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We study several one-dimensional step flow models. Numerical simulations show that the slope of the
profile exhibits scaling in all cases. We apply a scaling ansatz to the various step flow models and investigate
their long time evolution. This evolution is described in terms afoatinuousstep density function, which
scales in time according tB(x,t)=F(xt"¥?). The value of the scaling exponestdepends on the mass
transport mechanism. When steps exchange atoms with a global reservoir the valig 2f On the other
hand, when the steps can only exchange atoms with neighboring teryeeds We compute the step density
scaling function for three different profiles for both global and local exchange mechanisms. The computed
density functions coincide with simulations of the discrete systems. These results are compared to those given
by the continuum approach of Mullins.

[. INTRODUCTION Mullins? used a simple 1D continuum model to describe
the growth of a single linear facet on a vicinal surface, as-

The morphological evolution of crystalline surfaces hassuming that the surface free energy of the complex surface
long been a major focus of attention in surface science. Aaway from the facet is an analytic function of the local sur-
low temperatures, below the roughening temperature of &ce slope. This assumption is valid in many cases since the
low index facet plane, this is often dominated by the motionvicinal surface itself is roughHowever, since the existence
of surface steps, typically produced by miscuts or arisingof a facet is associated with the breakdown of analyticity of
from dislocations. Vicinal surfaces, created by a small mis- the surface free energy as a function of slope, this approach
cut to the facet plane, have steps all of the same @gher  will fail whenever the local slope approaches zero, the slope
up or down steps They offer a particularly simple testing of the flat facet. There is nothing in the usual continuum
ground for the study of step models of kinetic processes andpproach to prevent this from happening. Indeed, as noted
their connections to physics both on atomic and macroscopibelow, in some cases the standard continuum model predicts
scales. that surface profiles will oscillate sufficiently about the slope

In this paper, we study the kinetics of faceting and relax-of the vicinal surface to produce regions witkgativelocal
ation of vicinal surfaces using one-dimensiofieD) models  slope. This implies the creation @tisteps(steps of the
of straight steps. We show that on long length and timeopposite sigh an energetically costly process that does not
scales the surface profiles exhibit a scaling behavior in mangccur in the step models we consider, even in the continuum
cases. This general conclusion is not at all surprising; ilimit. Furthermore, since at low temperatures steps play an
agrees with the classic work by Mullidswho first investi-  essential role in determining surface kinetic processes, the
gated problems of this kind using a simple continuum modeleffective kinetic coefficients in a continuum model must de-
However, the details of the calculations we carried out angpend on the step density in ways that may seem hard to
the nature of the scaling functions describing the surface prainderstand when viewing the system from a continuum per-
files are rather different. These differences arise because vgpective from the outset.
take the continuum limit of a physical model where steps To examine these issues in detail, we start with a 1D
play the fundamental role in the kinetic processes describingrodel of discrete straight steps and describe surface morpho-
surface evolution. Even in the continuum limit there are feadogical changes in terms of their motion. The equations of
tures of the scaled profiles that reflect this underlying physmotion for the individual steps reflect the mass transport
ics. There has been much discussion in the literature abomode and are derived in the standard waysing a linear
the derivation of continuum equations from discrete models.kinetics assumption based on the difference in the chemical
Our work shows in detail how this can be done in somepotentials for each step arising from step repulsions. By con-
simple cases and illustrates some of the subtle issues that caidering length scales large compared to the step spacing, we
arise. show that it is possible to take the continuum limit of these
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equations in a consistent way. The dynamic equation for thattachment-detachment limited kineti@se., that diffusion
evolution of the local slope, or the&tep density functigns  on terraces is very fast compared to the rate of attachment
thus obtained systematically from the equations for indi-and detachment of atoms to and from step efjgbs ada-
vidual step motion. The long time evolution of this dynamic toms which diffuse on thenth terrace maintain aniform
equation is then investigated with a scaling ansatz. We apchemical potentiah}] across the terrace.

plied this scheme to three different 1D physical systems: We further assume that the flux of atoms at the two step
reconstruction driven faceting, relaxation of an infinite edges bounding thath terrace is determined by first order
bunch, and flattening of a groove. In all cases, the Sca|inq1inetics, characterized byfor simplicity symmetri¢ an
function is described by the same differential equation forattachment-detachment rate coefficiknt

the same mass transport mode; the solutions differ only be-

cause of different boundary conditions for the scaling func- I =k(uh—pud),

tions. As a result, the values of the scaling exponents depend

only on the mass transport mechanism, and are consistent @

with the predictions of Mullins’ classical theory. However,
the scaling functions themselves—the scaled slopes of the

surface profile—differ from Mullins’ results and are in eX- fare 3+ andJ- denote the flux from the lower and upper
cellent agreement with numerical solutions of the discret%eigr;bgring tepraces into thth step, respectively.® is the
' n

equations. ; : . . .

. . . step chemical potential associated with adding an adatom to
o e o A I sie. 1 the case of lastbor enopic repsie
lep Mo T o €p y . “Interactions between steps, it is well known that the step
first defined. Then we introduce a scaling ansatz and derive . :

. . . . : emical potential then takes the fdrfn
differential equation for the scaling functions. In Sec. 1V, the
properties of the scaling function are further investigated. In
Sec. V, we check the validity of the scaling analysis using
three different step-flow models. The shape of the scaling
function is obtained by numerical integration of the differen-
tial equation. We also show that this scaling function coin-whereg is the strength of the repulsive interactions.

cides with the result of the simulations of the discrete step Next, we assume that diffusion processes are fast com-

rT+1:k(:U«:1_:Uvrsm+1)-

1 1

3 3|
(Xn_xnfl) (Xn+1_xn)

Mn=29 @

flow models. Our conclusions are given in Sec. VI. pared with the motion of steps. Within this quasistatic ap-
proximation, the density of adatoms on the terraces reaches a
Il. ONE-DIMENSIONAL STEP-FLOW MODELS steady state for each step configuration. In this steady state,

we haveJ!+J.,,=0 for anyn, and therefore the free en-

‘Below the roughening temperature of a high-symmetryergy associated with the addition of an adatom on ritte
orientation of the crystal, a vicinal surface consists of flatigrrace !, takes the form

terraces separated by atomic steps. Ignoring islands and va-
cancies, the morphological evolution of the surface is a con- sy S
; t _MnT HMn+a
sequence of exchange of atoms between steps and their uh=——
neighboring terraces resulting in motion of the steps. An 2

analysis of surface evolution in terms of step flow was first

: . Combining mass conservation at théh step with Eqs(1)
carried out by Burton, Cabrera, and Fréakd this has been and(3), we obtain the following expression for the step ve-
generalized by many other authdrén what follows, we

()

describe the evolution of vicinal surfaces using a simplelocny:
step-flow model. a2k
We consider two limiting channels for mass transport in- Xo=—a%(J} +3)= 7(2@_“;1_#;1), (4)

volving the terrace adatoms. In the first case, the adatom
mass flow on each terracel@xal, and takes place by surface . . .

diffusion. In the second case, the terrace adatoms can easﬁ‘;’/'th a denoting the lattice constant of the crystal.
exchange with aglobal reservoir, perhaps through direct

hops to distant regions of the surface or by rapid exchange B. Global mass exchange mechanism

with the vapor. We refer to these limiting cases as the local As with the LEM, we assume linear kinetics: i.e., the flux
(LEM) and global (GEM) exchange mechanisms, respec-of atoms from the reservoir to thveth step is proportional to

tively. They correspond to the surface diffusion andthe difference between chemical potentials of the reservoir
evaporation-condensation mass transport mechanisms Cognd the step

sidered by Mulling
In=K(tres— Mﬁ) (5

Consider an array of flat terraces separated by straighhclere’ Fres IS the reservoir chemical potential, which we

parallel steps with horizontal positiong,,. The indexn choose as the chemical potential of a flat surface; ks

grows in the direction of positive surface slope. These stepszo' The velocity of thenth step in this case is simply

may absorb or emit atoms which then diffuse across the . 5 o s
neighboring terraces. We ignore evaporation. Assuming Xn=—a%Jp=a%ku,. (6)

A. Local mass exchange mechanism
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Although the exchange rates in the LEM and GEM cases ar@ccording to this, the difference between successiys is
different we use the symbdt to denote both of them. It of order /! whereverF does not vanish. In the large
should be clear from the context which exchange rate welong time limit these differences become vanishingly small.

refer to. The differencest,,, — ¢ will also be small as long ak is
finite. We can therefore take the continuum limit in the vari-
Ill. SCALING ANALYSIS AND CONTINUUM MODELS able ¢, consistent with our original supposition.

To this end, we evaluate the functidh at the position

Simulations of the LEM and GEM step flow modétaig-  (&n+kt &n+k+1)/2 by using its Taylor expansion
gest that the behavior of these systems at long length and .
time scales can be described in terms atep density func- Enrkt Enk 1) ot 2

1
tion D (i.e., the inverse step separatidhat is a continuous 2 = Eniki1— Enik :m:O m dem
function of both position and time. Generally speaking, con-

tinuum descriptions of step systems should be valid when Enikt Entkat m

every typical surface feature consists of very many steps. In (f— &l - (12
the cases we study here, the simulations indicate that the step

density function scales in time according to Next, we expand

D(x,t)=F(xt™ 1), (7)

with a positive exponenty. Thus, the number of steps in
every surface feature grows with time &#¢. We should . o .
therefore be able to accurately describe the evolution of th@nd insert this into E¢(12). By equating terms of the same
system in terms of a continuum model in the long time limit. Order in 6~* on both sides of Eq(12), we can find the
Equation(7) makes the even stronger assertion that thecoefficients ¢y, for any desired values df and m. These
surface features have a self-similar Shape during their evo'LpoefﬁCientS involve the functiof and its derivatives evalu-
tion, and can be related by a proper rescaling of time andted até=(&,+&,.1)/2.
distance. This scenario is similar to the scaling exhibited by Having found the expansion coefficientg,, we now re-
a decaying crystalline cone, which two of us haveturn to Eq.(10). This equation depends on the velocities
studied:”*" In this section, we carry out a scaling analysis,and x,,, which in turn depend oné, ,---é,.s of
similar to the one in Refs. 10 and 11, to obtain the scaling: ,...¢ ., inthe LEM or GEM cases, respectively. Using
exponentsy and the differential equation for the scaling gq. (13) we expand Eq(10) in the LEM case with the fol-
function F. We also study the effects of the different mass|owing result:
exchange mechanisms.

fn+k=§+mE=1 brmb™™, (13)

_We start by defining the step density function in the B d? (1 d? 3F2) ¢&dF )
middle of the terraces 07 4a%kg—| = — ——| -2 ——+0(9” 5 =0.
de2\Fdg2 2] vydé
Xp+ X 1 14
n n+1,t>E . ®) (14
2 Xn+17 Xn

Consider Eq.(14). It involves different powers of the
Assuming continuity, the full time derivative of the step den-scaled timef and cannot be satisfied at all tim@slessF is
sity is given by trivially independent of¢). However, in thed—o (long
time) limit Eq. (14) can be satisfied exactly. This can be
d_D: @Jr Q d_X (9) achieved by setting the value of the scaling exponent to be
dt gt  ox dt y=4 and then requiring the first and second terms to cancel

Equation(9) can be evaluated in the middle of the terrace®ach other. Neglecting the small third term we are left with
between two step.e., atx=(X,+X,+1)/2]. Assuming that the long time limit of the LEM differential equation
the scaling ansatz E¢7) holds, we now change variables to

6=t and ¢,=x,60"1, and transform Eq(9) into an equa- 432 d? (1 d® 3F? _gd_F:o (15
tion for the scaling functionF evaluated até=(¢, de?\F dg? 2 d¢
+ §n+1)/2

. . This equation determines the scaling functfoand is exact
dF -1 Xne1t Xn 3 2y : only in the long time limit. In this limit it is equivalent to the
@ R 5 +F20"(Xn+1—%)=0. (100 attachment/detachment limited scaling equation suggested by
. Liu et al!? It also agrees with Nozies' continuum
In going from Eq.(9) to Eq. (10) we have used the fact that treatment® of attachment/detachment limited kinetics pro-
dD/dt=—D?(x,,1—X,) and that dx/dt=(X,+ X, 1)/2. vided one assumes scaling. Thus, in the long time limit, our

X, Xn41 themselves are now expressed in terms ofglie ~ analysis confirms the validity of previous continuum treat-
using Eqs(4) or (6) depending on the exchange mechanismments. However, at any finite time there are corrections of

Let us also rewrite Eq8) in terms ofd, F, and theg,’s  order6~? to the scaling solutio (x,t) =F(¢).
A similar procedure can be applied in the GEM case. It

0! leads to the scaling exponept=2 and the following equa-

§n+17én= F[(&€nsrté&0)/2]° (11 tion for the scaling function:
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d2F®  dF where¢, and&, are boundaries of a region where E5) is

4a%kg +gd—§:o. (16)  valid. Integrating each term by parts we find that

dé&?

As in the LEM case, the leading correction to the density 02
function decays a® 2. Like Mullins, we obtain a fourth- AV,_EM=7
order equation with LEM and a second-order equation with
GEM. However, these equations have a more complicated

1 d2 3F2>

&(F _F)+§i(—__
* dé\F gg2 2

form than those arising from Mullins’ continuum model and _ E d_2 3_':2} §b+ Hzf (F.—F)édé

will have different solutions. Fde? 2 £ (£q,8p) ” '
To conclude this part let us emphasize a few points re- a

garding the above analysis. Equatidi) and(16) together (20

with the scaling ansatz E¢7) and the values of constitute
a continuum model for the surface dynamics. This mode
was derived directly from the discrete step system and i§
exactin the long time limit. In addition, the above scaling

Similarly, we can calculate the volume change in the GEM
ase using Eq(16) and obtain the equation

analysis is robust in the following sense. The values of the 02 5 dEs . &p
scaling exponeny are not sensitive to the exact nature of the AVeem=— | §(Fx—F)— §d—§ +F
step-step interactions in the discrete model. In the Appendix, £a

we show that for a general interactigi=4 andy=2 in the
LEM and GEM cases, respectively. However, the differential + QZJ (F.—F)&de. (21)
equations for the scaling functions do depend on the form of §€(8ardp
the interaction.
A similar treatment can be applied to calculate changes in
IV. PROPERTIES OF THE SCALING FUNCTION ;[,C: Erl:(;nber of steps in the positixehalf of the system, and
Here we study some properties of our continuum model.
Our purpose is to derive several relations for the scaling *
function, which hold in general. These relations are useful in AN= Gfo (F—F.)dé. (22)
the derivation of the boundary conditions necessary in order
to solve Eqgs(15) and(16) for the scaling functions of vari- Again we can evaluate this integral by using E(5) and
ous systems. (16). The results are
First, note that the scaling function must have a finite
limit, F_,, at infinity. Otherwise the step density there would
change infinitely fast. We choose the unit of length so that AN, ey= 0| EF—F.)— —
F..=1. We also choose the unit of time so tha’kg=1 in LEM ) dé
Egs.(15) and(16). ta
Next, we investigate the time dependence of the volume
and the total number of steps in the system. It turns out that + HJ (F—-F,)dé¢ (23
these quantities can be calculated directly from the differen- £¢(&a )
tial equations. The change_ln the vplum_e of the system in thﬁ1 the LEM case and
positivex half of space during the time interval from zero to
t is given by

&

d (1 d2 3|:2)

3

g(F_Fw)+d_§

&p
ANGEM: 0

+0f (F—F..)d¢
§¢(&a.6p)

AV= f:[h(x,t)—h(x,O)]dx. (17)
(24

&,

h(x,t)=f§D(x,t)dx is the profile height measured in units
of the lattice constant.

Integrating by parts and changing to scaling variables we o
obtain the equation

in the GEM case.
Finally, we study the behavior of the scaling functions
ar regions of zero step density. We recall that our scaling
analysis is valid only in regions of space where the step
" density does not vanisfsee Eq.(11)]. Points of vanishing
AV= 02] (F.—F)&dé, (18) step density should therefore be treated separately. Assume
0 that &, is such a point for which-(£,)=0. Expanding the
where we have ignored the surface term assuming no evol$c@ling function in powers of — & in the vicinity of §, and
tion occurs |nf|n|te|y far from the Origin. using Eq5(15) and (16), we find that in the LEM case
Let us calculate the last integral in the LEM case. Accord-
ing to Eqg.(15) *
F=2 ba(¢é=&)" (25)
Fb d? (1 d? 3F7) Fb MF 1 n=1
& de?\Fdg? 2 ¢ £ ¢ d¢ & 19 and in the GEM case



5702 ISRAELI, JEONG, KANDEL, AND WEEKS PRB 61

1 1 1
_ —€l,
(XO_X—1)3 (Xl_XO)3

a)

S

Mo=29

-= RECON =

1 (27)
=2 ! ! + 1
M1= 29 - €.
b) (Xg=X%0)®  (Xa—x1)*
As a result, the step at, propagates to the left, while the one
at x, propagates to the right. In the long time limit the step
- density of the system obeys scaling. In particular, the size of
xl"Z the facet at the origin grows a8 in both LEM and GEM
cases, withy=4 in the LEM case andy=2 in the GEM
©) case.
In order to compare our scaling analysis to simulation
_l_‘—\_\__>‘—,<__,_:—'_'7 results we have to solve Eq4d.5) and(16) with the relevant
boundary conditions. Since the system is symmetric about

the origin it is sufficient to solve the scaling functiénfor
positive £. In addition, our expansion in the small parameter
6~ 1 is valid only in regions wher€& does not vanisfsee Eq.

FIG. 1. The three systems considered in this secfiantecon-  (11)]. This requirement is violated on the diverging facet
struction driven facetingb) relaxation of an infinite bunch, ar(d) around the origin. Therefor&, obeys Eqs(15) or (16) only
flattening of a groove. for é=¢,, where¢, is the scaled position of the first step,
andF(£)=0 for £é<¢é,.

F=, b (&— &)™, (26) 1. Local mass exchange mechanism
n=1

The first boundary condition is set by our choice of the
value ofF at infinity, namelyF_,=1.
Thus a point of vanishing step density isiagular pointof Next, consider the number of steps, which is a conserved
the scaling function at which all its derivatives diverge. guantity in our step model. This is an important difference
from the continuum approach of Mullins. Using E@®3)
with £,=¢&;, &,=0c and the conditiorF(£)=0 for £§<¢y,
V. EXAMPLES we find that in the LEM case

To check the validity of our scaling analysis, we consider
three different step-flow models, which according to numeri- ” F'3 2F'F" ¢F
cal simulations obey scaling under both exchange mecha- F (gl)z(E_T“L?)
nisms. All three systems consist of straight parallel and ini-
tially equidistant steps, but differ in their boundary
conditions.

, (28)
31

where primes denote derivatives with respectto

Two additional boundary conditions can be found by in-
vestigating the velocity of the first step. According to our
A. Reconstruction driven faceting scaling ansatz the position of the first stepxjs= #¢;. In the

i , . . . long time scaling limit the velocity of this step goes to zero
The first example is that of reconstruction driven faceting;g g3 Using Eq.(4) together with the symmetry of the
studied by Jeong and Weeks in Refs. 9 and 14. It is math- :

ematically equivalent to the model of facet growth during system we obtain the following expression fgc

thermal etching studied by Mulliriswithin their model, sur-

face reconstruction that lowers the free energy can nucleate .1l 3 4 1

only on terraces of width larger than a critical widilu, . =2 e oex® s ;H3€|. (29
Therefore, terraces of widtlv>w, have a lower free energy (2x1)7 (X2=X1)" (X37Xp)

than those of widthw<w;. We consider the evolution of
such a step system starting from a configuration where all th
terraces except one have the same widthiw,. (For sim-
plicity, we do not permit reconstruction on other terraces,
even if their widths exceed, during the surface evolution.
The possibility of such “induced nucleation” on other ter-
races is discussed in Refs. 9 and)1%he zeroth terrace )
[betweenx, andx; in Fig. 1(a)] is of different width, larger whereF is evaluated at{; + &,)/2. In order forx; to vanish
thanw, and is reconstructed. This reconstructed terrace tendss -2 we must haveF[(&;+ £)12]=€ and F'[(¢;

to become even wider, and this is reflected as a shift oft &,)/2]=0. Terms of order 2 on the r.h.s. also have to
magnitudee in the chemical potentials of the two steps: vanish, but they include corrections to scaling, which we

Rewriting Eq.(29) in terms of the scaling variables and
xpanding ind~ ! we find that

rp—1

3FF
——+0(67?), (30)

5(1=Z(6—F3)+ 2
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nite array of uniformly spaced stefstx>0). The first step
2r ] has a single neighbor, and therefore its chemical potential is
F 2
L et —<g
1 pi=——. (34)
(X2—X1)
' : ' : ' In the LEM case, there is a complication, since the first step
2f . may exchange adatoms with the infinite facet on its left.
E GEM Hence, we have to specify), the adatom chemical pgten-
tial on the facet. We assume here thaj= 3, neglecting
T - any exchange of atoms between the first step and the facet.
As a result the volume is conserved in the LEM case.
0 . . . . . Simulations of this system in both the LEM and GEM
0 2 4 6 8 10 12 cases suggest that the system exhibit scaling with the origin

g of the scaled position at the initial position of the first step.
The leftmost steps from the bunch move to the left into the
FIG. 2. Solution of the reconstruction driven faceting scalingfacet due to the repulsive interactions. The first step recedes
function in the LEM and GEM casesolid lineg compared with  jn time and its position scales ag~ —tY¥7_ At the same time
scaled density functions from numerical simulations wétk 8. the separation between the first steps grows. <ok, the
Different symbols represent density functions at different times.  scaled position of the first step, the step density always van-

) ] ] ) o ) ishes, and we have to find the scaling function only §or
ignore in this paper. In the long time limit the difference <é<w.

betweené; and (¢;+ &,)/2 is negligible and we arrive at the

boundary conditions 1. Local mass exchange mechanism

F(&)=€" and F'(&)=0. (31 The velocity of the first step vanishes in the scaling limit.

We can therefore evaluat(¢;) by expandingx; in 6%,
and requiring that the zeroth-order term vanish. We find that

the zeroth-order term iR, is proportional toF3(¢&;), which

We solved EQq.(15) numerically by applying the three
boundary conditions af=¢; [Egs. (28) and (31)], and by
tuning F”(¢&;) and¢; itself to satisfy the boundary condition

C2 : implies thatF(£,)=0.
at infinity. In the upper half of Fig. 2 we compare the result-'""P .Sl . .
ing solution with scaled density functions taken from nu- Two additional boundary conditions can be derived from

merical simulations of the discrete model. The agreement i € c&rgervztlég)otf VOllIJmIe fmdhthe ““”.‘bet[] of stleps. US'Sg
quite impressive. These results should be compared with Fi as- an 0 calculate changes in fhe volume an

8 in Ref. 2, which predicts antistep formation for large val- L_meer .Of steps in the positive part pf tfeaxis together
ues of the slope parametersn. with equivalent equations faf<0, we find that

2. Global mass exchange mechanism d (1 d? 3F2 1 d? 3|:2} 0 -
Like in the LEM case, the requirement that the velocity of gdg Fdg 2 Fdg 2 o (35
the first step decays in time results in the boundary condition &}
F(§1) — 61/3. (32) and
Again ¢ is the scaled position of the first step. d /1 d23E2
Another boundary condition is derived from the conser- _(_ _) =0. (36)
vation of the number of steps. Equati¢®4) with &,=¢;, dé\F g¢? 2

&,= and the conditior=(£) =0 for £<¢; implies that

As mentioned above, a zero of the scaling function is a sin-
F'(£)=— 31 _ (33) gular point at which all derivatives oF diverge. Since
3F(£1) F(£,)=0, the limit é£—&; in the last two boundary condi-
tions should be taken with care. This can be done by consid-
ering the power serief25). The differential equatior{15)
and the boundary conditiors(£;)=0, Egs.(35) and (36)
impose connections between the coefficients of the expan-
sion and leave only; as a free parameter.
We now use the following procedure to compteFor
given values ob; and¢; we approximaté- at &, + 8¢ using
the series expansiof25) with suitable truncation. At¢;
In the second example, we study the relaxation of an in-+ 6§ the derivatives ofF are finite, and we solv& from
finite bunch of steps. The initial step configurat{éiig. 1(b)]  there by numerical integration. We adjust the valued pf
consists of an infinite facet at<0, in contact with an infi- and¢; in order to satisfy the boundary condition at infinity,

These two conditions are sufficient for solving Ef6) when
the value of¢; is known.

Finally, we tuneé; to satisfy the boundary condition at
infinity. The resulting solution and its comparison with simu-
lation data are shown in the lower half of Fig. 2.

B. Relaxation of an infinite bunch
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1r DO c - s

Mi=—"%. (39
LEM b xp—xp)®

When the first steps annihilate we relabel the remaining steps
so that the positions of the bottom step and antistep are al-
waysx; andxg. Our system is symmetric with respect to the

oft— . . ; ; origin, and it is sufficient to consider only the positive part of
1l the x axis. Symmetry also excludes any flux of adatoms be-
GEM tween the two bunches, and in the LEM case this implies that

F the volumes of the two bunches are conserved separately.

1. Local mass exchange mechanism

The groove flattening problem is different from the two
0 ) 4 6 8 10 12 previous examples, where there was a well defined facet with
g its edge at the position of the first step. At the facet edge Eq.
(15) becomes invalid due to the vanishing step density. In the
FIG. 3. Solution of the infinite bunch scaling function in the groove example, steps annihilate at the origin, and there are
LEM and GEM casegsolid lines compared with scaled density steps in all regions of space. However, there could still be
functions from numerical simulations of the discrete model. Differ- points where the density of steps vanishes if the position of
ent symbols represent density functions at different times. the second step diverges in the scaling limit. Let us denote
the scaled position of the facet edge &Y. Equation(15) is
thus obtaining the scaling functidf(£) in the LEM case. In  valid only for ¢>¢&*, and the value ofé* is unknown
the upper half of Fig. 3 we compare this solution with simu-a priori. There are two possible, qualitatively different situ-
lation data. ations:(1) ¢*>0, i.e., there is a plateau at the bottom of the
groove which grow as¥“. (2) ¢*=0. There could still be a
2. Global mass exchange mechanism diverging plateau, but it must grow more slowly thgff. In

Sincekloc ~(Xp—x,) "3, the requirement that the velocity V\ihitofollows, we rule out the first possibility and show that

of the first step vanishes in the scaling limit leads to the According to Eq.(23), the number of step annihilation

boundary condition events grows with time as’% Denoting byt, the time of the
F(£)=0 37) nthgannihilation event, we see tha,ll;~n‘? and t,,—t,
' ~n°. We now show that i£* >0, the time interval between
To derive another boundary Condition, we use E?‘) and annihilation events is |al’ger thaﬁ; Just before thath an-
impose conservation of the number of steps. The followinglihilation event, the velocity of the first stéphich must be

relation is thus obtained: negative is given by
dF? o1 1 2
——| =o. 38 lim x,=—| —————|. (40)
de 3 °9 t—t,, 4 (x3=%)° x5

This implies that all the coefficients in the series expansiordf & >0, , is of ordert}*~n. Equation(40) implies that

(26) diverge except fob, which vanishes. Thus the conver- X3—X;>2"3x,, and therefore the distangg—x, is also of
gence radius of Eq26) is zero and it is difficult to calculate ordern.
the scaling function with the numerical procedure used in the After the nth annihilation event we relabel the steps.
LEM case. Nevertheless, taking a small enough valule,of becomesx;, x; becomesx, and so on. Now the distance
and tuningé, to satisfy the boundary condition at infinity, between the first two steps,;—X; is of ordern. The velocity
we were able to calculaté approximately. In the lower half of the new first step, which is maximéh absolute valueat
of Fig. 3, we compare this approximation with simulation this time, obeys the following inequality:
data.
i 1
, lim |x;|<—————=~0O(n"3). (41)
C. Flattening of a groove ot 2(xo—xq)°
Our last example is the flattening of a groove cut in the ’ i o .
crystal surface. The initial configuratidifig. 1(c)] consists ~ The step must cross a distance of orde{an it annihilates
of two infinite step bunches with steps of opposite signs tha@iNd thereforé, ., —t, is at least of orden”, in contradiction
meet at the origin. Step repulsion within each bunch pushe¥ith the relationt,,,—t,~n* derived above. Hencet*
the bottom step and antistep towards each other until theVo- ]
collide and annihilate. We assume here that steps of opposite In order to solve Eq(15), we now find two boundary
sign do not interact. Thus the chemical potential of the twgconditions até=0. Consider first the quantity;—x,. If x;
bottom steps includes interaction with only one neighboringdiverges with timex;—X, must also diverge in order fof;

step, namely to be negativgsee Eq.(40)]. If x, does not diverge in the
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F(0)=0. (46)

F To calculate the scaling function, we use the series expan-
sion (26) to approximate- near the singular point and then
integrate Eq(16) numerically from a point wher€ is finite.

We tune the expansion coefficidnt to satisfy the boundary
o— . . . ; condition at infinity. The resulting solution compared to
simulation data is shown in the lower half of Fig. 4.

= GEM
VI. SUMMARY AND DISCUSSION
We studied 1D step-flow models for the kinetics of fa-
ceting and relaxation and showed that the surface profile ex-
L > 4 6 8 10 hibits scaling behavior. The value of the scaling exponents
g was determined by the mass transport mechanism. The scal-

ing functions in all cases considered here were described by
FIG. 4. Solution of the groove flattening scaling function in the the same differential equation for the same mass transport

LEM and GEM casessolid line9 compared with scaled density mode. These scaling functions differ from those predicted by
functions from numerical simulations of the discrete models. Dif-Mullins’ continuum theory, which does not explicitly con-
ferent symbols represent density functions at different times. sider the existence of steps. However, the scaling exponents

v agree with Mullins’ classical theory. This can be under-
scaling limit, x;—X, must still diverge in order for the time stood as follows. The systems considered here are well be-
interval between two consecutive annihilation events to didlow the roughening temperature of tlew-index singular
verge in the scaling limit. Thust;—Xx, diverges and the surface but large parts of the system are rough, with nonzero

scaling function vanishes at the origin: macroscopic slope and a differentiable free energy as a func-
tion of orientation. Therefore, if the system shows scaling
F(0)=0. (42) behavior at all, the whole syste(including the singular re-

gion) must evolve with the same time dependence as the
non-singular part, which is accurately described by Mullins’
model.

Here we only considered attachment/detachment limited
kinetics for local mass exchange. We have carried out a simi-
—=0. (43) lar scaling analysis for diffusion limited kinetics. Diffusion

limited kinetics is also a local mass exchange mode and
hence the scaling exponents are the same as for attachment/

Requiring expansioli25) to satisfy Eqs(15) and(43) we  detachment limited kinetics. However, the differential equa-
are left with two free expansion coefficients, which we tunetion for the diffusion limited scaling function is different
in order to satisfy the boundary condition at infinity. The from the attachment/detachment limited case. For diffusion
resulting solution compared to simulation data is shown inlimited kinetics we found equations, which under the scaling

Another boundary condition is derived from volume con-
servation in thex>0 half of space. From Eq20) we obtain
the condition

d (1 d? 3F?) 1 d? 3F?
Y9e\Fag 2| Fag 2

0

the upper half of Fig. 4. assumption, are equivalent to the continuum models pro-
posed in Refs. 7 and 15. Our results are valid even for finite
2. Global mass exchange mechanism step permeability at sufficiently long times.

Another issue that we would like to investigate further is
Ehe condition for scaling behavior. When a step profile shows
scaling behavior, the scaling exponent should depend on
occur only if & =0. the mass _transport mechanism but not the driving forpg of
In the GEM case the volume is not conserved. Howeverthe evolution at the bogpdary. However, very strong driving
by summing up the velocities of all the steps we can calcu!torces COL.”d cause a piling u'p'of steps af‘d de'stroy the scal-
late the rate of change of the volume: ing behav_lor. What kind of driving force givesrise to a scal-
ing behavior? For example, for the flattening of a groove, we

As in the LEM case, we have to find the value §f.
From considerations similar to those used in the LEM case i
can be shown that steps annihilate fast enough for scaling

dv | 1 used a contact interaction between steps with opposite signs.
—=—> X,==Ilim —. (44)  What kind of interaction between the steps of opposite signs
dt n=1 2Nee (XN = Xn—1) in the middle, in general, results in a profile that obeys scal-

ing? Does it depend on the mass transport mechanism? We

have examined some artificial examplest described heje

of interactions between the steps of opposite signs that can

destroy the scaling behavior but do not know yet the general

form of the driving forces that admit a scaling ansatz.
(F3—3¢F2F")|2=F3 (45) One can also cqnsider more general inFeractions between

* neighboring steps in the non-singular region. Although our
which implies scaling analysis is valid for a general step-step interaction

The r.h.s. of Eq(44) is F2/2, while the L.h.s. can be calcu-
lated from Eq.(21) with £,=0, &=, and?=t. This cal-
culation combined with Eq(44) leads to the boundary con-
dition
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(see Appendix we only carried out simulations to verify Changing the step velocities does not alter the expansion
that scaling indeed occurs in the case of simple entropic an€l3) since this expression is general and depends only on the
elastic step-step interactions. What are the interactions thataling functionF. We can thus use expansidhl) to ex-
support scaling? What is the general relationship between thgand the new Eq10) in powers ofd~ . We find that in the
boundary conditions and the step interactions that is consid-EM case
tent with a scaling ansatz? If these questions can be an-

swered, we may be able to tell in advance which surface a’k d? (1 d[1dUF™Y
systems will show dynamic scaling behavior. 67—~ —[ { “
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APPENDIX

In this appendix, we give the results of a scaling analysis " the GEM we find that
with a general step chemical potential formula. We start by

replacing Eq.(2) with d?U(F™) &dF

07" 2a%k +=—=+
dé? y dé

O(0""%H=0, (A4)
Mﬁ:U(Xn_xn—l)_u(xn+1_xn)v (Al)

with U(x) a general analytic function of Such a formulais Which impliesy=2 and
consistent with interactions between nearest-neighbor steps. 5 .
Next we use this formula together with the step velocities 2a2kd U(F™) n dF 0

(4) and (6) to rewrite Eq.(10) in the LEM and GEM cases. dé? d_§: (A5)
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