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Resonances in a two-dimensional electron waveguide with a singled-function scatterer

Daniel Boese,* Markus Lischka,† and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 3 September 1999; revised manuscript received 1 November 1999!

We study the conductance properties of a straight two-dimensional electron waveguide with ans-like
scatterer modeled by a singled-function potential with a finite number of modes. Even such a simple system
exhibits interesting resonance phenomena. These resonances are explained in terms of quasibound states both
by using a direct solution of the Schro¨dinger equation and by studying the Green’s function of the system.
Using the Green’s function we calculate the survival probability as well as the power absorption, and show the
influence of the quasibound states on these two quantities.
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I. INTRODUCTION

Two-dimensional electron systems have been studied
tensively over the past few years, both because it bec
feasible to construct such systems for example a
GaAs/Ga12xAl xAs interface at low temperatures and becau
the conductance was shown to be directly related to
transmission properties of the system. This relation is kno
as Landauer’s formula,1–3

G5
e2

h
T, ~1!

whereG denotes the conductance andT the full transmission
function ~spin degrees of freedom are neglected!. Equation
~1! results in a quantized conductance for straight chann
If one adds a single attractived-function scatterer to such
straight waveguide, the combined effect of the scatterer it
and the backscattering off the walls leads to interesting p
nomena. This model was first suggested by Dattaet al.,4 and
later discussed by Bagwell and Lake,5 and Wanget al.6 In
the following we will take a closer look at the resonan
phenomena this system produces.

II. DIRECT SOLUTION OF THE SCHRO¨ DINGER
EQUATION

Let us first obtain a solution of the Schro¨dinger equation
for an electron in a two-dimensional waveguide with
d-function scatterer. The Hamiltonian is given by

H5
p2

2m
1V~x,y!1Vc~y!. ~2!

Vc represents a confinement potential restricting the mo
ment of the electron to the range 0,y,D.7 The attractive
scattering potential is given by

V~x,y!5gd~x!d~y2y0! ~g,0!. ~3!

We can now expand any stationary solutioncE(x,y) of the
Schrödinger equation,HcE(x,y)5EcE(x,y), in a Fourier
series with x-dependent expansion coefficients using
complete set of transversal modes,
PRB 610163-1829/2000/61~8!/5632~5!/$15.00
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cE~x,y!5 (
n51

`

cn~x!xn~y!, ~4!

wherexn(y)5A2/D sin(npy/D). Inserting this series into the
Schrödinger equation and employing orthogonality of th
transversal modes, we obtain a set of coupled equations

]2

]x2
cm~x!1km

2 cm~x!5(
n

Mmncn~x!d~x!, ~5!

where Mmn5(4mg/D\2)sin(mpy0 /D)sin(npy0 /D) denote
the coupling constants andkn5A(2m/\2)E2(n2p2/D2) the
wave vector (Imkn.0). Away from the scatterer,xÞ0, the
wave function must have the free-electron form

cn~x!5H Aneiknx1Bne2 iknx, x,0

Cneiknx1Dne2 iknx, x.0.
~6!

As c must be continuous atx50 and its derivative mus
have a finite jump there, the same conditions must hold
the expansion coefficientscn(x). Thus using these two con
ditions on Eq.~5! with the ansatz in Eq.~6! yields

An1Bn5Cn1Dn , ~7!

ikn~Cn2Dn!2 ikn~An2Bn!5(
m

Mnm~Am1Bm!. ~8!

If c is an evanescent mode, we can setkn5 ikn and must
requireAn50 andDn50 to have a normalizable wave func
tion. The transmission coefficient for propagating modes
then defined asTmn5(kn /km)(uCnu2/uAmu2), and the total
transmission function as

T~E!5 (
mn

(prop.)

Tmn , ~9!

where the sum extends over all propagating modes. The
ductance is finally calculated using Eq.~1!. The set of equa-
tions ~7! and ~8! can only be solved numerically for a finit
number of modes. We use the parametersD5300 Å for the
width of the channel andy05 5

12 D for the transversal posi
tion of the scatterer, the massm50.067me as the effective
mass of an electron in GaAs, and a scatterer strength og
5632 ©2000 The American Physical Society
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527 feV cm2. With these parameters the first four ener
subbands~transversal modes! open up atE156.24 meV,
E2524.94 meV,E3556.12 meV, andE4599.78 meV. Nu-
merical results of Eq.~1! for a total number of modesnt
56 andnt5100 are shown in Fig. 1. It shows the expect
steplike behavior at every energy subband edge. Furt
more, just before a new subband opens up, it shows an
teresting dip. The waveguide blocks transmission in
lower mode just before a new higher mode opens up. It
comes completely opaque just before the second mode o
up. The drop in the conductance to thenth level just before
the next higher moden11 opens up is in fact a cumulativ
effect of all transmitting modes 1 throughn, as can be seen
from the individual transmission coefficients.5 These dips
correspond to a resonance structure of the system. They
be attributed to quasibound states of the system with a fi
lifetime, represented by a wave function of the form8

c~x,t !5c~x!eERt/ i\eEI t/\, ~10!

whereER andEI denote the real and imaginary parts resp
tively. These states are characterized by having a scatt
wave even without an incident wave, i.e., 1/Tmn50. We thus
look for corresponding poles of the transmission funct
near each of these resonances. Figures 2~a! and 2~b! show
the poles corresponding to the first two dips of Fig. 1, co
firming our assertion. The poles are always located in
analytically continued second sheet of the square-root fu
tion (Imkn,0). For the plots in Fig. 2 the square-root fun
tion was chosen to have its branch cut on the negative im
nary axis which is visible as a discontinuity in the plots~it is
thus the square-root function with values on the first, ‘‘phy
cal’’ sheet in the first through third quadrant of the compl
energy plane, and the square-root function with values on
second sheet in the fourth quadrant that is used in Fig. 2!.

III. GREEN’S-FUNCTION APPROACH

The resonances observed in Sec. II can be determ
from the Green’s function of the system as well.11 We thus
try to find the exact Green’s function of the HamiltonianH.
This on the one hand allows for a direct and exact calcula
of the quasi-bound-state energies as poles of the Gre
function ~on the second sheet!. On the other hand, the

FIG. 1. Total conductance for a wave guide with ad-function
scatterer of strengthg527 feV cm2. The conductance goes to ze
just before the second subband opens.
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Green’s function calculation is less computer intensive, a
thus allows the calculation of both the survival probabil
and the power absorption of the waveguide~see Secs. IV and
V!. We first obtain the solution of the Green’s function equ
tion for the free waveguide withH05(p2/2m)1Vc(y):12

G0,R/A~x,y,x8,y8,E!

5 (
n51

`
2

D
sinS np

D
yD sinS np

D
y8D2m

\2

e6 iknux2x8u

2ikn
.

~11!

kn is given as in Sec. II. The retarded solution (1) is de-
noted byG0,R, and the advanced solution (2) by G0,A. For
the special potentialV(x,y) the integral equation for the ful
Green’s function can be solved to yield13,14

GR/A~x,y,x8,y8,E!

5G0,R/A~x,y,x8,y8,E!

1
G0,R/A~x,y,0,y0 ,E!G0,R/A~0,y0 ,x8,y8,E!

1/g2G0,R/A~0,y0,0,y0 ,E!
. ~12!

The transmission is solely determined by the retard
Green’s function.1 We can thus read off the condition for th
poles to be

FIG. 2. Transmission poles forg527 feV cm2. The poles just
below the second~a! and third ~b! subband edges are shown t
gether with the corresponding zeros which appear as dips in t
logarithmic plots. The zero in~b! is off the real axis as the trans
mission decreases to 1 instead of 0 at this resonance~cf. Fig. 1!.
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1

g
2(

n

4m

D\2 S sin
np

D
y0D 2 1

2ikn
50. ~13!

It can be explicitly shown from Eq.~13! that the poles are
always located on the second sheet, and hence the branc
has to be chosen as described in Sec. II. Evaluating Eq.~13!
again numerically fornt56 and nt5100 modes gives the
pole locations in Table I. Apart from the quasibound stat
the attractived-function scatterer also exhibits one sing
bound state. The pole locations agree exactly with the res
from Sec. II, thus confirming the interpretation of the res
nance phenomena to quasibound states. For the discu
d-function impurity, the poles depend sensitively on t
number of modes included in the computation. The typi
behavior of the pole location vs number of modes is sho
in Fig. 3 for the pole just below the second subband ed
The plot demonstrates that the location of the poles, and
the conductance properties of the discussed system, ar
converging with an increasing number of modes. It can a
be seen that they are systematically shifted to greater im
nary values, displayed in the broadening of the resonanc

The sum in Eq.~13! is in fact logarithmically diverging as
each term in the sum is positive, and is approximately p
portional to 1/n for largen. The obtained results thus alway
have to be discussed for a specific number of modes. Ne
theless, the numerical results are in qualitative agreem
with the behavior of ans-like scatterer as discussed b

TABLE I. Poles of G for a scatterer strength ofg5
27 feV cm2 and a total number of modesnt56 andnt5100.

Pole E ~meV! (nt56) E ~meV! (nt5100)

0 4.676 28.656
1 24.861– 0.051i 24.888–0.615i
2 55.804–0.144i 55.117– 1.961i
3 99.205–0.262i 98.073– 2.561i

FIG. 3. Poles ofG in the complex energy plane depending
the number of total modesnt . The pole fornt5100 is located at
E524.888– 0.615i meV, and corresponds to the one shown in F
2~a!. ~Inset: Conductance fornt52 ~solid! and nt51 ~dashed!
propagating modes. ForE.E254E1 both are identical. Note tha
G[G.!
cut
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Kunze and Lenk.15 They thus still serve their purpose as
useful model if thed-function scatterer with a finite numbe
of modes is interpreted as ans-like scatterer with finite width
D/nt in they direction instead of a trued-function scatterer.

Before proceeding let us review the resonances in
context of the last two sections. They are formed by
modes of the system collectively. Both propagating and e
nescent modes~and therefore interchannel coupling! are nec-
essary. The evanescent modes are needed to build
bound or quasibound state, whereas the propagating m
probe that state and therefore display the structure of
resonance. Keeping only two modes,n51 which is propa-
gating andn52 which is extended and evanescent just b
low the threshold of then52 propagating mode, is neces
sary to create the pole and hence the resonance. This ca
seen clearly in the inset of Fig. 3, where we show the c
ductance with only then51 propagating mode and the con
ductance when both then51 and 2 modes are present. The
is no resonance when only then51 mode is present. Thu
excluding the evanescent modes leads to unphysical kink
the conductance near the threshold. The main contributio
any given resonance stems from the evanescent mode th
about to become propagating, because it has an infinite d
range at the band edge. The dip as well as the position of
pole are only slightly modified if more than this evanesce
mode are included, but neither the dip nor the pole ex
without evanescent modes. The remaining evanescent m
only alter the width and position of the resonances and he
play a minor role. It is interesting to note that when mo
than one scatterer is present, evanescent modes play an
more important role because they can localize cohere
over more than one scatterer. The case of many scatterer
been discussed for waveguides in Ref. 9 and for closed qu
tum systems in Ref. 10.

IV. SURVIVAL PROBABILITY

Up to now the Green’s function only allowed for a mo
compact formulation. We now demonstrate that it will al
give insight into other quantities like the survival probabilit
The survival probability is defined as

P~ t !5u^c~ t !uc i&u2, ~14!

whereuc i& is the initial state at timet50, anduc(t)& is the
propagated state, which can be computed from

c~x,t !5 lim
e→0

F i

2pE2`

`

dx8E
2`1 i e

`1 i e

dze2 izt/\

3GR~x,x8,z!c i~x8!G , ~15!

where the Green’s function enters explicitly into the calcu
tion andx5(x,y). The integration runs in the complex plan
as shown in Fig. 4~solid line!. We can deform the contou
and perform the integration as indicated by the dotted lin
In this case we pick up poles as well as integrations alo
our choice of branch cuts. For the ballistic case, however,

.
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Green’s function does not have any poles and only the i
grations along the cuts, performed on different sheets,
main. We now demonstrate this case explicitly, for which
write the initial state in the following form c i(x)
5X(x)Y(y). Both X(x) and Y(y) are localized and do no
contain an explicitz dependence. For the integration alo
the nth cut, we define

Kn
0,R~x,x8,t !5(

n8

m

\2
xn8

* ~y!xn8~y8!E
Cn

dze2 izt/\
eikn8ux2x8u

ikn8

.

~16!

Although the integration runs on two different sheets, it
only relevant for thenth square root, i.e., forkn . Hence only
one term contributes in the sum and we obtain

Kn
0,R~x,x8,t !5

1

iei (3/4)p
A2mp

\t
eim(x2x8)2/2\t

3eiEnt/\xn* ~y!xn~y8!. ~17!

Putting everything together we find for the survival probab
ity of the ballistic wire:

P~ t !5U 1

iei (3/4)p
A2mp

\t (
n

eiEnt/\U E dyY~y!xn~y!U2

3E dxE dx8eim(x2x8)2/2\tX* ~x!X~x8!U2

. ~18!

In Fig. 5 we plot the survival probability for an initia
state which is Gaussian-like localized in thex direction, and
has a mode expansion for the transverse part; i.e., it cou
equally strongly to all channels. We distinguish betwe
short-, medium-, and long-time behaviors. For the short-ti
behavior we observe the Zeno effect,16 i.e., an initially non-
decaying behavior. In the medium-time regime we obse
oscillations of all contributing channels in the decaying pro
ability. The long-time behavior is dominated by an 1/t be-
havior.

For the case of ad-function impurity in the wire, we pick
up poles which contain terms likeeiEQBSt/\ and therefore
justify Eq. ~10!. Experimentally they can be detected b
means of a Fourier transform, and thus provide a too

FIG. 4. Integration path for the survival probability befo
~solid! and after deforming the contour~dotted! in the complexz
plane.
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probe the complex spectrum. In addition we obtain contrib
tions from the cuts, which do not cancel out, but are n
dominating either.

V. POWER ABSORPTION

Another quantity of interest is the power absorption^P&
of a quantum wire, which can be calculated from micr
scopic theory. It is related to the ac conductanceG(v) via
^P&5Erms

2 L2G(v), and hence allows us to make a straig
connection between quasi-bound states and dips in the
ductance.

An electric ac field of amplitudeE0 is applied to a region
of lengthL, which is symmetric around the scatterer. It c
be shown17 that in linear response the power absorption
the ballistic wire behaves for smallv ’s like

^P&5
L2e2E0

2

2h (
n51

nC S sinS mvL

2k18 \
D

S mvL

2k18 \
D D 2

, ~19!

with k18 5AkF
22(np/D)2. The quasibound states have a pr

found influence on the power spectrum. Starting from
microscopic expressionP(t)5*drE (r ,t)•^ j (r ,t)&, one can
show18 that the quasibound states give Lorentzian-like co
tributions to the power absorption in these systems. Ho
ever, it is not clear whether these are positive or negat
We calculate the power absorption from

^P&5
2\p

2 E drE dr 8E~x!E~x8!E
2`

`

dẼ1

3
f ~Ẽ1!2 f ~Ẽ11\v!

2\v
^Ẽ1uJx~r !uẼ11\v&

3^Ẽ11\vuJx~r 8!uẼ1&. ~20!

The microscopic current elements are evaluated in a sca
ing state basis. Our numerical results are shown in Fig

FIG. 5. The survival probabilityP(t) as a function of time. The
inset illustrates the Zeno effect for short times.
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The applied field is of lengthL5100 nm, and the scatterin
states are normalized onL854000 nm. We clearly repro
duce the analytical result for smallv, which holds surpris-
ingly well even for larger values. For the case of ad-function
impurity the spectrum is still dominated by the ballistic bac
ground, which is not surprising, because the impurity
strongly localized. The influence of the quasibound sta
can also be seen; however, it is quite a bit smaller than
the system discussed by Na and Reichl.18 In contrast to their
system, we see dips rather than peaks. This could be du

FIG. 6. Power absorption as a function ofv in units of
2h/e2E0

2L2 for the ballistic ~dashed line! and the impurity~solid
line wires!. The Fermi energy is close to the quasibound-state
ergy.
s
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-
s
s
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the fact that we excite into a quasibound state from a c
tinuum state, which is why the dip shifts as a function of t
Fermi energy. Na and Reichl, however, did excite from o
quasibound state into another so that the signs cancel
other. In our system these resonances are too small to
observed, which can be attributed to the fact that the per
bation causing the quasibound state is much smaller~a d
function with a finite number of modes! than the large cavity
in their system.19 On the other hand, we can now make
clear and unambiguous connection between the dips in th
conductance and the quasi-bound states.

VI. CONCLUSION

We have considered a simple model for an electron wa
guide. The conductance was calculated via Landauer’s
mula and shown to exhibit resonance phenomena. Th
resonances were attributed to quasibound states of the
tem by both looking at poles of the transmission coefficie
and the Green’s function. We have shown that thed-function
potential together with a finite number of modes models
s-like scatterer. Furthermore, we have demonstrated
these quasibound states influence the survival probability
the power absorption of the system.
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