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Bose glass scaling for superconducting vortex arrays revisited
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Lidmar and Wallin have recently pointed out that Bose glass scaling theory predicts a linear cusp in the
phase boundary of vortex matter with correlated disorder as a function temperature of temperature and per-
pendicular magnetic field. Here, we collect a number of consequences of this observation for physical quan-
tities near the Bose glass transition.

In an interesting recent paper, Lidmar and Wdlliiave s given by the Schidinger termT ¢* 3,4~ T/1,12, since the
pointed out that a consistent theory of the angular scalingocalization radius for a coherent state lig [ d?r|(r)|?
associated with Bose-glass superconductors requires carefelconsy. At the same time the contribution from the vortex
attention to the distinction between the magnéigétd (B,)  repulsion isvo|#|*~vo/1%, wherev, represents the vortex
and magnetiénduction(H_) in the direction perpendicular repulsion constant. Balancing these two contributions to the
to the correlated disordétypically a mosaic of twin bound- Bose coherent state action and taking into account that for
aries or parallel columnar pins/hile their observation does the model with the only core vortex repulsion we haye
not change the prediction of a sharp cusp near the Bose glas_svong~vo| #|*, one arrives immediately at E¢Q).
criticgl point in the phasg diagrgm as a func_tionTofar_ld. As a result of Eq(2), |\|(T)~|f(T) if, as expectedgy,

H, , it does change certain details of the scaling prediction$emains finite at the Bose glass transition. The time scale for
derived in Ref. 2. In particular, Lidmar and Wallin find that .o ovation of a typical fluctuation with dimensiohsx1,

the predlcted cub_e root cusp In the_ critical temperature as 9<IH is assumed to diverge with an undetermined expoment
function of angle is replaced by a linear one for very Sma”according to

angles, and present numerical evidence in favor of this

prediction’ A number of experiments which begin to test HT)~I1%(T), 3)
various predictions of Bose glass scaling theory have now

been carried out:® As an aid to future experimenfswe  similar to a scaling ansatz proposed earlier for a possible
summarize here the changes in the scaling predictions dvortex glass” transition mediated by point disorder.

Ref. 2 necessitated by the observation of Lidmar and Wallin. Dynamical predictions for transport experiments with cur-
We also point out related changes in the predictions of RefgentsJ, perpendicular to the disorder follow from a scaling

8 and 9. ansatz of the form
The Bose glass transition at temperatdig; in type-ll 1is 3 .
superconductors with parallel columnar defe@isa mosaic EN =FL(173,1THL), (4)

g}(i;\;wend bv(\)/il'iﬂdt?wréeigrrzrllateexc}ea?;;rftljeel:j_:slnc;gigc?gr?zcetzlgnby 6\l/vhere £, is the electric field perpendicular to the columns
i . : -2 and different scaling function$..(x,y) are required above
iverging length scale perpendicular to the correlated disor- . . :
der and belowTgg. Simple physical argumeritsix all powers
' of the fundamental length, (T) except the powek which
appears in combination witH , . Although one might have
(1)  thought thatH, should be multiplied byl (T)I, (T) (and
hencex=3), Lidmar and Wallin show that in fact=1.
Scaling arguments adapted from treatments of the Bose gla3heir argument can be viewed as a consequence of the form
transition in helium films on disordered substratdsad to  of the diverging tilt modulus derived in Ref. 2. Let us start
the predictioR with the standard renormalization group homogeneity

relation? with scale factorb for the free energy density

T T

2

1,(T)= ﬂﬂm @) F(t,H,) of the three-dimensional vortex array, as a function
| cyy of the reduced temperatutes (T— Tgg)/Tgg andH, ,
whereny is the vortex line densityif ¢, is the flux quantum, F(t,H,)=b *F(bY"t,b*H,). (5)
no=B,/¢y), 1, is the vortex bulk modulus and we have set
kg=1. The scaling exponentwhich accompaniell, should be the

A simple derivation of this important relation results from same as that appearing in E¢). The prefactob™* arises
the quantum mechanical mapping of Ref. 2. We note that thbecause the free energy density scales as the inverse charac-
z axis (i.e., fictitious time evolution of the coherent statgs teristic volume which in this case I¢1, (there are two di-
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mensions transverse to the disorder of orderand one is
parallel to it of orderl,~12). After differentiating this ex-
pression twice with respect td , (¢« d*F/9H?), we ob-
tain a scaling law for the tilt modulus,,(t,H ), namely,

Cag(t,H, ) =b* 2Xcyy(bMrt,b™H ). (6)

After settingH, =0 and choosing the scale factorso that
b”:t=1, we see that the singular behavioraf, is

C44(T)~|17 2 . (7)

As discussed in Ref. Z;,4(T) is expected talivergeat the
Bose glass transition according to

(Tn3)?
11
and, upon comparing Eqé7) and (8), we see thak=1.

Cad T =Tl (T)= 12(T) 8
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where the last line require®<|t|*:. Here9~H, /H,<1 is
the tilt angle away from the direction of the correlated dis-
order and the last line applies for>Tgg. The correspond-
ing resulté for the longitudinal resistivity, (parallel to the
columng are modified to

pH(T:TBG:HL)N|HL|Zr (15
while the more general scaling form is
pi(t,0)=t|"-*g.(or]t]™). (16)

The Lidmar and Wallin observation also has important
implications for a Harris criterion type argument for the sta-
bility of the Bose glass phase splayedcolumnar defect8.
Random splay acts like a random transverse magnetic field
H, , whose order of magnitude is given I8y, H,, where
0,ms 1S the root-mean-square tipping angle of a set of splayed

After inserting various factors to make the arguments di-columnar pins. Assume for simplicity a Gaussian distribution

mensionless, Eq4) becomes

ENTI~Fo (113, dolcT,I H, ¢poldnT). (9)

of tipping angles with varianca for a set of columnar pins
with average spacind in a plane perpendicular to the mean
column directionz. In a ellipsoidal correlation volume just

The first argument is a ratio of the work done by the LorentzZbelow Tgg, we have f,,s~A/\N¢, where the number of

force associated with curredt to move a length of flux

line a distancd; to the thermal energy. The second argu-
ment follows by starting with the natural dimensionless scal-

ing combinationB, | 1,/¢y, settingB,~(dB, /oH )H,
and using

(aBl)_ b5 19

&HL B 4’7TC44

together with Eq(8).1® The analogous scaling form for the

longitudinal electric field,, considered in Ref. 8, is

ENNE~GL(173,¢o/CT I H, poldmT). (11

Various theoretical predictions now follow from these

scaling laws. The results presented foy=0 in Refs. 2 and

8 are unchanged. However, as pointed out by Lidmar and
Wallin, the cusped phase boundary for separating the Bose

glass from the entangled flux liquid now takes the form
(12)

where it is expected that, =1.1° The linear resistivity per-
pendicular to the columng, vanishes for smalH, like

HE(T)~ = (Tge—T)™,

p (T=Tgg,H,)~(H,)*? (13
and obeys more generally the scaling form
po(t,0)=t|"- =2 (o/[t]")
~polt] " *P[1+ At 2], (14)

columnar defects piercing that volume is

121
Ncmaz‘f‘gz— .

The second term dominates near the Bose glass transition,

and
Orms™ Al/zd/(ll I H) Ve |t|3VL/2-

Evidently the root-mean-square tipping angle averaged over
a correlation volume vanishdaster than the angled (t),
which defines the limit of the transverse Meissner effect as
T—Tgs. Indeed, we have from E@12), that

HT(T)
H,

Oc(t)~ ~ [t 17
Thus, contrary to the conclusion reached in Ref. 9, the Harris
criterion argument suggests that the Bose glass phase should

be stableto a small amount of splay disorder just below
Tae-
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