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Bose glass scaling for superconducting vortex arrays revisited
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Lidmar and Wallin have recently pointed out that Bose glass scaling theory predicts a linear cusp in the
phase boundary of vortex matter with correlated disorder as a function temperature of temperature and per-
pendicular magnetic field. Here, we collect a number of consequences of this observation for physical quan-
tities near the Bose glass transition.
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In an interesting recent paper, Lidmar and Wallin1 have
pointed out that a consistent theory of the angular sca
associated with Bose-glass superconductors requires ca
attention to the distinction between the magneticfield (B')
and magneticinduction (H') in the direction perpendicula
to the correlated disorder~typically a mosaic of twin bound-
aries or parallel columnar pins!. While their observation doe
not change the prediction of a sharp cusp near the Bose g
critical point in the phase diagram as a function ofT and
H' , it does change certain details of the scaling predicti
derived in Ref. 2. In particular, Lidmar and Wallin find th
the predicted cube root cusp in the critical temperature a
function of angle is replaced by a linear one for very sm
angles, and present numerical evidence in favor of
prediction.1 A number of experiments which begin to te
various predictions of Bose glass scaling theory have n
been carried out.3–6 As an aid to future experiments,7 we
summarize here the changes in the scaling prediction
Ref. 2 necessitated by the observation of Lidmar and Wa
We also point out related changes in the predictions of R
8 and 9.

The Bose glass transition at temperatureTBG in type-II
superconductors with parallel columnar defects~or a mosaic
of twin boundaries! in an external fieldH in the z direction
aligned with the correlated disorder is characterized b
diverging length scale perpendicular to the correlated dis
der,

l'~T!;
1

uT2TBGun'
. ~1!

Scaling arguments adapted from treatments of the Bose g
transition in helium films on disordered substrates10 lead to
the prediction2

l i~T!5
Tn0

2

c11
l'
2 ~T!. ~2!

wheren0 is the vortex line density~if f0 is the flux quantum,
n05Bz /f0), c11 is the vortex bulk modulus and we have s
kB51.

A simple derivation of this important relation results fro
the quantum mechanical mapping of Ref. 2. We note that
z axis ~i.e., fictitious time! evolution of the coherent statesc
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is given by the Schro¨dinger termTc* ]zc;T/ l il'
2 , since the

localization radius for a coherent state isl'@*d2r uc(r )u2

5const#. At the same time the contribution from the vorte
repulsion isv0ucu4;v0 / l'

4 , wherev0 represents the vortex
repulsion constant. Balancing these two contributions to
Bose coherent state action and taking into account that
the model with the only core vortex repulsion we havec11

5v0n0
2;v0ucu4, one arrives immediately at Eq.~2!.

As a result of Eq.~2!, l i(T); l'
2 (T) if, as expected,c11

remains finite at the Bose glass transition. The time scale
relaxation of a typical fluctuation with dimensionsl'3 l'
3 l i is assumed to diverge with an undetermined exponez
according to

t~T!; l'
z ~T!, ~3!

similar to a scaling ansatz proposed earlier for a poss
‘‘vortex glass’’ transition mediated by point disorder.11

Dynamical predictions for transport experiments with cu
rentsJ' perpendicular to the disorder follow from a scalin
ansatz of the form

E'l'
11z5F6~ l'

3 J' ,l'
x H'!, ~4!

whereE' is the electric field perpendicular to the colum
and different scaling functionsF6(x,y) are required above
and belowTBG. Simple physical arguments2 fix all powers
of the fundamental lengthl'(T) except the powerx which
appears in combination withH' . Although one might have
thought thatH' should be multiplied byl i(T) l'(T) ~and
hencex53), Lidmar and Wallin show that in factx51.
Their argument can be viewed as a consequence of the
of the diverging tilt modulus derived in Ref. 2. Let us sta
with the standard renormalization group homogene
relation12 with scale factorb for the free energy density
F(t,H') of the three-dimensional vortex array, as a functi
of the reduced temperaturet5(T2TBG)/TBG andH' ,

F~ t,H'!5b24F~b1/n't,bxH'!. ~5!

The scaling exponentx which accompaniesH' should be the
same as that appearing in Eq.~4!. The prefactorb24 arises
because the free energy density scales as the inverse ch
teristic volume which in this case isl'

2 l i ~there are two di-
5917 ©2000 The American Physical Society



d

nt

u
a

e

e

an
o

is-

nt
ta-

field

yed
on

n
t

tion,

ver

as

rris
ould
w

o
nal
nd
ngi-
he
on-

5918 PRB 61BRIEF REPORTS
mensions transverse to the disorder of orderl'
2 , and one is

parallel to it of orderl i; l'
2 ). After differentiating this ex-

pression twice with respect toH'(c44
21}]2F/]H'

2 ), we ob-
tain a scaling law for the tilt modulusc44(t,H'), namely,

c44~ t,H'!5b422xc44~b1/n't,bxH'!. ~6!

After settingH'50 and choosing the scale factorb so that
b1/n't51, we see that the singular behavior ofc44 is

c44~T!; l'
422x . ~7!

As discussed in Ref. 2,c44(T) is expected todivergeat the
Bose glass transition according to

c44~T!5Tn0
2l i~T!5

~Tn0
2!2

c11
l'
2 ~T! ~8!

and, upon comparing Eqs.~7! and ~8!, we see thatx51.
After inserting various factors to make the arguments

mensionless, Eq.~4! becomes

E'l'
11z;F6~ l il'J'f0 /cT,l'H'f0/4pT!. ~9!

The first argument is a ratio of the work done by the Lore
force associated with currentJ' to move a lengthl i of flux
line a distancel' to the thermal energy. The second arg
ment follows by starting with the natural dimensionless sc
ing combination B'l'l i /f0 , setting B''(]B' /]H')H'

and using2

S ]B'

]H'
D5

f0
2n0

2

4pc44
~10!

together with Eq.~8!.13 The analogous scaling form for th
longitudinal electric fieldEi , considered in Ref. 8, is

Eil il'
z ;G6~ l'

2 Jif0 /cT,l'H'f0/4pT!. ~11!

Various theoretical predictions now follow from thes
scaling laws. The results presented forH'50 in Refs. 2 and
8 are unchanged. However, as pointed out by Lidmar
Wallin, the cusped phase boundary for separating the B
glass from the entangled flux liquid now takes the form1

H'
c ~T!;6~TBG2T!n', ~12!

where it is expected thatn'51.10 The linear resistivity per-
pendicular to the columnsr' vanishes for smallH' like

r'~T5TBG,H'!;~H'!z22 ~13!

and obeys more generally the scaling form

r'~ t,u!5utun'~z22! f 6~u/utun'!

'r0utun'~z22!@11Au2utu22n'#, ~14!
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where the last line requiresu!utun'. Hereu'H' /Hz!1 is
the tilt angle away from the direction of the correlated d
order and the last line applies forT.TBG. The correspond-
ing results8 for the longitudinal resistivityr i ~parallel to the
columns! are modified to

r i~T5TBG,H'!;uH'uz, ~15!

while the more general scaling form is

r i~ t,u!5utun'zg6~u/utun'!. ~16!

The Lidmar and Wallin observation also has importa
implications for a Harris criterion type argument for the s
bility of the Bose glass phase tosplayedcolumnar defects.9

Random splay acts like a random transverse magnetic
H' , whose order of magnitude is given byu rmsHz , where
u rms is the root-mean-square tipping angle of a set of spla
columnar pins. Assume for simplicity a Gaussian distributi
of tipping angles with varianceD for a set of columnar pins
with average spacingd in a plane perpendicular to the mea
column directionẑ. In a ellipsoidal correlation volume jus
below TBG, we haveu rms;D/ANc, where the number of
columnar defects piercing that volume is

Nc'
l'
2

d2 1
l'l i

d2 D.

The second term dominates near the Bose glass transi
and9

u rms;D1/2d/~ l'l i!
1/2;utu3n'/2.

Evidently the root-mean-square tipping angle averaged o
a correlation volume vanishesfaster than the angleuc(t),
which defines the limit of the transverse Meissner effect
T→TBG. Indeed, we have from Eq.~12!, that

uc~ t !;
H'

c ~T!

Hz
;utun'. ~17!

Thus, contrary to the conclusion reached in Ref. 9, the Ha
criterion argument suggests that the Bose glass phase sh
be stable to a small amount of splay disorder just belo
TBG.
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1

2
~11n!H'5H'a ,
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