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Monte Carlo simulation of positron-stimulated secondary electron emission from solids
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We have analyzed the problem of the secondary electrons emitted from a solid irradiated by a positron or
electron particle beam. The relevant concepts that form the basis for a theoretical understanding of the sec-
ondary electron emission problem are reanalyzed by looking at Wolff's theory. However, to attain analytical
results, such a theory must include some simplification, which may be valid in only a limited number of
situations. To overcome such a limitation we have elaborated a Monte Carlo procedure for the calculation of
the secondary electrons emitted from a solid, irradiated with a positron beam. The choice of a primary positron
beam is justified because the experiments involving electron emission are not contaminated by the reemitted
primary electrons. The calculations were performed in the positron primary energy range between 50 eV and
2 keV, and for different incidence angles with respect to the surface of a copper sample. Many numerical
results are reported, namely: the elastic mean-free paths of positrons in coppérthé mean number of
electrons emitted per positron,)iiihe penetration depth of the positrons, angthe depths from which the
secondary electrons are emitted. Finally, the numerical results concerning the secondary electron energy
distribution are compared with the experimental data recently presented by Overton and Coleman showing a
general good agreement.

[. INTRODUCTION emerge from the surface. If the target is not a thin film
(namely, if there are not transmitted partigléise remaining
The problem of secondary electron emission from solidgprimary particles are trapped into it. For bulk targets the ratio
irradiated by a particle beam is relevant, mainly in connecbetween the number of bakscattered and total
tion with the analytical techniques that utilize secondary(backscatteredtrapped) particles is generally called the
electrons to investigate chemical and compositional properdackscattering coefficient,
ties of solids in the near surface layers: Auger electron spec- If the primary particles are electrons, then the spectrum of
troscopy and X-photoelectron spectroscopy. In general, thgje sgcondary electrons is cIeany contaminated by the con-
energy spectra of the emitted electrons are quite complicatetﬁ'bUt'c’n of the backscattered primary electrons. On the other
because many features appear in such a spectra in connectfd@nd, as recently noted by Overton and Colethtire prob-
with the different collisional processes involved before low-!€m Of distinguishing between true secondary and backscat-
energy secondary electron emission. As a consequence,f‘%req electrons is ab_sent, if the secondary electron emission
better understanding of the collisional events occurring in theS Stimulated by positron beams. In the quoted pdptee
surface layers before emission, should permit a more genergHthors performed an interesting experimental study of the
understanding of the surface physics including, for exampleSPectra of fast secondary eIectr.o_ns not contaminated by the
plasmon excitation. Recently, the collisional processes obackscattered el_ectrons. Spe_uflqally, secondary electrons
positron beams impinging on solids received great attentioR"oduced by positron beams, impinging on copper target at
because of the possibility to realize, by positron annihilationdlancing and 35° incidence angle and for primary energies in
spectroscopy, nondestructive investigations of point and exthe range from 50 eV to 2 keV, have been analyzed.
tended defects of surfaces, interfaces, and of bulk materials.. Experlrpental_ _results have been compared to the
Review papers on the subject have been prepared by Dupa§'—°kafug_ empirical law:
quier3 and Zeccé, Schultz and Lynrf, and Asoka-Kumar
et al. . AE—m
When a particle beam, with particle energy exceeding JE)=AE"T, @
some threshold value, impinges on a solid target, it stimu-
lates the emission of secondary electrons through collisionghere(E) represents the measured secondary electron en-
with target atoms. On the other hand, a fraction of the parergy distribution,E being the energy of the emitted second-
ticles of the primary beam is also ejected from the surfacery electrons, whilé andm are constants that depend on the
because, after a number of elastic and/or inelastic collisionsolid and on the energy of the impinging positrons.
with the target atoms, some of those particles come back and The comparison shows excellent linear correlation when
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the data are plotted as lgfjj (E)] vs log(E) and the values HereN is the number of electrons betweerandr +dr, Q

of mare reported as a function of the energy of the collidingandQ+dQ, E andE+dE. € is a unit vector in the velocity

positrons. direction, S is a source term that represents the secondary
In the present paper, we try to explain the experimentaplectrons produced by the primary beam, &ni$ the prob-

resulté by using a Monte Carlo code in which, essentially, ability that, given an electron &’ with energyE’, another

the positron-solid interaction is included as described by thelectron will be found after scattering & with energyE. ©

relevant cross sections and stopping-powers of the collisiona$é the angle between the directiofs and Q’. P, are the

processegboth elastic and inelasti@nd the corresponding Legendres’s polynomials.

mean-free paths. It is evident that the set of equatiof®) is quite compli-
However, before to illustrate the numerical procedure wecated to be utilized and an approximate approach is needed.

have adopted, it is important to gain some insights into thdn particular, Wolff observed that the highharmonics be-

relation (1) by looking at the previously proposed analytical come important only for high energies. For low energjgs

models. In this way, we will understand the theoreticaloverwhelms the other harmonics because it grows rapidly as

framework that forms the basis to approach the problem oE—0. In this case

the secondary electron emission as well as the limits of the )

analytical procedures, which, on the contrary, may be over- J(BE)= 4o\ (E). @)

come by numerical methods, mainly based on a Monte Carl@y ytjlizing the Goldberger's evaluation of the probability of

simulation. Let us now reanalyze Wolff's thedrio under-  scattering fronE’ to E (for Swave scattering from a degen-
line the basic concepts necessary to analyze the secondagyate Fermi ga& and taking into account the exclusion prin-

electron emission problem. ciple, Wolff showed thét
E.\X(E)
II. ANALYTICAL CONCEPTS RELATED ol 0 ®)
TO THE SECONDARY ELECTRON EMISSION Yo E '

The secondary electrons production occurs in two stepswvherex(E) decreases as energy increases fEyno ~4E;
The first step is the secondary electrons production due to thend equals 2 for energies higher thadE; (E; is the Fermi
impacts between the primaries particles and the electronsnergy. For E—2E;, X(E)—2.3. E, is the primary
bound in the solid. The second process is the so-called caparticle-beam energy. The proportionality constant, in Eq.
cade: the secondary electrons travel in the material produg8), that we will indicate asP(E), is a geometrical factor
ing other secondaries before being trapped in the solid orepresenting the probability that an electron reaching the sur-
before emerging from the surface. The equations that goverface have a large enough normal velocity component to es-
the cascade process, as deduced from the Boltzmann trarnsape. Assuming a spherical symmetric distribution and indi-
port equation, for the steady state, when the primary particlesating with ¢ the work function,P(E) can be calculated
collide normally with the target surface in telirection, are  through
the following®
¢t E;
E

The Goldberger’'s evaluation of the reduction of the total

e . , scattering cross-section due to the exclusion principle entails
+ e dE'F\(E.E)(ZE)+S(ZE). (2 the following equation for the mean-free patralid for E
>2E;)

ap_1  1+1 apyag P(E)=1— 9)

20+1 oz 2041 oz

h=NE)

In this set of integro-differential equations,
1

y=vN,/N(E), ©) ANE)= noo(E)(1—7E,/5E)’ (10

N (E) is the electron mean-free path,is the electron veloc-
ity, E is the electron energy, and,, F;, and S are the
coefficients of the following expansions in spherical harmon

wheren, is the number density of conduction band electrons,
and oo (E) is the electron-electron inelastic scattering
“cross section. By utilizing Eq4.7)—(10), Wolff's formula

ICS: follows:
1 < 1-J(¢+EN/E  [E,\X®
N(z,cosa,E)=4—Z (21 +1)Ny(z,E)P,(cosb), (4) j(E)= (p+Ep) o ] (11)
T =0 N.oinel(E)(1—7E¢/5E) \ E
1 oo
S(Z,COSG,E) _ 4_ 2 (2| + 1)S|(Z,E) P|(COS¢9), (5) 11l. APPROXIMATE ANALYTICAL RELATIONS FOR
T i< PRIMARY ELECTRON ENERGY EXCEEDING 100 eV

LoV e ) , Wolff's theory, in the approximation represented by Eq.
F(Q.EQ',E)=F(cosO;EE") (11), gives the spectrum of the secondary electrons when the
o primary electron or positron energy is less thakl
:iz (21+1)F,(E,E')P,(c0osO). (6) =100 eV: indeed for energies lower thaw electron-
47 =0 electron and positron-electron scattering processes can be as-
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sumed to be spherically symmetric. Since the shapes of thieinction approach for inelastic scattering and on the Relativ-
secondary electron spectra, on the other hand, are substastic Partial Wave Expansion Methd®RPWEM) for elastic
tially determined by electrons with energies lower thanscattering.
40 eV, the spectra are quite insensitive to the choice/df

Sickafu$ empirically tried to extend the energy range of

IV. THE MONTE CARLO SCHEME
Wolff's cascade theory. He assumed th&tE; and ob-

served that, in such a cade(E)~1, (1-7E;/5E)~1, and The Monte Carlo method is a very powerfull and reliable
x(E)~2. As a consequence procedure to evaluate important quantities related to the
electron-solid and positron-solid interaction, such as back-
EX scattering coefficients and implantation profitéd817:1%sec-
J(E)= (12 ondary electron emissioff;*® and spectra of backscattered

Tinel( E)EX and of secondary electroA%2!In the present calculation, the
Assuming that the inelastic cross section has the folIowingeIaStiC scattering of both positrons and secondary electrons_is
form:10 computed step by step along the path of the particle by cubic
spline interpolation of extensive tabulations of the differen-
tial elastic scattering cross section obtained by the code we
(13)  described elsewheré? The use of cubic spline interpola-
tion rather than direct calculation is due to the fact that the
direct computation of the differential scattering cross sec-
tions requires a large amount of computational time. Any
X way, the adopted Monte Carlo scheme is very accurate in the
S— R (14) determination of the scattering angle, after every elastic
EX llogE collision (errors being within 1-5 9
, Concerning the inelastic scattering, we have used the
whereC is a constant. As a consequence, Ashley treatment!® for the calculation of the stopping
) power,dE/ds, and inelastic mean-free patkj,e;. Our cal-
logj(E)=xlogE,—(x—1)logE—loglogE+logC. culations are in excellent agreement with those of
Ashley**3n order to expedite the computer simulation we
also have used a cubic spline interpolation of previously
computed and tabulated data for inelastic scattering, as for
the elastic case. Before each step of the particle trajectory, a
random number, uniformly distributed in the randgl], is

logE
E 1

Tinel™

then

j(E)=C

Since the function log lo§ is almost constant, on a given
range ofE, we conclude that, for any given primary energy
E,, logj(E) as a function of lod is given by

1091 (E)=k—mIogE. 16 generated and compared to the probability of inelastic_gcat—
9i(E) g (16) tering. If the random number is lower than that probability,
wherem~1 andk is a constant. then the collision will be inelastic. The probability of inelas-

In other words, a plot of Io§(E) versus logE presents a tiC scatteringpiqe is given by
linear trend(the so-called Sickafus region of the spectjum
and the value ofn should be approximately 1. Pinel=Nins/ (Ninai+ Aot (17)
On the other hand, by utilizing the dielectric function
approach'~**to calculate the inelastic cross section, and byin this equation\e, and \;, are, respectively, the elastic
empirically introducing the results directly into the Wolff and the inelastic mean-free paths:
formula[Eg. (11)], we obtained, for primary energies lower

than 1000 eV, spectra with values wf higher than~2. In 1

particular, for copper, we found that=2.24+0.04 andm Nel= , (18
=2.01*0.04 whenkE, is equal to 500 and 1000 eV, respec- Noe,

tively. Note that the interval regions where the slopes of the

log-log plots have been calculated were quite restricted, be- 1

ing 50-155 eV forE,=500 eV, and 50-270 eV foE, Ninel = {7 — (19
=1000 eV, while the corresponding linear correlations co-

efficients were, respectively, 0.997 and 0.995. whereay, is the total elastic scattering cross sectiof, is

Wolff's theory give results that are surprisingly good, if the total inelastic scattering cross section, aAg the num-
compared with many experimental data, even if these datger of atoms per unit of volume in the target.

are outside the claimed limits of validity of the theory. Itis  The step-lengthAs, is calculated as
reasonable to conclude that Wolff's theory could be ex-

tended outside the-100 eV because the shapes of the sec-

ondary electrons spectra are dominated by the low-energy
electrons.

However, in order to avoig@mpirical procedurego ob-
tain m, and to include also the elastic scattering collisions,
we decided to simulate the positron and the electron trajec- PP
tories with a Monte Carlo procedure based on the dielectric Mot =Ninert Ner - (21)

As=— Ao IN(rys), (20)

wherer ¢ is a random number uniformly distributed in the
range[0,1] and\,,, is defined by
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If the collision is elastic, then we assume that the incident The azimuthal angle) after each collisior{elastic or in-
particle changes its direction in agreement with the differenelastig takes on any value in the ran§@ 2] selected by a
tial elastic scattering cross section obtained by theandom number ,, uniformly distributed in that range.
RPWEM?223 Both the# and ¢ angles are calculated relative to the last
The polar scattering angl®, after an elastic collision is direction in which the electron was moving before the im-
selected via a random numbey,, uniformly distributed in  pact. The directiorﬂ% along which the electron is moving

the rangg0,1]. The choice is such that the integrated prob-after the last deflection, relative to thelirection, is given by
ability for scattering in the angular range from 0@eequals

rg: cos¢9§=cos€Z cosf+sinf,sin O cose, (26)
odo where 6, is the angle relative to the direction before the
27-rf msim‘}dﬁ impact.
[a= 0 _ (22) The motionAz along thez direction is then calculated
"o [ aing as
T o dQSln
Az=As-cos6?. 27
If the collision is inelastic, the energy loss can be evaluated
by utilizing a random number,g, uniformly distributed in The new angled? then becomes the incident anglgfor
the rangd0,1] so that the next path length.
The initial energy of each secondary electron, produced
fAE(d)\i;;/dT)dT by an inelastic collision, is calculated by
(23 E=AE+E;, (28)

FAE= E g )
di,2/dT)dT
fo (@Nina/dT) whereAE is now the total energy lost by the partidigosi-

_ - tron) as calculated from the last inelastic collisidty, is the

where @\, /dT) represents the probability for energy 10Ss Fermi energy[here included becauskE is calculated from
T per unit distance travelled by an electron of eneffgy.e.,  the dielectric excitation functiofiRef. 21)]. The secondary
the inverse mean-free path differential in energy transfer. glectron trajectory is described exactly as the trajectory of

This process of evaluation of the energy loss is quite timgnhe positrons of the primary beam, by including, of course,
consuming. Then, in order to expedite the calculations, Wene appropriate cross sections. Note that the whole secondary
introduced the following approximation. Along each step  glectron cascade is followed in the numerical simulation.
of the particle trajectory we approximated the energy losses Both positrons and secondary electrons are followed until
assuming that the particle loses an amount of energy, whictheir energy becomes lower than 16 évhich for electrons
is evaluated by multiplying the stopping powet/ds, by  corresponds to the Fermi energy plus the work function of

the step-lengt\s, namely: the copper target, in the present caséth respect to the
vacuum level. We assume that the secondary electrons are
_ d_E emitted with an angular distribution having spherical sym-
AE= —As. (249 >
ds metry, as suggested by Shimizu and Ze-3un.

The surface energy barrier clearly influences the energy

distribution of the ejected low-energy electrons. In particular,

energy loss apprqximgﬁon. for the _evaluation of the energys snoid be noted that an electron cannot escape from the
loss is a rough simplification: positrons and electrons Can,rface into vacuum with an angtehigher than
lose, indeed, large amounts of their energy in single colli-

sions. So, in order to check the validity of the present nu- Eto)
merical procedure in relation to the whole energy loss of the 6.=cos 1 /f—, (29)
positrons penetrating into a solid, we compared our calcu- (E+Es+ o)

lated maximum range_Wl'th the data of M'"S_ and Wilson whereE; is the Fermi energy ang is the work function of
concerning the _transmission of 1-6 keV positrons throughy,q iiradiated materialcopper in the present cas@ur nu-

. . 4 .
thin mhetal f"”ﬁsz- These autfhii)r%evalyated _W'% grej\t_ a‘gu_'merical simulation may use both the classical and quantum-
racy the maximum range of keV-positrons in Al and In CU: o ohanical formula for the transmission coefficient. The

for 3100 eV positrons in Cu they found an experimentaly,is reported here used the quantum-mechanical forfhula.

range equal to 69.1 nm while with our numerical code Werpe \ymper of positron trajectories simulated for each en-

obtained, in the same conditions adopted in the
o _ ergy spectrum ranges from 4@ 10° and the overall cas-
experiment$? a range of 70.80.7 nm. The comparison 9y sp g

A . . ... cade of the secondary electrons is followed in the computa-
with other energies may be found in Table IV that we will y P

tion.
comment below.

The polar scattering anglé, after each inelastic collision
is calculated as V. RESULTS AND DISCUSSION

Actually the use of the stopping power within the continuous

The results we are presenting have been obtained by the

. JAE Monte Carlo procedure just described. The inelastic and elas-
sinf=\/— (25 . . o

tic mean-free paths and the stopping powers we utilized are



PRB 61

MONTE CARLO SIMULATION OF POSITRON. .. 5983

TABLE I. Inelastic mean-free path and stopping power of elec- TABLE Ill. Mean number,v, of secondary electrons emitted
trons (Ashley et al, 1976 and positrongAshley, 1990 in Cu.

per incident positrorfof energyE,).

e+

E-Ey Ao [—(dE/ds)]® e [—(dE/ds)]e
(eV) (R) (eVIA) (A) (eVIA)
20 14.5 0.892

30 6.48 3.10

40 4.47 5.32 7.14 2.9
60 4.02 6.87 6.06 4.39
80 4.14 7.36 5.86 5.26
100 4.39 7.45 5.92 5.81
150 5.11 7.31 6.40 6.55
200 5.82 7.24 6.96 7.02
300 7.24 6.84 8.16 7.41
400 8.53 6.69 9.41 7.31
500 10.7 7.00
600 11.1 5.97 11.9 6.71
800 13.4 5.42 14.4 6.03
1000 15.6 5.27 16.9 5.44
1500 22.8 4.35
2000 26.1 3.80 28.4 3.64
4000 45.5 2.47 49.3 2.45
6000 63.5 1.86 68.7 1.88

E, v
(ev)

50 3.50
100 8.00
200 17.8
300 28.1
400 39.2
500 50.5
750 79.8
1000 110
1750 163

2000 233

summarized in Tables | and Il. We evaluated that the accu-
racy of our calculation of the differential elastic scattering
cross section is, for scattering angles higher than 5°, 1-2 %
while that for the total elastic scattering cross section is of
the order of 5-6 %. On the other hand the total cross section
does not feature strongly in multiple-scattering processes: a
systematic study of the first transport elastic scattering cross-
section has shown that the accuracy of our approach is of the
order of 2%22 Taking into account the inaccuracies jrtfie
elastic and inelastic cross-sections evaluatiop,thie ap-

TABLE II. Elastic mean-free path of electrons and positrons inproximations introduced by using the cubic spline interpola-

Cu as a function of energl. Our calculations.

E Ner Nl
(eV) (A) (A)
20 1.56 3.98
25 2.27 4.12
30 2.85 4.24
40 3.66 4.46
50 4.14 4.66
60 4.40 4.84
70 4.53 5.02
80 4.6 5.19
90 4.65 5.35
100 4.69 5.51
150 491 6.21
200 5.22 6.80
250 5.59 7.33
300 5.97 7.81
400 6.75 8.68
500 7.47 9.45
600 8.15 10.2
700 8.78 10.8
800 9.38 11.4
900 9.94 12.0
1000 10.5 12.6
1500 12.9 15.1
2000 15.0 17.4
3000 18.8 21.4
4000 22.3 25.0
5000 25.6 28.5

tions of tabulated data, jiithe stopping power to calculate
the energy losses, and)ithe statistical uncertainty of the
Monte Carlo procedure, we are confident in concluding
that our simulation give results with an accuracy within
5-15 %!° for electron and positron energies higher than
~100 eV. In the case of lower energies, we may anticipate
larger inaccuracies because the evaluation of the cross sec-
tions is less accurate. In particular, in this low-energy regime
(energies lower than 100—200 gthe accuracy of the simu-
lation should be evaluated by directly comparing the results
with the available experimental data because it is well known
that the theoretical evaluation of the relevant cross sections is
still an open problem.

In Table Il we report the mean numberof secondary
electrons emitted per incident positron as evaluated by the
adopted Monte Carlo calculation. These mean numbers have
been calculated by taking into account the whole electron

TABLE IV. Maximum range,R (A), of positrons in CuE, is
the positron primary energy.

E, Mills and Present
(eV) Willson? MC calculation
200 - 95+ 1

500 - 102
1000 - 1813
2000 - 3763
3100 691 7087
4100 1035 10527
5000 1246 1396 10

8Reference 24.



5984 MAURIZIO DAPOR, ANTONIO MIOTELLO, AND DAVIDE ZARI PRB 61
TABLE V. Power index,m, and energy range where, by con- 10000 e T
sidering the calculated differential spectra of the energy distribution N
function of the secondary electrons emitted from a copper target, or 4 [y
a log-log (base 10 scale, we observed a linear trefzbrrelation ‘A.
coefficient,r, ~0.99).E,;, and E .« are the minimum and maxi- 1000 | & E
mum energy of the selected energy range. .
d e j () “rom
Eo m Emin Emax r 100 b i
(eV) (eV) (eV) AA.A\ Son ]
200 2.60 37.7 78.9 0.995 &.‘.. AAj
300 2.42 47.1 130 0.991 10 , L
400 2.23 45.0 156 0.989 10 B (ev 100
500 2.22 48.6 186 0.986 (eV)
600 2.22 53.6 211 0.988 FIG. 2. Energy distribution of the secondary electrons ejected
750 2.19 55.7 253 0.993 from copper stimulated by a positron beam of primary endggy
900 2.06 55.7 219 0.992 =300 eV. A: Overton and Coleman experimental déRef. 4.
1000 1.95 60.7 189 0.993 @®: Present calculation.
1250 1.84 53.6 182 0.993
1500 175 53.6 153 0.987 specified in the same table, of the Monte Carlo simulation of
1750 1.68 53.6 154 0.996 the energy distribution of the secondary electrons ejected
2000 1.59 46.4 146 0.996 from Cu stimulated by positron beam having primary ener-

gies ranging from 200 eV to 2000 eV.
Our results concerning the differential spectra of the en-

cascade, which means that also the secondary electrons prergy distribution function of the secondary electrons emitted

duced by the other secondary electrons are included in thigom a copper target, above the low-energy cascade ‘beak,
calculation. As expected; increases with the positron pri- always show, on a log-logbase 10 scale, a clear linear
mary energy. trend in agreement with both the Sickafus Ig&q. (1)]°~7

In Table IV we report the maximum rang®, of the pos-  and Overton and Colemamxperimental datdin the posi-
itrons in Cu as a function of the positron primary enefgy.  tron primary energy range from 200 eV to 2 KeWhe cal-
When possible we have compared the computed positrosulation of them coefficient of the Sickafus lafEq. (1)] has
range with the experimental values obtained by Mills andoeen performed in the positron primary energy range from
Wilson? The agreement is excellent for energies higher200 eV to 2 keV at different incidence angle without observ-
than 3000 eV. A comparison with the data reported in Fig. Sng any significant dependence on such a parameter. This is
of the quoted paper of Mills and Wilson showing positronin agreement with the experimental resdits. Figs. 2—4 we
transmission through Cu thin films suggests that, also fopresent our calculated energy specftdl points) of the sec-
lower energieg1000 and 2000 el our evaluation olRis  ondary electrons emitted following 300, 1000, and 2000 eV
quite accuratéwithin 10%). positron irradiation of copper, respectively: the comparison

In Fig. 1 we report thel p/ Az ratio, which represents the with the experimental data of Overton and Coleman
calculated number of electrons emitted from the surfaiée  (triangles* show a very good agreement. In Fig. 5, the nu-
vided by the total number of incident positrgnexcited in  merical results fom, as a function of the incident positron
the space intervahz(=0.43 A) around the space coordi- energy, as well as the Overton and Coleman experimental
natez, which emerge from the surface. datd are reported. The incidence angle used in the calcula-

In Table V we report the Sickafus indewr as calculated

by performing a best linear fitting, over the energy range

10000 ——————
0.08 T T T ¢ 1
E, = 200 eV — 1000 | . 4
0.07 EZ = 500 eV ---- ] M ‘e, E
E, = 1000 &V — .
0.06 E, = 2000 eV -+~
) (a.u.) 100 F E
0.05 ilaw) E
A, 1 T
3 (oo - s
10 =
0.03 . ® E
[ ]
0.02 4
l 1
0.01 . 10 ey 1000
0 v (V)

0 5 10 15 20
=(4)

FIG. 1. Depth distributiorAp/Az of the secondary electrons

emitted from the surface.

25

30 FIG. 3. Energy distribution of the secondary electrons ejected

from copper stimulated by a positron beam of primary endfgy
=1000 eV.A: Overton and Coleman experimental dé&Ref. 4.
®: Present calculation.



PRB 61 MONTE CARLO SIMULATION OF POSITRON. .. 5985

10000 — ———— 3.4 : : : :
] 3.2
sk
2.8
2.6

(an) %AA (5) 24 %H}i} :
4

10 b 2 9 b }

1 18 F } I -
1.6 | i
l L 1 1 1 ;
10 100 1000 14

0 500 1000 1500 2000
E (eV) E, (eV)

>
I>.
>
|>.
Do
I—.I—I
1

1000 3

FIG. 4. Energy distribution of the secondary electrons ejected
from copper stimulated by a positron beam of primary endggy
=2000 eV.A: Overton and Coleman experimental dé®ef. 4).
@®: Present calculation.

FIG. 5. Sickafus indexn for secondary electrons ejected from
copper by positrons as a function of the positron primary energy,
E,. A: Overton and Coleman experimental ddRef. 4. @:
Present calculation including numerical errors due to statistical

. . sampling.
tion was 35° with respect to the surface of the sample. The Ping

results show excellent agreement for positrons primary ener-
gies higher than=100 eV. However, when the positron pri- energies exceeding-100 eV, it may givem values not
mary energy is 100 eV or less, there is no agreement betwednuch different from the experimental ones. However this
theory and experiment. We attribute this discrepancy to th@nalytical approach is empirical because it extends Wolff's
fact that the energy loss, in such a low-energy regime, canndbeory over energy region outside the suggested limits of
be regarded as continuous. To describe energy loss in suchvalidity of the same theory.
|0w-energy regime, more appropriate calculations, as that In order to avoid empirical analytical relations, we also
performed with quantum Monte Carlo, are necessary. used a numerical Monte Carlo procedure to make calcula-
Before concluding this section, a comment is appropriatdions in the positron primary energy range between 50 eV
to the qualitative argument reported by Overton andand 2 keV and for different incidence angles with respect to
Colemati to try to justify the higher value ofn when low-  the surface of a copper sample. Many relevant numerical
energy incident positrons are experimentally utilized. In parresults have been obtained and reported, naniglihe elas-
ticular, the authors suggest that this may be due to the fadic mean-free paths of positrons in coppéii) the mean
that secondary electrons are generated at shallower deptAgmber of electrons emitted per positrdii,) the penetration
beneath the surface and that, in this case, the probabilities fétepth of the positrons, an@v) the depths from which the
elastic and inelastic scattering before emerging into vacuurécondary electrons are emitted. Finally, the numerical re-
are quite low. If there are not any energy-loss collisions orfults concerning the secondary electron energy distribution
the way to the exit surface then the theory of Mostuggests are compared with the experimental data recently presented
a secondary electron energy spectrum to have the Borf by Overton and Coleménshowing a general good agree-
Note that the qualitative argument of Ref. 4 is quantitativelyment in a wide range oE values. In particular we have
proved by the numerical results reported in our Fig. 1 wherdjuantitatively explained the experimental data of the energy
it is clearly shown that the emerging secondary electronglistribution of secondary electrons ejected from the surface

come from the first atomic layers beneath the surface. ~ of a copper target irradiated with a positron beam in the
energy range from 200 eV to 2000 eV on the basis of all
VI. CONCLUSION involved energy transfer mechanisms and by the statistics of

the elastic scattering and slowing down of positrons and
In conclusion, we have utilized the analytical Wolff's electrons in solids included in an appropriate Monte Carlo
theory? for secondary electron emission by showing that, forcomputational method.
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