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Dynamics and scaling of one-dimensional surface structures
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We study several one-dimensional step flow models. Numerical simulations show that the slope of the
profile exhibits scaling in all cases. We apply a scaling ansatz to the various step flow models and investigate
their long time evolution. This evolution is described in terms of acontinuousstep density function, which
scales in time according toD(x,t)5F(xt21/g). The value of the scaling exponentg depends on the mass
transport mechanism. When steps exchange atoms with a global reservoir the value ofg is 2. On the other
hand, when the steps can only exchange atoms with neighboring terraces,g54. We compute the step density
scaling function for three different profiles for both global and local exchange mechanisms. The computed
density functions coincide with simulations of the discrete systems. These results are compared to those given
by the continuum approach of Mullins.
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I. INTRODUCTION

The morphological evolution of crystalline surfaces h
long been a major focus of attention in surface science
low temperatures, below the roughening temperature o
low index facet plane, this is often dominated by the mot
of surface steps, typically produced by miscuts or aris
from dislocations.1 Vicinal surfaces, created by a small mi
cut to the facet plane, have steps all of the same sign~either
up or down steps!. They offer a particularly simple testin
ground for the study of step models of kinetic processes
their connections to physics both on atomic and macrosc
scales.

In this paper, we study the kinetics of faceting and rela
ation of vicinal surfaces using one-dimensional~1D! models
of straight steps. We show that on long length and ti
scales the surface profiles exhibit a scaling behavior in m
cases. This general conclusion is not at all surprising
agrees with the classic work by Mullins,2 who first investi-
gated problems of this kind using a simple continuum mod
However, the details of the calculations we carried out a
the nature of the scaling functions describing the surface
files are rather different. These differences arise becaus
take the continuum limit of a physical model where ste
play the fundamental role in the kinetic processes describ
surface evolution. Even in the continuum limit there are fe
tures of the scaled profiles that reflect this underlying ph
ics. There has been much discussion in the literature a
the derivation of continuum equations from discrete mode1

Our work shows in detail how this can be done in so
simple cases and illustrates some of the subtle issues tha
arise.
PRB 610163-1829/2000/61~8!/5698~9!/$15.00
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Mullins2 used a simple 1D continuum model to descri
the growth of a single linear facet on a vicinal surface,
suming that the surface free energy of the complex surf
away from the facet is an analytic function of the local su
face slope. This assumption is valid in many cases since
vicinal surface itself is rough.1 However, since the existenc
of a facet is associated with the breakdown of analyticity
the surface free energy as a function of slope, this appro
will fail whenever the local slope approaches zero, the slo
of the flat facet. There is nothing in the usual continuu
approach to prevent this from happening. Indeed, as no
below, in some cases the standard continuum model pred
that surface profiles will oscillate sufficiently about the slo
of the vicinal surface to produce regions withnegativelocal
slope. This implies the creation ofantisteps~steps of the
opposite sign!, an energetically costly process that does n
occur in the step models we consider, even in the continu
limit. Furthermore, since at low temperatures steps play
essential role in determining surface kinetic processes,
effective kinetic coefficients in a continuum model must d
pend on the step density in ways that may seem hard
understand when viewing the system from a continuum p
spective from the outset.

To examine these issues in detail, we start with a
model of discrete straight steps and describe surface mor
logical changes in terms of their motion. The equations
motion for the individual steps reflect the mass transp
mode and are derived in the standard way,1 using a linear
kinetics assumption based on the difference in the chem
potentials for each step arising from step repulsions. By c
sidering length scales large compared to the step spacing
show that it is possible to take the continuum limit of the
5698 ©2000 The American Physical Society
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equations in a consistent way. The dynamic equation for
evolution of the local slope, or thestep density function, is
thus obtained systematically from the equations for in
vidual step motion. The long time evolution of this dynam
equation is then investigated with a scaling ansatz. We
plied this scheme to three different 1D physical system
reconstruction driven faceting, relaxation of an infin
bunch, and flattening of a groove. In all cases, the sca
function is described by the same differential equation
the same mass transport mode; the solutions differ only
cause of different boundary conditions for the scaling fu
tions. As a result, the values of the scaling exponents dep
only on the mass transport mechanism, and are consis
with the predictions of Mullins’ classical theory. Howeve
the scaling functions themselves—the scaled slopes of
surface profile—differ from Mullins’ results and are in e
cellent agreement with numerical solutions of the discr
equations.

The paper is organized as follows. We introduce the
step models in Sec. II. In Sec. III, the step density function
first defined. Then we introduce a scaling ansatz and deri
differential equation for the scaling functions. In Sec. IV, t
properties of the scaling function are further investigated
Sec. V, we check the validity of the scaling analysis us
three different step-flow models. The shape of the sca
function is obtained by numerical integration of the differe
tial equation. We also show that this scaling function co
cides with the result of the simulations of the discrete s
flow models. Our conclusions are given in Sec. VI.

II. ONE-DIMENSIONAL STEP-FLOW MODELS

Below the roughening temperature of a high-symme
orientation of the crystal, a vicinal surface consists of fl
terraces separated by atomic steps. Ignoring islands and
cancies, the morphological evolution of the surface is a c
sequence of exchange of atoms between steps and
neighboring terraces resulting in motion of the steps.
analysis of surface evolution in terms of step flow was fi
carried out by Burton, Cabrera, and Frank3 and this has been
generalized by many other authors.1 In what follows, we
describe the evolution of vicinal surfaces using a sim
step-flow model.

We consider two limiting channels for mass transport
volving the terrace adatoms. In the first case, the ada
mass flow on each terrace islocal, and takes place by surfac
diffusion. In the second case, the terrace adatoms can e
exchange with aglobal reservoir, perhaps through dire
hops to distant regions of the surface or by rapid excha
with the vapor. We refer to these limiting cases as the lo
~LEM! and global ~GEM! exchange mechanisms, respe
tively. They correspond to the surface diffusion a
evaporation-condensation mass transport mechanisms
sidered by Mullins.2

A. Local mass exchange mechanism

Consider an array of flat terraces separated by stra
parallel steps with horizontal positions,xn . The index n
grows in the direction of positive surface slope. These st
may absorb or emit atoms which then diffuse across
neighboring terraces. We ignore evaporation. Assum
e
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attachment-detachment limited kinetics~i.e., that diffusion
on terraces is very fast compared to the rate of attachm
and detachment of atoms to and from step edges!, the ada-
toms which diffuse on thenth terrace maintain auniform
chemical potentialmn

t across the terrace.4

We further assume that the flux of atoms at the two s
edges bounding thenth terrace is determined by first orde
kinetics, characterized by~for simplicity symmetric! an
attachment-detachment rate coefficientk

Jn
15k~mn

t 2mn
s!,

~1!

Jn11
2 5k~mn

t 2mn11
s !.

Here,Jn
1 and Jn

2 denote the flux from the lower and uppe
neighboring terraces into thenth step, respectively.mn

s is the
step chemical potential associated with adding an adatom
the nth step. In the case of elastic5,6 or entropic repulsive
interactions between steps, it is well known that the s
chemical potential then takes the form7,8

mn
s52gF 1

~xn2xn21!3
2

1

~xn112xn!3G , ~2!

whereg is the strength of the repulsive interactions.
Next, we assume that diffusion processes are fast c

pared with the motion of steps. Within this quasistatic a
proximation, the density of adatoms on the terraces reach
steady state for each step configuration. In this steady s
we haveJn

11Jn11
2 50 for anyn, and therefore the free en

ergy associated with the addition of an adatom on thenth
terrace,mn

t , takes the form

mn
t 5

mn
s1mn11

s

2
. ~3!

Combining mass conservation at thenth step with Eqs.~1!
and ~3!, we obtain the following expression for the step v
locity:

ẋn52a2~Jn
11Jn

2!5
a2k

2
~2mn

s2mn11
s 2mn21

s !, ~4!

with a denoting the lattice constant of the crystal.

B. Global mass exchange mechanism

As with the LEM, we assume linear kinetics; i.e., the flu
of atoms from the reservoir to thenth step is proportional to
the difference between chemical potentials of the reser
and the step

Jn5k~m res2mn
s!. ~5!

Here, m res is the reservoir chemical potential, which w
choose as the chemical potential of a flat surface; i.e.,m res
50. The velocity of thenth step in this case is simply

ẋn52a2Jn5a2kmn
s . ~6!
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Although the exchange rates in the LEM and GEM cases
different we use the symbolk to denote both of them. I
should be clear from the context which exchange rate
refer to.

III. SCALING ANALYSIS AND CONTINUUM MODELS

Simulations of the LEM and GEM step flow models9 sug-
gest that the behavior of these systems at long length
time scales can be described in terms of astep density func-
tion D ~i.e., the inverse step separation! that is a continuous
function of both position and time. Generally speaking, co
tinuum descriptions of step systems should be valid w
every typical surface feature consists of very many steps
the cases we study here, the simulations indicate that the
density function scales in time according to

D~x,t !5F~xt21/g!, ~7!

with a positive exponentg. Thus, the number of steps i
every surface feature grows with time ast1/g. We should
therefore be able to accurately describe the evolution of
system in terms of a continuum model in the long time lim

Equation~7! makes the even stronger assertion that
surface features have a self-similar shape during their ev
tion, and can be related by a proper rescaling of time
distance. This scenario is similar to the scaling exhibited
a decaying crystalline cone, which two of us ha
studied.10,11 In this section, we carry out a scaling analys
similar to the one in Refs. 10 and 11, to obtain the scal
exponentsg and the differential equation for the scalin
function F. We also study the effects of the different ma
exchange mechanisms.

We start by defining the step density function in t
middle of the terraces

DS xn1xn11

2
,t D[

1

xn112xn
. ~8!

Assuming continuity, the full time derivative of the step de
sity is given by

dD

dt
5

]D

]t
1

]D

]x
•

dx

dt
. ~9!

Equation~9! can be evaluated in the middle of the terra
between two steps@i.e., atx5(xn1xn11)/2#. Assuming that
the scaling ansatz Eq.~7! holds, we now change variables
u[t1/g andjn[xnu21, and transform Eq.~9! into an equa-
tion for the scaling function F evaluated at j5(jn
1jn11)/2

dF

dj
S ug21

ẋn111 ẋn

2
2

j

g
D 1F2ug~ ẋn112 ẋn!50. ~10!

In going from Eq.~9! to Eq. ~10! we have used the fact tha
dD/dt52D2( ẋn112 ẋn) and that dx/dt5( ẋn1 ẋn11)/2.
ẋn ,ẋn11 themselves are now expressed in terms of thejn’s
using Eqs.~4! or ~6! depending on the exchange mechanis

Let us also rewrite Eq.~8! in terms ofu, F, and thejn’s

jn112jn5
u21

F@~jn111jn!/2#
. ~11!
re

e

nd

-
n
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tep

e
.
e
u-
d
y

,
g

-

.

According to this, the difference between successivejn’s is
of order u21 whereverF does not vanish. In the largeu
~long time! limit these differences become vanishingly sma
The differencesjn1k2j will also be small as long ask is
finite. We can therefore take the continuum limit in the va
ablej, consistent with our original supposition.

To this end, we evaluate the functionF at the position
(jn1k1jn1k11)/2 by using its Taylor expansion

FS jn1k1jn1k11

2 D[
u21

jn1k112jn1k
5 (

m50

`
1

m!

dmF~j!

djm

3S jn1k1jn1k11

2
2j D m

. ~12!

Next, we expand

jn1k5j1 (
m51

`

fkmu2m, ~13!

and insert this into Eq.~12!. By equating terms of the sam
order in u21 on both sides of Eq.~12!, we can find the
coefficientsfkm for any desired values ofk and m. These
coefficients involve the functionF and its derivatives evalu
ated atj[(jn1jn11)/2.

Having found the expansion coefficientsfkm we now re-
turn to Eq.~10!. This equation depends on the velocitiesẋn

and ẋn11 which in turn depend onjn22•••jn13 or
jn21•••jn12 in the LEM or GEM cases, respectively. Usin
Eq. ~13! we expand Eq.~10! in the LEM case with the fol-
lowing result:

ug24a2kg
d2

dj2 S 1

F

d2

dj2

3F2

2 D 2
j

g

dF

dj
1O~ug26!50.

~14!

Consider Eq.~14!. It involves different powers of the
scaled timeu and cannot be satisfied at all times~unlessF is
trivially independent ofj). However, in theu→` ~long
time! limit Eq. ~14! can be satisfied exactly. This can b
achieved by setting the value of the scaling exponent to
g54 and then requiring the first and second terms to can
each other. Neglecting the small third term we are left w
the long time limit of the LEM differential equation

4a2kg
d2

dj2 S 1

F

d2

dj2

3F2

2 D 2j
dF

dj
50. ~15!

This equation determines the scaling functionF and is exact
only in the long time limit. In this limit it is equivalent to the
attachment/detachment limited scaling equation suggeste
Liu et al.12 It also agrees with Nozie`res’ continuum
treatment13 of attachment/detachment limited kinetics pr
vided one assumes scaling. Thus, in the long time limit,
analysis confirms the validity of previous continuum tre
ments. However, at any finite time there are corrections
orderu22 to the scaling solutionD(x,t)5F(j).

A similar procedure can be applied in the GEM case
leads to the scaling exponentg52 and the following equa-
tion for the scaling function:
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4a2kg
d2F3

dj2
1j

dF

dj
50. ~16!

As in the LEM case, the leading correction to the dens
function decays asu22. Like Mullins, we obtain a fourth-
order equation with LEM and a second-order equation w
GEM. However, these equations have a more complica
form than those arising from Mullins’ continuum model an
will have different solutions.

To conclude this part let us emphasize a few points
garding the above analysis. Equations~15! and~16! together
with the scaling ansatz Eq.~7! and the values ofg constitute
a continuum model for the surface dynamics. This mo
was derived directly from the discrete step system and
exact in the long time limit. In addition, the above scalin
analysis is robust in the following sense. The values of
scaling exponentg are not sensitive to the exact nature of t
step-step interactions in the discrete model. In the Appen
we show that for a general interactiong54 andg52 in the
LEM and GEM cases, respectively. However, the differen
equations for the scaling functions do depend on the form
the interaction.

IV. PROPERTIES OF THE SCALING FUNCTION

Here we study some properties of our continuum mod
Our purpose is to derive several relations for the sca
function, which hold in general. These relations are usefu
the derivation of the boundary conditions necessary in or
to solve Eqs.~15! and~16! for the scaling functions of vari-
ous systems.

First, note that the scaling function must have a fin
limit, F` , at infinity. Otherwise the step density there wou
change infinitely fast. We choose the unit of length so t
F`51. We also choose the unit of time so that 4a2kg51 in
Eqs.~15! and ~16!.

Next, we investigate the time dependence of the volu
and the total number of steps in the system. It turns out
these quantities can be calculated directly from the differ
tial equations. The change in the volume of the system in
positivex half of space during the time interval from zero
t is given by

DV5E
0

`

@h~x,t !2h~x,0!#dx. ~17!

h(x,t)5*0
xD( x̃,t)dx̃ is the profile height measured in uni

of the lattice constant.
Integrating by parts and changing to scaling variables

obtain the equation

DV5u2E
0

`

~F`2F !j dj, ~18!

where we have ignored the surface term assuming no ev
tion occurs infinitely far from the origin.

Let us calculate the last integral in the LEM case. Acco
ing to Eq.~15!

E
ja

jb
j

d2

dj2 S 1

F

d2

dj2

3F2

2 D dj5E
ja

jb
j2

dF

dj
dj, ~19!
y

h
d

-
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whereja andjb are boundaries of a region where Eq.~15! is
valid. Integrating each term by parts we find that

DVLEM5
u2

2 F j2~F`2F !1j
d

dj S 1

F

d2

dj2

3F2

2 D
2

1

F

d2

dj2

3F2

2 GU
ja

jb

1u2E
jP” (ja ,jb)

~F`2F !j dj.

~20!

Similarly, we can calculate the volume change in the GE
case using Eq.~16! and obtain the equation

DVGEM5
u2

2 Fj2~F`2F !2j
dF3

dj
1F3GU

ja

jb

1u2E
jP” (ja ,jb)

~F`2F !j dj. ~21!

A similar treatment can be applied to calculate change
the number of steps in the positivex half of the system, and
we find

DN5uE
0

`

~F2F`!dj. ~22!

Again we can evaluate this integral by using Eqs.~15! and
~16!. The results are

DNLEM5uF j~F2F`!2
d

dj S 1

F

d2

dj2

3F2

2 D GU
ja

jb

1uE
jP” (ja ,jb)

~F2F`!dj ~23!

in the LEM case and

DNGEM5uFj~F2F`!1
dF3

dj GU
ja

jb

1uE
jP” (ja ,jb)

~F2F`!dj

~24!

in the GEM case.
Finally, we study the behavior of the scaling functio

near regions of zero step density. We recall that our sca
analysis is valid only in regions of space where the s
density does not vanish@see Eq.~11!#. Points of vanishing
step density should therefore be treated separately. Ass
that j0 is such a point for whichF(j0)50. Expanding the
scaling function in powers ofj2j0 in the vicinity of j0 and
using Eqs.~15! and ~16!, we find that in the LEM case

F5 (
n51

`

bn~j2j0!n/2, ~25!

and in the GEM case
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F5 (
n51

`

bn~j2j0!n/3. ~26!

Thus a point of vanishing step density is asingular pointof
the scaling function at which all its derivatives diverge.

V. EXAMPLES

To check the validity of our scaling analysis, we consid
three different step-flow models, which according to nume
cal simulations obey scaling under both exchange mec
nisms. All three systems consist of straight parallel and
tially equidistant steps, but differ in their bounda
conditions.

A. Reconstruction driven faceting

The first example is that of reconstruction driven facet
studied by Jeong and Weeks in Refs. 9 and 14. It is m
ematically equivalent to the model of facet growth duri
thermal etching studied by Mullins.2 Within their model, sur-
face reconstruction that lowers the free energy can nucl
only on terraces of width larger than a critical width,wc .
Therefore, terraces of widthw.wc have a lower free energ
than those of widthw,wc . We consider the evolution o
such a step system starting from a configuration where all
terraces except one have the same widthw,wc . ~For sim-
plicity, we do not permit reconstruction on other terrac
even if their widths exceedwc during the surface evolution
The possibility of such ‘‘induced nucleation’’ on other te
races is discussed in Refs. 9 and 14.! The zeroth terrace
@betweenx0 andx1 in Fig. 1~a!# is of different width, larger
thanwc and is reconstructed. This reconstructed terrace te
to become even wider, and this is reflected as a shift
magnitudee in the chemical potentials of the two steps:

FIG. 1. The three systems considered in this section:~a! recon-
struction driven faceting,~b! relaxation of an infinite bunch, and~c!
flattening of a groove.
r
i-
a-
i-

h-

te

e

,

ds
f

m0
s52gF 1

~x02x21!3
2

1

~x12x0!3
2eG ,

~27!

m1
s52gF 1

~x12x0!3
2

1

~x22x1!3
1eG .

As a result, the step atx0 propagates to the left, while the on
at x1 propagates to the right. In the long time limit the st
density of the system obeys scaling. In particular, the size
the facet at the origin grows ast1/g in both LEM and GEM
cases, withg54 in the LEM case andg52 in the GEM
case.

In order to compare our scaling analysis to simulati
results we have to solve Eqs.~15! and~16! with the relevant
boundary conditions. Since the system is symmetric ab
the origin it is sufficient to solve the scaling functionF for
positivej. In addition, our expansion in the small parame
u21 is valid only in regions whereF does not vanish@see Eq.
~11!#. This requirement is violated on the diverging fac
around the origin. Therefore,F obeys Eqs.~15! or ~16! only
for j>j1, wherej1 is the scaled position of the first step
andF(j)50 for j,j1.

1. Local mass exchange mechanism

The first boundary condition is set by our choice of t
value ofF at infinity, namelyF`51.

Next, consider the number of steps, which is a conser
quantity in our step model. This is an important differen
from the continuum approach of Mullins. Using Eq.~23!
with ja5j1 , jb5` and the conditionF(j)50 for j,j1,
we find that in the LEM case

F-~j1!5S F83

F2
2

2F8F9

F
1

jF

3 DU
j1

, ~28!

where primes denote derivatives with respect toj.
Two additional boundary conditions can be found by

vestigating the velocity of the first step. According to o
scaling ansatz the position of the first step isx15uj1. In the
long time scaling limit the velocity of this step goes to ze
as u23. Using Eq. ~4! together with the symmetry of the
system we obtain the following expression forẋ1:

ẋ15
1

4 F 3

~2x1!3
2

4

~x22x1!3
1

1

~x32x2!3
13eG . ~29!

Rewriting Eq.~29! in terms of the scaling variables an
expanding inu21 we find that

ẋ15
3

4
~e2F3!1

3FF8u21

4
1O~u22!, ~30!

whereF is evaluated at (j11j2)/2. In order forẋ1 to vanish
as u23 we must haveF@(j11j2)/2#5e1/3 and F8@(j1
1j2)/2#50. Terms of orderu22 on the r.h.s. also have to
vanish, but they include corrections to scaling, which
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ignore in this paper. In the long time limit the differenc
betweenj1 and (j11j2)/2 is negligible and we arrive at th
boundary conditions

F~j1!5e1/3 and F8~j1!50. ~31!

We solved Eq.~15! numerically by applying the three
boundary conditions atj5j1 @Eqs. ~28! and ~31!#, and by
tuningF9(j1) andj1 itself to satisfy the boundary conditio
at infinity. In the upper half of Fig. 2 we compare the resu
ing solution with scaled density functions taken from n
merical simulations of the discrete model. The agreemen
quite impressive. These results should be compared with
8 in Ref. 2, which predicts antistep formation for large v
ues of the slope parametersm/n.

2. Global mass exchange mechanism

Like in the LEM case, the requirement that the velocity
the first step decays in time results in the boundary condi

F~j1!5e1/3. ~32!

Again j1 is the scaled position of the first step.
Another boundary condition is derived from the cons

vation of the number of steps. Equation~24! with ja5j1 ,
jb5` and the conditionF(j)50 for j,j1 implies that

F8~j1!52
j1

3F~j1!
. ~33!

These two conditions are sufficient for solving Eq.~16! when
the value ofj1 is known.

Finally, we tunej1 to satisfy the boundary condition a
infinity. The resulting solution and its comparison with sim
lation data are shown in the lower half of Fig. 2.

B. Relaxation of an infinite bunch

In the second example, we study the relaxation of an
finite bunch of steps. The initial step configuration@Fig. 1~b!#
consists of an infinite facet atx,0, in contact with an infi-

FIG. 2. Solution of the reconstruction driven faceting scali
function in the LEM and GEM cases~solid lines! compared with
scaled density functions from numerical simulations withe58.
Different symbols represent density functions at different times
-
-
is
ig.

f
n

-

-

nite array of uniformly spaced steps~at x.0). The first step
has a single neighbor, and therefore its chemical potentia

m1
s5

22g

~x22x1!3
. ~34!

In the LEM case, there is a complication, since the first s
may exchange adatoms with the infinite facet on its le
Hence, we have to specifym0

t , the adatom chemical poten
tial on the facet. We assume here thatm0

t 5m1
s , neglecting

any exchange of atoms between the first step and the fa
As a result the volume is conserved in the LEM case.

Simulations of this system in both the LEM and GE
cases suggest that the system exhibit scaling with the or
of the scaled position at the initial position of the first ste
The leftmost steps from the bunch move to the left into
facet due to the repulsive interactions. The first step rece
in time and its position scales asx1;2t1/g. At the same time
the separation between the first steps grows. Forj,j1, the
scaled position of the first step, the step density always v
ishes, and we have to find the scaling function only forj1
<j,`.

1. Local mass exchange mechanism

The velocity of the first step vanishes in the scaling lim
We can therefore evaluateF(j1) by expandingẋ1 in u21,
and requiring that the zeroth-order term vanish. We find t
the zeroth-order term inẋ1 is proportional toF3(j1), which
implies thatF(j1)50.

Two additional boundary conditions can be derived fro
the conservation of volume and the number of steps. Us
Eqs. ~20! and ~23! to calculate changes in the volume an
number of steps in the positive part of thej axis together
with equivalent equations forj,0, we find that

F j
d

dj S 1

F

d2

dj2

3F2

2 D 2
1

F

d2

dj2

3F2

2 GU
j1

50, ~35!

and

d

dj S 1

F

d2

dj2

3F2

2 DU
j1

50. ~36!

As mentioned above, a zero of the scaling function is a s
gular point at which all derivatives ofF diverge. Since
F(j1)50, the limit j→j1 in the last two boundary condi
tions should be taken with care. This can be done by con
ering the power series~25!. The differential equation~15!
and the boundary conditionsF(j1)50, Eqs.~35! and ~36!
impose connections between the coefficients of the exp
sion and leave onlyb1 as a free parameter.

We now use the following procedure to computeF. For
given values ofb1 andj1 we approximateF at j11dj using
the series expansion~25! with suitable truncation. Atj1
1dj the derivatives ofF are finite, and we solveF from
there by numerical integration. We adjust the values ofb1
andj1 in order to satisfy the boundary condition at infinit
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thus obtaining the scaling functionF(j) in the LEM case. In
the upper half of Fig. 3 we compare this solution with sim
lation data.

2. Global mass exchange mechanism

Sinceẋ1}2(x22x1)23, the requirement that the velocit
of the first step vanishes in the scaling limit leads to
boundary condition

F~j1!50. ~37!

To derive another boundary condition, we use Eq.~24! and
impose conservation of the number of steps. The follow
relation is thus obtained:

dF3

dj U
j1

50. ~38!

This implies that all the coefficients in the series expans
~26! diverge except forb1 which vanishes. Thus the conve
gence radius of Eq.~26! is zero and it is difficult to calculate
the scaling function with the numerical procedure used in
LEM case. Nevertheless, taking a small enough value ob1
and tuningj1 to satisfy the boundary condition at infinity
we were able to calculateF approximately. In the lower hal
of Fig. 3, we compare this approximation with simulatio
data.

C. Flattening of a groove

Our last example is the flattening of a groove cut in t
crystal surface. The initial configuration@Fig. 1~c!# consists
of two infinite step bunches with steps of opposite signs t
meet at the origin. Step repulsion within each bunch pus
the bottom step and antistep towards each other until t
collide and annihilate. We assume here that steps of oppo
sign do not interact. Thus the chemical potential of the t
bottom steps includes interaction with only one neighbor
step, namely

FIG. 3. Solution of the infinite bunch scaling function in th
LEM and GEM cases~solid lines! compared with scaled densit
functions from numerical simulations of the discrete model. Diff
ent symbols represent density functions at different times.
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m1
s5

22g

~x22x1!3
. ~39!

When the first steps annihilate we relabel the remaining s
so that the positions of the bottom step and antistep are
waysx1 andx0. Our system is symmetric with respect to th
origin, and it is sufficient to consider only the positive part
the x axis. Symmetry also excludes any flux of adatoms
tween the two bunches, and in the LEM case this implies t
the volumes of the two bunches are conserved separate

1. Local mass exchange mechanism

The groove flattening problem is different from the tw
previous examples, where there was a well defined facet w
its edge at the position of the first step. At the facet edge
~15! becomes invalid due to the vanishing step density. In
groove example, steps annihilate at the origin, and there
steps in all regions of space. However, there could still
points where the density of steps vanishes if the position
the second step diverges in the scaling limit. Let us den
the scaled position of the facet edge byj* . Equation~15! is
valid only for j.j* , and the value ofj* is unknown
a priori. There are two possible, qualitatively different sit
ations:~1! j* .0, i.e., there is a plateau at the bottom of t
groove which grow ast1/4. ~2! j* 50. There could still be a
diverging plateau, but it must grow more slowly thant1/4. In
what follows, we rule out the first possibility and show th
j* 50.

According to Eq.~23!, the number of step annihilation
events grows with time ast1/4. Denoting bytn the time of the
nth annihilation event, we see thattn;n4 and tn112tn
;n3. We now show that ifj* .0, the time interval between
annihilation events is larger thann3. Just before thenth an-
nihilation event, the velocity of the first step~which must be
negative! is given by

lim
t→tn

2

ẋ15
1

4 F 1

~x32x2!3
2

2

x2
3G . ~40!

If j* .0, x2 is of order tn
1/4;n. Equation~40! implies that

x32x2.221/3x2, and therefore the distancex32x2 is also of
ordern.

After the nth annihilation event we relabel the steps.x2
becomesx1 , x3 becomesx2 and so on. Now the distanc
between the first two steps,x22x1 is of ordern. The velocity
of the new first step, which is maximal~in absolute value! at
this time, obeys the following inequality:

lim
t→tn

1

uẋ1u,
1

2~x22x1!3
;O~n23!. ~41!

The step must cross a distance of ordern until it annihilates
and thereforetn112tn is at least of ordern4, in contradiction
with the relation tn112tn;n3 derived above. Hence,j*
50.

In order to solve Eq.~15!, we now find two boundary
conditions atj50. Consider first the quantityx32x2. If x2

diverges with time,x32x2 must also diverge in order forẋ1
to be negative@see Eq.~40!#. If x2 does not diverge in the
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scaling limit, x32x2 must still diverge in order for the time
interval between two consecutive annihilation events to
verge in the scaling limit. Thus,x32x2 diverges and the
scaling function vanishes at the origin:

F~0!50. ~42!

Another boundary condition is derived from volume co
servation in thex.0 half of space. From Eq.~20! we obtain
the condition

F j
d

dj S 1

F

d2

dj2

3F2

2 D 2
1

F

d2

dj2

3F2

2 GU
0

50. ~43!

Requiring expansion~25! to satisfy Eqs.~15! and~43! we
are left with two free expansion coefficients, which we tu
in order to satisfy the boundary condition at infinity. Th
resulting solution compared to simulation data is shown
the upper half of Fig. 4.

2. Global mass exchange mechanism

As in the LEM case, we have to find the value ofj* .
From considerations similar to those used in the LEM cas
can be shown that steps annihilate fast enough for scalin
occur only if j* 50.

In the GEM case the volume is not conserved. Howev
by summing up the velocities of all the steps we can cal
late the rate of change of the volume:

dV

dt
52 (

n51

`

ẋn5
1

2
lim

N→`

1

~xN2xN21!3
. ~44!

The r.h.s. of Eq.~44! is F`
3 /2, while the l.h.s. can be calcu

lated from Eq.~21! with ja50, jb5`, andu25t. This cal-
culation combined with Eq.~44! leads to the boundary con
dition

~F323jF2F8!u0
`5F`

3 , ~45!

which implies

FIG. 4. Solution of the groove flattening scaling function in t
LEM and GEM cases~solid lines! compared with scaled densit
functions from numerical simulations of the discrete models. D
ferent symbols represent density functions at different times.
i-

n

it
to
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-

F~0!50. ~46!

To calculate the scaling function, we use the series exp
sion ~26! to approximateF near the singular point and the
integrate Eq.~16! numerically from a point whereF is finite.
We tune the expansion coefficientb1 to satisfy the boundary
condition at infinity. The resulting solution compared
simulation data is shown in the lower half of Fig. 4.

VI. SUMMARY AND DISCUSSION

We studied 1D step-flow models for the kinetics of f
ceting and relaxation and showed that the surface profile
hibits scaling behavior. The value of the scaling expone
was determined by the mass transport mechanism. The
ing functions in all cases considered here were described
the same differential equation for the same mass trans
mode. These scaling functions differ from those predicted
Mullins’ continuum theory, which does not explicitly con
sider the existence of steps. However, the scaling expon
g agree with Mullins’ classical theory. This can be unde
stood as follows. The systems considered here are well
low the roughening temperature of the~low-index! singular
surface but large parts of the system are rough, with nonz
macroscopic slope and a differentiable free energy as a fu
tion of orientation. Therefore, if the system shows scal
behavior at all, the whole system~including the singular re-
gion! must evolve with the same time dependence as
non-singular part, which is accurately described by Mullin
model.

Here we only considered attachment/detachment lim
kinetics for local mass exchange. We have carried out a s
lar scaling analysis for diffusion limited kinetics. Diffusio
limited kinetics is also a local mass exchange mode
hence the scaling exponents are the same as for attachm
detachment limited kinetics. However, the differential equ
tion for the diffusion limited scaling function is differen
from the attachment/detachment limited case. For diffus
limited kinetics we found equations, which under the scal
assumption, are equivalent to the continuum models p
posed in Refs. 7 and 15. Our results are valid even for fin
step permeability at sufficiently long times.

Another issue that we would like to investigate further
the condition for scaling behavior. When a step profile sho
a scaling behavior, the scaling exponent should depend
the mass transport mechanism but not the driving force
the evolution at the boundary. However, very strong drivi
forces could cause a piling up of steps and destroy the s
ing behavior. What kind of driving force gives rise to a sca
ing behavior? For example, for the flattening of a groove,
used a contact interaction between steps with opposite si
What kind of interaction between the steps of opposite si
in the middle, in general, results in a profile that obeys sc
ing? Does it depend on the mass transport mechanism?
have examined some artificial examples~not described here!
of interactions between the steps of opposite signs that
destroy the scaling behavior but do not know yet the gen
form of the driving forces that admit a scaling ansatz.

One can also consider more general interactions betw
neighboring steps in the non-singular region. Although o
scaling analysis is valid for a general step-step interac
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~see Appendix!, we only carried out simulations to verif
that scaling indeed occurs in the case of simple entropic
elastic step-step interactions. What are the interactions
support scaling? What is the general relationship between
boundary conditions and the step interactions that is con
tent with a scaling ansatz? If these questions can be
swered, we may be able to tell in advance which surf
systems will show dynamic scaling behavior.
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APPENDIX

In this appendix, we give the results of a scaling analy
with a general step chemical potential formula. We start
replacing Eq.~2! with

mn
s5U~xn2xn21!2U~xn112xn!, ~A1!

with U(x) a general analytic function ofx. Such a formula is
consistent with interactions between nearest-neighbor st

Next we use this formula together with the step velocit
~4! and ~6! to rewrite Eq.~10! in the LEM and GEM cases
ur

o

ac

u-
d
at
he
is-
n-
e

.

n
n,
n

is
y

s.
s

Changing the step velocities does not alter the expan
~13! since this expression is general and depends only on
scaling functionF. We can thus use expansion~13! to ex-
pand the new Eq.~10! in powers ofu21. We find that in the
LEM case

ug24
a2k

2

d2

dj2 H 1

F

d

dj F 1

F

dU~F21!

dj G J
2

j

g

dF

dj
1O~ug26!50. ~A2!

This implies that in the LEM caseg54 and the differential
equation for the scaling function is

2a2k
d2

dj2 H 1

F

d

dj F 1

F

dU~F21!

dj G J 2j
dF

dj
50. ~A3!

In the GEM we find that

ug22a2k
d2U~F21!

dj2
1

j

g

dF

dj
1O~ug24!50, ~A4!

which impliesg52 and

2a2k
d2U~F21!

dj2 1j
dF

dj
50. ~A5!
D.
1For general reviews see H.-C. Jeong and E. D. Williams, S
Sci. Rep.34, 171 ~1999!; E. D. Williams, Surf. Sci.299Õ300,
502 ~1994!.

2W. W. Mullins, Philos. Mag.6, 1313 ~1961!. See also W. W.
Mullins, J. Appl. Phys.28, 333 ~1957!.

3W. K. Burton, N. Cabrera, and F. C. Frank, Philos. Trans. R. S
London, Ser. A243, 299 ~1951!.

4In the more general case of a finite ratio between the terr
diffusion rate and the step-edge attachment rate,mn

t varies with
position and must be calculated explicitly by solving the diff
sion equation. This does not change our basic conclusions.

5V. I. Marchenko and A. Ya. Parshin, Zh. E´ksp. Teor. Fiz.79, 257
~1980! @Sov. Phys. JETP52, 129 ~1980!#.
f.

c.

e

6A. F. Andreev and Yu. A. Kosevich, Zh. E´ksp. Teor. Fiz.81,
1435 ~1981! @Sov. Phys. JETP54, 761 ~1982!#.

7M. Ozdemir and A. Zangwill, Phys. Rev. B42, 5013~1990!.
8A. Rettori and J. Villain, J. Phys.~France! 49, 257 ~1988!.
9H.-C. Jeong and J. D. Weeks, Scann. Micro.~to be published!.

10N. Israeli and D. Kandel, Phys. Rev. Lett.80, 3300~1998!.
11N. Israeli and D. Kandel, Phys. Rev. B60, 5946~1999!.
12D.-J. Liu, E. S. Fu, M. D. Johnson, J. D. Weeks, and E.

Williams, J. Vac. Sci. Technol. B14, 2799~1996!.
13P. Nozières, J. Phys. I48, 1605~1987!.
14H.-C. Jeong and J. D. Weeks, Phys. Rev. Lett.75, 4456~1995!.
15J. Hager and H. Spohn, Surf. Sci.324, 365 ~1995!.


