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First-principles computation of the vibrational entropy of ordered and disordered Pd3V
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Experimental as well as theoretical work indicates that the relative stability of the ordered and the disordered
states of a compound may be significantly affected by their difference in vibrational entropy. The origin of this
difference is usually attributed to the fact that disordering reduces the number of stiff bonds between different
atomic species in favor of soft bonds between identical atomic species. The results of previous theoretical
investigations, however, suggest that this simple mechanism is significantly modified as a result of local atomic
relaxations. To gain further insight regarding the importance of relaxations, we employ first-principles calcu-
lations to investigate the magnitude of the vibrational entropy difference between the ordered and the disor-
dered state of Pd3V. Our investigation reveals that bond stiffness changes due to relaxation entirely mask the
large configurational dependence of vibrational entropy provided by bond stiffness differences. Our analysis
also suggests a simple technique to estimate vibrational entropy based on the relationship between bond length
and bond stiffness.
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INTRODUCTION

The calculation of phase diagrams from first principles1,2

has traditionally been made under the assumption that la
vibrations have a negligible impact on phase stability. In
last few years, the validity of this assumption has been
vestigated through numerous experimental3–9 and
theoretical10–21 studies.

The effect of the state of order of an alloy on its vibr
tional entropy is usually attributed to the fact that bon
between different chemical species have a different stiffn
than the bonds between identical species. Changing the
portion of the different types of bonds changes the aver
stiffness of the alloy, resulting in a change of its vibration
entropy. For example, in binary systems with ordering t
dencies, bonds between different atomic species are as
ated with increased stability, which correlates with increa
stiffness. Introducing configurational disorder in an order
system should increase the vibrational entropy, since the
cess reduces the number of stiff bonds between different
cies in favor of soft bonds between identical species.12

This ‘‘bond proportion’’ mechanism has been thorough
investigated in model systems~see, for instance, Refs
22,11,12! and yields the conclusion that the vibrational co
tribution to the alloy entropy is likely to have a large influ
ence on phase stability. However, the results of more ac
rateab initio calculations indicate that this simple picture
often unable to explain the observed dependence of vi
tional entropy on configuration. In the Cu-Au system,20 for
instance, the vibrational entropy of formation of the order
alloys was found to be positive, contrary to expectati
Equally surprising is the fact that the calculated vibratio
entropy change upon disordering the Ni3Al intermetallic
compound19 was found to be remarkably small, despite t
strong ordering tendency of the alloy. Even in semiempiri
calculations where an increase in vibrational entropy up
disordering was observed in Ni3Al,16–18 the change was at
tributed mainly to an overall softening of all bonds rath
PRB 610163-1829/2000/61~9!/5972~7!/$15.00
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than to a decrease in thenumberof stiff bonds relative to the
number of soft ones.

These findings indicate that the effect of the proportion
different types of bonds is competing with other mechanis
which also influence vibrational entropy. A likely candida
is the effect of relaxations: the stiffness of a bond is a fu
tion of its length which, in turn, depends on the local rela
ations that take place in the alloy. Relaxations are likely
reduce the magnitude of vibrational entropy differences
the following reason: When bonds of different lengths a
forced to coexist in an alloy, each type of bond will be u
able to reach its ‘‘ideal’’ length and, on average, short bon
will be forced to elongate while long bonds will be expect
to shorten. Since bond stiffness is typically inversely prop
tional to bond length, the stiff bonds would then be soften
and the soft bonds stiffened. Hence, relaxations tend
dampen large changes in vibrational entropy.

This would indicate that large vibrational entropy diffe
ences are likely to be found in systems where there i
strong bonding strength difference between like and un
bonds and where there is little size mismatch between
atomic species, so that the effect of bond stiffness differen
is not hindered by the effect of relaxations. The Pd-V syst
appears an ideal candidate for two reasons. First, the
mismatch between Pd and V is small: Ourab initio calcula-
tions indicate that the lattice parameters of fcc Pd and of
artificially constrained to be in an fcc structure as well, diff
by only 4%. Second, Pd-V bonds are expected to exhib
stiffness that exceeds the average stiffness of Pd-Pd and
bonds. The latter can be deduced from the character
trend of the bulk modulus of transition metals across
periodic table: Early transition metals are soft because t
bonding orbitals are only partially filled. Stiffness reaches
maximum when the bonding orbitals are full and then d
creases as the antibonding orbitals fill up. Pd and V are
each end of the transition metal section of the periodic ta
and are thus rather soft. When they are alloyed, the ave
number of valence electrons per atom is such that the bo
ing orbitals are closer to their optimal filling, suggesting th
5972 ©2000 The American Physical Society
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the stiffness of a Pd-V bond should be larger than theaver-
agestiffness of Pd-Pd and V-V bonds.~Note that since pure
Pd is significantly stiffer than pure V, a Pd-V bond can s
be softer than a Pd-Pd bond.!

Our investigation reveals that, even in this apparen
relaxation-free system, the large configurational depende
of vibrational entropy provided by bond stiffness differenc
between different type of bonds is entirely masked by rel
ation effects which change the stiffness of a given type
bond. The inability to entirely decouple the effect of bo
stiffness from the effect of bond length leads to the rat
surprising behavior of the vibrational entropy in the Pd
system.

In the remainder of this paper, we will first describe t
methodology used to calculate vibrational entropy in
Pd3V compound in both its ordered and disordered state.
will then present the results of these calculations, describ
the physical origin of this system’s unexpected lattice d
namics. The mechanism we identify is unlikely to be limit
to the Pd-V system and points to an important effect t
needs to be accounted for in order to properly model
configurational dependence of vibrational entropy.

I. METHODOLOGY

In the harmonic approximation, the vibrational entropy
a structure can be obtained from the phonon density
states23 g(n). Above the Debye temperature of the solid, t
high temperature limit is quickly reached and this dep
dence reduces to

Svib523kB@11 ln~kBT!#2kBE
0

`

ln~n!g~n!dn.

Since the first term is structure-independent, it has no ef
on phase stability and will be ignored in the following ana
sis. The high-temperature limit is a good indicator of ho
large the effect of vibrations is likely to be in a given syste
as vibrational entropy reaches its maximum in the high te
perature limit.

The harmonic approximation can be made more reali
by allowing the phonon frequencies to be volume depend
This approach, called the quasiharmonic approximatio23

enables the calculation of thermal expansion as well as
impact on the vibrational entropy. Once the volum
dependence of energyE(V) and vibrational entropySvib(V)
is known, the equilibrium volume at temperatureT is found
by minimizing the free energyF5E(V)2TSvib(V) with re-
spect toV. This technique has been used in previous com
tational investigations of the vibrational entropy.17,19,20

The phonon density of states of an ordered compound
be accurately calculated through a variety of first-princip
methods. Either the linear response technique24,25 or the fit-
ting of a Born-von Ka´rmán spring model to forces obtaine
from ab initio calculations10,26 can be used. In contrast, th
case of a disordered alloy presents numerous difficulties
sociated with large computational requirements. The m
direct way to model the disordered state is to rely on a la
supercell calculation where the occupation of the lattice s
is randomly chosen. Unfortunately, both the linear respo
and the spring constant fitting approaches become impr
cal for very large supercells.
l
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A computationally efficient way to model the disordere
state is to rely on a so-called special quasirandom structu27

~SQS!. A SQS is the periodic structure that best appro
mates the disordered state in a unit cell of a given size.
SQS approach has been used very successfully to ob
electronic and thermodynamic properties of disordered m
terials~see, for example, Ref. 28!. More recently, a SQS ha
been applied to theab initio calculation of vibrational en-
tropy in disordered alloys.19 The accuracy of the SQS ap
proach has also been benchmarked using embedded a
potentials which allow the computation of the vibration
entropy of a large supercell simulating the disordered stat29

A SQS having only 8 atoms in its unit cell was found
already provide a good approximation of the disorde
state.

The quality of a SQS is described by the range with
which the statistical correlations between the occupation
different lattice sites mimics the ones of the disordered st
These correlations are defined as follows: Spinlike variab
are assigned to each site of the lattice (21 for Pd and11
for V!. The correlation associated with a given cluster
sites ~e.g., a pair of neighboring sites! is then obtained by
taking the product of the spins of each site of this cluster a
by averaging this quantity over all clusters which are equi
lent by the symmetry of the parent lattice. For an fcc latt
at concentration 3/4, the eight-atom SQS shown in Fig. 1~a!
is able to reproduce the nearest-neighbor pair correlation
the disordered state exactly. Other longer range and m
body statistical correlations are approximately reproduced
shown in Table I. To estimate the magnitude of the err
introduced by the approximation of these other correlatio
we have computed the vibrational entropy of theL12 struc-
ture which has the same nearest-neighbor correlation as
equilibrium DO22 ordered structure, but different longe
range and multi-body correlations. The vibrational entro
of theL12 and theDO22 structures differ by 0.08kB , but the
difference between the eight-atom SQS and the true di
dered state is expected to be only half as much, since t
longer range and multibody correlations are more similar
shown in Table I.

The large computational requirements of the linear
sponse technique limits its use to very symmetric small-c
structures. We therefore rely instead on the fitting of spr
constants toab initio calculations of the forces acting on th

FIG. 1. ~a! Eight-atom SQS used to model the disordered sta
~Primitive unit cell shown.! ~b! Constraints on bond lengths orig
nating from the symmetry of the orderedDO22 structure.~Conven-
tional cell shown.! Bonds represented by identical line styles ha
identical lengths.
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5974 PRB 61A. VAN DE WALLE AND G. CEDER
atoms when they are perturbed away from their equilibri
positions. Ourab initio calculations are performed within th
local density approximation~LDA ! using theVASP ~Refs.
30,31! package which implements ultrasoft32

pseudopotentials.33 To ensure that the errors in the calculat
forces do not introduce errors in the vibrational entropies t
exceed 0.02kB , the following parameters were used. T
number ofk points in the first Brillouin zone is chosen to b
approximately (14)3 divided by the number of atoms in th
unit cell. A high energy cutoff of 365 eV is used to acc
rately determine the equilibrium cell shapes, while a cut
of 211 eV is sufficient for our purposes to obtain accur
forces.

The precision of the spring constant fitting technique c
be controlled by gradually including longer-ranged spri
interactions until the value of vibrational entropy converg
While the absolute value of the vibrational entropy co
verges slowly with respect to the range of interaction in
Pd-V system, vibrational entropy differences converge m
rapidly. As shown in Table II, the vibrational entropy diffe
ence between theL12 and theDO22 structures is essentiall
independent of the range of interactions included. A near
neighbor model appears able to model vibrational entr
differences with a precision of about 0.02kB , whereas typi-
cal vibrational entropy differences are of the order of 0.1kB .
We exploit this fact to describe the disordered state, wh
longer ranged interactions would be prohibitive to calcula
using nearest-neighbor spring constants only. Note that
to the low symmetry of the SQS, a nearest-neighbor mo
still involves the evaluation of 50 distinct parameters in t
spring tensors.

The use of such a short range of interactions is not
usual: It has been observed10 that even though a long-rang
spring model is required to model all the features of

TABLE I. Correlations of the structures used.pn denotes the
nth nearest neighbor correlation whilet lmn denotes a triplet made o
overlappingpl , pm , andpn pairs.

Structure p1 p2 t111 t112 t113 t114

L12 0 1 1/2 -1/2 1/2 -1/2
DO22 0 2/3 1/2 -1/6 1/6 1/6
SQS-8 1/4 1/3 -1/4 0 -1/12 -1/6
Random 1/4 1/4 -1/8 -1/8 -1/8 -1/8

TABLE II. Vibrational entropy ~in kB) as a function of the
interaction range included in the spring model. Range is expre
as the number of nearest neighbor shells. Only stretching and b
ing terms are included for the column labeled 1~sb! while the col-
umn 1~len! presents the results of a model where bond stiffnes
allowed to depend on bond length only~see text!.

Structure 1~len! 1~sb! 1 2 3

L12 -4.39 -4.40 -4.39 -4.44 -4.48
DO22 -4.42 -4.48 -4.47 -4.53 -4.58
SQS-8 -4.56 -4.53 -4.54

L122DO22 0.03 0.08 0.08 0.08 0.10
SQS-82DO22 -0.14 -0.05 -0.07
t
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phonon DOS, an integrated quantity such as the vibratio
entropy converges much faster with respect to the rang
interaction included. It is important to note that once conv
gence with respect to interaction range is reached, this
proach should be just as reliable as the linear respo
method, since both methods rely on the same assumptio
harmonicity. The fact that short-range interactions are su
cient to reach a high accuracy favors the use of a Born-
Kármán model and enables the evaluation of the vibratio
entropy of an eight-atom SQS at a reasonable computati
cost.

It is possible that this rapid convergence of vibration
entropy differences is fortuitous and unique to theL12 and
DO22 structures. In this case, the speed of convergence
the absolute vibrational entropies, rather than their diff
ences, should be used as a measure of precision. Altho
this pessimistic estimate is of the order of 0.1kB , our results
will remain conclusive in the presence of an error of th
magnitude.

II. RESULTS

Our main result is that the calculated vibrational entro
of the disordered state is 0.07kB lower than the one of the
ordered state (DO22 structure!, contrary to expectation~see
Table II!. Using even the most pessimistic estimate of t
precision of our approach (0.1kB), the vibrational entropy
change upon disordering is no larger than 0.03kB , which is
small compared to typical vibrational entropy chang
which are of the order of 0.1kB . A relaxation-free ordering
system with a strong ordering tendency would be expecte
yield among the largest vibrational entropy increase up
disordering.

A quasiharmonic treatment enables the evaluation of
temperature dependence of this entropy difference. While
temperature dependence of the vibrational entropy is larg
both the ordered and the disordered state~see Table III!, they
are almost identical and have little impact on phase stabi
This identity is remarkable: the ordered and disordered m
terials have a different bulk modulus and a different Gru¨n-
eisen parameter~see Table III!, but these two differences
offset one another. Interestingly, the same cancellation
observed in our investigation of the order-disorder transit
of Ni3Al.19 In the discussion which follows, we can thus u
the vibrational entropy change calculated in the hig
temperature limit at the equilibrium lattice constant at 0 K
a reliable approximation of the vibrational entropy change
any temperature above the Debye temperature.

ed
d-

is

TABLE III. Calculated properties of the ordered (DO22) and the
disordered state~approximated by an 8 atom SQS!. Bulk modulus
and volume are given at 0 K while the other quantities are th
high-temperature limiting values.

Quantity Units DO22 SQS-8

Bulk modulus GPa 215 191
Atomic volume Å3/atom 13.808 13.89
Average Gru¨neisen parameter 2.41 2.2
Linear thermal expansion coef. 1026 K21 11.2 11.6
Temperature dependence ofSv ib 1026kB /~K atom! 243 234



o
ta
he
e
o

e
Th
s
th

or
a

o
ce
t
vi-
ro
u

ng
s
t

h
n
joi
m
lti
s,

p

m
m
na

-
es
a
p

sy
ue

cc

ea
e
sh
re

ple
m.
t to
the
f a
ve

ond
tal
le-
lso
hen
h of
ge
rfect
are
s
d-Pd

-
oint
res
nt

v-
and
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Another unexpected finding is that the bulk modulus
the disordered state is smaller than that of the ordered s
which is in apparent contradiction with our claim that t
disordered state is ‘‘stiffer’’ than the ordered state. Howev
one must keep in mind that vibrational entropy depends
the average stiffness ofall possible vibrational modes, whil
bulk modulus measures the stiffness of only one mode.
Pd-V system thus provides an example where estimate
the vibrational entropy based on bulk modulus, such as
Debye-Gru¨neisen model,34 can be misleading.

III. DISCUSSION

The fact that the vibrational entropy change upon dis
dering does not have the sign that one would expect for
ordering system merits further analysis. This section dem
strates that the origin of this surprising result can be tra
back to the effect of local relaxations. We first presen
simple model that allows us to isolate the origin of the
brational entropy differences in this system. We then int
duce a precise mechanism that is able to explain our res
before proceeding to show that this particular mechanism
indeed at work in Pd3V.

Consider a simplified spring model obtained by includi
only stretching and bending terms in the first neare
neighbor spring tensors. These terms can be read from
diagonal elements of the spring tensor associated wit
given pair of atoms, when this tensor is represented i
Cartesian basis with one axis aligned along the segment
ing the two atoms in question. In addition, the bending ter
are constrained to be orientation independent. The resu
tensor contains only two independent spring constant
stretching terms and a bending termb:

S 2s 0 0

0 2b 0

0 0 2b
D .

The error introduced by this approximation~relative to using
the full first nearest-neighbor tensor! never exceeds 0.01kB
for all fcc structures tested@see Table II, columns 1~sb! and
1#. In these calculations, the simplified spring model is a
plied to the fully relaxed geometries, as determined fromab
initio calculations. Note that keeping only stretching ter
would be an oversimplification, as it can result in errors co
parable in magnitude to the typical values of the vibratio
entropy of formation (60.2kB). These errors are nonsystem
atic and do not cancel out when taking entropy differenc

This simple spring model is useful from a conceptu
point of view, as it lets us compare the stiffness a given ty
of bonds~e.g., Pd-Pd, V-V, or Pd-V! in different structures:
the spring tensors have the same form regardless of the
metry of the bonds’ environment. Figure 2 shows the val
of the stretching~s! and bending~b! terms of the spring
tensor of bonds of various lengths taken from a set of f
based structures (L12 ,DO22,SQS28, fcc Pd, and fcc V,
each taken at two different volumes!. Bond stiffness corre-
lates reasonably well with bond length, as seen by the l
squares fit shown in Fig. 2. Bond stiffness typically d
creases with bond length. The fact that the same relation
between bond stiffness and length holds throughout diffe
f
te,
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structures is an important feature that will lead us to a sim
mechanism explaining our results for the Pd-V syste
While both the stretching and bending terms are importan
consider for quantitative purposes, the magnitude of
stretching term only provides a convenient measure o
bond’s stiffness for the purpose of the following qualitati
discussion.

We argued earlier that a Pd-V bond resembles a b
between two elements of the middle of the transition me
series, which typically have a larger stiffness. However, e
ments of the middle of the transition metal series are a
characterized by smaller lattice constants. One would t
expect Pd-V bonds to be shorter than the average lengt
V-V and Pd-Pd bonds. As shown in Table IV, the avera
bond length and stiffness in the disordered state are in pe
agreement with this picture. Note that, while Pd-V bonds
stiffer than theaveragestiffness of Pd-Pd and V-V bonds, a
expected, Pd-V bonds are nevertheless softer than P
bonds.

FIG. 2. Stretching~s! and bending~b! terms of the nearest
neighbor spring tensor as a function of bond length. Each p
corresponds to one type of bond in one of a set of fcc structu
(L12 , DO22, SQS-8, fcc Pd, and fcc V, each taken at two differe
volumes!.

TABLE IV. Average bond length and bond stiffness~along the
stretching direction! in the disordered state. The row labeled ‘‘a
erage’’ reports the arithmetic average of the length of Pd-Pd
V-V bonds and the geometric average of their stiffness.

Bond Length~Å! Stiffness (eV/Å2)

Pd-Pd 2.743 3.06
V-V 2.763 0.69
Average 2.753 1.45
Pd-V 2.628 2.21
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The situation is quite different in the ordered state:
high symmetry of the structure constrains the Pd-V bond
have the same length as the Pd-Pd bonds@see Fig. 1~b!#. The
average bond length tends to be much closer to the Pd
‘‘ideal’’ length than to the Pd-V ‘‘ideal’’ length becaus
Pd-Pd bonds are stiffer than Pd-V bonds. The result is
ordered alloy where Pd-V bonds are significantly longer th
they would be in the absence of symmetry constraints w
the Pd-Pd bond lengths are only slightly affected. Pd
bonds are therefore unusually soft in the ordered state, w
the stiffness of Pd-Pd bonds is nearly unaffected. This te
to makes the ordered state softer and is responsible fo
higher vibrational entropy. The average bond length a
stiffness in the ordered state shown in Table V support
interpretation.

The fact that disordering shortens the Pd-V bond wh
leaving the Pd-Pd bonds mostly unchanged on average
be seen from the histogram of the bond length distribut
~Fig. 3!. The impact of these bond length changes on st
ness is best illustrated by plotting the change in average b
length and stiffness upon disordering, as illustrated in Fig
The dramatic stiffening of the Pd-V bonds and the slig
softening of the Pd-Pd bonds in the disordered state, rela
to the ordered state, is clearly visible.

Static displacements of this magnitude should be vis
in diffuse scattering measurements. Such measurements
been performed in Pd3V ~Ref. 35! and in a related system
Pt3V ~Ref. 36!. One of the authors of Ref. 35~Ducastelle!
has indicated to us that the more precise measurements
on Pt3V should give us a reliable upper bound on the ma
nitude of the static displacements in disordered Pd3V, where
the determination of the static displacements was less
cise. We will thus compare our results with the Pt3V mea-
surements only.

As the scattering factor of V is much smaller than the o
of Pt, it is difficult to measure shifts in the Pt-V and V-
bond lengths. Unfortunately, these are precisely the bo
we predict to be the most affected by disordering. The
perimental nearest neighbor average Pt-Pt bond length

FIG. 3. Bond length distribution.

TABLE V. Average bond length and bond stiffness~along the
stretching direction! in the ordered state.

Bond Length~Å! Stiffness (eV/Å2)

V-Pd 2.693 0.61
Pd-Pd 2.693 3.44
e
to
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is reported to be 0.3% of the lattice parameter, which
somewhat smaller than ours~1.2% of the lattice parameter!.
This discrepancy can be easily explained by the fact that
model disordered Pd3V as a perfectly disordered materia
while disordered Pd3V actually exhibits short-range orde
Fully disordered Pd3V is naturally expected to exhibit large
relaxations. Note that the presence of short-range order d
not invalidate our discussion. In the presence of short-ra
order, both the traditional ‘‘bond proportion’’ mechanis
and the effect of relaxations will decrease in importance,
they would still give rise to competing and comparable co
tributions to the vibrational entropy change, which is o
main observation. As such, existing experimental obser
tions do not contradict our findings. Unfortunately, the mo
salient feature of our predicted static displacements,
shortening of Pd-V bonds, has not yet been confirmed
perimentally.

Perhaps the easiest way to separate the effect of
‘‘bond proportion’’ mechanism from the effect of relaxation
is to construct a model system where bonds always have
opportunity to reach their ‘‘ideal’’ length, regardless of th
symmetry of their local environment. The average stretch
and bending force constants obtained in the disordered s
listed in Table IV, are used as an approximation to t
‘‘true’’ force constants that would be expected in the abse
of symmetry constraints. These force constants are use
calculate the vibrational entropy for both the orderedDO22
and SQS-8 structures. The vibrational entropy change u
disordering then becomes 0.26kB , which is large and posi-
tive, as expected when the ‘‘bond proportion’’ mechanis
operates alone. The large configurational dependence o
brational entropy provided by the ‘‘bond proportion
mechanism is thus entirely masked by relaxation effects
yield vibrational entropy difference of20.07kB .

While the above model system is useful for illustrati
purposes, we have to verify that the difference betwe
0.26kB and 20.07kB can really entirely be attributed to th
effect of relaxations. For instance, this difference includ
the error introduced by replacing each bond’s force consta
by average force constants. Vibrational entropy is not a
ear function of the force constants, and averaging the la
could bias the former. Moreover, bond stiffness could va
for reasons other than bond length change: for example,
local charge density in the neighborhood of a given bo
could vary. For these reasons, we now introduce a mo

FIG. 4. Shift in average bond stiffness~along the stretching
direction! and bond length upon disordering. The fitted line of F
2 is shown for reference.



nt
n

ai
t

as

he
e.
er

gt
r

d

m
on
e
n
a

try
nd
bu
h
n
p

ili

al
he

at
-V
v

an
ra

ie
ar
n
ta
-V
r
ta
to
re

t
o
e
vi
all
,
at
en

re-
ults
role
ys-

and
in

tem
em,
or-

the
ed

bor
opy
me

la-
i-
ms
u-

ro-
m-
ous
nce
re-
ra-
ms
ter
er

le’’
vi-
ut

iff-
hip
cal
sily
om
al
ed
n

sen-
in
de
er-

gy,
E-
ort
ncil
ro-
e.

PRB 61 5977FIRST-PRINCIPLES COMPUTATION OF THE . . .
system which~1! does not rely on averaged force consta
and~2! only accounts for bond stiffness change due to bo
length changes.

To show that the effect of relaxations alone can expl
our results, we replace the true stiffness of each bond by
one predicted from bond length through a simple le
squares fit~shown in Fig. 2!. While this simplified model
exhibits a limited accuracy@see column 1~len! of Table II#, it
is clearly able to predict that the vibrational entropy of t
disordered state is lower than the one of the ordered stat
the simplified model, a bond’s stiffness is uniquely det
mined by its type~Pd-Pd, Pd-V, or V-V! and its length.
Variations in bond stiffness that are not due to bond len
are ignored, leaving only relaxations as the possible sou
of the higher stiffness of the disordered state.

It is worth noting that our suggestion of defining bon
characteristics that are transferable~i.e., applicable to differ-
ent structures! bears some resemblance to an earlier atte
to define transferable ‘‘configuration averaged force c
stants’’ ~CA FC!.37 However, our approach differs in thre
important respects. First, we keep only stretching and be
ing terms in the spring tensors, thus avoiding the incomp
ibilities in the form of the spring tensor when the symme
environment of a bond differs in distinct structures. Seco
we do not try to define a universal bond-specific stiffness
instead define a universal stiffness versus length relations
The stiffness of a bond is thus allowed to vary in differe
structures when its length varies. Finally, we do not attem
to define force constants that also predict the correct equ
rium geometry of a structure. In a typicalab initio phase
diagram calculation, the exact equilibrium geometry is
ready known, as it is a by-product of the calculation of t
energy of a given structure.

IV. CONCLUSION

The ordering tendency of the Pd-V system would indic
that Pd-V bonds should be stiff relative to Pd-Pd and V
bonds. Based on this observation, one would expect the
brational entropy change upon disordering to be large
positive. Instead, our calculations indicate a negative vib
tional entropy change. The origin of this surprising result l
in the fact that the Pd-V bonds are stiffer only when they
allowed to relax to their short ‘‘ideal’’ length, which ca
happen in the disordered state but not in the ordered s
due to symmetry constraints. The stiffening of the Pd
bonds in the disordered state more than compensates fo
fact that there are less Pd-V bonds in the disordered s
The larger stiffness of the disordered state translates in
vibrational entropy that is lower than the one of the orde
state. We prove that this mechanism indeed determines
observed sign of the vibrational entropy change upon dis
dering through two model systems. In one system, we
tirely remove the effect of relaxations and find that the
brational entropy change now has the positive sign typic
expected in a ordering system. In a second model system
only include bond stiffness changes that can be associ
with bond length changes and find that the vibrational
s
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tropy decreases upon disordering, in agreement with the
sults of our more accurate calculations. These two res
unambiguously show that relaxations play an essential
in determining vibrational entropy changes in the Pd-V s
tem.

Bond stiffness and bond length are strongly correlated
predictions regarding the magnitude of vibrational effects
a given system must take this into account, even in a sys
characterized by small size mismatch. In the Pd-V syst
accurately modeling local relaxations appears more imp
tant that taking into account long-range interactions in
Born-von Kármán spring model, a feature that we observ
in our previous investigation of the Ni-Al system19 as well.

Bending and stretching terms of the nearest-neigh
spring tensors already provide accurate vibrational entr
differences in the Pd-V system. Interestingly, using the sa
simplified models to fit the results of our previous calcu
tions on the Ni-Al system,19 achieves a comparable prec
sion. If further investigations indicate that many syste
share this characteristic, this will open the way for a comp
tationally inexpensive method to estimate vibrational ent
pies. Indeed, for low symmetry structures, most of the co
putational burden arises from the evaluation of the numer
off-diagonal elements of the spring tensors. The importa
of relaxation also suggests that efforts to obtain a more p
cise description of the configurational dependence of vib
tional entropy for the purpose of calculating phase diagra
should be aimed at including more terms in the clus
expansion38 of vibrational entropy rather than using long
ranged spring models.

Our results also suggest a way to construct ‘‘transferab
force constants that would enable the calculation of the
brational entropy of a large number of structures witho
having to recalculate force constants fromab initio calcula-
tions for each of them. Our results show that, while the st
ness of a bond is unlikely to be transferable, the relations
between stiffness and length for a given type of chemi
bondis transferable. Such transferable relationship can ea
be determined by a fit to the force constants calculated fr
first-principles in a small set of structures. The vibration
entropy of any other structure could then be determin
solely from the knowledge of its equilibrium geometry, a
information that is already a by-product of anyab initio
phase diagram calculation. This approach captures the es
tial physics determining vibrational entropy differences
alloys and presents an extremely promising way to inclu
vibrational effects in phase diagram calculations at a mod
ate computational cost.
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