EQMs can be solved as

xab
S ~k,v!52Tr@~v12zLk!21x0#mn@Cba

T #mn, ~20!

where boldface symbols refer to matrix notation in a
332 space.Lk is set byLk,i j

mnls with i , j 51,2 labeling four
16316 subblocks. Similarlyx0 consists of four subblocks
x0,i j

mnls with x0,iÞ j
mnls50 and x0,11(22)

mnls 5dnsdm1(4)dl1(4)

2dlmds1(4)dn1(4).
Equation~20! allows for substantial simplifications. Firs

all diagonal dyades, i.e.,a(b)k
mm , commute withH. Second,

the linearized form of Eq.~17! for the nondiagonal dyades
i.e., for a(b)k

mn with mÞn, is diagonal with respect tomn
and remains local for nearly all pairsmn. This follows from
the identity

Sa
11(44)Sa

mn50. ~21!

The only set of dyades which couple dispersively via
EQMs is

Bk
g51,...,45$ak

(1,2) ,ak
(3,1) ,bk

(3,4) ,bk
(4,2)%, ~22!

and the corresponding Hermitian conjugate setBk
g51,...,4†.

From the preceding discussion it is conceivable that the c
plete spin dynamics can be expressed in terms of the ph
cally relevant dyades Bk

g51,...,4(†) only. In fact, after some
elementary rearrangements of the matrix EQM~20!, the lon-
gitudinal spin susceptibility, which, due to cubic symmet
is identical to the three-tracexaa

S (k,v), simplifies to

xaa
S ~k,v!52Tr@D21N#, ~23!

where the dynamical matrixD and the static susceptibility
matrix N are identical to@(v/z)12Lk# and x0Caa /z re-
stricted to within the four-dimensional subspace spanned
Eq. ~22!. The complex conjugate dyadesBk

m† introduce an
e
g

-

e

-
si-

,

y

overall prefactor of 2 only. After some algebra we find th
D andN are determined by five parametersa, b, c, d, and
e through

D5F w2a 0 2cgk 2egk

0 w2b 2egk 2dgk

cgk 2egk w1a 0

2egk dgk 0 w1b

G ,

N5
1

z F c 2e c e

e 2d e d

2c e 2c 2e

e 2d e d

G , ~24!

with w5v/z and

a5Sa
44~Sa

222Sa
11!, b5Sa

44~Sa
112Sa

33!,

c5Sa
21Sa

34, d52Sa
13Sa

42, e52Sa
13Sa

345Acd. ~25!

With this the longitudinal spin susceptibility of Eq.~23! is
obtained readily as

xaa
S ~k,v!5

Z~k,w!/z

~w22w1
2!~w22w2

2!
, ~26!

where the weight factorZ(k,w) given by

Z~k,w!52@ac2bd2~c2d!2gk#w2

1~ad2bc!@ab1~ad2bc!gk#, ~27!

and the excitation energies6w1,2(k) are being set by the
roots of the biquadratic equation

w41w2@~c2d!2gk2~a21b2!#1a2b22~ad2bc!2gk50.

~28!

FIG. 1. Dispersion and weight of spin excitations.
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In Fig. 1 the dispersion as well as the weightR1,2(k)
5xaa

S (k,v)(v2v1,2(k)uv5v1,2(k) of the two positive-
frequency modes is depicted along a path in the Brillo
zone~BZ! ranging fromk5(1,1,1) to~0,0,0! to ~1,0,0! for
various values of the anisotropy ratioj/h. This figure clari-
fies the concluding issue aimed at in this paper, i.e.,
observation of only asingleexcitation mode in NdB6. Based
on the eigenvalues~7! two excitations of comparable energ
are expected in the Weiss field of the AFM state atj/h
!1. However, Fig. 1 shows that only a single mode carr
significant weight at smallj/h. Furthermore, in agreemen
with the spectrum of a single-ion pseudospinJ53/2, the
system exhibits a single-mode spin-wave-like excitation
the isotropic point 2j5h. Only for intermediate anisotropy
do both modes show sizable weight at any given point in
BZ.

CONCLUSION

In summary we have considered rare-earth~RE! com-
pounds of cubic symmetry with aG8-quartet ground state o
the RE ions. Particular emphasis has been put on
hexaboride NdB6. Analyzing the CEF splitting we have
identified NdB6 to be a genuine example of a system w
strongly coupled magnetic and quadrupolar degrees of f
dom.

We have studied the CEF induced intrinsic magnetic
isotropy superimposed onto an isotropic exchange inte
tion revealing that NdB6 should display magnetic anisotrop
of a different type, i.e., ‘‘easy diagonal,’’ as compared to
on

T.
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or Yb compounds which show ‘‘easy axis’’ anisotropy.
The magnetic anisotropy leads to a noncollinearM vs H

behavior and it is tempting to speculate that angul
dependent magnetization measurements on the corresp
ing RE cubic compounds, as well as diluted systems, e
La12xCexB6, should be able to detect this behavior.

We have evaluated the magnetic excitations in the AF
state of an ‘‘easy diagonal’’ type using a dyadic opera
approach. For systems with strong spin-quadrupolar coup
this method is superior7 to less controlled pseudoparticle d
scriptions which are applicable to the weak-coupling syst
CeB6 and are based on the conventionals-t Pauli-matrix
representation~4!. In accordance with the number of inde
pendent Pauli matrices~s and t!, we find two branches of
spin excitations. However, the spectral weights in the t
magnetic channels are very different in a strongly coup
spin-quadrupolar system. In fact, in thej50 limit one chan-
nel disappears completely. This is reminiscent of the I
data on NdB6 ~Ref. 4! which display only one branch of spi
excitations. Although derived by a linearization of the EQM
we believe that our results are quite robust against nonlin
corrections since the spin-wave spectrum in the nonisotro
case is gapful. This should diminish the relevance of qu
tum fluctuations.

Finally, regarding a direct comparison to experimen
data we note that NdB6 displays a@0,0,1/2# wave vector of
the AFM modulation. This requires the inclusion of longe
range exchange interactions which have been neglecte
this paper. These will be studied elsewhere.7
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