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Emitter quantization and double hysteresis in resonant-tunneling structures: A nonlinear model
of charge oscillation and current bistability
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The effects of emitter quantization on the current-voltage (I -V) characteristics of conventional double-
barrier resonant tunneling structures~RTS’s! are investigated by numerical, graphical, and analytical methods.
Different stability and degrees of emitter quantization can lead to a host of different I–V characteristics in the
negative differential resistance~NDR! region. Among these are simple NDR, NDR with a rising plateaulike
region and well-separated double hysteresis, and NDR with a falling plateaulike region and well-separated
double hysteresis. The ratio of the main hysteresis width to the secondary hysteresis width can vary between 1
and `. The use of large enough spacer layers can eliminate the hysteresis and plateaulike behavior. Our
numerical results for RTS’s are analyzed by employing graphical~based on simulated quantum-well charge!
and analytical methods, and compared with experiments. We introduce a nonlinear physical model which is
solved analytically for the limit cycle solution. The limit cycle predicts a rising average current, whereas the
nonoscillatory solution predicts a falling current in the plateau region as a function of bias. The limit cycle also
predicts a monotonically decreasing amplitude of the current oscillation as a function of bias in the plateau
region. The fundamental frequency increases, reaches a maximum, and sharply decreases to zero as a function
of bias in the plateau region. These analytical results agree with experiments and numerical simulations. The
origin of inductive delay in RTS’s is further clarified. We believe we have resolved in fine detail the contro-
versy about theI -V characteristics of conventional RTS’s. A prescription for this structure to operate as an all
solid-state THz source is also given.
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I. INTRODUCTION

It is well known that numerical quantum transport sim
lations and experiments of most resonant tunneling struct
reveal the characteristic peak-to-plateau-to-valley beha
of the current as a function of applied voltage.1–4 Double
hysteresis behavior is also seen with forward and backw
voltage sweep.3,4 Moreover, time-dependent simulation r
sults of different groups5,6 reveal intrinsic high-frequency
current oscillations in the plateau region of the curre
voltage (I -V) characteristics. The purpose of this paper is
shed light on these phenomena. We have performed num
cal quantum transport simulations of resonant tunne
structures~RTS’s! by independently varying various devic
parameters. The results are explained as due to the pres
of unstable two-dimensional~2D! quantization in the emitte
through strong ‘‘ripple effects’’ on the electron-density di
tribution. First we use graphical methods to explain our
sults and other RTS results for the grossI -V characteristics.
To explain the finer features, here we also introduce a n
linear analytical model of charge oscillation and bistabili
and obtain a limit cycle solution for the oscillations in th
plateau region.
PRB 610163-1829/2000/61~8!/5644~22!/$15.00
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The only way to explain the current peak during forwa
bias is to postulate the passage of the quantum-well~QW!
discrete energy level into the forbidden energy region of
emitter. This forbidden region does not necessarily cor
spond to the energy gap between the emitter conduction
valence bands. This forbidden region may be created ab
the emitter conduction band edge by virtue of the quanti
tion of the supply electronic states by the emitter quant
well ~EQW!. This is illustrated in Fig. 1~a!, which shows a
triangular EQW. In what follows we will show that the QW
energy-level passage into the forbidden region above
conduction band edge of the emitter, depicted in Fig. 1~a!, is
responsible for the high-frequency current oscillation a
plateaulike behavior of theI -V characteristic of RTD’s.

The passage of the QW energy level into the forbidd
region of the emitter creates a sudden drop of the cur
across the device, producing a characteristic sharp cur
peak. However, the subsequent and inherent feedb
mechanism prevents the average post-peak current from
suming the valley-current value. As the electrons are built
in the emitter, the interference of the reflected electrons
the incoming electrons creates a significant ‘‘ripple effec
on the electron-density distribution which effectively broa
5644 ©2000 The American Physical Society
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FIG. 1. ~a! Emitter 2D quantization results in premature alignment of the QW energy level with the forbidden region of the emitte
electrons accumulate in the emitter with density structure and a broadening of the EQW caused by interference of reflected and
electrons. The buildup time takestB to achieve the condition in~b!. ~b! Realignment with occupied states causes rapid depletion of
builtup charge in timetL , after which condition~a! is restored.~c! Device parameters used in the calculations.~d! Equivalent circuit model,
wherei (v) @Nw(v)# is the current~charge! of an ideal RTS for a voltage dropv across the negative resistor.
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ens the EQW by virtue of the self-consistency of the cha
and potential. The broadening is due to the redistribution
the electrons, with some regions becoming positive~deficit
of electrons! and some regions negative~excess of electrons!
in the emitter. This is clearly indicated by our numeric
results.

This EQW renormalization yields a much broader EQ
and the lowering of the allowed discrete energy level in
emitter toward the conduction-band edge. With this EQ
broadening, it is also plausible for a change from discr
quantization to the continuum energy levels down to
conduction-band edge of the emitter. In either case,
alignment of the QW discrete energy level with occupi
states in the emitter will be restored, yielding high transm
sion coefficients and larger currents. This is depicted in F
1~b!. This feedback is basically a catalytic process, since
quantum-well charge, through the self-consistent poten
helps in restoring the QW energy-level alignment with t
occupied states in the emitter. The resonant tunneling f
the emitter~emitter discharge! and the self-consistency of th
charge and potential lead to a restoration of the emitter
tential profile which produces 2D quantization, and pass
of the QW energy level through the occupied states into
forbidden region, i.e., back to the situation depicted by F
1~a!. The process therefore oscillates between that of F
1~a! and 1~b!, and the average is responsible for the plate
like behavior above the valley-current minimum. From t
steady-state point of view, it is as if the QW energy lev
e
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maintains its alignment with some fraction of the occupi
states in the emitter.7

It is thus clear that the driving source of this oscillato
condition is the buildup and redistribution of charge~signifi-
cant ripple effect! due to the interference of the reflected a
incoming electrons. In our analytical treatment of the pro
lem, we identify this driving source in terms of the tot
charge buildup,Q, at the emitter in time durationRC, where
R is the access resistance andC is the RTS capacitance
Therefore,Q/RC measures the maximum rate of buildup
supply electrons at the emitter in the absence of tunnelin
the QW. In the presence of tunneling, the proper coupled
equations are derived in Sec. III, where we introduce
nonlinear physical model.

We expect that the amplitude of oscillation is largest
the plateau region just after the current peak, as depicte
Fig. 1. This is because there is a considerable broadenin
renormalization of the EQW in going from Fig. 1~a! to Fig.
1~b!, i.e., in bringing the allowed EQW-allowed states in lin
with the QW energy level. On the other hand, well within t
plateau region, there is only a further broadening of
EQW, and hence the amplitude of the oscillation will b
come smaller as the drain bias is further increased. Thi
indicated in Fig. 2. Indeed, this is what was found in vario
time-dependent numerical simulations of RTS’s.5,6 This con-
jecture is also confirmed by our analysis in Sec. VI.

We should point out that although the interference of
flected electrons with incoming electrons also occurs to so
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5646 PRB 61BUOT, ZHAO, CUI, WOOLARD, JENSEN, AND KROWNE
degree in the valley and prepeak region of theI -V plot, the
accompanying interference-induced broad potential is o
transient in nature as the bias is suddenly changed~transient
ripple effect!, and is not present in the simulation when t
steady state is reached~the stationary transmission coeffi
cient!. The strong ripple effect on the electron-density dis
bution in the emitter is only sustained if the transmiss
coefficient is highly oscillating, such as what is occurring
the current-plateau region. This phenomenon is analogou
strong ripple on the surface of a water pool when the d
charge valve is turned on and off periodically. For station
discharge outside the plateau region, quantum mecha
still creates a ripple due to interference of reflected and
coming electrons, but not one significant enough to broa
the EQW and realign the QW energy level with occupi
states in the emitter for applied bias beyond the plat
range.

Indeed, a deeper understanding of the oscillation and
stability in RTS’s can be attributed to the unstable 2D qu
tization in the triangularlike EQW just after the current pea
as suggested by our recent steady-state simulation on
nant tunneling structures of different barrier widths, simu
tion box ~simulated device! lengths, barrier heights, right
barrier widths, QW widths, spacer-layer widths, and dop
densities. As indicated in Fig. 1~a!, it is the passage of the
QW energy level into the forbidden region of the emitt
which marks the onset of the negative differential resista
~NDR! region of theI -V characteristics. Since the occupie
states are above the conduction-band edge of the emitter
premature onset is expected to occur at lower drain volt

FIG. 2. A smaller amplitude of the oscillation occurs within th
plateau region as the QW energy level continues to shift downw
with an increase in applied bias. Hence the EQW broadening ch
Q in Q/RC also decreases with an increase in applied voltage in
plateau region.
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than that when the QW energy level is aligned with the b
tom of the conduction band of the emitter; this is where
current peak would have occurred if there was no forbidd
2D states formed in the emitter. We should also point
that the more accurate use of a longer simulation box len
~longer simulated device! strengthens our physical argu
ments for two reasons:~a! it assures the natural formation o
broadened EQW and low-lying allowed states, or even
formation of continuum states in the emitter, for the situati
depicted in Fig. 1~b!, while ~b! providing for a more accurate
approximation of the ‘‘inflow’’ boundary condition, typically
used in the numerical simulation.5,6 It also yields large
enough series resistance for the oscillation to set in. Thus
agreement with previous analysis,1,2 large access resistanc
in longer device indeed helps create the oscillatory behav

The above proposed physical mechanism is particula
supported by the five salient features of the steady-state c
puter simulation of symmetrical RTS’s of different barri
widths, holding other dimensions fixed~all variations re-
ported here are in the sense of partial derivatives!. These are
as follows.

~1! The width of the plateau increases with the decreas
barrier widths~also with decrease of device lengths, barr
heights, right-barrier widths, QW widths, and spacer-lay
widths!.

~2! The ratio of the width of the primary hysteresis to th
width of the plateau increases with the barrier width~also
with increase in device lengths, barrier heights, right-bar
widths, QW widths, and spacer-layer widths!.

~3! The average slope of the plateau decreases with
crease in barrier widths~also with increase in device length
barrier heights, right-barrier widths, QW widths, and spac
layer widths!.

~4! There is a tendency to form secondary hysteresis
tween the plateau and peak current.

~5! The rising plateaulike region, which indicates th
presence of time-dependent oscillatory current behavior
the hysteresis, disappears for large spacer-layer widths.

The fourth salient feature in particular has never be
explained in the literature; however, this feature is usua
seen in experiments3,4 as well as in the time-dependent sim
lations of Jensen and Buot5 and Biegel and Plummer.6 We
should also point out another very important informatio
namely, that the average stored charge in the quantum
calculated by Jensen and Buot5 has the same shape as t
calculatedI -V characteristic. This observation is the key
explaining the fourth salient feature above, and is crucia
our graphical analysis presented in Sec. II. This informat
was completely missed in graphical analyses of RTS’s
other authors. Sheard and Toombs8 were the first to employ
graphical methods to show the presence of hysteresis
bistability in RTS’s. Although their result seems feasib
this does not resemble any of the experimentally measu
I -V characteristics of Refs. 3 and 4, by virtue of failing
take into account the quantization in the emitter. In partic
lar, the presence of double hysteresis in the experime
results3,4 was not explained at all. Using similar model a
that of Sheard and Toombs, the authors of Ref. 9 also
ployed graphical analysis in examining the effect of the d
cretization of charge in small area RTS’s.

A more recent graphical work of Sheard and Toomb10
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PRB 61 5647EMITTER QUANTIZATION AND DOUBLE HYSTERESIS . . .
took into account the quantization of the accumulation la
in the emitter. However, their graphical analysis was entir
time independent, and failed to account the oscillatory
havior which intermittently renormalizes the emitt
conduction-band edge after the current peak, causing an
stability of the emitter quantization, a phenomenon which
clearly indicated in our numerical results. Moreover, th
assumed that the QW energy level lies above the EQW
ergy level due to screening of the applied voltage by
charge in the QW. Thus, they claimed that the electric fi
across the emitter barrier and hence the charge in the a
mulation layer remain almost constant with bias, which
contrary to our numerical results. Again no attempt w
made to explain the double hysteresis and other salient
tures of the experiment of Refs. 3 and 4.

II. EFFECTS OF UNSTABLE EMITTER QUANTIZATION
IN THE NDR REGION

The salient features of our simulation mentioned abo
can be explained if we invoke the presence of unstable
cretization of the EQW energy levels in the NDR operatio
The quantization of EQW energy levels is expected to dr
tically change the supply electrons from the emitter
‘‘seen’’ by the QW energy level. The peak of the current w
no longer correspond to the alignment of the QW ene
level with the bottom of the conduction band of the emitt
The peak current will correspond to the alignment betwe
the EQW-allowed subband minimum and QW energy lev
at a lower current-peak bias. The supply electrons are
reduced because the allowed energy level is raised from
bottom of the conduction band of the emitter. This does
imply that the observed current is necessarily decreased
the contrary, the observed current usually increases since
condition occurs for smaller barrier widths and higher fie
in the emitter. Moreover, because of the access-resist
voltage drop, larger currents will shift theI -V curve to
higher-bias range, as shown by our simulation for sma
barrier width RTS’s.

As the QW energy level passes a sufficiently high-enou
EQW energy level during a forward-bias sweep, oscillato
charging and discharging of the QW result by virtue of t
self-consistency and feedback between the charge and p
tial, with intermittent broadening of the confining potential
the emitter. In effect, as will be analytically demonstrat
below the unstable alignment of the EQW and QW ene
levels converges into a limit cycle, and hence in the osci
tion in the QW charges and corresponding currents.1 These
oscillations persist until the QW energy level is below t
conduction-band edge of the emitter; the current drastic
drops to the valley-current value, since any broadening of
EQW is no longer effective in realigning the pertinent ener
levels. The average values essentially map the steady-
current plateau, given by the steady-state simulation.

All the salient features listed above can readily be
plained by using a graphical analysis in the manner used
Buot and Rajagopal11–13 and Buot.14 The graphical analysis
involves the simultaneous solution of two different expre
sions for the QW charge, one derived from the Poisson eq
tion and another from the transport-rate equation. Here
have to make provision, based on the numerical resul
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Jensen and Buot,5 for the changes in the average supply ele
trons from the emitter due to the formation of an oscillati
forbidden region above the emitter conduction-band ed
This was not accounted for in graphical analyses by ot
authors. As usual, the current can then be approximated
Qw /tc ,11–13 where Qw is QW charge andtc is the decay
time to the collector.

From the Poisson equation, we have, forQw , an expres-
sion,

Qw5
~21z!

e8
JH \2kz

2

2m*
2Ew1

eV8

~21z!J , ~1!

wherez5c/(a1b1w/2), J5e/(a1b1w/21c), e85e$1
2J/@e/a(11z)#% and V85V@12za/c#. Here e is the di-
electric constant. In deriving Eq.~1!, we simply use the Pois
son equation9 ER2EL5Qw /e, whereER is the electric field
in the right regiona1b1w/21c andEL is the electric field
in the left regiona1b1w/2, indicated in Fig. 1~c!. Note that
the ‘‘capacitance’’ parameterJ and the ratioz vary in-
versely with the barrier widthb, i.e., the slope ofQw vs kz

2

increases with the decrease inb. We shall soon see that thi
causes the ratio of the hysteresis width to the plateau w
to increase with increase in barrier width.

From the transport-rate equation,11–13we have another ex
pression for the QW charge given by

Qw5
e m*

p\2b
lnH 11expbS EF2

\2kz
2

2m* D J
3S td

te
D uS \2kz

2

2m*
2Ez

EQWD
1

F e m*

p\2b
lnH 11expbS EF2

\2kz
2

2m* D J
3S td

te
D u~kz

2!uS Ez
EQW2

\2kz
2

2m* D , ~2!

whereEz
EQW is the energy level formed in the emitter, 1/td

51/te811/tc, 1/tc is the effective rate of decay ofQw into
unoccupied collector states, and 1/te is the effective rate of
decay ofQw into unoccupied emitter states which may
assumed to be equal to the rate of supply of electrons f
the emitter to the quantum well, 1/te8 . In a highly nonequi-
librium situation we can puttd'tc . In Eq. ~2! we set the
average value of the oscillatory quantum well charge at
plateau (0,\2kz

2/2m* ,Ez
EQW) as equal to a fractionF of

Qw obtained if there were no forbidden 2D states in t
emitter. The first term of Eq.~2! comes from the electrons in
the allowed states aboveEz

EQW, whereas the second term
which is further clarified in Sec. VI, describes either the
fective averaged of the oscillating quantum well charge
the stationary value in the plateau after the QW energy le
passes theEz

EQW. Note that we do not exclude the possibili
of nonoscillatory behavior in the plateau, as indicated by F
3. However, our analytical results in Secs. V and VI strong
suggest that this can occur only for very weak quantiz
field in the emitter, and furthermore this is characterized b
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decreasing plateau current as a function of drain bias, s
gesting thatF is a decreasing function of bias for nonosc
latory condition.

For the oscillatory case,F is expected to be an increasin
function of barrier widthb, since the amplitude of quantum
well charge oscillation should be small when the differen
of bias is small between the alignment of the QW ene
level with the bottom of the conduction band and with t
EQW energy level. This holds for the larger barrier widthb,
and hence a weaker quantizing field in the emitter for
situation depicted in Fig. 1~a!. More will be said relating toF
in the discussion of the analytical solution in Sec. VI.Ez

EQW

is expected to lie higher above the bottom of the emi
conduction-band edge for smaller barrier width than
larger barrier width, holding other RTS dimensions fixed,
virtue of increased localized band bending at the emitter
smaller barrier width. This translates to a larger plate
width for smaller barrier width than for larger barrier widt
Other factors also enter, such as the spacer layer wi
whose effect will be discussed later.

Based on the simulated quantum-well charge5 and in the
light of the typical experimental and simulatedI -V curves of
RTS’s in the absence of a current plateau, Fig. 4 shows the
empirical plot of Eq.~2!, together with the approximation o
Eq. ~1! as straight dotted lines for different barrier width
For simplicity we use a constant value ofF for each plateau.

FIG. 3. Stable stationary condition can occur if the buildup r
in the emitter is balanced by the resonant tunneling rate. This c
dition is estimated to be readily attained in the plateau region fo
very weak quantizing field in the emitter that causes the prema
current peak.

FIG. 4. Schematic diagram comparing the plots of Eq.~1!
~straight lines! and Eq.~2! for RTS’s with different barrier widths.
Solid circles stand for reverse-bias sweep~progresses to the right!
solutions, and open circles for forward-bias sweep~progresses to
the left! solutions.
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However, note that for the 35-Å barrier width one should u
a decreasingF with bias in light of our numerical and ana
lytical results. In all these figures thesolid circle represents
the simultaneous solution of Eqs.~1! and ~2! for a reverse-
bias sweep, and theopen circlecorresponds to the solutio
for a forward-bias sweep. According to Eq.~1!, an increase
in drain bias will result in the displacement of the dott
lines to the left, and a decrease in drain bias will result
displacement to the right.

The current is approximately given byQw /tc .11–13 In
Fig. 4, we see that the slope and width of the plateau, a
function of bias~or kz

2!, is also a decreasing function of th
barrier width, in agreement with our numerical simulatio
Moreover, because of the dependence ofJ andz of Eq. ~1!
on the barrier widthb, the slope of the dotted straight lines
inversely proportional to the barrier width. This results in
decreasing fraction of the hysteresis width to the plate
width, as well as an increased separation between the
hysteresis, as the barrier width is decreased. The hystere
defined by four solution points consisting of two diagona
opposite solid and open circles and two diagonally oppo
points, each consisting of a solid circle inside an open cir
representing overlapping solutions to the both reverse
forward-bias sweeps. Figures 5~a!–7~a! show the solution
points for reverse and forward-bias sweeps for different b

e
n-
a
re

FIG. 5. ~a! Graphical solutions of Eqs.~1! and ~2! for a barrier
width of 27 Å. Solid circles stand for reverse-bias sweep solutio
and open circle for forward-bias sweep solutions.~b! Correspond-
ing simulation results for the current density.
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PRB 61 5649EMITTER QUANTIZATION AND DOUBLE HYSTERESIS . . .
rier widths, from which one can observe the salient featu
listed above. In particular the tendency to form double h
teresis, not very well accounted for in the literature, is qu
apparent from these figures. Figures 5, 6, and 7 demons
that the graphical solution has the same prediction as
extensive numerical simulation concerning the depende
of the I -V characteristics as a function of the barrier widt

In the graphical solution of Fig. 5~a! for a barrier width of
27 Å, note that the primary lower hysteresis width and s
ondary upper hysteresis width are small and approxima
equal, and these two hysteresis are very well separated in
plateaulike region. These salient features agree with our
tual numerical quantum transport simulation shown in F
5~b!. In both our graphical solution@Fig. 6~a!# and in the
actual numerical simulation@Fig. 6~b!# for a barrier width of
30 Å, the primary lower hysteresis width is clearly larg
than the secondary upper hysteresis width, and their sep
tion in the plateau region is less than those in Figs. 5~a! and
5~b!. In our graphical solution of Fig. 7~a! for a barrier width
of 35 Å, the upper secondary hysteresis width is fina
masked by the large width of the primary lower hystere
which occupies the whole plateau region, i.e., the two h
teresis widths overlapped. There could only be one vis
hysteresis occupying the whole plateau region, although

FIG. 6. ~a! Graphical solutions of Eqs.~1! and ~2! for a barrier
width of 30 Å. Solid circles stand for reverse-bias sweep solutio
and open circle for forward-bias sweep solutions.~b! Correspond-
ing simulation results for the current density.
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simulated I -V characteristics for large doping levels, di
cussed below, closely follow the graphical solution of F
7~a!. Hence our graphical results agree with that of the act
numerical quantum transport simulation shown in Fig. 7~b!.

Figures 8–11 demonstrate the significant renormaliza
of the emitter conduction, band edge at NDR, often igno
in previous analyses of RTS’s. Figure 8, for the forward-b
sweep, and Fig. 9, for the backward-bias sweep, demons
the degree of broadening of the emitter region as a func
of the barrier widths. These figures indicate the increase
EQW-confining electric fields as the barrier width decreas
At the largest simulated barrier width of 35 Å, it is estimat
that the oscillatory behavior in the plateau is not maintain
due to a very weak quantizing field, and evolves into a s
tionary behavior. Figures 10 and 11 show the correspond
electron-density distribution for the forward- and backwa
bias sweeps, respectively. These figures again show l
changes in the structure of the emitter region for sma
barrier widths than for larger barrier widths, indicating th
the EQW-allowed states lie higher from the conduction-ba
edge of the emitter for smaller barrier widths.

Thus the width of the plateaulike region in theI -V char-
acteristics is proportional to the value of the 2D energy le
of the EQW measured from the bottom of the emit
conduction-band edge, denoted asEz

EQW in Fig. 1~a!. This
value is in turn proportional to the band-edge bending in
emitter region at the barrier edge. We are thus led to sim

s,

FIG. 7. ~a! Graphical solutions of Eqs.~1! and ~2! for a barrier
width of 35 Å. Solid circles stand for reverse-bias sweep solutio
and open circle for forward-bias sweep solutions.~b! Correspond-
ing simulation results for the current density.
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explanations for the variation of the features of theI -V char-
acteristic in the NDR with respect to device lengths~Fig.
12!, heights of the barrier~Fig. 13!, right-barrier widths~Fig.
14!, quantum-well widths~Fig. 15!, spacer-layer widths~Fig.
16!, temperatures~Fig. 17!, and doping density~Fig. 18!.

FIG. 8. Simulated forward-bias self-consistent potential for b
rier widths of ~a! 27 Å, ~b! 30 Å, and~c! 35 Å.
In our simulation of the actualI -V characteristic as func
tions of the device lengths, we found that the use of a sma
device length produces a result which mimics the use o
smaller barrier width@Fig. 5~a!#, in the sense of having very
small hysteresis widths~shown in Fig. 12 to be zero for both
the primary and secondary hysteresis! and very well sepa-

-
FIG. 9. Simulated backward-bias self-consistent potential

barrier widths of~a! 27 Å, ~b! 30 Å, and~c! 35 Å.
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FIG. 10. Simulated forward-bias electron-density distribution for a barrier width of~a! 27 Å and~b! 30 Å. ~c! Details of the emitter
structure for 30 Å and~d! 35 Å.
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rated in the plateau region. This is because the condition
higher quantizing field at the emitter and a larger value of
‘‘capacitance’’ parameterJ of Eq. ~1! are achieved for
smaller lengths than for larger device lengths. Indeed, a s
lar trend is obtained in going from smaller to larger simu
tion box lengths~Fig. 12!, as in the use of increasing barrie
widths ~Figs. 5–7!. Note, however, that in Fig. 12 all th
plateau currents are rising as a function of the applied b
indicating the presence of significant oscillations in all thr
cases in Fig. 12, as opposed to Fig. 7~b!, which exhibits a
falling current in the plateau and where oscillation does
seem to be present in the light of the discussions given
Secs. V and VI. The reason for this maintained oscillation
that longer simulation box length enhances oscillatory
havior in a manner discussed in the Sec. I, thereby comp
sating for the weakened confining field at the emitter a
maintaining the driving source.

Approximately similar trend as in Figs. 5–7 is also o
tained in our numerical simulation as one goes from sma
barrier heights to larger barrier heights shown in Fig. 13. T
explanation again hangs on the two important parame
that were used in our graphical analysis, namely, the qu
tizing field in the emitter and the ‘‘capacitance’’ paramet
The variation with respect to the barrier heights is mo
subtle than the dimensional effects on the confining poten
at the emitter and the capacitance parameterJ. It is impor-
a
e

i-
-

s,
e

t
in
s
-
n-
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r
e
rs
n-
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e
al

tant and helpful to realize that a decrease in barrier heig
will actually lead to greater band bending at the emitter
the NDR operation. The reason for this is that smaller bar
heights yield larger values of the QW energy level measu
from the bottom of the conduction-band edge of the Q
denoted asEw in Fig. 1~c!, due to a lesser confining QW
potential. This means that the NDR for these devices occ
at larger values of the drain bias, which results in stron
confining fields at the emitter in the NDR. Hence we see t
the width of the plateau also increases with a decrease in
barrier heights. Moreover, smaller barrier heights will res
in larger currents and a larger charging of the quantum w
This translates into a larger capacitance with a decreas
barrier heights. The large slope of the plateaulike region
the NDR for a smaller simulated barrier height of 0.20 e
suggests that the large charging of the QW eventually r
ders the stable disappearance of 2D states at the emitter
manner of a decreasing amplitude of oscillation with bias
this region. Indeed, as can be seen from Fig. 13, the p
point of the increasing ‘‘plateau’’ nicely connects throug
the first peak point interpolating theI -V characteristics in the
absence of oscillation and plateau. The absence of hyste
is mainly due to the presence of large capacitance.

In our numerical simulation for different right-barrie
widths ~Fig. 14!, the results approximately mimicked thos
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of Figs. 5–7, where the right and left barriers are symme
cally varied, thus indicating the principal role of the rig
barrier in changing the quantizing field at the emitter. T
numerical simulation for different QW widths also produc
similar trend as one goes from smaller to wider QW widt
as shown by Fig. 15. Basically, the smaller QW width, w
its higher QW resonant energy level, produces a stron
quantizing field at the emitter in the NDR operation th
those for wider QW widths. Note the higher peak bias in F
15 for the smallest QW width. Note also that the use o

FIG. 11. Simulated backward-bias electron-density distribut
for barrier widths of~a! 27 Å, ~b! 30 Å, and~c! 35 Å.
i-

e

,

er

.
a

larger QW width of 60 Å in our simulation virtually elimi-
nates the oscillatory behavior and hence the increasing
teau behavior, as shown in Fig. 15. This last remark can
understood in the light of the analytical treatment of Secs
and VI.

Interestingly enough, the effect of varying the spac
layer widths in our numerical simulation in Fig. 16 follow
the same trend as that of Fig. 15. The only difference is
the significant change in the magnitude and shift of the c
rent peak as function of applied bias in Fig. 15 as compa
to Fig. 16. Whereas in Fig. 15 the resonant energy leve
also affected as one varies the QW well widths, this is
the case as one varies the spacer-layer widths in Fig. 16.
loss of the oscillatory behavior and significant reduction
the hysteresis for a spacer-layer width of 40 Å in our nume
cal simulation clearly indicates that for large enough spac
layer widths, the plateaulike behavior and hysteresis can

n

FIG. 12. Simulated current density as a function of simulat
box lengths for RTS’s withb530 Å, w550 Å, and a spacer-laye
width of 30 Å. The doping density is 2.031018 cm23.

FIG. 13. Simulated current density as a function of barr
heights for RTS’s withb530 Å, w550 Å, and a spacer-laye
width of 30 Å. The doping density is 2.031018 cm23, and the simu-
lation box length is 600 Å.
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completely eliminated. We have given a definite device
rameter criteria for the RTS’s to exhibit the ideal reson
I -V characteristic without the plateaulike behavior and h
teresis at very low temperature.

The variation of theI -V characteristics as a function o
the spacer-layer widths probes the role of unstable 2D st
in the emitter in the formation of the plateaulike region a
hysteresis. In particular, one expects that the localization
the confining potential at the emitter is a strong function
the spacer-layer widths. For zero spacer-layer width, wit
not too large doping density, the confining potential at
emitter is expected to be highly localized by virtue of t
efficient screening of the doped emitter region, resulting i
larger value of the 2D energy level and hence in a lar
current plateau width. At zero spacer-layer width the capa

FIG. 14. Simulated current density as a function of right barr
widths for RTS’s withw550 Å, and a spacer-layer width of 30 Å
The doping density is 2.031018 cm23, and the simulation box
length is 600 Å.

FIG. 15. Simulated current density as a function of quantu
well widths for RTS’s withb530 Å, and a spacer-layer width of 3
Å. The doping density is 2.031018 cm23, and the simulation box
length is 600 Å.
-
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tance is also increased, resulting in a very small ratio of
hysteresis width to the plateau width, in ageement with
simulation results.

Figure 17 shows the dependence of theI -V characteristic
as a function of temperature. The disappearance of plat
like behavior and hysteresis at room temperature is expe
from the analysis given in this paper, which is based on
existence of sharp energy levels. Effects on the confinem
potential of temperature almost resemble the effects
spacer-layer widths~Figs. 16 and 17!.

Figure 18 shows the numerical simulation of theI -V
characteristic as a function of the doping density. A larg
doping density creates a larger current and a smaller ac
resistance, such that the accompanying voltage drop in
access resistor is practically constant. Thus there is no
servable shift of the current peak between theI -V character-
istic of different doping densities in Fig. 18. The decreas
current in the plateau region for the highest doping density
331018cm23 that was simulated indicates that the stro
screening effect dampens the oscillation while producin
very weak penetration of the electric field at the emit
~weak quantization!. Because of the interplay of the deple
tion and QW capacitance in a series, the capacitance pa
eter is probably slowly varying between different dopin
densities. However, the quantizing field at the emitter is r
idly varying, resulting in corresponding different widths o
the plateau region with different doping densities. Thus
trend similar to that exhibited in Figs. 5–7 is obtained
going from a small doping density of 1.031018cm23 to a
larger value of 3.031018cm23, where theI -V characteristics
more closely follow the graphical solution of Fig. 7~a!.

III. NONLINEAR MODEL
OF THE OSCILLATORY DYNAMICS

Several nonlinear models were attempted in the literat
to explain the oscillatory behavior of RTS’s. A nonline
model for RTS’s by Abe15 only focused on the self-
consistent electron charge in the QW and its effect on
tunneling probability, i.e., only on the catalytic feedback pr
cess due to the self-consistent QW potential mentioned
Sec. I. The dynamical coupling with the emitter~reservoir!
was completely ignored. Highly mathematical treatments
a similar model were given in Refs. 16 and 17. A Sch¨-
dinger equation with nonlinearities concentrated in t
double-barrier region was proposed. The major assump
is that the emitter region is left undisturbed, which is un
alistic in light of all our numerical results. No compariso
with salient features of the experimental results3–4 were at-
tempted. To our knowledge the present paper is the firs
explain all the different salient features between the exp
mental results of Refs. 3 and 4.

A satisfactory analysis of the current voltage characte
tics needs to explain not only the plateaulike behavior a
function of bias and double hysteresis of the avera
currents3,4 but also the oscillatory behavior4 found in the
time-dependent simulation of theI -V characteristic of
RTS’s.5,6 As seen in Sec. II, double hysteresis is a con
quence of the plateaulike behavior of the average quant
well charge. We should also explain the two different beh
iors of the current in the plateau, namely, a decreas

r

-
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FIG. 16. Simulated current density as a fun
tion of spacer-layer widths for RTS’s withb
530 Å, and w550 Å. The doping density is
2.031018 cm23, and the simulation box length is
600 Å.
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current with smaller plateau width3 and an increasing
current4 with larger plateau width as a function of bias. He
we introduce a physical model for the oscillatory dynami
This model does not take into account the steady leak
current from the emitter~source! to the collector~drain!
while the QW energy level is above the conduction-ba
edge of the emitter. This dc component will be treated s
ply as a background dc current in the NDR, assumed to
negligible for strong emitter quantization.

Let Ne be the number of supply electrons at the emit
that are generated by the EQW broadening and participa
tunneling to the QW, and letNw be the number of corre
sponding electrons generated in the quantum well. In
NDR, the frequencyveq of tunneling from the emitter to the
quantum well is given byveq5D̃NeNw , where D̃ is the
tunneling probability factor which takes into account the d
pendence of tunneling coefficient on the barrier height a
width, taking into consideration the longitudinal quantizati
of the supply electrons in the emitter.D̃ therefore could be
dependent on the driving sourceQ/RC, which affects the
existence of limit cycle solution for very small values
Q/RC. The explicit dependence ofveq on Nw is explained
as follows. In the NDR, the frequency of tunneling from t
emitter to the quantum well is enhanced by the presenc
Nw . This is because the realignment of the allowed ene
levels in the emitter and the QW discrete energy leve
enhanced by the presence ofNw , by virtue of the feedback
due to the self-consistency of the potential. This represe
the catalytic feedback process.
.
ge

d
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-
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of
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We can now write the ‘‘effective’’ generation rate of sup
ply electrons at the emitter as

]

]t
Ne5

Q

RC
2

Ne

teq
, ~3!

whereteq52p/veq. As mentioned in Sec. I,Q/RC is the
driving source term,Q is the electron buildup at the emitte
in time constantRC to produce enough broadening of th
EQW, R is the series resistance, andC is the double-barrier
capacitance. Similarly, the effective generation rate of el
trons in the quantum well is

]

]t
Nw5

Ne

teq
2

Nw

tc
. ~4!

Equations~3! and ~4! describe the situation depicted in Fig
1~a!, namely, atNe50 the generation rate ofNe is at its
maximum while the generation rate ofNw is negative, i.e.,
Nw is actually decaying. An equivalent-circuit model close
describing Eqs.~3! and~4! is shown in Fig. 1~d!. This is the
same equivalent-circuit model for RTS’s with inductive d
lay as introduced by Buot and Jensen1 to explain the pres-
ence of intrinsic high-frequency oscillations in their nume
cal results.5 This was discussed in more detail by Buot a
Rajagopal.11 The coupled rate equations above are similar
the one used to describe an interband-tunnel high-freque
oscillator introduced by Buot,14 and discussed in more deta
by Buot and Krowne.18 The maximum generation rate o
Ne , given byQ/RC, is the parameter of our ‘‘dual’’ theory
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FIG. 17. Simulated current density as a fun
tion of temperature for RTS’s withb530 Å, w
550 Å, and a spacer-layer width of 30 Å. Th
doping density is 2.031018 cm23, and the simu-
lation box length is 600 Å.
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here. This is expected to depend on the confining elec
field at the emitter for a given bias, when the QW ener
level passes into the forbidden region of the emitter. In
last equation,tc is the characteristic time for the decay
Nw due to tunneling to the collector.

To derive an explicit expression for the last term of E
~4! from a more fundamental consideration, we need to f
mulate the process describing the decay ofNw due to tun-

FIG. 18. Simulated current density as a function of doping d
sity for RTS’s withb530 Å, w550 Å, and a spacer-layer width o
30 Å. The simulation box length is 600 Å.
ic
y
e

.
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neling from the quantum well to the collector or drain. LetN
be the total number of matching states in the drain for
electrons in the quantum well to transition to. This is a fin
number for real semiconductors. LetNx be the number of
matching states already occupied by virtue of electrons tr
sitioning to these states. The production rate ofNx is propor-
tional to the product of the available number of matchi
states andNw . Let l be this proportionality constant. And le
g be the decay rate ofNx by virtue of electron drift in the
depletion region followed by absorption at the metal conta
Then we can write the rate equation forNx as

]

]t
Nx5l~N2Nx!Nw2gNx , ~5!

where the first term is also the decay rate ofNw . The process
described by the last term of Eq.~5! is the fastest process i
the problem,Nx is therefore expected to relax much fast
thanNw andNe . Thus by adiabatic elimination of fast var
ables, we can letṄx⇒0. Then we obtain

N2Nx5
N

11lNw /g
. ~6!

Upon substituting the expression of Eq.~6! into the first term
of Eq. ~5!, we obtain the decay rate ofNw given by
lNNw /(11lNw /g). Thus we can express the decay rate
the quantum-well electrons as

-
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Nw decay rate5
aNw

11bNw
, ~7!

wherea/b5gN, and 1/b is proportional to the sum of avail
able states in the collector. Equation~7! is a typical decay
rate for dynamical systems involving a fast relaxing ‘‘sink
and is similar to the Michaelis-Menten decay law in chem
cal kinetics. The parametera5lN is the decay rate constan
and a/b is the value of the saturated decay rate ofNw .
Therefore, we can also write the generation rate forNw as

]

]t
Nw5D̃N e

2Nw2
aNw

11bNw
, ~8!

where the first term is also the explicit expression forNe /teq
in Eq. ~4!. Comparing with Eq.~4!, we obtained the follow-
ing relation:tc5(11bNw)/a. As seen in Eq.~10! below,
the physical situation corresponds toa/b.Q/RC. This
means that the maximum discharging rate of the quan
well is larger than the buildup rate of supply electrons at
emitter. Indeed, we can estimate thatQ/tB'Q/RC and
Q/tL<a/b, where tB is the length of time to bring the
device from the state of Fig. 1~a! to that of Fig. 1~b!, andtL
is the corresponding length of time for bringing back fro
state of Fig. 1~b! to Fig. 1~a!. Therefore, the physical require
ment thata/b.Q/RC implies that we may arrange forR to
be large enough for a given capacitanceC such thattB
.tL . This is the situation we are considering in our analy
of the oscillation. Note that oscillatory behavior and hyst
esis very much depends on these two characteristic time
discussed by Buot and Rajagopal.11,13

tB.tL implies that at steady state one would only see
average values of the built-up charge in the emitter a
broadened EQW, since the process of charge buildup ta
longer compared to the time duration for discharging
emitter~which is roughly the leakage time of the QW char
to the collector!. Moreover, the average QW charge will be
slowly varying function of the bias, i.e., resembling the cu
rent plateau plot. This behavior of the quantum-well cha
mimicking the current plateau was indeed found by Jen
and Buot5 in their quantum transport numerical simulation
RTS’s.

IV. STABILITY ANALYSIS

The stationary solution to the coupled rate equations,~3!
and ~8! is given by

Q/RC5D̃N 3
2Nw5

aNw

11bNw
. ~9!

Thus the stationary values ofNw andNe , respectively, are
given by

N e
05S a2bQ/RC

D̃
D 1/2

,

N w
0 5

Q/RC

a2bQ/RC
. ~10!

Note that as the drain bias approaches the plateau edge
into the valley-current value,Q also decreases, as indicate
-

m
e

s
-
as

e
d
es
e

-
e
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by Figs. 1~a! and 2. This situation is indicated in our simu
lation results by the decaying amplitude of the oscillato
behavior as the bias approaches the current-valley value5

For the following stability and nonlinear analyses, it
convenient to simplify the fundamental rate equations a
write them in dimensionless form as

]

]t
P5DQ2P2

P

11P
, ~11!

]

]t
Q5G2DQ2P, ~12!

where

P5bNw ,

Q5bNe ,

D5
D̃~1/b!2

a
, ~13!

G5
Q/RC

~a/b!
,

t5at.

In the absence of any data, we can make a rough estim
for G. Assume thatQ'109 cm22. From Ref. 1, we can esti
mate RC'10214s. Then the driving rate~or electron-flux
density source! Q/RC'1023cm22 s21. From the product of
LuGu'10213 s, whereL is the positive inductance of th
double-barrier structure andG is the ideal negative conduc
tance in the NDR region, determined from Ref. 1, we c
also estimate a'1013 s21. We can approximate 1/b
'1011cm22 to represent the available states in the collect
Then G'0.1. Because of inductive delay, we estima
D̃N e

2!a using typical values ofNe . Using these values, a
reasonable value forD comes out to be about the same ma
nitude asG, which can lead to the inequality (12G)3/4
.D. We will see that this last inequality has a very impo
tant role in our limit cycle analysis in Sec. V. In what fo
lows, we takeG,0.5 to cover the physical range forG in the
I -V plateau region.

In terms of these dimensionless variables, the station
values ofQ andP are given by

P05
G

12G[bN w
0 , ~14!

Q05S 12G
D D 1/2

[bN e
0. ~15!

As mentioned above for a physical situation in the relev
RTS’s, 0,G,1. The dynamical system cannot be sustain
or becomes unbounded in the presence of a catalytic proc
represented by the first term of Eq.~8!, if G>1.0.

The question of whether there is a nonstationary solut
to our fundamental rate equations can first be answered
examining the stability of the stationary point in~P,Q!
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space. This is done by examining the neighborhood of
stationary point. Let us denote the coordinates of this ne
borhood by

P5Po1p,

Q5Qo1q. ~16!

Substituting these into the coupled rate equations~11! and
~12!, and retaining only linear terms inp andq, we have

]

]t S p
qD5S G~12G! 2G@D/~12G!#1/2

2~12G! 22G@D/~12G!#1/2D S p
qD . ~17!

The solution for the trajectories in~P,Q! space about the
equilibrium point is given by

S p
qD5A1el1tS V1

p

V1
qD 1A2el2tS V2

p

V2
qD , ~18!

wherel1 and l2 are the eigenvalues of the matrix~M! de-
fined by Eq.~17!, and the corresponding eigenvectors areV1
andV2 , respectively. The eigenvalues are given by

l1,25
Tr~M !

2
6

1

2
A@Tr~M !#224 det~M !. ~19!

The character of the stationary point can thus be determ
with the help of the invariants of the matrix~M!, namely,
Tr(M ), det(M), andD(M )5@Tr(M )#224 det(M). The sta-
tionary point can not be a saddle point for physical rea
since det(M)52G(12G)3/2AD.0. The physical processe
depicted in Fig. 1 also suggest that the stationary point
only be any one of the following cases: stable foc
@Tr(M ),0#, center focus@Tr(M )50#, or unstable focus
@Tr(M ).0#. These cases mean thatD(M ),0 or 4 det(M)
.@Tr(M )#2. Thus there are two out of three chances that
oscillating processes depicted in Figs. 1 and 2 are susta
depending on the value ofD relative to G. On physical
grounds, we expect the limit cycle solution for uniquene
and structural stability. For the unstable focus we have
demonstrate that a limit cycle exists. The region in~G, D!
parameter space where the structurally stable limit cycl
possible lies in the area under the bifurcation curve@the locus
of Tr(M )50# in this space.

The trace ofM is given by Tr(M )5G@(12G)22$D/(1
2G)%1/2#. Thus Tr(M ).0 implies (12G)3.4D. On the
other hand, D(M ),0 implies (12G)3,4D18G21(1
2G)5/2D1/214&G21(12G)5/4D3/4. In Sec. V, we will em-
ploy a nonlinear perturbation technique using the method
multiple time scales with values of the parameter arou
Tr(M )50. As we shall show in the following nonlinea
analysis, the limit cycle indeed occurs at Tr(M ).0. The
amplitude and frequency of oscillation is expected to dep
on the actual values of the two parametersG and D in this
region.

V. LIMIT CYCLE SOLUTION

Retaining nonlinear terms forp andq measured from the
stationary point, the rate equation from Eqs.~11! and ~12!
becomes a matrix equation,
e
h-

ed

n

n
s

e
ed

s
o

is

f
d

d

]

]t S p
qD5S G~12G! 2G@D/~12G!#1/2

2~12G! 22G@D/~12G!#1/2D S p
qD1S Np

NqD ,

~20!

where

Np5~12G!3p212@D~12G!#1/2pq1
DG

~12G!
q21Dpq2

1 (
n53

`

~21!n~12G!n11pn, ~21!

Nq522@D~12G!#1/2pq2
DG

~12G!
q22Dpq2. ~22!

The perturbation technique employed in what follows ess
tially transforms the above nonlinear equation into a hier
chy of solvable and simpler equations, obtained by equa
coefficients of powers of the smallness parameter. N
Tr(M )50, we use as our smallness parameter the depar
of Tr(M ) from zero, i.e., the departure ofD from Dc where
(12G)354Dc . Thus, let the smallness parameter bee
5A$D2@(12G)3/4#%/D, whereD is determined from the
expansion ofD in powers ofe. D'D2 in the analysis that
follows. G is assumed constant at fixed bias, i.e., a funct
only of the external bias. We make the following expansio

D5(
j 50

`

e jD j , where D05Dc . ~23!

We also expand the matrixM in powers ofe through direct
Taylor expansion in powers ofD2Dc as

~M !5~Mc!1eD1S ]M ~D!

]D U
D5Dc

D
1

1

2
e2FD2S ]M ~D!

]D U
D5Dc

D 1D1
2S ]2M ~D!

]D2 U
D5Dc

D G
1O~e3!. ~24!

Using (12G)354Dc , we obtain the following expressions

~Mc!5G~12G!S 1 1

2G21 21D , ~25!

~M1![S ]~M !

]D U
D5Dc

D 52G~12G!22S 0 1

0 21D , ~26!

~M2![S 1

2

]2~M !

]D2 U
D5Dc

D 522G~12G!25S 0 1

0 21D ,

~27!

We let the solution depend on timet in a combination
t05t and t15(D2Dc)t. Thus, instead of determining th
solution in terms oft, we seek the solution as a function o
t0 , t1 , ande. This method of doing the nonlinear perturb
tion analysis is well known, and is often referred to as t
method of multiple time scales. This has the virtue tha
separates the dependence of the solution into fast and
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time scales. For limit cycle behavior, for example, we exp
that the amplitude of the oscillation is only a function of t
slow time scale. The left side of the rate equation can now
written as

]

]t S p~to ,t1 ,e!

q~to ,t1 ,e! D5H ]

]to
1~D2Dc!

]

]t1
J S p~to ,t1 ,e!

q~to ,t1 ,e! D .

~28!

Since the last term in Eq.~20! represents the nonlinea
term for the solution, we adopt the following expansion:

S p
qD5(

j 50

`

e j 11S pj

qj
D . ~29!
f

ra
c-

on
-
ir
t

e

Therefore, any finite solution that will be found in this anal
sis will invariably indicate that the limit cycle occurs fo
values of the parameter away from the critical poi
Tr(M )50, i.e., away from the bifurcation point. This hold
for example, in our numerical nonlinear equivalent-circ
simulation for the limit cycle of conventional RTS’s opera
ing at the NDR region.2 With Eq. ~29!, the nonlinear term in
Eq. ~20! acquires the following expansion in terms of th
smallness parameter:

S Np

NqD5e2S N2
p

N2
qD 1e3S N3

p

N3
qD 1O~e4!, ~30!

where
S N2
p

N2
qD 5~12G!2S @p0q01~G/4!q0

21~12G!p0
2#

2@p0q01~G/4!q0
2# D . ~31!

S N3
p

N3
qD 5~12G!2S 2

F p0q11p1q01~G/2!q1q01
~12G!

4
p0q0

21
D1G

~12G!3 q0
2

1H D2

~12G!3J 1/2

2p0q012~12G!p0p12~12G!2p0
3

G
F p0q11p1q01~G/2!q1q01

~12G!

4
p0q0

21
D1G

~12G!3 q0
2

1H D2

~12G!3J 1/2

2p0q0

G D . ~32!
ple
ly-
lue
the

d by
We did not show nonlinear terms with fractional powers oe
in Eq. ~30! associated withD1 in Eqs. ~21! and ~22!, since
the left-hand side of the rate equation does not contain f
tional powers ofe. To eliminate the occurrence of these fra
tional powers ofe, we have to makeD1[0 in the expansion
of D @Eq. ~23!# and also in Eqs.~24! and ~32!.

Upon substituting all the expanded quantities in the n
linear rate equation@Eq. ~20!#, we obtain a hierarchy of sim
pler equations. Those arising from the first up to the th
powers ofe are given below:

L0S p0

q0
D50. ~33!

L0S p1

q1
D5S N2

p~p0 ,q0!

N2
p~p0 ,q0! D . ~34!

L0S p2

q2
D1D2L1S p0

q0
D5S N3

p~p0 ,q0 ,p1 ,q1!

N3
q~p0 ,q0 ,p1 ,q1! D , ~35!

where

L05S ]

]t0
2~Mc! D . ~36!

L15S ]

]t1
2~M1! D . ~37!
c-

-

d

The first equation in the hierarchy turns out to be a sim
eigenvalue problem, analogous to our linear-stability ana
sis before. The only difference is that the present eigenva
problem has to be solved with values of the parameter at
critical point, where Tr(M )50, using the matrix (Mc). The
solutions to Eqs.~33!, ~34!, and~35! are given in the Appen-
dix to second order ine, where it is shown that limit cycle
exists forD,Dc .

Thus, to second order in the smallness parameter, an
virtue of Eqs.~16! and~23!, we have the limit cycle solution
given as

S P
QD5S P0

Q0D1S UD2Dc

D2
U D 1/2S p0

q0
D1S UD2Dc

D2
U D S p1

q1
D

1OF S UD2Dc

D2
U D 3/2G , ~38!

where from Eq.~A3! in the Appendix, we have

S p0

q0
D5

uQ~`!u
G1/2 S 2 cosVt

22G1/2cosVt2~12G!1/22 sinVt D ,

5
2uQ~`!u

G1/2 S cosVt
2sin~Vt1F! D , ~39!

where
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tanF5H G
~12G!J 1/2

, ~40!

V[AG~12G!3/21H Im h~D2Dc!

1
Im s

D2
uQ~`!u2~D2Dc!J . ~41!

From Eqs.~A7!, ~A10!, and~A11! in the Appendix, we also have

S p1

q1
D5uQ~`!u2

~12G!

G S 2G
2 1

2
D 1uQ~`!u2S 2

6G~12G!
$4~12G!3 cos 2Vt2v~112G!sin 2Vt%

2

6G~12G! H S 15

2
G2

9

2
23G2D (12G)cos 2Vt

1v~823G22G21!sin 2Vt
J D . ~42!
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We note that Eq.~42! also contains a time-independe
term, indicating a higher-order shift of the center of the lim
cycle from the stationary point (Q0,P0). Therefore, the av-
erage value of (Q

P) is given by

S P
QD

average
5S P0

Q0D1UD2Dc

D2
UuQ~`!u2

~12G!

G S 2G
21/2D

1O~e3!5S P0

Q0D1~higher-order corrections!,

~43!

where the leading higher-order corrections come from
time-independent terms. Thus we have demonstrated th
unique limit cycle exists away from the bifurcation poi
(D,Dc), and the average value is determined by the tim
independent terms of Eq.~16!.

In examining the dependence of various quantities on
driving source,G, we make the assumption thatuD2Dcu is
approximately a constant. The physical reason for this is
D is a measure of the inductive delay, indicated in Fig. 1~d!.
D is large for small inductive delay and small for large i
ductance. For a larger driving source,G, which happens im-
mediately after the current peak bias,Dc is smaller and we
also expect larger inductive delay at this point, and hencD
is also smaller. For larger values of bias in the plateau, me
ing a weaker driving sourceG, Dc is larger and we also
expect the inductive delay to be smaller, meaningD is also
larger. Therefore,uD2Dcu is approximately constant. It is
taken small enough such that the second term in Eq.~43! is
only a very small correction to the first term; otherwise o
has to include other higher-order terms.

VI. DISCUSSIONS

A. Average value of the current in the plateau range

We see that the limit cycle occurs within the range
values of the parameterD where the criterion for unstabl
focus (12G)3.4D @i.e., Tr(M ).0# holds, supporting the
results of our numerical calculation of the limit cycle of a
t

e
t a

-

e

at

n-

f

Al xGa12xAs/GaAs/AlxGa12xAs double-barrier heterostruc
ture operating in the NDR region.2 Because of strong corre
lation of the oscillatory chargesNw andNe , and the conse-
quent current oscillation caused by the alternate buildup
Nw andNe , the average value ofNw alone does not deter
mine the measurable averaged value of the current. The
eraged measurable value of the current is determined by
sum of the stationary values ofNw and Ne , more specifi-
cally, the average currentI dc[(N e

01 Nw
0 )/teff , as indicated

in the equivalent-circuit model of Fig. 1~c!, where teff
'2tc . From Eqs.~13!, ~14!, and ~15!, the leading average
value of this sum is determined by

S0~G!5P01Q05
G

~12G!
1S 12G

D D 1/2

. ~44!

We have

d(0~G!

dG 5
1

~12G!22S 1

4D~12G! D
1/2

,0 ~45!

for D,Dc at the limit cycle. This slope goes to zero atD
5Dc and becomes positive atD.Dc , which defines the
absence of inherent self-oscillation. We conclude from E
~45! that the average of the oscillatory current increases aG
decreases~or as bias increases!, shown in Fig. 19.G is large
right after the current peak, and decreases with applied
in the plateau range. We expect the charging rateQ/RC to
be proportional to the energy difference~which decreases
with bias! between the QW energy level and the conductio
band edge of the emitter.

We estimatedG just beyond the current peak to be,0.5,
and it decreases as a function of bias in the plateau ra
Indeed, our nonlinear model supports the increasing cur
in the plateau range as a function of bias in the presenc
intrinsic oscillations, as indicated by Fig. 19. It is importa
to point out, however, that in the absence of intrinsic os
latory behavior, our nonlinear model, as described by
equivalent circuit of Fig. 1~d!, indicates that the stationar

current is proportional toNw
0 alone, which increases with th

charging rate in the emitter,G, shown in Fig. 20. Thus in the
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absence of intrinsic oscillation, the current is expected
exhibit a decreasing behavior as a function of bias~increase
of bias means a decrease ofG! in the plateau range. Indeed
results of our recent steady-state numerical simulation fo
large barrier width, where the quantization field in the em
ter is very weak, show a decreasing current as a functio
bias in the plateau range, indicating the absence of notice
oscillation. Moreover, the background current mentioned
Sec. III is expected to be larger for weak emitter quanti
tion, i.e., less control of the total current by the drivin
sourceG. Thus our nonlinear model is able to discrimina
the presence or absence of oscillation in the plateaulike
gion, and is definitely a refinement of the graphical analy
presented in Sec. II.

B. Relation between amplitude and driving source,G

The oscillatory current is proportional top/tc1]q/]t
@refer to Fig. 1~d!# expanded to second order using Eq
~38!–~42!. We now show that the amplitude of oscillatio
increases withG. From Eqs.~38! and~39!, this amplitude of
the fundamental frequency component is typified by the
pression

FIG. 19. Plot of the average of the oscillatory current as a fu
tion of the driving sourceG5(Q/RC)/(a/b), for D,Dc . The in-
creasing drain bias goes with decreasing values ofG.

FIG. 20. Plot of the stable stationary values of the plateau c
rent as a function ofG for D.Dc . The increasing drain bias goe
with decreasing values ofG.
o

a
-
of
le

n
-

e-
is

.

-

S UD2Dc

D2
U D 1/2

2G21/2uQ~`!uV

5VS UD2Dc

D2
U D 1/2

2G21/2F2
RehD2

Res G1/2

, ~46!

whereh is given by Eq.~A21! ands is determined from Eq.
~A27! in the Appendix. From Eqs.~A21! and~A27!, we have
the final expression for the representative amplitude,A0 ,
given by

A05
V

b
~ uD2Dcu!1/2F 64

~12G!5$4119G28G2%
G1/2

. ~47!

Figure 21 is a plot of this amplitude as a function ofG. Since
G is a decreasing function of bias in the plateau range
discussed above, we conclude that the amplitude of osc
tion is also a decreasing function of bias in the plateau ran
as indicated by Fig. 21. The interference between the
cosine terms in the expression for the current further
hances this behavior in the physical range ofG. Indeed, all
time-dependent numerical simulation of RTS’s~Refs. 5 and
6! found the largest oscillation amplitude right after the cu
rent peak, and after which it decreases as a function of
in the plateau range. These salient features, namely, the
crease of the averaged current and the decrease in oscill
amplitude in the plateau range, have never been expla
before, to our knowledge. It should be pointed out that
simulations of Biegel and Plummer6 actually showed a
small-amplitude oscillation at the far end of the platea
which they interpreted as decaying to the steady state in
limit of large time.

Another important salient feature ofI -V curves of the
time-dependent simulation is that the oscillating current j
after the current peak contains other harmonics, wherea
higher bias in the plateau it becomes purely harmonic. T
is understandable since the largest amplitude occurs im
diately after the current peak, with higher-order harmon
making contributions to the fundamental oscillating curre

-

r-

FIG. 21. Plot of the amplitude of the oscillation of an oscillato
current as a function ofG for D,Dc . The increasing drain bias
goes with decreasing values ofG.
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C. Oscillation frequency and its dependence on charge buildup
rate

The fundamental frequency of oscillation is given byv0
5aV, wherea becomes the conversion oft to real time.
We have

v0[aAG~12G!3/21aH Im h~D2Dc!

1
Im s

D2
uQ~`!u2~D2Dc!J , ~48!

wherea5lN as defined in Sec. III. Thus oscillation is in
deed driven by the rate of charging of the emitter,G, in the
presence of quantizing field causing premature current p
to occur. The scaling factora5lN is expected to bring the
frequency values to the THz range in our nonlinear mode
agreement with our time-dependent numerical simulation
RTS’s.5 Using our estimates in Sec. III fora'1013s21 and
G'0.1, for the leading term of Eq.~48! we obtain v0
'2.5 THz.

It is more revealing to examine the dependence of
fundamental frequency on the charge buildup rate at
emitter. From Eq.~48!, the fundamental frequency is propo
tional to AG(12G)3; this is plotted in Fig. 22. This figure
shows that within the range ofG considered in Figs. 19–21
the frequency temporarily increases asG decreases toward
zero ~with increase in bias! in the plateau. Comparing with
Fig. 21, we see that while the amplitude of oscillation d
creases, the frequency of oscillation increases at first be
sharply decreasing to zero toward the end of the plate
These behaviors were indeed noticeable in various nume
quantum transport simulations of RTS’s,1,5–6 clearly demon-
strating the validity of our analytical model.

D. External sources andI -V measurements:
resolution of controversy

Another interesting result which follows from our anal
sis is the case whereD is relatively large, meaning the in
ductive delay is very small, or the inductance in t
equivalent-circuit model of RTS’s is very small. The intrin
sic self-oscillation would then be absent sinceD.Dc ; the
stable stationary current is only determined byP0 of Eq.
~14!; this was discussed after Eq.~45!. However, if the de-
vice is connected to an external circuit with significant le

FIG. 22. Plot ofAG(12G)3 as a function ofG for D,Dc .
ak
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inductance, then the whole system would still self-oscillate
the NDR by virtue of the two energy storage circuit el
ments; the RTS capacitance~in parallel with the NDR circuit
element! and the dominant wiring inductance in series. F
this particular case, the driving sourceG becomes externally
induced. We can still apply Eqs.~44! and~45! for calculating
the current in the plateau range. However, sinceD.Dc , the
slope of the average of the oscillating current as a function
G is positive, and this translates to a decreasing average
rent in the plateau.

This result seems to occur in actualI -V measurement
reported in Ref. 3, where the barrier width of 85 Å employ
was in the range of size where our simulation would indic
that the quantizing field in the emitter is relatively wea
when the QW energy level passes into the forbidden reg
of the emitter@refer to the decreasing current in the plate
of Fig. 7~b!, where the simulated barrier width of 35 Å i
even smaller than 85 Å#. It follows that the inductive delay is
also small in the device of Ref. 3. Also their use of a ‘‘bia
ing’’ capacitor across the device has the effect of increas
the dimensionc, and perhaps alsoa, in Eq. ~1! compared to
one without biasing capacitor, for their doping level of
31017cm23. This will cause a decrease in the slope ofQw as
a function of kz

2 in Eq. ~1!. In our graphical analysis, this
would mean an increase in the widths of the two hystere
while also making the double hystereses approach each o
in the plateau region, compared to their measurement w
out the biasing capacitor. This explains the experimental
sults of Ref. 3.

On the other hand, an experimental rising current in
plateau region was reported by Sollner,4 where the device
was also found to be oscillating as measured by spect
analyzer. In both experiments, the double hystereses
clearly manifested in theI -V characteristics, with Sollner’s
device yielding an order of magnitude larger current than
device of Ref. 3. Although the device parameters were
given in Sollner’s paper, we suspect that the measured
vice has enough intrinsic inductive delay to exhibit intrins
oscillation. This is basically supported by the larger width
the plateau region of about 0.6V reported by Sollner,4 com-
pared to the width of 0.07V reported in Ref. 3, about an orde
of magnitude smaller. This observation is consistent with
simulation of the effect of barrier widths on the slope of t
current and width of the plateau~Figs. 5–7!. Therefore, only
when the intrinsic inductance of the RTS’s dominates
lead inductance do the measuredI -V characteristics re-
semble the intrinsic one where oscillation is present. Ho
ever, we should also point out that according to the disc
sion in Sec. VI A, hysteresis in theI -V characteristics can
occur without intrinsic oscillation, characterized by a d
creasing current in the plateau, by virtue of the possibility
stable stationary solutions for a weak quantizing field in
emitter.

VII. CONCLUDING REMARKS

We have demonstrated that the formation of unstable
states in the emitter under NDR operation plays a princi
role in explaining a host of numerical and experimental
sults on RTS’s. We have given a graphical explanation
our steady-state simulation results of RTS’s with differe
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barrier widths, holding other dimensions fixed. We use
graphical method similar to that employed before12–14 to ex-
plain other nonlinear effects in RTS’s. Figures 5–7 spec
cally explain the following salient features of the simulatio
~1! the width of the plateau increases with the decrease
barrier widths;~2! the ratio of the width of the primary hys
teresis to the width of the plateau increases with the bar
width; ~3! the average slope of the plateau decreases
increase in barrier widths; and~4! double hysteresis is a rul
rather than an exception. These figures show, in accord
with simulation and experimental results, that the width
the secondary hysteresis is smaller than the primary one.
should emphasize that to our knowledge no other anal
can explain the presence of double hysteresis in theI -V
characteristics so ubiquitous in the simulation5 and experi-
mental results3,4 of resonant tunneling structures. Furthe
more, the present explanations also account for the v
sharp I -V peak found experimentally,3–5 as indicated by
Fig. 4.

Our graphical analysis also explained the following s
lient features in the NDR region of theI -V curves:~a! the
width of the plateaulike region increases with a decreas
the simulation box lengths, barrier heights, right-barr
widths, QW widths, and spacer-layer widths;~b! the ratio of
the width of the primary hysteresis to the width of the p
teaulike region increases with an increase in the simula
box lengths, barrier heights, right-barrier widths, QW width
and spacer-layer widths;~c! the average slope of the platea
like region decreases with an increase in the simulation
lengths, barrier heights, right-barrier witdths, QW width
and spacer-layer widths;~d! in almost all cases, there is
definite tendency to form a secondary hysteresis between
plateaulike region and the peak current; and~e! the plateau-
like region and hysteresis disappear for large enough spa
layer widths and higher temperatures.

We have also presented refinements of our graph
analysis by introducing a nonlinear physical model to d
scribe the time-dependent oscillation in the rising plateau
the I–V characteristics. The analytical limit cycle solutio
supports the current oscillation in the plateau range foun
various numerical quantum transport simulations
RTS’s,5,6 as well as in other analytical models employing t
solution of the many-particle Schro¨dinger equation.19 Spe-
cifically, our nonlinear model predicts a rising plateau c
rent and a decreasing amplitude of current oscillation a
function of bias in the plateau range. In the current plate
the frequency of oscillation is found to increase, reach
maximum, and then decrease sharply to zero as a functio
bias. It also predicts large signal amplitude and the prese
of higher harmonics just after the current peak. All the
findings are in agreement with numerical simulations5,6 and
experiments.3,4 Furthermore, in the absence of oscillatio
our model predicts a decreasing current in the plateau. T
can happen if there is a weak quantizing field in the emi
brought about, for example, by a large barrier width.3

Finally, we point out that a conventional RTS, under a
propriate device parameters, has the potential for opera
as an all solid-state THz source. Our analysis dictates tha
device must be operated just after the resonant current
to maximize the output power at THz frequencies. This T
source is expected to significantly extend the domain of
a
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plication of the traditional impact ionization avalanche tra
sit time ~IMPATT! diode and Gunn effect microwave solid
state sources.
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APPENDIX

Using the matrix expression of Eq.~25! for (Mc), the
eigenvalues for Eq.~33! are

g1,256 iAG~12G!3/2[6 iv, ~A1!

and the corresponding eigenvectors are

Y0
1,25S 1

216
iv

G~12G!
D . ~A2!

The solution can be written in the form

S p0

q0
D5Q~t1!C~t0!1c.c.

5Q~t1!H exp~ ivt0!S 1

211
iv

G~12G!
D J 1c.c.,

~A3!

where the separation between the slow and fast time scal
explicitly written. Note that Eq.~35! determines the nature o
the dependence of the solution on the slow time scalet1 by
virtue of the presence of the operatorL1 .

Next we obtain the solution for (q1

p1) by solving Eq.~34!.

The right-hand side is now known since it is only a functi
of (q0

p0). The solution can be obtained separately for ter

involving fast and slow time scales, where the fast time sc
occurs only in exponential terms. The right-hand side of E
~34! can be written as

S N2
p~p0 ,q0!

N2
q~p0 ,q0! D 5S Ap

AqD uQ~t1!u2

1 H S Bp

BqDQ~t1!2exp 2ivt01c.c.J ,

~A4!

where

S Ap

AqD5~12G!2S 1/222G
3/2 D , ~A5!

S Bp

BqD5~12G!2S 2„~112G!/4…1
iv~22G!

2G~12G!

~5/42G/2!2
iv~22G!

2G~12G!

D .

~A6!

If we write the solution for (q
p1) as
1
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S p1

q1
D5S ap

aqD uQ~t1!u21 H S bp

bqDQ~t1!2 exp 2ivt01c.c.J ;

~A7!

then we have to solve the following equations for the co
ficients:

S ap

aqD52~Mc!
21S Ap

AqD , ~A8!
th

n
is

r

’’
h

r

1

-

S bp

bqD5S 2iv2G~12G! 2G~12G!

~12G! 2iv1G~12G!
D 21S Bp

BqD .

~A9!

Substituting the expressions given by Eqs.~A5! and ~A6!
into Eqs.~A8! and ~A9!, we obtained the expressions
S ap

aqD5
~12G!

G S 2G

2
1

2
D , ~A10!

S bp

bqD5
1

6G~12G! S $4~12G!31 iv~112G!%

H S 15

2
G2

9

2
23G2D ~12G!2 iv~823G22G21% D . ~A11!
of

te
e

g

and (q1

p1) is thus determined by Eq.~A7!.

At this stage of the calculation, we can expect that all
(qj

pj)’s contain, as factors, various powers ofQ(t1), as well

as powers of its absolute value, and their combinatio
Therefore, in order to find out if a limit cycle exists, it
important to examine thet1 dependence ofQ(t1), and
thereby determine if a well-defined finite limit exists fo
Q(t1) ast→`. Moreover, before we can calculate (q2

p2), we

need to know thet1 derivative ofQ(t1) in Eq. ~35!. This
information can be obtained by imposing the ‘‘solvability
condition. This condition makes use of the property of t
solution to the adjoint ofL0 , denoted asL0

† . Let L0
†R

50, then ^R,L0(q2

p2)&5^L0
†R,(q2

p2)&50, where the scala

product is defined by ^n,m&[ limT→` T21*0
Tn* •m dt.

Therefore, from Eq.~35! we must have

KR,2D2L1S p0

q0
D1S N3

p~p0 ,q0 ,p1 ,q1!

N3
q~p0 ,q0 ,p1 ,q1! D L 50.

~A12!

We refer the readers to Morse and Feshback,20 in showing
that the eigensolutions ofL0 andL0

† from biorthogonal set
of eigenvectors, whereL0

† here is given by

L0
†5S 2

]

]t0
2G~12G!S 1 2G21

1 21 D D . ~A13!

For example, the eigensolutions toL0
†R50 with

eigenvalues m15 iv and m252 iv are given by R1

5exp(2ivt0)(Rq

R1
p

) andR25R1* , respectively, where
e

s.

e

S R1
p

R1
qD 5S 1

GS 12
iv

G~12G! D D . ~A14!

The eigensolutionR1 is orthogonal to the eigenvector ofL0
for the same eigenvalue, i.e.,^R1uexp(ivt0)Y0

1&50, since
m1* 52 iv5g2 of L0 , Eq. ~36!. Thus, we are led to the
relation

^R2uC~t0!&52~12G!1
2iv

~12G!
, ~A15!

where onlyY0
1 in C(t0) of Eq. ~A3! contributes by virtue of

the biorthogonality, i.e., the complex conjugate part
C(t0) also does not contribute in Eq.~A15!. Thus, withR
chosen to be equal toR2, the scalar product in Eq.~A12! can
be evaluated, and defines the differential equation forQ(t1).
We obtain

]

]t1
Q~t1!5

^R,~M1!C~t0!&

^R,C~t0!&
Q~t1!

1
D2

21

^R,C~t0!& KR,S N3
p~p0 ,q0 ,p1 ,q1!

N3
q~p0 ,q0 ,p1 ,q1! D L .

~A16!

Note that in Eq.~A16! nonzerot0 integration comes only
from p0q1 , p1q0 , q1q0 , p0p1 , p0

3, andp0q0
2 terms in

S N
3
q~p0 ,q0 ,p1 ,q1!

N3
p
~p0 ,q0 ,p1 ,q1!D

@Eq. ~32!#, while the rest, including the complex conjuga
part, do not contribute asT→` by virtue of the appearanc
of a d function of the frequency sum after thet0 integration.
Therefore, by taking into account only the contributin
terms, we can write Eq.~A16! in a simpler form
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]

]t1
Q~t1!5hQ~t1!1

s

D2
Q~t1!uQ~t1!u2, ~A17!

where

h5
^R,~M1!C~t0!&

^R,C~t0!&
~A18!

and

sQ~t1!uQ~t1!u25
~12G!2

^R,C~t0!& KR,S Q3~p0 ,q0 ,p1 ,q1!12~12G!p0p12~12G!2p0
3

2Q3~p0 ,q0 ,p1 ,q1! D L , ~A19!
i-

s:

r
e,
with

Q3~p0 ,q0 ,p1 ,q1!5p0q11p1q01~Gq1q0!/2

1~12G!p0q0
2/4. ~A20!

We thus obtain

h52G~12G!221 iv~12G!23 ~A21!

and

sQ~t1!uQ~t1!u25 lim
T→`

1

T E
0

T

exp~2 ivt0!dt0~12G!

3H @~12G!21 iv#Q3

12~12G!2p0p12~12G!3p0
3J

3S 2~12G!1
2iv

~12G! D
21

. ~A22!

Upon performing thet0 integration in Eq.~A22!, we obtain

sQ~t1!uQ~t1!u25
1

4 H @~12G!21 iv#Q̂312~12G!2p̂0p̂1

2~12G!3p̂0
3 J

3S 2~12G!2
2iv

~12G! D , ~A23!

where

Q̂35ApCq1Ap* Bq1AqCp1Aq* Bp1
G
2

~AqCq1Aq* Bq!

2
~12G!

4
~2ApuAqu21Ap* Aq

2!, ~A24!

p̂0
353ApuApu2, p̂0p̂1[ApCp1Ap* Bp , ~A25!

Ap5Q~t1!, Aq5Q~t1!$211 iv/@G~12G!#%,

Cp52~12G!uQ~t1!u2, Cq52@~12G!/2G#uQ~t1!u2,

Bp5@4~12G!31 iv~112G!#Q~t1!2/@6G~12G!#,

Bq5@~15G/229/223G2!~12G!

2 iv~823G22G21!#Q~t1!2/@6G~12G!#.

~A26!
Carrying out the operation in Eq.~A23!, using Eqs.~A24!–
~A26!, we obtained

s52
~12G!3

16G $4119G28G2%

2
iv~12G!

48G2 $24G3117G2231G18%}. ~A27!

We note that for 0.0,G,1.0, Reh,0.0 and Res,0.
We solve for the absolute value and phase ofQ(t1) by

writing this in polar form and equating the real and imag
nary parts on both sides of Eq.~A17!. With Q(t1)
[uQ(t1)uexpif(t1), we obtained exactly solvable equation

]

]t1
uQ~t1!u5RehuQ~t1!u1

Res

D2
uQ~t1!u3, ~A28!

]

]t1
f~t1!5Im h1

Im s

D2
uQ~t1!u2. ~A29!

A solution of Eq.~A28! in which uQ(0)u can be arbitrarily
independent of the limiting valueuQ(`)u, the possible limit
cycle value, is of the form

uQ~t1!u5
uQ~0!uuQ~`!uexp@Reht1#

@ uQ~`!u21$@exp~2 Reht1!21#uQ~0!u2%#1/2,

~A30!

whereuQ(`)u5@2RehD2 /Res#1/2, which is a real value if
D2,0 since Reh,0 and Res,0.

Indeed, in real timeuQ(`)u5 limt→`uQ(t1)u only if
Reht1→` as t→`; hence only ifD2Dc,0 or D,Dc in
Eq. ~A30!, i.e.,D2,0. This is consistent with the criteria fo
unstable focus in the linear analysis. Otherwis
limt→`uQ(t1)u50 if D2Dc.0 or D.Dc . Thus a well-
defined limiting value ofuQ(t1)u as t→` exists only for
D,Dc . This is the limit cycle value ofuQ(t1)u. Substituting
the now known functional form ofuQ(t1)u into Eq. ~A30!,
we can also integrate Eq.~A29!. The result is
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f~t1!5const1Im ht11
Im s

D2

uQ~`!u2

2Reh H ln@ uQ~`!u21$exp 2 Reht121%uQ~0!u2#
2 ln@ uQ~`!u22uQ~0!u2# J . ~A31!

The limiting values off(t1) are

lim
t→`

f~t1!5H const1Im ht110 if D.Dc ,

const1Im ht11
Im s

D2
uQ~`!u2t11 lnF uQ~0!u2

uQ~`!u22uQ~0!u2G if D,Dc .
~A32!

Taking the overall constant of integration equal to zero, we end up with the expression for the limit cycle value ofQ(t1),
given as

lim
t→`

Q~t1!5F2
RehD2

Res G1/2

expi H Im h~D2Dc!1
Im s

D2
uQ~`!u2~D2Dc!J t. ~A33!

With the limit cycle value ofQ(t1) known, (q0

p0) and (q1

p1) at the limit cycle are completely determined. This yields t

solution in the form given by Eq.~16! to second-order accuracy.
on
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