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Resonances in a two-dimensional electron waveguide with a singé&function scatterer
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We study the conductance properties of a straight two-dimensional electron waveguide vetiken
scatterer modeled by a singfefunction potential with a finite number of modes. Even such a simple system
exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both
by using a direct solution of the Scliimger equation and by studying the Green'’s function of the system.
Using the Green'’s function we calculate the survival probability as well as the power absorption, and show the
influence of the quasibound states on these two quantities.

I. INTRODUCTION ©
PeOGY)= 2, CaX)Xn(Y), (4)

Two-dimensional electron systems have been studied ex- n=1
tensively over the past few years, both because it becamgherey,(y) = \2/D sin(my/D). Inserting this series into the
feasible to construct such systems for example at &cnrglinger equation and employing orthogonality of the

GaAs/Ga_,Al,As interface at low temperatures and becausgransversal modes, we obtain a set of coupled equations,
the conductance was shown to be directly related to the

transmission properties of the system. This relation is known 92
as Landauer’s formulg;® ?Cm(x) +KACm(X) = 2 MpCa(X) 8(), ©)
X n
r— e_2_|_ (1) where M,,=(4my/D#%?)sin(mmy,/D)sin(nmy,/D) denote
h the coupling constants ahg=\/(2m/%?)E— (n*7?/D?) the

o wave vector (Ink,>0). Away from the scatterex+ 0, the
wherel” denotes the conductance ahthe full transmission \yave function must have the free-electron form

function (spin degrees of freedom are neglegtdgiquation

(1) results in a quantized conductance for straight channels. A ek +B e kX x<0
If one adds a single attractiv&function scatterer to such a Cn(X)=
straight waveguide, the combined effect of the scatterer itself

and the backscattering off the walls leads to interesting pheAs ¢ must be continuous at=0 and its derivative must
nomena. This model was first suggested by Dettal..! and  have a finite jump there, the same conditions must hold for
later discussed by Bagwell and Lakend Wanget al® In  the expansion coefficients,(x). Thus using these two con-
the following we will take a closer look at the resonanceditions on Eq.(5) with the ansatz in Eq(6) yields

phenomena this system produces.

(6)

Che*+D e kX x>0.

A,+B,=C,+D,, (7)
Il. DIRECT SOLUTION OF THE SCHRO DINGER
EQUATION ikn(Cn= D)= iKn(Ay=Bp)= 2 Myn(Ay+Bp). (8)
m

Let us first obtain a solution of the Scliinger equation _ _
for an electron in a two-dimensional waveguide with alf # is an evanescent mode, we can kgtix, and must

s-function scatterer. The Hamiltonian is given by requireA,=0 andD,=0 to have a normalizable wave func-
tion. The transmission coefficient for propagating modes is
p? then defined asTm.n=(kn/km)(|Cn|2/|Am|2), and the total
H= >m +V(X,y)+V(y). (2 transmission function as
V. represents a confinement potential restricting the move- T(E)= 2 Trons 9)

ment of the electron to the range<g<D.’ The attractive mn
scattering potential is given by (prop)
where the sum extends over all propagating modes. The con-
V(X,y)=vy8(X)8(y—yo) (y<0). (3)  ductance is finally calculated using Ed). The set of equa-
tions (7) and(8) can only be solved numerically for a finite
We can now expand any stationary solutigg(x,y) of the  number of modes. We use the parame2rs300 A for the
Schradinger equationH e(x,y)=Eye(X,y), in a Fourier  width of the channel ang,= D for the transversal posi-
series with x-dependent expansion coefficients using thetion of the scatterer, the mass=0.067n, as the effective

complete set of transversal modes, mass of an electron in GaAs, and a scatterer strength of
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FIG. 1. Total conductance for a wave guide withSdunction ()
scatterer of strength= — 7 feV cn?. The conductance goes to zero
just before the second subband opens.

=—7feVcn?. With these parameters the first four energy
subbands(transversal modesopen up atE;=6.24 meV,
E,=24.94 meV,E5;=56.12 meV, and,=99.78 meV. Nu-
merical results of Eq(1) for a total number of modes;

=6 andn,=100 are shown in Fig. 1. It shows the expected
steplike behavior at every energy subband edge. Further
more, just before a new subband opens up, it shows an in
teresting dip. The waveguide blocks transmission in the
lower mode just before a new higher mode opens up. It be-
comes completely opaque just before the second mode oper..
up. The drlop in the conductance to ,lm,h level just befor'e FIG. 2. Transmission poles for=—7 feV cn?. The poles just

the next higher mode+1 opens up is in fact a cumulative pejoy the seconda) and third (b) subband edges are shown to-
effect of all transmitting modes 1 through as can be seen gether with the corresponding zeros which appear as dips in these
from the individual transmission coefficiertsThese dips logarithmic plots. The zero ifb) is off the real axis as the trans-

correspond to a resonance structure of the system. They cafission decreases to 1 instead of 0 at this resonéfc€ig. 1).
be attributed to quasibound states of the system with a finite
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lifetime, represented by a wave function of the f8rm Green’s function calculation is less computer intensive, and
i ELtlh thus allows the calculation of both the survival probability
P(X 1) = p(x)e=RTe= (100 and the power absorption of the waveguidee Secs. IV and

. . V). We first obtain the solution of the Green'’s function equa-
whereEg andE, denote the real and imaginary parts reSPeCy . for the free wavequide withi = (p2/2m) + V(y) 12
tively. These states are characterized by having a scattered 9 0=(P ol¥):

wave even without an incident wave, i.e.T1,=0. We thus ORIA '
H H H H G (vaax !y vE)
look for corresponding poles of the transmission function
near each of these resonances. Figui@s @nd 2b) show c 9 nar no \2m e=iknlx—x'|
the poles corresponding to the first two dips of Fig. 1, con- = —sin —vy|sin =—Vy' | — —F%—.
&= D D D’ |x2 2k,

firming our assertion. The poles are always located in the
analytically continued second sheet of the square-root func- (11)
tion (Imk,<0). For the plots in Fig. 2 the square-root func-

tion was chosen to have its branch cut on the negative imagkn is given as in Sec. Il. The retarded solutio X is de-
nary axis which is visible as a discontinuity in the plétss ~ hoted byG°F, and the advanced solution-) by G®. For
thus the square-root function with values on the first, “physi-the special potentia¥(x,y) the integral equation for the full
cal” sheet in the first through third quadrant of the complexGreen’s function can be solved to yietd*

energy plane, and the square-root function with values on the RIA

second sheet in the fourth quadrant that is used in Big. 2 G~ (X.y.x".y",E)

— ~OR/A r oyt
Il. GREEN'S-FUNCTION APPROACH =GT(xyXLY"E)

The resonances observed in Sec. Il can be determined N GORA(X,y,0¥0,E)GOMA(0y0.x",y" E)
from the Green'’s function of the system as V\}éIWe thus 1/y— G *A(0y,,0¥0,E) '
try to find the exact Green’s function of the Hamiltonidn
This on the one hand allows for a direct and exact calculatiohe transmission is solely determined by the retarded
of the quasi-bound-state energies as poles of the GreenGreen’s functiort. We can thus read off the condition for the
function (on the second sheetOn the other hand, the poles to be

(12
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TABLE |. Poles of G for a scatterer strength ofy= Kunze and LenR?® They thus still serve their purpose as a
—7 fevent and a total number of modeg=6 andn,=100. useful model if thes-function scatterer with a finite number
of modes is interpreted as a#like scatterer with finite width
Pole E (meV) (n=6) E (meV) (n=100) D/n, in they direction instead of a trué-function scatterer.
0 4676 8656 Before proceeding let us review the resonances in the
1 24.861— 0,05 24.888-0 615 context of the last two sections. They are formed by all
i . modes of the system collectively. Both propagating and eva-
2 55.804—0.144 55.117— 1.96i )
. . nescent mode&@nd therefore interchannel coupljrere nec-
3 99.205-0.2612 98.073- 2.561L .
essary. The evanescent modes are needed to build up a
bound or quasibound state, whereas the propagating modes
5 probe that state and therefore display the structure of the
E_E 4m si ”Wy 1 o (13 ~ resonance. Keeping only two modes= 1 which is propa-
v ‘& D#2 D 7% 2ik, gating andn=2 which is extended and evanescent just be-

low the threshold of then=2 propagating mode, is neces-
It can be explicitly shown from Eq(13) that the poles are sary to create the pole and hence the resonance. This can be
always located on the second sheet, and hence the branch sgen clearly in the inset of Fig. 3, where we show the con-
has to be chosen as described in Sec. Il. Evaluating®E). ductance with only the@=1 propagating mode and the con-
again numerically fom;=6 andn,=100 modes gives the ductance when both tire=1 and 2 modes are present. There
pole locations in Table I. Apart from the quasibound statesis no resonance when only time=1 mode is present. Thus
the attractives-function scatterer also exhibits one single excluding the evanescent modes leads to unphysical kinks in
bound state. The pole locations agree exactly with the resultéie conductance near the threshold. The main contribution to
from Sec. I, thus confirming the interpretation of the reso-any given resonance stems from the evanescent mode that is
nance phenomena to quasibound states. For the discussahout to become propagating, because it has an infinite decay
S-function impurity, the poles depend sensitively on therange at the band edge. The dip as well as the position of the
number of modes included in the computation. The typicalpole are only slightly modified if more than this evanescent
behavior of the pole location vs number of modes is showrmode are included, but neither the dip nor the pole exist
in Fig. 3 for the pole just below the second subband edgewithout evanescent modes. The remaining evanescent modes
The plot demonstrates that the location of the poles, and thusnly alter the width and position of the resonances and hence
the conductance properties of the discussed system, are rgiay a minor role. It is interesting to note that when more
converging with an increasing number of modes. It can alsdéhan one scatterer is present, evanescent modes play an even
be seen that they are systematically shifted to greater imaginore important role because they can localize coherently
nary values, displayed in the broadening of the resonance.over more than one scatterer. The case of many scatterers has

The sum in Eq(13) is in fact logarithmically diverging as been discussed for waveguides in Ref. 9 and for closed quan-

each term in the sum is positive, and is approximately protum systems in Ref. 10.
portional to 1h for largen. The obtained results thus always
have to be discussed for a specific number of modes. Never-
theless, the numerical results are in qualitative agreement IV. SURVIVAL PROBABILITY
with the behavior of anslike scatterer as discussed by  yp to now the Green’s function only allowed for a more

compact formulation. We now demonstrate that it will also

0 T ' T e T give insight into other quantities like the survival probability.
N I » " s n=2 ] The survival probability is defined as
ozl 151 H P(t) =[{y()] )%, (14

7 where| ;) is the initial state at timé=0, and|¢(t)) is the
1 propagated state, which can be computed from

E, [meV]

B i *® w+tie )
. Y(x,t)= ”m[ﬁf dx'f dze izvh

e—0 —o+tie

gl X GROX 2) 1 (X')

24.8 24.85 24.9
Eg [meV]

: (15

FIG. 3. Poles ofG in the complex energy plane depending on Where the Green’s function enters explicitly into the calcula-

the number of total modes,. The pole forn,=100 is located at tion andx=(x,y). The integration runs in the complex plane
E=24.888- 0.616meV, and corresponds to the one shown in Fig.@s shown in Fig. 4solid line). We can deform the contour
2(a). (Inset: Conductance fon,=2 (solid) and n,=1 (dashed ~ and perform the integration as indicated by the dotted lines.

propagating modes. Fd>E,=4E; both are identical. Note that In this case we pick up poles as well as integrations along
G=I) our choice of branch cuts. For the ballistic case, however, the
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FIG. 4. Integration path for the survival probability before
(solid) and after deforming the contoydotted in the complexz /\/\/\
plane. o0 o5 f

i ) t[1o™
Green'’s function does not have any poles and only the inte- o

grations along the cuts, performed on different sheets, re- FIG. 5. The survival probability(t) as a function of time. The
main. We now demonstrate this case explicitly, for which weinset illustrates the Zeno effect for short times.

write the initial state in the following form y;(x)

=X(x)Y(y). Both X(x) andY(y) are localized and do not probe the complex spectrum. In addition we obtain contribu-
contain an expliciz dependence. For the integration alongtions from the cuts, which do not cancel out, but are not

the nth cut, we define dominating either.
m _glknrlx=x]| V. POWER ABSORPTION
KOROGX ) =2 — X (V) xnr(y') f dze #h——
n Cn iKp/ Another quantity of interest is the power absorptid?)

(16 of a quantum wire, which can be calculated from micro-
scopic theory. It is related to the ac conductahde) via
(P)y=EZ L?T'(w), and hence allows us to make a straight
connection between quasi-bound states and dips in the con-

Although the integration runs on two different sheets, it is
only relevant for thenth square root, i.e., fdt,. Hence only
one term contributes in the sum and we obtain

ductance.
1 o An electric ac figld of amplitudEo is applied to a region
KOR(x,x' t) = — N elmx—x")?/2nt of lengthL, which is symmetric around the scatterer. It can
" el N ft be shown’ that in linear response the power absorption of
EUh % , the ballistic wire behaves for small’s like
Xem T xn (V) xn(y')- 17
Putting everything together we find for the survival probabil- in mol
ity of the ballistic wire: L2e’EZ ¢ 2k #
(P)=—p— 2 : (19
n=1 Mol
P()=| [ 2DTS g f dy 2 (Zk’ h)
()= a@ar N ht 2 © yY(y)xn(y) L

s with k', = \/kZF— (n7/D)?. The quasibound states have a pro-

. (18  found influence on the power spectrum. Starting from the
microscopic expressioR(t)= [drE(r,t)-(j(r,t)), one can
show'® that the quasibound states give Lorentzian-like con-

In Fig. 5 we plot the survival probability for an initial tipytions to the power absorption in these systems. How-
state which is Gaussian-like localized in telirection, and  ever, it is not clear whether these are positive or negative.

has a mode expansion for the transverse part; i.e., it COUpl&ge calculate the power absorption from
equally strongly to all channels. We distinguish between

Xf dxf dxreim(x—x’)zlzﬁtx*(X)X(X,)

short-, medium-, and long-time behaviors. For the short-time —har w
behavior we observe the Zeno efféti,e., an initially non- (P)= Tf dff dr’E(x)E(x’)f dE;
decaying behavior. In the medium-time regime we observe o
oscillations of all contributing channels in the decaying prob- f(~E1)— f(~E1+ﬁw) ~ B
ability. The long-time behavior is dominated by art be- X = (BEq)Iu(n)|E1+ A w)
havior. “he
For the case of @-function impurity in the wire, we pick X(Ey+ o3 (r)|Ey). (20)

up poles which contain terms like'=ees# and therefore
justify Eq. (10). Experimentally they can be detected by The microscopic current elements are evaluated in a scatter-
means of a Fourier transform, and thus provide a tool tdng state basis. Our numerical results are shown in Fig. 6.
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1= the fact that we excite into a quasibound state from a con-
tinuum state, which is why the dip shifts as a function of the
Fermi energy. Na and Reichl, however, did excite from one
quasibound state into another so that the signs cancel each
other. In our system these resonances are too small to be
observed, which can be attributed to the fact that the pertur-
bation causing the quasibound state is much sméiles
function with a finite number of modgshan the large cavity

in their systent? On the other hand, we can now make a
clear and unambiguous connection between the dips in the dc
conductance and the quasi-bound states.

<P> g5 |

VI. CONCLUSION

We have considered a simple model for an electron wave-
guide. The conductance was calculated via Landauer’s for-
mula and shown to exhibit resonance phenomena. These
resonances were attributed to quasibound states of the sys-

FIG. 6. Power absorption as a function ef in units of tem by both I09king qt poles of the transmission coefficients
2h/e2E(2)L2 for the ballistic (dashed ling and the impurity(solid and th,e Green's fun(,:tlon' We have shown thatdHenction
line wireg. The Fermi energy is close to the quasibound-state enpo_tentlal together with a finite number of modes models an
ergy. s-like scatt_erer. Furtherr_nore, we have d_emonstrate_(_j how
these quasibound states influence the survival probability and

The applied field is of length =100 nm, and the scattering the power absorption of the system.
states are normalized dn’=4000 nm. We clearly repro-
duce the analytical result for small, which holds surpris-
ingly well even for larger values. For the case af-&unction The authors wish to thank the Welch Foundation, Grant
impurity the spectrum is still dominated by the ballistic back-No. 1052, and the Engineering Research Program of the Of-
ground, which is not surprising, because the impurity isfice of Basic Energy Sciences at the Dept. of Energy, Con-
strongly localized. The influence of the quasibound statesract No. DE-FG03-94ER14405, for partial support of this
can also be seen; however, it is quite a bit smaller than fowork. Two of the authordD.B. and M.L) gratefully ac-

the system discussed by Na and ReiéHh contrast to their knowledge financial support from the German National
system, we see dips rather than peaks. This could be due Merit Scholarship Foundation during their stay in Austin.
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