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The effects of emitter quantization on the current-voltagie/] characteristics of conventional double-
barrier resonant tunneling structur@¥TS’s) are investigated by numerical, graphical, and analytical methods.
Different stability and degrees of emitter quantization can lead to a host of different I-V characteristics in the
negative differential resistand®&DR) region. Among these are simple NDR, NDR with a rising plateaulike
region and well-separated double hysteresis, and NDR with a falling plateaulike region and well-separated
double hysteresis. The ratio of the main hysteresis width to the secondary hysteresis width can vary between 1
and «. The use of large enough spacer layers can eliminate the hysteresis and plateaulike behavior. Our
numerical results for RTS’s are analyzed by employing graplilzased on simulated quantum-well charge
and analytical methods, and compared with experiments. We introduce a nonlinear physical model which is
solved analytically for the limit cycle solution. The limit cycle predicts a rising average current, whereas the
nonoscillatory solution predicts a falling current in the plateau region as a function of bias. The limit cycle also
predicts a monotonically decreasing amplitude of the current oscillation as a function of bias in the plateau
region. The fundamental frequency increases, reaches a maximum, and sharply decreases to zero as a function
of bias in the plateau region. These analytical results agree with experiments and numerical simulations. The
origin of inductive delay in RTS’s is further clarified. We believe we have resolved in fine detail the contro-
versy about thé-V characteristics of conventional RTS’s. A prescription for this structure to operate as an all
solid-state THz source is also given.

[. INTRODUCTION The only way to explain the current peak during forward
bias is to postulate the passage of the quantum-(@W)

It is well known that numerical quantum transport simu- discrete energy level into the forbidden energy region of the
lations and experiments of most resonant tunneling structuresmitter. This forbidden region does not necessarily corre-
reveal the characteristic peak-to-plateau-to-valley behaviogpond to the energy gap between the emitter conduction and
of the current as a function of applied voltajé.Double  valence bands. This forbidden region may be created above
hysteresis behavior is also seen with forward and backwarthe emitter conduction band edge by virtue of the quantiza-
voltage sweep* Moreover, time-dependent simulation re- tion of the supply electronic states by the emitter quantum
sults of different groups® reveal intrinsic high-frequency well (EQW). This is illustrated in Fig. @), which shows a
current oscillations in the plateau region of the current-triangular EQW. In what follows we will show that the QW
voltage (-V) characteristics. The purpose of this paper is toenergy-level passage into the forbidden region above the
shed light on these phenomena. We have performed numeigonduction band edge of the emitter, depicted in Fig),is
cal quantum transport simulations of resonant tunnelingesponsible for the high-frequency current oscillation and
structures(RTS’s) by independently varying various device plateaulike behavior of the-V characteristic of RTD's.
parameters. The results are explained as due to the presenceThe passage of the QW energy level into the forbidden
of unstable two-dimension&2D) quantization in the emitter region of the emitter creates a sudden drop of the current
through strong “ripple effects” on the electron-density dis- across the device, producing a characteristic sharp current
tribution. First we use graphical methods to explain our repeak. However, the subsequent and inherent feedback
sults and other RTS results for the grds¥ characteristics. mechanism prevents the average post-peak current from as-
To explain the finer features, here we also introduce a nonsuming the valley-current value. As the electrons are built up
linear analytical model of charge oscillation and bistability, in the emitter, the interference of the reflected electrons and
and obtain a limit cycle solution for the oscillations in the the incoming electrons creates a significant “ripple effect”
plateau region. on the electron-density distribution which effectively broad-
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FIG. 1. (a) Emitter 2D quantization results in premature alignment of the QW energy level with the forbidden region of the emitter. The
electrons accumulate in the emitter with density structure and a broadening of the EQW caused by interference of reflected and incoming
electrons. The buildup time takeg to achieve the condition ifb). (b) Realignment with occupied states causes rapid depletion of the
builtup charge in timer_, after which conditior(a) is restored(c) Device parameters used in the calculatiqd$ Equivalent circuit model,
wherei(v) [Ny(v)] is the currentcharge of an ideal RTS for a voltage drap across the negative resistor.

ens the EQW by virtue of the self-consistency of the chargenaintains its alignment with some fraction of the occupied
and potential. The broadening is due to the redistribution oftates in the emittef.
the electrons, with some regions becoming positideficit It is thus clear that the driving source of this oscillatory
of electron$ and some regions negativexcess of electrofns condition is the buildup and redistribution of char@egnifi-
in the emitter. This is clearly indicated by our numerical cant ripple effedtdue to the interference of the reflected and
results. incoming electrons. In our analytical treatment of the prob-
This EQW renormalization yields a much broader EQW,lem, we identify this driving source in terms of the total
and the lowering of the allowed discrete energy level in thecharge buildup@Q, at the emitter in time duratioRC, where
emitter toward the conduction-band edge. With this EQWR is the access resistance a@dis the RTS capacitance.
broadening, it is also plausible for a change from discretélherefore,Q/RC measures the maximum rate of buildup of
guantization to the continuum energy levels down to thesupply electrons at the emitter in the absence of tunneling to
conduction-band edge of the emitter. In either case, théhe QW. In the presence of tunneling, the proper coupled rate
alignment of the QW discrete energy level with occupiedequations are derived in Sec. lll, where we introduce our
states in the emitter will be restored, yielding high transmis-nonlinear physical model.
sion coefficients and larger currents. This is depicted in Fig. We expect that the amplitude of oscillation is largest in
1(b). This feedback is basically a catalytic process, since théhe plateau region just after the current peak, as depicted in
guantum-well charge, through the self-consistent potentialiig. 1. This is because there is a considerable broadening or
helps in restoring the QW energy-level alignment with therenormalization of the EQW in going from Fig(d to Fig.
occupied states in the emitter. The resonant tunneling fromi(b), i.e., in bringing the allowed EQW-allowed states in line
the emitterlemitter dischargeand the self-consistency of the with the QW energy level. On the other hand, well within the
charge and potential lead to a restoration of the emitter poplateau region, there is only a further broadening of the
tential profile which produces 2D quantization, and passagéEQW, and hence the amplitude of the oscillation will be-
of the QW energy level through the occupied states into theome smaller as the drain bias is further increased. This is
forbidden region, i.e., back to the situation depicted by Figindicated in Fig. 2. Indeed, this is what was found in various
1(a). The process therefore oscillates between that of Figgime-dependent numerical simulations of RT%%This con-
1(a) and 1b), and the average is responsible for the plateaujecture is also confirmed by our analysis in Sec. VI.
like behavior above the valley-current minimum. From the We should point out that although the interference of re-
steady-state point of view, it is as if the QW energy levelflected electrons with incoming electrons also occurs to some
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than that when the QW energy level is aligned with the bot-
tom of the conduction band of the emitter; this is where the
current peak would have occurred if there was no forbidden
2D states formed in the emitter. We should also point out
that the more accurate use of a longer simulation box length
(longer simulated devigestrengthens our physical argu-
ments for two reasonga) it assures the natural formation of
broadened EQW and low-lying allowed states, or even the
formation of continuum states in the emitter, for the situation
depicted in Fig. (b), while (b) providing for a more accurate
approximation of the “inflow” boundary condition, typically
used in the numerical simulaticr. It also vyields large
enough series resistance for the oscillation to set in. Thus, in
™~ agreement with previous analysiéjarge access resistance
in longer device indeed helps create the oscillatory behavior.

The above proposed physical mechanism is particularly
supported by the five salient features of the steady-state com-
puter simulation of symmetrical RTS’s of different barrier
widths, holding other dimensions fixe@ll variations re-
ported here are in the sense of partial derivajivEhese are
as follows.

(1) The width of the plateau increases with the decrease of
barrier widths(also with decrease of device lengths, barrier
heights, right-barrier widths, QW widths, and spacer-layer
widths).

FIG. 2. A smaller amplitude of the oscillation occurs within the (2) The ratio of the width of the primary hysteresis to the
plateau region as the QW energy level continues to shift downwargyidth of the plateau increases with the barrier widéhso
with an increase in applied bias. Hence the EQW broadening charggith increase in device lengths, barrier heights, right-barrier
Qin Q/RCalso decreases with an increase in applied voltage in thqyidths, QW widths, and spacer-layer widths
plateau region. (3) The average slope of the plateau decreases with in-

crease in barrier width@lso with increase in device lengths,
degree in the valley and prepeak region of th¥ plot, the  barrier heights, right-barrier widths, QW widths, and spacer-
accompanying interference-induced broad potential is onlyayer widths.
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transient in nature as the bias is suddenly char{gedsient (4) There is a tendency to form secondary hysteresis be-
ripple effec}, and is not present in the simulation when thetween the plateau and peak current.
steady state is reachdthe stationary transmission coeffi-  (5) The rising plateaulike region, which indicates the

cieny. The strong ripple effect on the electron-density distri-presence of time-dependent oscillatory current behavior and
bution in the emitter is only sustained if the transmissionthe hysteresis, disappears for large spacer-layer widths.
coefficient is highly oscillating, such as what is occurring in ~ The fourth salient feature in particular has never been
the current-plateau region. This phenomenon is analogous &xplained in the literature; however, this feature is usually
strong ripple on the surface of a water pool when the disseen in experimerité as well as in the time-dependent simu-
charge valve is turned on and off periodically. For stationarylations of Jensen and Buoand Biegel and Plummérwe
discharge outside the plateau region, quantum mechanichould also point out another very important information,
still creates a ripple due to interference of reflected and inhamely, that the average stored charge in the quantum well
coming electrons, but not one significant enough to broadenalculated by Jensen and Budtas the same shape as the
the EQW and realign the QW energy level with occupiedcalculatedi-V characteristic. This observation is the key to
states in the emitter for applied bias beyond the plateaexplaining the fourth salient feature above, and is crucial to
range. our graphical analysis presented in Sec. Il. This information
Indeed, a deeper understanding of the oscillation and biwas completely missed in graphical analyses of RTS’s by
stability in RTS’s can be attributed to the unstable 2D quanother authors. Sheard and Toofleere the first to employ
tization in the triangularlike EQW just after the current peak,graphical methods to show the presence of hysteresis and
as suggested by our recent steady-state simulation on resoistability in RTS’s. Although their result seems feasible,
nant tunneling structures of different barrier widths, simula-this does not resemble any of the experimentally measured
tion box (simulated devicelengths, barrier heights, right- |-V characteristics of Refs. 3 and 4, by virtue of failing to
barrier widths, QW widths, spacer-layer widths, and dopingtake into account the quantization in the emitter. In particu-
densities. As indicated in Fig.(d), it is the passage of the lar, the presence of double hysteresis in the experimental
QW energy level into the forbidden region of the emitter results$** was not explained at all. Using similar model as
which marks the onset of the negative differential resistancé¢hat of Sheard and Toombs, the authors of Ref. 9 also em-
(NDR) region of thel-V characteristics. Since the occupied ployed graphical analysis in examining the effect of the dis-
states are above the conduction-band edge of the emitter, thisetization of charge in small area RTS'’s.
premature onset is expected to occur at lower drain voltage A more recent graphical work of Sheard and Tootfibs
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took into account the quantization of the accumulation layedensen and Bugtfor the changes in the average supply elec-
in the emitter. However, their graphical analysis was entirelytrons from the emitter due to the formation of an oscillating
time independent, and failed to account the oscillatory beforbidden region above the emitter conduction-band edge.
havior which intermittently renormalizes the emitter This was not accounted for in graphical analyses by other
conduction-band edge after the current peak, causing an imuthors. As usual, the current can then be approximated by
stability of the emitter quantization, a phenomenon which isQ,,/ 7. ,**"** where Q,, is QW charge and-, is the decay
clearly indicated in our numerical results. Moreover, theytime to the collector.

assumed that the QW energy level lies above the EQW en- From the Poisson equation, we have, @, an expres-
ergy level due to screening of the applied voltage by thesion,

charge in the QW. Thus, they claimed that the electric field

across the emitter barrier and hence the charge in the accu- (2+7) _[h2K2 eV

mulation layer remain almost constant with bias, which is w=———E *Z—EW+ , (1)
contrary to our numerical results. Again no attempt was € 2m (2+9)

made to explain the double hysteresis and other salient fea-

tures of the experiment of Refs. 3 and 4. where{=c/(a+b+w/2), E=el(a+b+w/2+c), e'=e{l

—El[ela(1+¢)]} andV'=V[1-alc]. Heree is the di-

electric constant. In deriving E@l), we simply use the Pois-
Il. EFFECTS OF UNSTABLE EMITTER QUANTIZATION son equationEgr— E, =Q,, /€, whereEg, is the electric field
IN THE NDR REGION in the right regiona+b+w/2+c andE, is the electric field

. . . . in the left regioma+b+w/2, indicated in Fig. (c). Note that
The salient features of our simulation mentioned abov o : ” — . .
he “capacitance” parameteE and the ratio{ vary in-

can be explained if we invoke the presence of unstable dis- . . . . 2
cretization of the EQW energy levels in the NDR operation.yers'EIy with the barrier widtly, i.e., the slope o, vs k;

The quantization of EQW energy levels is expected to dras!'CréaSes with the decreaselinWe shall soon see that this

tically change the supply electrons from the emitter ascauses the rgtio .Of the hy;teresi§ width to the plateau width
“seen” by the QW energy level. The peak of the current will 10 increase with increase in baffﬁ:_}’;"dth-

no longer correspond to the alignment of the QW energy Fro_m the transport-rate equation,“we have another ex-
level with the bottom of the conduction band of the emitter.Pr¢SSION for the QW charge given by

The peak current will correspond to the alignment between

the EQW-allowed subband minimum and QW energy level, e h2K2

at a lower current-peak bias. The supply electrons are thus QW:,n.ﬁ—2'8|n 1+expB| Br— 5~

reduced because the allowed energy level is raised from the

bottom of the conduction band of the emitter. This does not 74| [H2KE Eow

imply that the observed current is necessarily decreased; on (Z) 0 m* Ez

the contrary, the observed current usually increases since this

condition occurs for smaller barrier widths and higher fields Fem h2K2

in the emitter. Moreover, because of the access-resistance + Tzﬂln 1+expB| Er— omF

voltage drop, larger currents will shift the-'V curve to

higher-bias range, as shown by our simulation for smaller T4 ) EOW ﬁzkf

barrier width RTS's. X P 0(kz) 0| B = 5 2

As the QW energy level passes a sufficiently high-enough
EQW energy level during a forward-bias sweep, oscillatory EQW ; . .
charging and discharging of the QW result by virtue of theWhereEz is the energy level formed in the emitter 73/

self-consistency and feedback between the charge and poten-/7e © 1/7c: 1/7¢ is the effective rate of decay @, into

tial, with intermittent broadening of the confining potential in gnoccupfled c_oIIector states, dandr?‘Lls the effectrl]\_/ehrate Ofb
the emitter. In effect, as will be analytically demonstrated ecay ofQ,, into unoccupied emitter states which may be

below the unstable alignment of the EQW and QW energ)ﬁssum‘?d to be equal to the rate c/)f supply_ of electrons_from
levels converges into a limit cycle, and hence in the oscillain€ emitter to the quantum well, 4/. In a highly nonequi-
tion in the QW charges and corresponding currérfgese  librium situation we can putg~r.. In Eq. (2) we set the
oscillations persist until the QW energy level is below the@verage value gf the oscE|IIatory quantum well charge at the
conduction-band edge of the emitter; the current drasticallplateau (6<Akz/2m* <EZ?") as equal to a fractioi of
drops to the valley-current value, since any broadening of th&w Obtained if there were no forbidden 2D states in the
EQW is no longer effective in realigning the pertinent energyemitter. The first term of E¢2) comes from the electrons in
levels. The average values essentially map the steady-stdfee allowed states aboveZ?", whereas the second term,
current plateau, given by the steady-state simulation. which is further clarified in Sec. VI, describes either the ef-
All the salient features listed above can readily be exfective averaged of the oscillating quantum well charge or
plained by using a graphical analysis in the manner used bthe stationary value in the plateau after the QW energy level
Buot and Rajagop&l~'°and Buot** The graphical analysis passes th&5?". Note that we do not exclude the possibility
involves the simultaneous solution of two different expres-of nonoscillatory behavior in the plateau, as indicated by Fig.
sions for the QW charge, one derived from the Poisson equ&. However, our analytical results in Secs. V and VI strongly
tion and another from the transport-rate equation. Here wsuggest that this can occur only for very weak quantizing
have to make provision, based on the numerical result ofield in the emitter, and furthermore this is characterized by a
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FIG. 3. Stable stationary condition can occur if the buildup rate
in the emitter is balanced by the resonant tunneling rate. This con-
dition is estimated to be readily attained in the plateau region for a
very weak guantizing field in the emitter that causes the premature
current peak.

decreasing plateau current as a function of drain bias, sug-
gesting that~ is a decreasing function of bias for nonoscil-
latory condition.

For the oscillatory casd; is expected to be an increasing
function of barrier widthb, since the amplitude of quantum-
well charge oscillation should be small when the difference
of bias is small between the alignment of the QW energy
level with the bottom of the conduction band and with the
EQW energy level. This holds for the larger barrier withth
and hence a weaker quantizing field in the emitter for the
situation depicted in Fig.(d). More will be said relating té
in the discussion of the analytical solution in Sec. EE?W
is expected to lie higher above the bottom of the emitter
conduction-band edge for smaller barrier width than for
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Ie}rger ba_rrier width, hoIding other RTS Qimensions fix.ed, by FIG. 5. (a) Graphical solutions of Eq$1l) and(2) for a barrier
virtue of increased localized band bending at the emitter fo{yign of 27 A. Solid circles stand for reverse-bias sweep solutions,

smaller barrier width. This translates to a larger plateaiyng open circle for forward-bias sweep solutiofts. Correspond-
width for smaller barrier width than for larger barrier width. jng simulation results for the current density.

Other factors also enter, such as the spacer layer widths
whose effect will be discussed later.

However, note that for the 35-A barrier width one should use

~ Based on the simulated quantum-well chargad in the 5 decreasing® with bias in light of our numerical and ana-
light of the typical experimental and simulated/ curves of  ytical results. In all these figures thslid circle represents
RTS'sin the absence of a current plateakig. 4 shows the  he simultaneous solution of Eqil) and (2) for a reverse-
empirical plot of Eq.(2), together with the approximation of pias sweepand theopen circlecorresponds to the solution
Eq. (1) as straight dotted lines for different barrier widths. oy 5 forward-bias sweepAccording to Eq.(1), an increase
For simplicity we use a constant valuefefor each plateau. i grain bias will result in the displacement of the dotted

lines to the left, and a decrease in drain bias will result in

displacement to the right.

The current is approximately given b®,,/7..
Fig. 4, we see that the slope and width of the plateau, as a
function of bias(or kg), is also a decreasing function of the
barrier width, in agreement with our numerical simulation.
Moreover, because of the dependencé&adnd / of Eq. (1)
on the barrier widtlb, the slope of the dotted straight lines is
inversely proportional to the barrier width. This results in a

11-13 In

FIG. 4. Schematic diagram comparing the plots of Eb).
(straight lineg and Eq.(2) for RTS’s with different barrier widths.
Solid circles stand for reverse-bias swegpogresses to the right
solutions, and open circles for forward-bias swéppgresses to
the lef) solutions.

decreasing fraction of the hysteresis width to the plateau
width, as well as an increased separation between the two
hysteresis, as the barrier width is decreased. The hysteresis is
defined by four solution points consisting of two diagonally
opposite solid and open circles and two diagonally opposite
points, each consisting of a solid circle inside an open circle
representing overlapping solutions to the both reverse and
forward-bias sweeps. Figuregap-7(a) show the solution
points for reverse and forward-bias sweeps for different bar-
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FIG. 6. (a) Graphical solutions of Eq41) and(2) for a barrier _and open (.:'rde for forward-bias sweep sglutloﬁs. Correspond-
ing simulation results for the current density.

width of 30 A. Solid circles stand for reverse-bias sweep solutions,
and open circle for forward-bias sweep solutio(®. Correspond-

ing simulation results for the current density. simulated|-V characteristics for large doping levels, dis-

cussed below, closely follow the graphical solution of Fig.
7(a). Hence our graphical results agree with that of the actual
rier widths, from which one can observe the salient featuresumerical quantum transport simulation shown in Fign)7
listed above. In particular the tendency to form double hys- Figures 8—11 demonstrate the significant renormalization
teresis, not very well accounted for in the literature, is quiteof the emitter conduction, band edge at NDR, often ignored
apparent from these figures. Figures 5, 6, and 7 demonstrate previous analyses of RTS’s. Figure 8, for the forward-bias
that the graphical solution has the same prediction as theweep, and Fig. 9, for the backward-bias sweep, demonstrate
extensive numerical simulation concerning the dependenciae degree of broadening of the emitter region as a function
of the |-V characteristics as a function of the barrier width. of the barrier widths. These figures indicate the increase of
In the graphical solution of Fig.(8) for a barrier width of EQW-confining electric fields as the barrier width decreases.
27 A, note that the primary lower hysteresis width and secAt the largest simulated barrier width of 35 A, it is estimated
ondary upper hysteresis width are small and approximatel¢hat the oscillatory behavior in the plateau is not maintained
equal, and these two hysteresis are very well separated in tiskie to a very weak quantizing field, and evolves into a sta-
plateaulike region. These salient features agree with our adionary behavior. Figures 10 and 11 show the corresponding
tual numerical quantum transport simulation shown in Fig.electron-density distribution for the forward- and backward-
5(b). In both our graphical solutiofiFig. 6(@] and in the bias sweeps, respectively. These figures again show large
actual numerical simulatiofFig. 6(b)] for a barrier width of ~ changes in the structure of the emitter region for smaller
30 A, the primary lower hysteresis width is clearly larger barrier widths than for larger barrier widths, indicating that
than the secondary upper hysteresis width, and their separtihie EQW-allowed states lie higher from the conduction-band
tion in the plateau region is less than those in Figa) &and  edge of the emitter for smaller barrier widths.
5(b). In our graphical solution of Fig.(2) for a barrier width Thus the width of the plateaulike region in theV/ char-
of 35 A, the upper secondary hysteresis width is finallyacteristics is proportional to the value of the 2D energy level
masked by the large width of the primary lower hysteresisof the EQW measured from the bottom of the emitter
which occupies the whole plateau region, i.e., the two hyseonduction-band edge, denoted EE‘QW in Fig. 1(a). This
teresis widths overlapped. There could only be one visiblesalue is in turn proportional to the band-edge bending in the
hysteresis occupying the whole plateau region, although themitter region at the barrier edge. We are thus led to similar
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FIG. 8. Simulated forward-bias self-consistent potential for bar-
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explanations for the variation of the features of th¥ char-
acteristic in the NDR with respect to device lengtlisg.
12), heights of the barrie(Fig. 13), right-barrier widthgFig.
14), quantum-well widthgFig. 15), spacer-layer width&ig.
16), temperatures$Fig. 17), and doping densityFig. 18.
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FIG. 9. Simulated backward-bias self-consistent potential for
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In our simulation of the actud+V characteristic as func-
tions of the device lengths, we found that the use of a smaller
device length produces a result which mimics the use of a
smaller barrier widtjFig. 5@)], in the sense of having very
small hysteresis width&hown in Fig. 12 to be zero for both
the primary and secondary hyster¢simd very well sepa-
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FIG. 10. Simulated forward-bias electron-density distribution for a barrier widtf®)o27 A and(b) 30 A. (c) Details of the emitter
structure for 30 A andd) 35 A.

rated in the plateau region. This is because the condition of tant and helpful to realize that a decrease in barrier heights
higher quantizing field at the emitter and a larger value of thewill actually lead to greater band bending at the emitter in
“capacitance” parameteiZ of Eq. (1) are achieved for the NDR operation. The reason for this is that smaller barrier
smaller lengths than for larger device lengths. Indeed, a simiheights yield larger values of the QW energy level measured
lar trend is obtained in going from smaller to larger simula-from the bottom of the conduction-band edge of the QW,
tion box lengthgFig. 12, as in the use of increasing barrier genoted a<E,, in Fig. 1(c), due to a lesser confining QW
widths (Figs. 5-7. Note, however, that in Fig. 12 all the potential. This means that the NDR for these devices occurs
plateau currents are rising as a function of the applied bias;; |arger values of the drain bias, which results in stronger
indicating the presence of significant oscillations in all threeconfining fields at the emitter in the NDR. Hence we see that
cases in Fig. 12, as opposed to Figb)7 which exhibits &  yne \yidith of the plateau also increases with a decrease in the

falling current in the plateau_and where QSC'"at.'On do_es n(.)barrier heights. Moreover, smaller barrier heights will result
seem to be present in the light of the discussions given in

Secs. V and VI. The reason for this maintained oscillation is, |2/9€" currents and a larger charging of the quantum well.

that longer simulation box length enhances oscillatory baS_Th|s translates into a larger capacitance with a decrease in

havior in a manner discussed in the Sec. I, thereby comperll)-arrier heights. The large slope of the plateaulike region in

sating for the weakened confining field at the emitter andn® NDR for a smaller simulated barrier height of 0.20 eV
maintaining the driving source. suggests that the large charging of the QW eventually ren-

Approximately similar trend as in Figs. 5—7 is also ob- ders the stable disappearance of 2D states at the emitter in a

tained in our numerical simulation as one goes from smalleManner of a decreasing amplitude of oscillation with bias in
barrier heights to larger barrier heights shown in Fig. 13. Thdhis region. Indeed, as can be seen from Fig. 13, the peak
explanation again hangs on the two important parameter@oint of the increasing “plateau” nicely connects through
that were used in our graphical analysis, namely, the quarthe first peak point interpolating theV characteristics in the
tizing field in the emitter and the “capacitance” parameter.absence of oscillation and plateau. The absence of hysteresis
The variation with respect to the barrier heights is moreis mainly due to the presence of large capacitance.

subtle than the dimensional effects on the confining potential In our numerical simulation for different right-barrier

at the emitter and the capacitance paramgtelt is impor-  widths (Fig. 14), the results approximately mimicked those
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FIG. 11. Simulated backward-bias electron-density distribution
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for barrier widths of(a) 27 A, (b) 30 A, and(c) 35 A.

of Figs. 5—7, where the right and left barriers are symmetri-
cally varied, thus indicating the principal role of the right
barrier in changing the quantizing field at the emitter. The
numerical simulation for different QW widths also produces
similar trend as one goes from smaller to wider QW widths,
as shown by Fig. 15. Basically, the smaller QW width, with
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FIG. 12. Simulated current density as a function of simulation

box lengths for RTS’s wittb=30A, w=50A, and a spacer-layer
width of 30 A. The doping density is 2:010"8cm ™3,

larger QW width of 60 A in our simulation virtually elimi-
nates the oscillatory behavior and hence the increasing pla-
teau behavior, as shown in Fig. 15. This last remark can be
understood in the light of the analytical treatment of Secs. V
and VI.

Interestingly enough, the effect of varying the spacer-
layer widths in our numerical simulation in Fig. 16 follows
the same trend as that of Fig. 15. The only difference is in
the significant change in the magnitude and shift of the cur-
rent peak as function of applied bias in Fig. 15 as compared
to Fig. 16. Whereas in Fig. 15 the resonant energy level is
also affected as one varies the QW well widths, this is not
the case as one varies the spacer-layer widths in Fig. 16. The
loss of the oscillatory behavior and significant reduction in
the hysteresis for a spacer-layer width of 40 A in our numeri-
cal simulation clearly indicates that for large enough spacer-
layer widths, the plateaulike behavior and hysteresis can be

18 ¢
17+ Lohgh of B 02080
181 hutorbores 1250
12 © (et Brks 030/
13 :
12 £
1M1 F
10 F

Current Density (10° A/cm?)

O=2NWHPrOMHN®O
T

0 005 01 015 02 025 03 035 04
Bias (V)

its higher QW resonant energy level, produces a stronger FiG. 13. Simulated current density as a function of barrier
quantizing field at the emitter in the NDR operation thanheights for RTS's withb=30 A, w=50A, and a spacer-layer
those for wider QW widths. Note the higher peak bias in Fig.width of 30 A. The doping density is 2:010®cm™3, and the simu-
15 for the smallest QW width. Note also that the use of aation box length is 600 A.
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-
o

r tance is also increased, resulting in a very small ratio of the

- tofight Barer Wit 20A hysteresis width to the plateau width, in ageement with our

g :mm; mﬂfm simulation results.

3 : Figure 17 shows the dependence of the& characteristic

- as a function of temperature. The disappearance of plateau-
3 like behavior and hysteresis at room temperature is expected
3 from the analysis given in this paper, which is based on the

existence of sharp energy levels. Effects on the confinement
potential of temperature almost resemble the effects of

spacer-layer widthgFigs. 16 and 1)

Figure 18 shows the numerical simulation of the/
characteristic as a function of the doping density. A larger
doping density creates a larger current and a smaller access
0 7. A p resistance, such that the accompanying voltage drop in the

0 005 01 015 0.2 025 03 035 04 access re3|§tor is practically constant. Thus there is no ob-
Bias (V) _se_rvable_shﬁt of the_current pgak _betv_veen Ithe character-_
istic of different doping densities in Fig. 18. The decreasing

FIG. 14. Simulated current density as a function of right barrierCUITent in the plateau region for the highest doping density of
widths for RTS’s withw=50 A, and a spacer-layer width of 30 A. 3% 10'%cm™® that was simulated indicates that the strong
The doping density is 2:010® cm 3, and the simulation box Screening effect dampens the oscillation while producing a
length is 600 A. very weak penetration of the electric field at the emitter

(weak quantization Because of the interplay of the deple-
- . - . tion and QW capacitance in a series, the capacitance param-
completely eliminated. We have given a definite device Pagier is probably slowly varying between different doping
T ) . Yensities. However, the quantizing field at the emitter is rap-
[-V characteristic without the plateaulike behavior and hys-|d|y varying, resulting in corresponding different widths of

teresis at very low temperature. . the plateau region with different doping densities. Thus a
The variation of thel-V characteristics as a function of rend similar to that exhibited in Figs. 5-7 is obtained in

the spacer-layer widths probes the role of unstable 2D statgfying from a small doping density of 2x0®¥cm™3 to a

in the emitter in the formation of the pIateauIike region and|arger value of 3.& 1018 Cmfs, where thd -V characteristics

hysteresis. In particular, one expects that the localization ofyore closely follow the graphical solution of Fig(a.

the confining potential at the emitter is a strong function of

the spacer-layer widths. For zero spacer-layer width, with a

not too large doping density, the confining potential at the I1l. NONLINEAR MODEL

emitter is expected to be highly localized by virtue of the OF THE OSCILLATORY DYNAMICS

Elf:géern\tjﬁree%?'?ﬁeo;g]eeggfge; li?éﬁtznrggﬁgﬂbgefﬁlgng rlgea Sever_al nonlinea_lr models were attempted in the Iitgrature

current plateau width. At zero spacer-layer width the capaciEO explain the oscillatory behavior of RTS's. A nonlinear
' model for RTS's by Ab& only focused on the self-

consistent electron charge in the QW and its effect on the

Current Density (10° A/cm?)
N W Ao @ ~ @ O
T

pry
T

18 tunneling probability, i.e., only on the catalytic feedback pro-
1; o Well Width: 40A cess due to the self-consistent QW potential mentioned in
15 ~Well Width: 50A Sec. I. The dynamical coupling with the e.mitt(eeservoiif
€ 14 = Wel Width: 60A was completely ignored. Highly mathematical treatments of
L 13 a similar model were given in Refs. 16 and 17. A Sehro
.; ﬁ dinger equation with nonlinearities concentrated in the
Z 10 double-barrier region was proposed. The major assumption
% 9 is that the emitter region is left undisturbed, which is unre-
s 8 alistic in light of all our numerical results. No comparison
Q 7 with salient features of the experimental restitsvere at-
g g tempted. To our knowledge the present paper is the first to
::; 4 explain all the different salient features between the experi-
3 mental results of Refs. 3 and 4.
2 A satisfactory analysis of the current voltage characteris-
(1) tics needs to explain not only the plateaulike behavior as a
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 function of bias and douple hysteresis of thg average
Bias (V) current$* but also the oscillatory behavfbfound in the

time-dependent simulation of thé-V characteristic of
FIG. 15. Simulated current density as a function of quantum-RTS’S-S’6 As seen in Sec. Il, double hysteresis is a conse-
well widths for RTS’s withb=30 A, and a spacer-layer width of 30 quence of the plateaulike behavior of the average quantum-
A. The doping density is 2010'¥cm™3, and the simulation box Wwell charge. We should also explain the two different behav-
length is 600 A. iors of the current in the plateau, namely, a decreasing
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FIG. 16. Simulated current density as a func-
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=30A, andw=50A. The doping density is
2.0x10®cm 3, and the simulation box length is
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current with smaller plateau widthand an increasing We can now write the “effective” generation rate of sup-
currenf with larger plateau width as a function of bias. Here ply electrons at the emitter as

we introduce a physical model for the oscillatory dynamics.

This model does not take into account the steady leakage g Q Ne 3
current from the emittesource to the collector(drain) e RC Teq )
while the QW energy level is above the conduction-band . ) .
edge of the emitter. This dc component will be treated simWhere 7eq=27/weq. As mentioned in Sec. IQ/RC is the

ply as a background dc current in the NDR, assumed to pdriving source termQ is the electron buildup at the emitter
negligible for strong emitter quantization. in time constantRC to produce enough broadening of the

Let V. be the number of supply electrons at the emitterEQW' R is the series resistance, a@ds the double-barrier

that are generated by the EQW broadening and participate %apacitance. Similarly, the effective generation rate of elec-

| . i
tunneling to the QW, and le\,, be the number of corre- trons in the quantum well is

sponding electrons generated in the quantum well. In the P N, N

NDR, the frequencyv, of tunneling from the emitter to the EJ\[W:—e— . (4)
quantum well is given byweq=ANA,,, wherel is the Teq e

tunneling probability factor which takes into account the de'Equations(S) and (4) describe the situation depicted in Fig.
pendence of tunneling coefficient on the barrier height and ) namely, at\,=0 the generation rate of/, is at its
width, taking into consideration the longitudinal quantization maximum while the generation rate &f,, is negative, i.e.,

of the supply electrons in the emittek. therefore could be A/, is actually decaying. An equivalent-circuit model closely
dependent on the driving sour€@/RC, which affects the describing Eqs(3) and(4) is shown in Fig. 1d). This is the
existence of limit cycle solution for very small values of same equivalent-circuit model for RTS’s with inductive de-
Q/RC. The explicit dependence @, on N, is explained lay as introduced by Buot and JenSea explain the pres-

as follows. In the NDR, the frequency of tunneling from the ence of intrinsic high-frequency oscillations in their numeri-
emitter to the quantum well is enhanced by the presence afal results This was discussed in more detail by Buot and
N, . This is because the realignment of the allowed energyRajagopal! The coupled rate equations above are similar to
levels in the emitter and the QW discrete energy level ishe one used to describe an interband-tunnel high-frequency
enhanced by the presenced,, by virtue of the feedback oscillator introduced by Budt: and discussed in more detail
due to the self-consistency of the potential. This representsy Buot and Krowné® The maximum generation rate of
the catalytic feedback process. Ng, given byQ/RC, is the parameter of our “dual” theory
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here. This is expected to depend on the confining electrioeling from the quantum well to the collector or drain. et
field at the emitter for a given bias, when the QW energybe the total number of matching states in the drain for the
level passes into the forbidden region of the emitter. In theelectrons in the quantum well to transition to. This is a finite
last equation,r. is the characteristic time for the decay of number for real semiconductors. Lkt be the number of
N,, due to tunneling to the collector. matching states already occupied by virtue of electrons tran-

To derive an explicit expression for the last term of Eq.sitioning to these states. The production rat&gfis propor-
(4) from a more fundamental consideration, we need to fortional to the product of the available number of matching
mulate the process describing the decay\gf due to tun-  states andV,,. Let\ be this proportionality constant. And let

v be the decay rate dfl, by virtue of electron drift in the

10 ¢ depletion region followed by absorption at the metal contact.
o | [DopngDensiy. 110° Then we can write the rate equation g as
-+Doping Densty: 2 10°
,E g [ |aDoping Densty: 3 10°
E : J
% 7 ENX:)\(N_NX)NW_ YNy, (5)
2 st where the first term is also the decay rate\§f. The process
g : described by the last term of E(p) is the fastest process in
= 4 i the problem,N, is therefore expected to relax much faster
g 3F than\,, and N,. Thus by adiabatic elimination of fast vari-
::; o | ables, we can leN,=0. Then we obtain
i _ :
: g = N_N N ®)
o oA TR B IR I e I —Ny=7—""F 5
0 005 01 015 0.2 025 03 035 0.4 1+ NNy
Bias (V)

Upon substituting the expression of K@) into the first term
FIG. 18. Simulated current density as a function of doping den-0f Eq. (5), we obtain the decay rate o/, given by
sity for RTS’s withb=30 A, w=50 A, and a spacer-layer width of ANAf,/(1+AAN,,/y). Thus we can express the decay rate of
30 A. The simulation box length is 600 A. the quantum-well electrons as
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by Figs. 1a) and 2. This situation is indicated in our simu-

(83
N decay rate ﬁ (7)  lation results by the decaying amplitude of the oscillatory
W behavior as the bias approaches the current-valley Value.
wherea/B=yN, and 1B is proportional to the sum of avail- For the following stability and nonlinear analyses, it is

able states in the collector. Equatién is a typical decay convenient to simplify the fundamental rate equations and
rate for dynamical systems involving a fast relaxing “sink,” write them in dimensionless form as
and is similar to the Michaelis-Menten decay law in chemi-

cal kinetics. The parameter=\N is the decay rate constant J _ A 02 I1
and o/B is the value of the saturated decay ratedf. EH_ Q H_m’ (12)
Therefore, we can also write the generation rateNQras
J
I R a2 Ny —Q=g-AQI, (12
S Na=ANN— T BN tS) JT
where the first term is also the explicit expressionAQy 7. where
in Eq. (4). Comparing with Eq(4), we obtained the follow- =8N,
ing relation: 7,=(1+ BN,)/a. As seen in Eq(10) below, we
the physical situation corresponds te/ 3>Q/RC. This 0= BN
means that the maximum discharging rate of the quantum e
well is larger than the buildup rate of supply electrons at the ~ )
emitter. Indeed, we can estimate th@fz~Q/RC and A:A(llﬁ) (13)
Q/7T . <alB, where 75 is the length of time to bring the a
device from the state of Fig.(d) to that of Fig. 1b), andr_
is the corresponding length of time for bringing back from Q/RC
state of Fig. 1b) to Fig. 1(a). Therefore, the physical require- g= (alB)’
ment thata/ 3> Q/R C implies that we may arrange f&t to
be large enough for a given capacitanCesuch thatzg r=at.

> 7_. This is the situation we are considering in our analysis

of the oscillation. Note that oscillatory behavior and hyster- |n the absence of any data, we can make a rough estimate

esis very much depends on these two characteristic times @§ ¢. Assume thaQ~10° cm™2. From Ref. 1, we can esti-

. . 3 o !

discussed by Buot and Rajagopal: mate RC~10 '*s. Then the driving ratéor electron-flux
15> 7 implies that at steady state one would only see tthensity sourceQ/RC~10?3cm 2s 1. From the product of

average values of the built-up charge in the emitter and |G|~10"1%s, whereL is the positive inductance of the

broadened EQW, since the process of charge buildup takeguble-barrier structure ar@ is the ideal negative conduc-

longer compared to the time duration for discharging th&ance in the NDR region, determined from Ref. 1, we can

emitter(which is roughly the leakage time of the QW charge gisg estimate a~102 s . We can approximate B/

to the collecto). Moreover, the average QW charge will be a ~ 10! cm~2 to represent the available states in the collector.

slowly varying function of the bias, i.e., resembling the cur-Then G~0.1. Because of inductive delay, we estimate

rent plateau plot. This behavior of the quantum-well chargeAN2<a using typical values of\,. Using these values, a
e . )

mimicking the current plateau was indeed found by Jensen
. ) . . ; reasonable value fak comes out to be about the same mag-
and Buot in their quantum transport numerical simulation of

nitude asG, which can lead to the inequality (G)%/4

RTS's. >A. We will see that this last inequality has a very impor-
tant role in our limit cycle analysis in Sec. V. In what fol-
IV. STABILITY ANALYSIS lows, we takeG<<0.5 to cover the physical range f@rin the
The stationary solution to the coupled rate equati¢®s, |-V plateau region.
and(8) is given by In terms of these dimensionless variables, the stationary
N values of @ andII are given by
IRC=RNZN =t 9
Q WL BN, © H°=%EBNSV- (14
Thus the stationary values of,, and N, respectively, are
given by 1-g\12
1/2 Q0= (T) Eﬁ./\fg. (15
AO— a—BQIRC
© A ’ As mentioned above for a physical situation in the relevant
RTS’s, 0<G<1. The dynamical system cannot be sustained
. Q/RC or becomes unbounded in the presence of a catalytic process,
NW:WQ/RC' (100 represented by the first term of E®), if G=1.0.

The question of whether there is a nonstationary solution
Note that as the drain bias approaches the plateau edge atwdour fundamental rate equations can first be answered by
into the valley-current valueQ also decreases, as indicated examining the stability of the stationary point i{#1,Q)
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space. This is done by examining the neighborhood of the 4 (p)

G(1-3) ZQ[A/(l—Q)]m)(p) (Np)

stationary point. Let us denote the coordinates of this neigh- —| _|=| . B 12 q
borhood by Jr\q (1-9 -2g[A/(1-g)1*?/\a) N 0
II=I1°+p, where
— [0}
Q_Q +q- (16) Np:(l_g)3p2+2[A(l_g)]l/2pq+(1_g) q2+qu2
Substituting these into the coupled rate equati@y and
(12), and retaining only linear terms mandq, we have *
" +2, (=1)"(1-g)"p", (21)
d (p _( G(1-6) 2G[AI(1-0)] ) Pl n=3
or\dl | —(1-6) -2g[Aa/(1-G)1¥2/\a)’

AG
NI=—2[A(1-0)1Y¥pg— ——q?—Apg? (22
The solution for the trajectories ifll,Q) space about the [A1=9)]Tpa (1-9) a P (22

equilibrium point is given by The perturbation technique employed in what follows essen-

VP VP tially transforms the above nonlinear equation into a hierar-
(p) :Ale)\lT( Vé +A2e"27( Vé) , (18) chy of solvable and simpler equations, obtained by equating
q 1 2 coefficients of powers of the smallness parameter. Near

Tr(M)=0, we use as our smallness parameter the departure
of Tr(M) from zero, i.e., the departure df from A. where
(1-G)3=4A.. Thus, let the smallness parameter be
={A-[(1-6)%4]}/D, whereD is determined from the

(M) 1 expansion ofA in powers ofe. D=~A, in the analysis that

Nio= +=J[Tr(M)]?—4 detM). (190  follows. G is assumed constant at fixed bias, i.e., a function
only of the external bias. We make the following expansion:
The character of the stationary point can thus be determined
with the help of the invariants of the matrigv), namely,
Tr(M), detM), andD(M)=[Tr(M)]?>—4 detM). The sta-
tionary point can not be a saddle point for physical reason ) )
since detl(/l)=29(l—g)3/2\/K>O. The physical processes We also expand the matriM in powers ofe through direct
depicted in Fig. 1 also suggest that the stationary point Caﬁ'aylor expansion in powers af — A as
only be any one of the following cases: stable focus
AAC)

where\; and\, are the eigenvalues of the matiid) de-
fined by Eq.(17), and the corresponding eigenvectors e
andV,, respectively. The eigenvalues are given by

A=, €Aj, where Ag=A,. (23)
i=o0

[Tr(M)<0], center focug Tr(M)=0], or unstable focus (M)=(M,)+eA, IM(4)

[Tr(M)>0]. These cases mean ta{M)<0 or 4 det) JA

>[Tr(M)]?. Thus there are two out of three chances that the )

oscillating processes depicted in Figs. 1 and 2 are sustained n }62 IM(A) L A2 d"M(4)
depending on the value ok relative to G. On physical 2 2l oA A—A N gA2 AlA
grounds, we expect the limit cycle solution for uniqueness ¢ ¢
and structural stability. For the unstable focus we have to +0(ed). (24

demonstrate that a limit cycle exists. The region(dh A) )

parameter space where the structurally stable limit cycle i&/Sin9 (1~

possible lies in the area under the bifurcation cuthe locus

of Tr(M)=0] in this space. (M)=G(1-0)
The trace ofM is given by Tr(M)=g[(1-G)—2{A/(1

—G)Y?]. Thus Tr(M)>0 implies (1-G)®>4A. On the

G)3=4A., we obtain the following expressions:

(29

1 1)
_g—l -1/’

other hand, D(M)<0 implies (1-G)3<4A+8G (1 [ (M) 3 L0 1

_g)5/2A1/2+4ﬂg71(1_g)5/4A3/4_ In Sec. V, we will em- (Ml)= EIN R _Zg(l_g) 0o -1/ (26)

ploy a nonlinear perturbation technique using the method of e

multiple time scales with values of the parameter around 1 (M) 0o 1

Tr(M)=0. As we shall show in the following nonlinear (My)=| = —— =—2g(1—g)5( )

analysis, the limit cycle indeed occurs at M{>0. The 2 A A=A, 0 -1

amplitude and frequency of oscillation is expected to depend (27

on the actual values of the two parametgrand A in this

region. We let the solution depend on timein a combination

To=7 and ry=(A—A.) 7. Thus, instead of determining the

V. LIMIT CYCLE SOLUTION solution in terms ofr, we seek the solution as a function of

70, T1, ande. This method of doing the nonlinear perturba-

Retaining nonlinear terms fgr andq measured from the tion analysis is well known, and is often referred to as the

stationary point, the rate equation from E@$1) and (12) method of multiple time scales. This has the virtue that it
becomes a matrix equation, separates the dependence of the solution into fast and slow
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time scales. For limit cycle behavior, for example, we expeciTherefore, any finite solution that will be found in this analy-
that the amplitude of the oscillation is only a function of the sis will invariably indicate that the limit cycle occurs for
slow time scale. The left side of the rate equation can now bealues of the parameter away from the critical point,

written as Tr(M)=0, i.e., away from the bifurcation point. This holds,

for example, in our numerical nonlinear equivalent-circuit

7 p(Toﬂ'l,f)) _ i+(A—A )i (D(To:fla€)> simulation for the limit cycle of conventional RTS's operat-
ar\a(70,71,€)) | a7, “or\d(7g,71,€) )" ing at the NDR regiod.With Eq. (29), the nonlinear term in

(28) Eqg. (20) acquires the following expansion in terms of the

. . ) smallness parameter:
Since the last term in Eq20) represents the nonlinear

term for the solution, we adopt the following expansion: NP NB p
. Nq)=62<Ng +é NG +0(e%), (30
P|_ M( p;>
Q) jZ'o ¢ q;) @9 where
|
NS) ([poqo+(g/4)q§+(1—g)pé])
=(1-0)2 31
(N% 9~ Ipogo+ (Ga)a3] @Y
[ (1-9) A4G ]
Pod1+ P1do+ (G/2)q10o+ Tpoqg"‘ (:L_—lg)aqg

AZ 1/2 ) 3

NP M a=g? 2podot2(1=G)pop1—(1=-9)"py

( 3)=(1—g>2 - ; . (32)

Ng +Pp1Qo+(G/2) y A9 gy 819 o

Pod1+P1do 0190 4 Podo (1_g)3%
A2 1/2

| +((1_g)3) 2p0q0

We did not show nonlinear terms with fractional powersof The first equation in the hierarchy turns out to be a simple

in Eqg. (30) associated with\; in Egs.(21) and(22), since  eigenvalue problem, analogous to our linear-stability analy-

the left-hand side of the rate equation does not contain fracsis before. The only difference is that the present eigenvalue

tional powers ofe. To eliminate the occurrence of these frac- problem has to be solved with values of the parameter at the

tional powers ofe, we have to makeé ;=0 in the expansion critical point, where Tri) =0, using the matrix1.). The

of A [Eqg. (23)] and also in Eqs(24) and (32). solutions to Eqs(33), (34), and(35) are given in the Appen-
Upon substituting all the expanded quantities in the nondix to second order ik, where it is shown that limit cycle

linear rate equatiofEg. (20)], we obtain a hierarchy of sim- exists forA<A..

pler equations. Those arising from the first up to the third Thus, to second order in the smallness parameter, and by

powers ofe are given below: virtue of Eqs.(16) and(23), we have the limit cycle solution
given as
c p°)=o (33)
%\go/ (H _(n°)+ A—A, 1/2(p0)+ A—A, <p1)
p Q) 1 ° A, do A, d1
- (pl)_(Nz(po,qo)) @4 .
0 BN : A—-A
d1 Nz(pOrqO) +0 X c) }' (38)
2
P2 Po| N5(Po,9o,P1,01)
ﬁo(Qz) +A2£1(Qo) _<N§(po,qo,pl,q1) (39 \where from Eq(A3) in the Appendix, we have
where Po| [O(=)] 2 cost)r
( P do/ G727 | —2G"2cosQr—(1-G)Y22 sinQ7)
Lo=|——(M )). (36)
* o ¢ _ 2[0(x=)| cosQr
; ST | —sinQr+ @) (39)
Li=|——(My)]. 3
! (ﬁﬁ ( 1)) 37 where
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G 12
tan® = —(1—g) , (40)
Q=G(1—-6)%2+{ Im p(A—A,)
Imao
* A_|®(OO)|2(A_AC)]- (41
2
From Egs.(A7), (A10), and(Al11) in the Appendix, we also have
2
- _ )3 _ .
60(1-0) {4(1-G)% cos 27— w(1+2G)sin 20 7}
(pl):|®(w)|2(1—_g)(29 +0()|2 15 9 “2)
Ch g |-z (79— 5—392)(1—g)coszm
6G(1-9)

+w(8—3G—2G Ysin2Q

We note that Eq(42) also contains a time-independent Al, Ga, _ ,As/GaAs/ALGa,_,As double-barrier heterostruc-
term, indicating a higher-order shift of the center of the limit ture operating in the NDR regichBecause of strong corre-
cycle from the stationary point@®,I1°). Therefore, the av- |ation of the oscillatory charges/,, and\;, and the conse-

erage value ofg) is given by quent current oscillation caused by the alternate buildup of
N, and NV, the average value of/, alone does not deter-

II I1° A—A, ) (1-69)( 26 mine the measurable averaged value of the current. The av-

o) average: QO) + A, |©(=)] g |-1/2 eraged measurable value of the current is determined by the

sum of the stationary values d@f,, and \,, more specifi-
cally, the average curremg= (N’ 2+ J\/f,’v)/ Teff, @S indicated
in the equivalent-circuit model of Fig. (d), where 7
~27.. From Eqgs.(13), (14), and (15), the leading average
value of this sum is determined by

where the leading higher-order corrections come from the

time-independent terms. Thus we have demonstrated that a 30(G) =11+ Q°= g
unique limit cycle exists away from the bifurcation point (1-9)
(A<A,), and the average value is determined by the timeWe have
independent terms of E@L6).

In examining the dependence of various quantities on the d=%g) 1 1
driving source G, we make the assumption thigt — A | is ac (1—g)2_<4A(1—g
approximately a constant. The physical reason for this is that
A is a measure of the inductive delay, indicated in Figl.l for A<A. at the limit cycle. This slope goes to zero /At
A is large for small inductive delay and small for large in- =A_ and becomes positive at>A., which defines the
ductance. For a larger driving soureg,which happens im- absence of inherent self-oscillation. We conclude from Eqg.
mediately after the current peak bids, is smaller and we (45) that the average of the oscillatory current increases as
also expect larger inductive delay at this point, and helice decreasesor as bias increasgsshown in Fig. 196 is large
is also smaller. For larger values of bias in the plateau, meanight after the current peak, and decreases with applied bias
ing a weaker driving sourcg, A, is larger and we also in the plateau range. We expect the charging 4R C to
expect the inductive delay to be smaller, meanings also  be proportional to the energy differenéehich decreases
larger. Therefore|A—A.| is approximately constant. It is with biag between the QW energy level and the conduction-
taken small enough such that the second term in(&8).is  band edge of the emitter.
only a very small correction to the first term; otherwise one We estimated; just beyond the current peak to k&.5,

HO
+0(€) =< Q(’) + (higher-order corrections

(43

+

< (44

1— g) 1/2

1/2
)) <0 (45

has to include other higher-order terms. and it decreases as a function of bias in the plateau range.
Indeed, our nonlinear model supports the increasing current
V1. DISCUSSIONS in the plateau range as a function of bias in the presence of

intrinsic oscillations, as indicated by Fig. 19. It is important

A. Average value of the current in the plateau range to point out, however, that in the absence of intrinsic oscil-

We see that the limit cycle occurs within the range oflatory behavior, our nonlinear model, as described by the
values of the parametex where the criterion for unstable equivalent circuit of Fig. ), indicates that the stationary
focus (1—G)®>4A [i.e., Tr(M)>0] holds, supporting the current is proportional tqk/f,’v alone, which increases with the
results of our numerical calculation of the limit cycle of an charging rate in the emitteg, shown in Fig. 20. Thus in the
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FIG. 19. Plot of the average of the oscillatory current as a func-
tion of the driving sourc&/=(Q/RC)/(«a/B), for A<A.. The in-
creasing drain bias goes with decreasing valueg. of

FIG. 21. Plot of the amplitude of the oscillation of an oscillatory
current as a function off for A<A.. The increasing drain bias
goes with decreasing values Gf

absence of intrinsic oscillation, the current is expected to
exhibit a decreasing behavior as a function of Hiasrease (‘A_ c
of bias means a decrease@fin the plateau range. Indeed, A,
results of our recent steady-state numerical simulation for a
large barrier width, where the quantization field in the emit-

-0

1/2
) 2G40 (=)|Q

1/2

A—A,
: (46)

ter is very weak, show a decreasing current as a function of A
2

bias in the plateau range, indicating the absence of noticeable
oscillation. Moreover, the background current mentioned in
Sec. Il is expected to be larger for weak emitter quantizawhere is given by Eq.(A21) ando is determined from Eq.
tion, i.e., less control of the total current by the driving (A27) in the Appendix. From Eq$A21) and(A27), we have
sourcegG. Thus our nonlinear model is able to discriminatethe final expression for the representative amplitudg,
the presence or absence of oscillation in the plateaulike regiven by
gion, and is definitely a refinement of the graphical analysis
presented in Sec. Il.

1/2
ng 1/2) _ Re 77A2
Reo

64
(1-G)%{4+19G—8G%

O 1/2
B. Relation between amplitude and driving sourceG AO=E(|A—AC|)1/2[ } . (47)
The oscillatory current is proportional tp/ 7.+ dql/dr
[refer to Fig. 1d)] expanded to second order using Egs.Figure 21 is a plot of this amplitude as a functiondfSince
(38)—(42). We now show that the amplitude of oscillation G is a decreasing function of bias in the plateau range as
increases withg. From Eqs(38) and(39), this amplitude of discussed above, we conclude that the amplitude of oscilla-

the fundamental frequency component is typified by the extion is also a decreasing function of bias in the plateau range,
pression as indicated by Fig. 21. The interference between the two

cosine terms in the expression for the current further en-
hances this behavior in the physical rangegofindeed, all
time-dependent numerical simulation of RT$Refs. 5 and
6) found the largest oscillation amplitude right after the cur-
rent peak, and after which it decreases as a function of bias
in the plateau range. These salient features, namely, the in-
crease of the averaged current and the decrease in oscillation
amplitude in the plateau range, have never been explained
before, to our knowledge. It should be pointed out that the
simulations of Biegel and Plumnferactually showed a
small-amplitude oscillation at the far end of the plateau,
which they interpreted as decaying to the steady state in the
limit of large time.

Another important salient feature @tV curves of the

—_
[ 3]

[arb. units]
o
o0

<@
'S
T

Nonoscillatory Plateau Current

0 0.1 02 03 0.4 05 time-dependent simulation is that the oscillating current just
after the current peak contains other harmonics, whereas at
higher bias in the plateau it becomes purely harmonic. This
FIG. 20. Plot of the stable stationary values of the plateau curis understandable since the largest amplitude occurs imme-
rent as a function off for A>A,. The increasing drain bias goes diately after the current peak, with higher-order harmonics
with decreasing values @. making contributions to the fundamental oscillating current.

Driving Source
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' ' ' inductance, then the whole system would still self-oscillate at
i the NDR by virtue of the two energy storage circuit ele-
ments; the RTS capacitantia parallel with the NDR circuit
element and the dominant wiring inductance in series. For
this particular case, the driving sourGebecomes externally
induced. We can still apply Eq&44) and(45) for calculating

the current in the plateau range. However, siAceA., the
slope of the average of the oscillating current as a function of
G is positive, and this translates to a decreasing average cur-
rent in the plateau.

‘ This result seems to occur in actualV measurement

I e
o [

Fundamental Frequency
[arb. units]
o

¢ 0 02 0.4 0.6 0.8 1 reported in Ref. 3, where the barrier width of 85 A employed
Driving Source was in the range of size where our simulation would indicate

i that the quantizing field in the emitter is relatively weak
FIG. 22. Plot ofyg(1—@)® as a function ofj for A<A,. when the QW energy level passes into the forbidden region

C. Oscillation frequency and its dependence on charge buildup of the emitier{refer to thg decreasing c;urrent in the platgau
‘ of Fig. 7(b), where the simulated barrier width of 35 A is
rate even smaller than 85 JAlt follows that the inductive delay is
The fundamental frequency of oscillation is given by  also small in the device of Ref. 3. Also their use of a “bias-
= af), where @ becomes the conversion afto real time. ing” capacitor across the device has the effect of increasing
We have the dimensiore, and perhaps alsa, in Eq. (1) compared to
one without biasing capacitor, for their doping level of 2

_ _ ap 3 X 10 cm™3. This will cause a decrease in the slopeXyf as
wo=a\G(1-0) +a||m 7(A=4c) a function ofk? in Eq. (1). In our graphical analysis, this
would mean an increase in the widths of the two hystereses
N Im 0-|(00)|2(A—AC)], (48) yvhile also making_the double hysterese_s approach each o_ther
A, in the plateau region, compared to their measurement with-

out the biasing capacitor. This explains the experimental re-
sults of Ref. 3.
On the other hand, an experimental rising current in the

wherea=\N as defined in Sec. lll. Thus oscillation is in-
deed driven by the rate of charging of the emitgrjn the

presence of quant_izing field causi_ng premature current pea}lfiateau region was reported by Sollfenhere the device
to occur. The scaling factor=AN IS expected_to bring the . was also found to be oscillating as measured by spectrum
frequency vallues to the THz range in ournqnlme@r model,l nalyzer. In both experiments, the double hystereses are
?egrrgfas??Jn;iX'tguiué;{ﬂigipﬁngggt ﬂ:*?;;iclagg'sfl‘ff:g” Oclearly manifested in thé-V characteristics, with Sollner's
G~0 1‘ f ?h leading t ; E (48) btai device yielding an order of magnitude larger current than the
NE 5TH or the leading term ot Eq we obtain o yayice of Ref. 3. Although the device parameters were not
- Ii 1hz. ling t ine the d d ¢ th(%iven in Sollner’s paper, we suspect that the measured de-
fund IS m(:rT freveamg 0 e>t<rz]im|nr? € beﬁgn en(ie Ot th ice has enough intrinsic inductive delay to exhibit intrinsic
undamental irequency on tne chargé bulldup rate at e . ation. This is basically supported by the larger width of
gmmer. Frﬁom Eq(48), the.fundamen-tal frequency IS propor- 4, e plateau region of about O/Geported by Sollnet,com-
t'ﬁnal toh g(l.}g) h this is plotted |_r(11 F'ga .22i:_Thlslgguzrle pared to the width of 0.07 reported in Ref. 3, about an order
Sh 0‘?’“ at within the raf:ge_- G consi ersej In Fgs. 19— d of magnitude smaller. This observation is consistent with our
the frequency temporarily increases @slecreases toward g 1ation of the effect of barrier widths on the slope of the
Z€ro (with increase in b'@s'” the plat_eau. Compa_rmg_ with current and width of the plated&igs. 5—7. Therefore, only
Fig. 21, we see that while th? a'fnp“.tUde of OSC'"?“O” d€-\yhen the intrinsic inductance of the RTS's dominates the
creases, the frequency of oscillation increases at first beforl%ad inductance do the measuréeV characteristics re-
sharply decrgasmg to_zero towqrd the gnd O.f the plate.alé:emble the intrinsic one where oscillation is present. How-
These behaviors were indeed noticeable in various numerlc%k/er we should also point out that according to the discus-
quantum transport simulations Of RTS'S° clearly demon- sion in Sec. VIA, hysteresis in thieV characteristics can
strating the validity of our analytical model. occur without intrinsic oscillation, characterized by a de-
creasing current in the plateau, by virtue of the possibility of

D. External sources andl -V measurements: stable stationary solutions for a weak quantizing field in the
resolution of controversy emitter.

Another interesting result which follows from our analy-
sis is the case _WherA is relatively Iarge,_ meaning th_e in- VIl. CONCLUDING REMARKS
ductive delay is very small, or the inductance in the
equivalent-circuit model of RTS’s is very small. The intrin-  We have demonstrated that the formation of unstable 2D
sic self-oscillation would then be absent sinke-A.; the  states in the emitter under NDR operation plays a principal
stable stationary current is only determined HY of Eq.  role in explaining a host of numerical and experimental re-
(14); this was discussed after EGL5). However, if the de- sults on RTS’s. We have given a graphical explanation of
vice is connected to an external circuit with significant leadour steady-state simulation results of RTS’s with different
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barrier widths, holding other dimensions fixed. We use aplication of the traditional impact ionization avalanche tran-
graphical method similar to that employed befdré*to ex-  sit time (IMPATT) diode and Gunn effect microwave solid-
plain other nonlinear effects in RTS’s. Figures 5—7 specifi-state sources.

cally explain the following salient features of the simulation:

(1) the width of the plateau increases with the decrease of ACKNOWLEDGMENT

barrier widths;(2) the ratio of the width of the primary hys-
teresis to the width of the plateau increases with the barrie
width; (3) the average slope of the plateau decreases wit
increase in barrier widths; arld) double hysteresis is a rule
rather than an exception. These figures show, in accordance

with simulation and experimental results, that the width of Using the matrix expression of E¢25) for (M.), the
the secondary hysteresis is smaller than the primary one. Weigenvalues for Eq.33) are

should emphasize that to our knowledge no other analysis

can explain the presence of double hysteresis inlthe y1= *iVG(1-9)*P=~iw, (A1)
characteristics so ubiquitous in the_ simulati@nd experi- and the corresponding eigenvectors are

mental resul* of resonant tunneling structures. Further-

The authors are grateful for partial support from the Army
esearch Office and the Office of Naval Research.

APPENDIX

more, the present explanations also account for the very 1
sharp |-V peak found experimentalf;®> as indicated b ;
Our graphical analysis also explained the following sa- Gg(1-9)

lient features in the NDR I’egion of theV CUrVeS:(a) the The solution can be written in the form
width of the plateaulike region increases with a decrease in
the simulation box lengths, barrier heights, right-barrier
widths, QW widths, and spacer-layer widtlib) the ratio of

the width of the primary hysteresis to the width of the pla-
teaulike region increases with an increase in the simulation 1

box lengths, barrier heights, right-barrier widths, QW widths, =0(71)1 expioty) i +c.c.,
and spacer-layer width$g) the average slope of the plateau- - 1+m

like region decreases with an increase in the simulation box

lengths, barrier heights, right-barrier witdths, QW widths, (A3)

and spacer-layer widthgd) in almost all cases, there is a \yhere the separation between the slow and fast time scales is
definite tendency to form a secondary hysteresis between thgjicitly written. Note that Eq(35) determines the nature of
plateaulike region and the peak current; dedthe plateau-  he dependence of the solution on the slow time sealey

like region and hysteresis disappear for large enough spacefiiye of the presence of the operai6y, .

layer widths and higher temperatures. . . _
We have also presented refinements of our graphical Next we obtain the solution forgp by solving Eq.(34).

analysis by introducing a nonlinear physical model to de-The right-hand side is now known since it is only a function
scribe the time-dependent oscillation in the rising plateau obf (gg). The solution can be obtained separately for terms

supports the current oscillation in the plateau range found iccurs only in exponential terms. The right-hand side of Eq.
various numerical quantum transport simulations 0of(34) can be written as

RTS's>® as well as in other analytical models employing the

solution of the many-particle Schiimger equatiort® Spe- N5(po.do)
cifically, our nonlinear model predicts a rising plateau cur- NY(po. o) =
rent and a decreasing amplitude of current oscillation as a

function of bias in the plateau range. In the current plateau, P 2 '

the frequency of oscillation is found to increase, reach a | ga|O(r) expAwTetc.cy,
maximum, and then decrease sharply to zero as a function of

bias. It also predicts large signal amplitude and the presence

of higher harmonics just after the current peak. All thesewhere

findings are in agreement with numerical simulatihand

experiments:* Furthermore, in the absence of oscillation, (Ap):(l_g)z(llz_ 29) (A5)
our model predicts a decreasing current in the plateau. This Al 32 )

can happen if there is a weak quantizing field in the emitter )

brought about, for example, by a large barrier witith. —(1+20)/4)+ lo(2—9)

Po

=0(r)W¥(7y) +cC.C.
Yo

AP
=| 4o

Jiory?

(Ad)

Finally, we point out that a conventional RTS, under ap- BP 5 2G(1-9)
propriate device parameters, has the potential for operating | za =(1-9 iw(2-0)
as an all solid-state THz source. Our analysis dictates that the (5/4—Gl2)— 26(1=0)

device must be operated just after the resonant current peak
to maximize the output power at THz frequencies. This THz
source is expected to significantly extend the domain of apH we write the solution for gi) as

(A6)
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o=+ { [ TR A S I
(C) (C] exp a +c.c =
<ql |O(p)|*+ B4 (7'1) pdwTy B0 (1-0) 2iw+G(1—G) B/
(A7) (A9)
then we have to solve the following equations for the coef-
ficients:
aP AP Substituting the expressions given by E@A5) and (A6)
(aq> =—(My) ( ) (A8) into Egs.(A8) and(A9), we obtained the expressions

2G
a?| (1-9)
) el 1, (A10)
2
)3
(Ep) o . {4(1-0)*+iw(1+20)} -
B 66(1-g) {(7g— 5—392)(1—9)—iw(8—3g—29_1} (
|
and Gi) is thus determined by EGA7). - 1
At this stage of the calculation, we can expect that all the (9{‘14) = ) . (A14)
(2?)’5 contain, as factors, various powers@f ), as well 1 gl 1- G(1-G)
]

as powers of its absolute value, and their combinations.

Therefore, in order to find out if a limit cycle exists, it is Tpe eigensolutiom? is orthogonal to the eigenvector ¥,

important to examine ther; dependence of(7;), and  for the same eigenvalue, |e(9%1|exp@w7-0)Yo) 0, since
thereby determine if a well-defined finite limit exists for pr=—iw=1y, of L, Eq.(36). Thus, we are led to the

®(r,) ast—o. Moreover, before we can calcula@zx, we  relation

need to know ther; derivative of @ () in Eq. (35). This

information can be obtained by imposing the “solvability” <m2|\p(7-0 N=2(1-G)+ ——
condition. This condition makes use of the property of the (1-9’
solution to the adjoint otCo, denoted asC]. Let LiMR

=0, then (R, Co(p2)> (LR, (p2)> 0, where the scalar where onlyY3 in W (7o) of Eq. (A3) contributes by virtue of
the biorthogonality, i.e., the complex conjugate part of
V(1) also does not contnbute in EGA15). Thus, withtR
chosen to be equal 8?2, the scalar product in EgA12) can

be evaluated, and defines the differential equatior®or,).

(A15)

product is defmed by (v, /u)—llmT_,w vt udr.
Therefore, from Eq(35) we must have

We obtain
Po 8(Po.90.P1,01)
- Azcl( ) ( 3 )> 0. J (R,(M)W(7p))
do/  \N3(Po.do,P1,d1) 20 LM 7)) o
’ (A12) Jry O(m1)= (R, W (1)) (1)
+ Agl R Ng(poﬂo,pl,fh)
We refer the readers to Morse and Feshiddk, showing <m’—q,(70)> '\ N(po,o.p1,a0) | |-

that the eigensolutions of, and Eg from biorthogonal set
. ¥ _ 0 (A16)

of eigenvectors, wherg& here is given by
Note that in Eq.(A16) nonzeror, integration comes only

from podz, P1do. 1lo. PoP1. Py, andpeds terms in

) ) . (A13) (Né’,(po,qo,pl,ql))

Ng(Po +0o.P1.01)

-1

T J 1
Ly= _&_m_g(l_g) 1 -1
[Eg. (32)], while the rest, including the complex conjugate
tctm=0 with Part do not contribute a— o by virtue of the appearance
0 of a § function of the frequency sum after thg integration.
Therefore, by taking into account only the contributing
=exp(—|w7-0)(m}]) andR2=R"", respectively, where terms, we can write EQAL6) in a simpler form
1

For example, the eigensolutions
elgenvalues,ul io and u,=—iw are given by 9!
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S O(r)=n® T (1) ®(r)2 AL7
e (r1)=mn (Tl)+A_2 (m0)]0(7)]%, (A17)
where
(R, (M) W(7p))
= - = 7 A18
(R (ro)) (A19
and
(1-9)7? < (Q3<po,qo,pl,ql>+2<1—g>pop1—<1—g>2p8)>
2
76(r)|6(r) (MR, W(7)) \ ™" —Q3(Po.Y0.P1.9d1) ’ (A19)
|
with Carrying out the operation in E§A23), using Eqs(A24)—
(A26), we obtained
Q3(Po,00,P1,d1) =Pods+ P10+ (Gd100)/2
+(1=G)Poa/4. (A20) (1-0)° 2
We thus obtain 777" 716G {4+19G-8G7%
=—G(1-0) *+in(1-g) 3 A21 fw(1-
7700 e g (A2 U0 o ag i 17g2-31g+4 8. (A27)
and 487G

1 (T
a®(71)|0(7)|?= IimTJ exp—iwry)dro(1—G)
0

T

[(1-6)2+iw]Q; }
+2(1-G)?pop1— (1-9)°p3
-1

x| 2(1-G)+ (A22)

2iw )
(1-9)
Upon performing thery integration in Eq.(A22), we obtain

a0®(71)|0(7y)|?=

[[(1 g>2+|w]Q3+2<1 g) popl]
4 —(1-6)%

X[ 2(1-G)— (A23)

2iw )
(1-9)

where

Q3=A,Cq+A%B,+ACy+ALB,+ > (chq+A:;Bq)

a —Q)

—— (A |A P+ AL AY), (A24)

Po=3AplAs%  PoP1=A,Cp +A;B (A25)

A =0(r), A=0(r){—1+iw/[G(1-9]},
Co=2(1-0)|0(7)]?, Cq=—[(1-6)/2G]|0 (1),
Bp=[4(1-0)°+iw(1+2G)]0(7)%[6G(1- )],
B=[(15G/2—9/2—3G%)(1— @)
—iw(8-3G-2G"1]0(7)%[6G(1-3)].
(A26)

We note that for 0.80G<1.0, Ren<0.0 and Rer<0.

We solve for the absolute value and phaseddgfr;) by
writing this in polar form and equating the real and imagi-
nary parts on both sides of EqALl7). With O(r)
=|0(r,)|expig(r), we obtained exactly solvable equations:

—|®(71)|—Re17|®(71)|+ |®(7‘1 |3, (A28)

d Imo
gr Hro=Ima+ Z—0()%. (A29)

O"Tl

A solution of Eq.(A28) in which |®(0)| can be arbitrarily
independent of the limiting valug® («)|, the possible limit
cycle value, is of the form

|©(0)[|©()|exd Re 7]
[|©()[?+{[exp2 Renpry)—1]|©(0)[?} ]2’
(A30)

|®(7'1)|:

where|® ()| =[ — ReyA,/Reo]*?, which is a real value if
A,<0 since Rey<0 and Rer<0.

Indeed, in real time|®(»)|=Ilim;_.|0(7)| only if
Renr—® ast—oo; hence only ifA—A.<0 or A<A. in
Eq. (A30), i.e.,A,<0. This is consistent with the criteria for
unstable focus in the linear analysis. Otherwise,
lim_..|®(r)|=0 if A—A.>0 or A>A.. Thus a well-
defined limiting value ofl®(7,)| ast—« exists only for
A<A.. This is the limit cycle value of®(7,)|. Substituting
the now known functional form of®( ;)| into Eq. (A30),
we can also integrate EQ.(A29). The result is
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Im o [@(=)|? [In[[© ()| 2+ {exp 2 Repry — 1}{©(0)|*]
The limiting values of¢(7;) are
consttrlm 7, +0  if A>A,
lim ¢(r)= Im o 5 |®(0)|? , (A32)
tooe constt Im 57+ A—2|®(oc)| 71+In 0 (=) 2=[0(0)2 if A<A..

Taking the overall constant of integration equal to zero, we end up with the expression for the limit cycle v@l(e of
given as

- 1/2 - Im o
lim © (7)) = exp|+lm n(A—Ac)+A—2|®(oc)|2(A—AC)}T. (A33)

t—oo

Re‘l]Az
Reo

With the limit cycle value of®(r;) known, (gg) and Gi) at the limit cycle are completely determined. This yields the
solution in the form given by Eq16) to second-order accuracy.
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