PHYSICAL REVIEW B VOLUME 61, NUMBER 8 15 FEBRUARY 2000-II

Thermoelastic damping in micro- and nanomechanical systems
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The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechani-
cal resonators is evaluated in light of recent efforts to design Qighicrometer- and nanometer-scale elec-
tromechanical systems. The equations of linear thermoelasticity are used to give a simple derivation for
thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approxi-
mation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.

[. INTRODUCTION coupling is independent of geometry. It depends only on the
thermodynamic properties of the material as a function of

Microelectromechanical systerfMEMS) and more re- temperature.
cently nanoelectromechanical systefNEMS) are being de- (2) In the case of flexural vibrations of thin beams the
veloped aggressively for a variety of applications as well agosition of peak damping as a function of frequency depends
for accessing new regimes of basic experimental researcRN the dimensions of the beam. Therefore, even though the
Among the different applications envisioned for MEMS and normal frequencies of the resonators increase as they become
NEMS are ultrafast and high-precision actuators, sensorgmaller so does the frequency at which peak damping occurs.
(such as accelerometers, bolometers, magnetometers, andThese effects conspire together to maintain the relevance
calorimeters, and narrowband high-frequency mechanicalof thermoelastic damping all the way down to the nanometer
filters, all with compact and low-power designs that can bescale. In the next section we describe the process of ther-
fully integrated with modern semiconductor electronics. Ex-moelastic damping, review some of the relevant literature,
perimentally, it is hoped that NEMS will open the door to the @nd present the outline of this paper.
investigation of new regimes of phonon-mediated processes
as well as the quantum behavior of mesoscopic mechanical 1l. THE PROCESS OF THERMOELASTIC DAMPING
systems:? , _

For all these pursuits it is desired to design and construct Acqu_stlc modes—su_ch asa _sound wave traveling throu_gh
systems with very little loss of energy or very high quality 20 Infinitely large elastic material or a normal mode of vi-
factors Q. Unfortunately, it has been consistently observedt?ratlon of an_elasuc resonator of_f|n|te geomet_ry—vx_nll expe-
that the quality factors of resonators decrease with sizkience damping due to their nonlinear interaction with a sur-

significantly—even when made from pure single-crystal ma_rounding bath of thermally-excited elastic modes, or

terials. It is therefore of great importance to understand th&h0onons. If the mean free path of these thermal phonons is
dominating energy dissipation mechanisms in mechanica{pu(?h_Sma”erthaf1 th_e wavelength of the acoust!c mode, th_en
resonators when one approaches submicron scales. With fficient thermalization occurs on the scale of interest. It is

these mechanisms one would like to identify those that ard€" Possible to define a temperature locally, even when the

fundamental and always impose an upper limit on the quallitf‘yStern is not. in a state of thermal equi!ibr?um: Equivalently,
f the relaxation rate of the phonon distribution to a local

factor and those that might be eliminated through improve - A
g g P dBose-Elnstem distribution is much faster than the frequency

design and fabrication. f1h . de. th h l-defined
In this work we examine the importance of the process o2t the acoustic mode, then one has a well-defined tempera-
re field, and there is no need to treat the thermal phonons

thermoelastic damping as a dissipation mechanism in MEMS" < "=" T . ; ) .

and NEMS. Although there has been some discussion of dif?S individual excitations. ]n thls regime, in Wh'Ch t.hermal

ferent dissipation mechanisms in MEMS, very few au- phonons are said to be "‘dlffuswe,” the complicated interac-

thors have addressed the question of thermoelastic dampin&%on be_tween _the acoustic mode and the thermal phonon b_ath

Roszhart observed thermoelastic damping in single-crystall! @0 isotropic solid is captured by a single macroscopic

silicon microresonators at room temperature; and YasumurBrameter—the material’s thermal-expansion coefficient

et al® recently reported thermoelastic damping in microreso-

nators an order of magnitude smaller than Roszhart’s in sili- 1L

con nitride, also at room temperature. The question arises LT @

whether one should be surprised by such observations or

whether one should expect to see thermoelastic damping &thich couples changes of length with changes of tempera-

these length scales. We establish in this paper that as long &gre. Note that here and throughout the paper we make use of

the system remains in the regime of “diffusive thermal the linear coefficient of thermal expansion whose value is

phonons” (to be discussed belgvthe latter is the case for one third of the volumetric coefficient of thermal expansion.

two basic reasons: When an elastic solid is set in motion, it is taken out of
(1) The strength of the damping caused by thermoelastiequilibrium, having an excess of kinetic and potential en-
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ergy. In an isothermal and perfectly lineslasticsolid such ~ and LifshitZ! have provided an exact expression for the at-
a nonequilibrium state can exist forever. Irthermoelastic  tenuation coefficient of such vibrations without, however,
solid the coupling of the strain field to a temperature fieldgiving a rigorous derivation and solution of the equations.
provides an energy dissipation mechanism that allows th&hiel¥? investigated the thermoelastic beam equations in a
system to relax back to equilibrium. Relaxation of the ther-more general context while performing a dynamic instability
moelastic solid is achieved through the irreversible flow ofanalysis of vertically standing cantilevers. He solved the
heat driven by local temperature gradients that through th€duations, giving a plot of thermoelastic dampi@g* in
coupling accompany the strain field. This process of energ§h'” rectgngular_bleams, but fell short of providing an analytic
dissipation, calledhermoelastic dampings a fundamental €XPression foQ ~=. _ o

one. As long ass—which acts as a coupling constant—is 10 rémedy this state of affairs, we give, in Sec. IV, a

nonzero, thermoelastic damping introduces an upper limit tg/MPIe derivation of the approximate thermoelastic equations
the quality factor of even the most perfectly designed and®’ & thin beam under flexure and then solve these equations

constructed resonator in Sec. V to arrive at an exact expressiffag. (29)] for
To our knowledge, the first to realize that thermoelasticthermoelasuc damping in thin rectangular beams. Although

relaxation may be a significant source of damping in me£EN€rs approximation is good for many situations, we sug-

chanical resonators was Zener, who in a series of pHiers gest that in the future the exact expression given here be used

the 1930's developed a general theory of thermoelastid’Stéad. In Sec. VI we discuss the experimental implication
damping. Zener treated the problem in the framework of hié)f our results showmg_t_he charz_;\cterlstlc d_amplng curves ex-
so-called “standard model” of the anelastic sdfidand pected forQaAs and s!l|con,wh|ch are typical materials used
showed that the damping behavior can be approximated ver the fabrication of micrometer- and nanometer-scale reso-
well by a single relaxation peak with a characteristic relax- ators. In Sec. \./” we say a feyv words about thermoela;tlc
ation time. This relaxation time corresponds to the thermaff@mPing of longitudinal waves in MEMS and NEMS, and in

diffusion time across the width of the beam, which is pro- >¢¢- VlIl we conclude by discussing the validity of the
portional tob? y, wherey is the solid’s thermal diffusivity ~'€OrY that we present here. In the Appendix we give a care-

[to be defined in Eq.13)]. We shall review Zener’s theory in ful anglys_is cqmparing the_ exact expres:'sion for thermpelastic
Sec. Il damping in thin beams with the approximate Lorentzian be-

It was only two decades later that other researchers beganﬁ"‘v'or’ predicted by Zener.
reexamining the question of thermoelastic damping by seek-
ing exact solutions to the coupled equations of linear ther- 1ll. ZENER'S STANDARD MODEL OF THE LINEAR
moelasticity in various geometries. The solutions for propa- ANELASTIC SOLID
gating plane waves in an infinite thermoelastic S&fid® , T
showed that the two transverse modes, which propagate Zener's standard model of anelastictys based on an

through the solid without causing any local volume changeseXtenSIOn of Hooke's law to the most general linear homo-

do not couple to the temperature field and hence suffer nfeneou; eq_uation involving stress straine, and their first
damping. The longitudinal mode, on the other hand, doe ime derivatives,

couple to the temperature field and an exact expression has

been obtained for its attenuation and dispersion. Solutions o+ 7.0=Mg(e+1,€). )

for thermoelastic Rayleigh wavesvo-dimensional surface

waves on a semi-infinite solidmmediately followed® but ~ The physical interpretation of the three parameters of the
progress on thermoelastic solids with finite geometries camenodel is straightforward. When the strain is kept constant,
much later due to the well-known difficulty of solving even the stress relaxes exponentially with a relaxation time

the equations of linear elasticity with finite boundary Similarly, 7, is the strain relaxation time when the stress is
conditions!’ Nevertheless, analytic solutions now exist, atkept constantMp is the value of the pertinent elastic modu-
least in terms of the dispersion relations, for thermoelastidus after all relaxation has occurreld.,=Mg(7,/7.) is the
waves in an infinite thin plat® and longitudinal waves in unrelaxed value of the elastic modulus.

infinite rods with circular cross sectioh3!2°Other geom- Under periodic dynamical conditions

etries, such as beams of rectangular cross sections, have been
too difficult to solve analytically. To treat such problems, i i
one generally needs to us),/e apgroximate theoriesl.D o(t)=0ee'"  and e(t)=eee", &)

MEMS and NEMS resonators generally contain element§ne stress and strain amplitudes are related by a frequency-
that vibrate in either torsional or flexural modes. Because anpendent complex elastic modulus. The dissipation, or “in-

the way one fabricates such devices, rectangular cross segsg) friction,” in the solidQ ! is defined as the fraction of

tions often turn out to be the most relevant. Pure torsionaénergy lost per radian of vibration. If it is small, the dissipa-

modes of rectangular beams involve no local volumejsn s equal to the ratio of the imaginary and real parts of the
changes, and therefore, just as for transverse waves in t mplex modulus, giving

bulk, they do not suffer any thermoelastic losses. For flexural

vibrations of thin rectangular beams, one may use Zelfer's

approximate expressiditq. (8)] for thermoelastic damping. 1 oT

This appears to be the general pracfi¢®©n the other hand, Q "=Am 1+ (w7)?’ (4)
one may try to seek exact solutions of the thermoelastic

equations for the case ofthin beam under flexure. Landau wherer= 7,7, and



5602 RON LIFSHITZ AND M. L. ROUKES PRB 61

M —M Nevertheless, we show below that for the simple geometry of
M:u (5)  a rectangular beam—uwhich is the most relevant for many
VMrMy current MEMS and NEMS designs—such an expansion in

transverse thermal eigenmodes is unnecessary, aeda

is a dimensionless quantity called the “relaxation strength” ] . . . .
g y 9 expression for thermoelastic damping can easily be obtained.

of the modulus.

Thus the dissipation exhibits a Lorentzian behavior as a
function of w7 with a maximum value ofA,,/2 whenwr IV. THERMOELASTIC EQUATIONS OF A THIN BEAM

= 1. Dissipation peaks of this form, generally called “Debye  \ye consider small flexural displacements of a thin elastic

peaks,” are quite ubiquitous as to be expected from theifye, of |length. and rectangular cross section of dimensions

prediction by such a naive model. They occur for many dif-y» ¢ ‘\we define thex axis along the axis of the beam and the
ferent relaxation mechanisms such as point-defect relaxatlop andz axes parallel to the surfaces of dimensitmand c

(“Snoek peaks), defect pair reorientatiof’Zener peaks’), respectively. In equilibrium, the beam is unstrained, un-

dislocation relaxation(“Bordoni peaks”), grain-boundary g essed, and at temperatdigeverywhere. Departure of the

relaxation, and of course th_ermal relgxat?arin many qf beam from equilibrium is described by a displacement field
these examples there is not just one single relaxation time u; (i=xy,2) and a temperature field=T,+ 0. The dis-
I 1) .

and therefore one sees muIti_pIe_ or broadened Debye peal_< lacement fieldu; and the relative temperature fiel] as
. Qne can understand _qual|tat|vely _vvhy there is a peak | ell as the strain and stress tensofisand o , are all func-
dissipation whenwr=1 in the following way: If the fre- s :
Lo ) - tions of position and time.
quency of vibrationw is much smaller than the effective We consider pure transverse moti¥(x) in they direc-

relagatlon rate H qf the solid, thgan the system remains es-yi,n and make the usual Euler-Bernoulli assumption that the
sentially in equilibrium and very little energy is dissipated. If y -y erse dimensions of the beamandc, are sufficiently
the ylbratlon frequency is much larger than the effective "®<small compared with the lengthof the beam and the radius
laxation ratew>1/7, the system has no time to relax and ¢ o,~atureR of the bending that any plane cross section,

again very little energy is dissipated. It is only when the a1y herpendicular to the axis of the beam, remains plane
vibration frequency is on the order of the system’s effective nd perpendicular to the neutral surface during bending. The

relaxation rate that appreciable dissipation occurs. The full 5 \+-o1 surface is the one running through the length of the

picture may be more complicated, however, because in SOMg, a1 that suffers no extension or contraction during its
casesr itself can depend om. bending.

In the case of a thermoelastic solid the relaxation strength \y/c take the surfaces of the beam to be stress free. which
(5) to be considered is that of Young's modulus implies that all but thes,, component of the stress tensor
vanish on the surface. Because the beam is thin, this approxi-

E.—E Ea?Ty mately holds in its interior as well. Hooke’s law for the ther-
ETTE T C, (6)  moelastic beam then takes a rather simple form:
whose value is known from basic thermodynamics. Hefge 1
is the unrelaxed, aadiabatic,value of Young’s modulus and Upo=— vt B (9a)
- - . . . XX E XX '
E is its relaxed, oisotherma] value.C,, is the heat capacity

per unit volume at constant pressure, or stress, but replacing

it by the heat capacitg, at constant volume, or strain, will o

introduce an error ilg, which is only on the order cmé. Uyy=U,,= — onx+ af, (9b)

SinceQ %, and therefore alsdg, are assumed small, such

an error is negligible. For similar considerations, no harm is

done by replacing/E £ in the denominator of EJ5) by E. Uyy=Uy,=U,,=0, (90
Zenel®!! calculated the thermal relaxation times associ- , , _ o

ated with different transverse thermal modes for a thin beany/NereE is Young’s modulusg is Poisson’s ratiog is the

under flexure. He showed that for rectangular beams aginear thermal-expansion coefficie(tt), and we have taken

proximately 98.6% of the relaxation occurs through the firstnto account the fact that strain arises both from mechanical

mode whose relaxation time is stress as well as thermal expansion. It is simple to s{zas,
for example, Landau and Lifshith that the longitudinal

strain componentl,,, a distancey away from the neutral

2
- b 7 surface, is equal tg/R. By replacing the curvature of the
2"y beam 1R with —3%Y/dx?, we may express the nonzero

components of the strain field in the beam as
where x is the thermal diffusivity of the solid, and is the P

width of the beam. Only a very small error is therefore made 5
by considering the vibrating thin beam as having a simple U ﬂ
relaxation(4) with a single relaxation time-, = Y g2

(109

. Ea®T, wTZ Y
1= (8) =u,,= +(1+0)ab 100
z Cp l+(w7'z)2' Uyy=Uzz= Uya—xz ( o)al. (10b
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Following the standard derivation procedure for isother-the presence of thermoelastic coupling, and the imaginary
mal beams with no thermoelastic coupfthdut with the  part |Im(w)| giving the attenuation of the vibration. The
modified thermoelastic straifil0) leads to an equation of amount of thermoelastic damping, expressed in terms of the

motion for the beam of the form inverse of the quality factor, will then be given by
P?Y 5 P?Y Im(w)
_ J— = -1_
PAGZ 52| B ax2+Ea|T) 0. 1y Q _2’Re(w) ’ (16

wherep is the density of the beam, ad=bc is the area of  \yhich is the fraction of energy lost per radian, the factor of 2
its cross section. The quantitieand|; are integrals over the = arising from the fact that the mechanical energy of the beam
cross section of the beam giving the mechanical and the the[g proportional to the square of its amplitude.
mal contributions to its moment of inertia, Substituting Eq(15) into the heat equatiofl4) and ne-
glecting the term of ordeAg on its left-hand sidgwhich
) b3c will only introduce a correction of ordek? to the final re-
I= JAV dydz=—5 and I+= fAyadydz (12)  sult yields the following equation fof:

In evaluating the moment of inertiawe have neglected the 720 ® Ac G2V
deviation of the cross section from its rectangular shape, —29:i _< 90__5_293,), (17)
which arises from having a nonzero Poisson ratiGGuch an ay X a JX
approximation is justified for small deflections since the er-whose solution is
ror it introduces is only on the order of the transverse beam
dimension divided by the radius of curvature of the bending. AL 2y
To the equation of motioil1l) we add the heat equation, _2E 0 A
which in the presence of thermoelastic coupling is giveft by O a X2 y=Asin(ky)+B cogky), (18)
26 EaT 4 where
o
a XV T 0, atEj Ui - (13 - -
We make two simplifications to this equation. First, sirtce k= V i;:(lﬂ) V Z (19

<T,, we can safely replace by T, in the second term on . . .
the right-hand side of the equation. Not doing so will intro- The coefficientsA andB are determined by taking as bound-

duce unnecessary nonlinearities into the problem. Secon@'y conditions the requirement that there be no flow of heat
noting that thermal gradients in the plane of the cross sectiofcross the boundaries of the beam so #h/dy=0 aty
along they direction are much larger than gradients along the= *b/2. The temperature profile across the beam is then
beam axis and that no gradients exist in thairection, we  given by

replace V29 with §%6/dy?. Substituting the value of the

strain field from Eq(10), we finally get Ag 92Y(X) sin(ky)
bo(x.y)=— — 7| y- ‘ (20
1+a\d0 36 Ag 9 7Y kCOS(;)
1+2AE—1—20)E_X(9_y2+y7§W’ (14)

Now that we have the temperature profile we can substi-
e it into the integral ; [Eq. (12)] for the cross section’s
thermal moment. Becaudg, |, and Ag=E«a?T,/C are all
constant along the beam, the beam equation may subse-
quently be expressed as

where we have identified the relaxation strength of Young’s[ut
modulusAg [Eq. (6)].

V. SOLUTION OF THE THERMOELASTIC EQUATIONS
FOR HARMONIC VIBRATIONS

To calculate the effect of thermoelastic coupling on the ) El *Yo
vibrations of a thin beam, we solve the coupled thermoelastic o Yo=—A{1+ Ag[1+ f(w)]}W, (21)
equationg11) and(14) for the case of harmonic vibrations. P
We set where the complex functioh(w) is given by
Y(x,1)=Yo(x)e'“t, and (x,y,t)=0y(x,y)e'", 24 [bk bk

calculate the temperature profile along the beam'’s cross sec-

tion using the heat equatiofi4), and substitute it into the The equation of motion for the beaf2l) is formally
equation of motior(11) in order to obtain the normal modes identical to that of the isothermal beam with no thermoelastic
of vibration and their corresponding frequencies. We expectoupling. The only difference being that the isothermal value
to find that in general the frequencies are complex, the readf Young’s modulusE is replaced by a frequency-dependent
part Reg) giving the new eigenfrequencies of the beam inmodulus
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E,=E{1+Ag1+f(w)]}. (23 95

Whenw becomes very largd(w)—0, and Young’s modu-
lus tends to its adiabatic, or unrelaxed, valdg;=E(1 044
+Ag). When w is very small, f(w)——1, and Young’'s
modulus recovers its isothermal vallg as expected. For
intermediate frequencieg,, is complex.

The normal modes of vibration of the beam are given, as
in the isothermal case, by 0.2

Yo(x)=Asin(gx)+ B coggx) + C sinh(gx) + D coshgx),
(24) 0.1 -

where the coefficientd throughD and the allowed values of
g are determined, as usual, by the boundary conditions at th??° T y
two ends of the beam. For example, for beams clamped a
both ends or free at both endsq,L=a, g

={4.730, 7.853, 10.996. .}, and for cantilevers clamped FIG. 1. Universal plots of the frequency shift and attenuation,

at one end and free at the othem,l=a, Eq.(27), of small flexural vibrations in thin rectangular beams due
={1875, 4694, 7855 . .}, n a” thl’ee cases tendll’lg fOI’ to thermoelastic Coup”ng.

largen to odd-integer multiples ofr/2. The dispersion rela-

tion betweenw andq,, for the thermoelastic beam is given 71_Ea2To 6 6 sinhé+sing -
by QT ="¢ £ & coshé+cosé” (29)
= VI. DISCUSSION OF THE RESULTS AND THEIR
/22 = w T A1 F(@)]
©=\ path= ooVl A1+ (w)], (25 EXPERIMENTAL IMPLICATIONS
wherew, is the isothermal value of the eigenfrequency. We show in the Appendix that the exact expressip9

Neglecting corrections of ordex? , we may replacé () for thermoelastic damping is tightly bound between two

. . . 2 .
in the square root bfi(w). The dispersion relatiof®5) then ~ Lorentzians in the vazrlable /\24 and that it behaves &8
becomes for small ¢ and as 14- for large values of. We also com-

pare the exact result with Zener's approximate expression

(8). The damping is peaked &=2.225 with a maximum
(26) value of Q,1/Ag=0.494. The universal behavior of

Q YA as a functior¢ is shown in Fig. 2.
) ) . ) The first conclusion to be drawn from this universal be-
from which we can easily extract the real and imaginaryhayior is that the peak value of thermoelastic damping, given
parts, giving the thermoelastic corrections of orderto the approximately by 0.49%., is independent of the dimen-
eigenfrequencies of the beam as well as the correspondingons of the beam. It only depends on temperature through
attenuation coefficients the thermodynamic propertiés, «, and C of the material.

The values on,;alx for GaAs and silicon, typical materials

Ag
w=wg 1+ 7[1+f((v0)]

Ag 6 sinhé—siné used in the fabrication of MEMS and NEMS, are plotted as a
Re(w)=wo| 1+ - 1—? m) . (278 function of temperature in Fig. 3. Thus, for example, at room
temperature one expects to observe quality factors no higher
than 16—-10* if one is operating at aroung=2.225.
Ag[ 6 sinhé+sing 6 The dimensionless variab¥ is proportional to the prod-
Im(w) wO?(? coshé+cosé ?) ' (275 yctwr used in Zener's model of the anelastic solid. Because
we are mainly concerned with the dependence of thermoelas-
where tic damping on scale, and since baththe beam’s eigenfre-

quency, andr, its thermal relaxation time, depend on the

dimensions of the beam, we find it more suitable to explicitly

E=b\/—. (28)  express the dependencefbn the dimensions of the beam.
2x Instead of the usual plots of Debye peaks as a function of

The universal behavior of the normalized frequency shif frequency, we plot the damping curve as a function of the

t. .
; > "dimensions of the beam.

[Re(w) —wo]/woAe a_nd of the r_lormal_lzed attenuation 1, qq that, we express tHésothermal eigenfrequencies

Im(w)/ woAg as functions of the dimensionless varialdle

E o= (25) in terms of the beam dimensions
are shown in Fig. 1.

Using the definition(16) of the quality factor, we arrive at

an expression for t_hermo_elagtlc damping in a thin beam, w(“)=aﬁ—z /__ (30
which, to first order inAg, is given by L 12p
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13.] — Exact solution
= N e Bounding Lorentzians
Q—l 1] LT - - --Zener's approximation
Ao )
0.1
0.01 1
L) LJ L] L) L) LI L I L) v L] L) L) LI I ) I L) L) L]
0.1 1 10

FIG. 2. Universal plot of thermoelastic damping of small flexural vibrations in thin bé@®sThe damping is plotted in units of the
relaxation strengtih = Ea?T,/C, as a function of the dimensionless variateb Jwy/2y for one decade above and below its peak value
~0.494, occurring aE=2.225. The two bounding Lorentziaia3) in the variable£?/\24 are shown along with Zener's approximation
le/AE [Eg. (8)]. The relative error in Zener's approximatio@;l—Q’l)/Q’l is shown in the inset.

We then get respectively, which is easily understood through the relation
(31) and the fact thalQ ! grows as¢? for small ¢ and
2 bl decays ag 2 for large . _ .
- " E— (31) It is clear from these examples that thermoelastic damping
a3 L?¢ is a significant source of dissipation for MEMS and NEMS
at temperatures around 100 K and above. The reason for this
wherel is a thermal diffusion length, proportional to the is simple and follows from the fact that as the beam becomes

phonon mean free path, given by smaller its eigenfrequency increases at the same time that its
thermal relaxation time decreases. The product of the two,

P which can be controlled by independently varying the two

|T:X\/%, (320  dimensionsb and L, can therefore remain of order unity

down to the nanometer scale.

We use experimentally reported values of the thermody-
namic properties of GaARef. 24 and silicorf® to obtainly e p1GE ASTIC DAMPING OF LONGITUDINAL
as well asAg(T), listed in Table I, for three representative WAVES
temperatures: 10 K, 100 K, and 300 K. We then use these
values for illustrative purposes to plot the dependence of For completeness we would like to say a few words re-
thermoelastic damping on geometry in three different waysgarding thermoelastic damping of longitudinal modes. Even
(1) Q! vs beam width for fixed aspect ratid./b, (2) Q~*  though such modes do not come into play when considering
vs beam widthb for fixed beam lengti, and (3) Q"' vs = MEMS and NEMS resonators they may affect general ques-
beam lengthL for fixed beam widthb. The outcome is tions of heat flow and energy relaxation in other elements of
shown in Fig. 4 for the case of a beam clamped at both end$IEMS and NEMS. The process of thermoelastic damping of
vibrating in its fundamental modeag=4.73). The slopes of longitudinal waves is similar to that of flexural waves in that
the curves, plotted in log-log scale, atel, =3, and*2, energy is dissipated through the irreversible flow of heat
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N2/, is in fact inversely proportional to the square of the
frequency. It is therefore the case that high-frequency waves
that have very short thermal relaxation times are isothermal,
or relaxed, and low-frequency waves are adiabatic, or unre-
laxed. This quite counterintuitive situation is exactly the op-
posite of what one has in the case of flexural vibrations of
beams and is probably the best example of a system in which
the relaxation timer depends on the frequeney.

Nevertheless, as can be seen, for example, in the work of
Chadwick and Sneddati thermoelastic damping of longitu-
dinal waves still takes the form of a relaxation peak, with the
isothermal and adiabatic limits exchanged, and with a
geometry-independent characteristic thermal relaxation time
T|:)(/C|2 wherec, is the speed, or phase velocity, of longi-
tudinal waves. Thus, the position of peak thermoelastic
damping for longitudinal waves is fixed and only depends on
the thermodynamic properties of the material as a function of
temperature. Some typical values for the thermal relaxation
rates of longitudinal waves in GaAs and silicon are given in
Table II.

10° T — T T T T —
/./.
—B— GaAs P
10* —@— Silicon /.

/

Qnax

107

VIIl. CONCLUSIONS

10°
10°
/ We have established here that thermoelastic damping is a
significant source of dissipation down to the nanometer
107° el P scale. We gave a simple derivation of an exact expression
10 100 500 (29) for thermoelastic damping in thin rectangular beams,
Temperature (K) compareq this exact exprgssion wit.h Ze_ner.’s well-known ap-
proximation(8), and examined the implication of our result
FIG. 3. Peak value of thermoelastic dampi@g,}, =0.494 ¢ on micrometer- and nanometer-scale resonators. It is inter-
(maximum value of the plot in Fig.)2lotted for gallium arsenide esting to note, as a consequence of our analgse Figs.
and for silicon as a function of temperature. Experimentally re-4(a) and 4b)], that for beams of constant aspect ratio and
ported valuesRefs. 24 and 2bare used for the thermodynamic constant temperature above a certain beamwidth the quality
quantitiesE, a, andC. factor increaseBnearly with the size of the beam. This may
provide a partial explanation for the linear increase in dissi-
pation as systems become smaller.
from hot to cold regions of the solid. The difference is that We have made a number of approximations and assump-
the distance between these regions is not fixed by the transions along the way that we would like to summarize here.
verse geometry of the device. Because a longitudinal wave is (1) We have derived and solved the thermoelastic equa-
a compression wave, hot and cold regions are separated lipns of athin beam undergoingmall flexural vibrations.
half a wavelength\ along the propagation direction of the We should not expect our result to strictly hold for beams
wave. The wavelength is inversely proportional to the fre- with small aspect ratiok/b. Nevertheless, we do expect to
quency, and therefore the thermal relaxation timefor a  see the same kind of behavior, showing a Debye-like dissi-
longitudinal thermoelastic wave, which is proportional to pation peak, even at smaller aspect ratios. We do not expect
our result to hold for large amplitude vibrations where the
TABLE I. Relaxation strengthfg(T) and thermal diffusion  Euler-Bernoulli assumption is known to fail, and where non-
lengthsl; (in um) for GaAs and silicon at three representative |inear behavior begins to take over.
temperatures. The values are calculated from experimental data (2) In displaying the expected relaxation strengffig). 3)
(REfS. 24 and 2)5and are used for generating the p|0tS of Flg 4. and damp|ng Curve@:ig_ 4) for GaAs and silicon resonators
with various geometries, we used experimentally-reported

GaAs bulk elastic and thermodynamic properties. According to re-
T 10K 100 K 300 K cent molecular-dynamics simulations of thin quartz beams
AL(T) 2 612¢10-°  1.718¢10°5  2.651¢10°* by Broughtonet ql.26 one is justified in using bulk properties
I+ (wm) 1,300 102 4.456x 102 6.455¢ 103 down to beamwidths of about 1@m. For smaller widths,

quantities such as Young’s modulus change drastically. In
any case, one should consider the plots only as serving for

Silicon . - . .
T 10 K 100 K 300 K illustrative purposes, in particular because some of the ther-
modynamic properties, especially below about 200 K, vary
Ag(T) 231910710 1232106  7.942x10°° from sample to sample.
I+ (um) 4,977 102 2.017x10°1 1.257x 102 (3) The theory of thermoelasticity is valid in a regime

where thermal phonons are diffusive and a temperature field
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Q™! GaAs Q! Silicon
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FIG. 4. Thermoelastic damping in gallium arsenide and silicon thin rectangular beams plotted for different geometries. In all cases the
beams are assumed clamped at both ends and vibrating at their fundamental flexural mode. The corresponding thermal diffudipn lengths

and relaxation strengthsg(T), used here, are listed in Table I.

can be defined locally. One should expect to see deviationgewed as caused by the “viscosity” of the phonon gas as it
from this theory when the phonon mean free path becomelaxes to its equilibrium state. This latter mechanism is
comparable to the system size, or when the relaxation rate afalled the “Akhiezer effect.?” We intend to explore these
the phonons to their equilibrium Bose distribution becomesorrections to the diffusive regime, as well as the fully bal-
comparable to the resonator’s frequency. In the first casdistic phonon regime, in the context of mesoscopic systems
where the transport of thermal energy crosses over from ben a future publication.

ing diffusive to being ballistic, one may expect to see ther-

maI_reIaxauon times tha_t are linear in the b_ea_lmwmh)- ACKNOWLEDGMENTS
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TABLE Il. Thermal relaxation rates/|=1/27rr|:c|2/2wx for One can clearly see that for small values&fthe two
longitudinal thermoelastic waves in GaAs and silicon at three repseries in parentheses each tend to 1, their ratio approaching 1
resentative temperatures. The values are calculated from expefirom above as decreases. For large valuesétthe leading
mentally reported datéRefs. 24 and 2band listed here to illustrate 1 in the denominator may be neglected, and one can show
the typical frequencies at which thermoelastic damping of longitu~with a little bit of effort that the ratio of the two series in

dinal waves is most significant. The relaxation strengths at thesBarentheses tends to 5/4 from belowéaacreases. Defining
temperatures are the same as those listed in Table I. [ as the Lorentzian

GaAs

T 10 K 100 K 300 K

V| 7.1 MHz 10.0 GHz 138 GHz L(n)= 1+ 772, (A2)
Silicon

T 10K 100 K 300 K we see that for any value @ Q /Ag is bounded between

" 3.1 MHz 7.6 GHz 121G6H, e two Lorentzians
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APPENDIX: WHERE IS THE LORENTZIAN? Figure 2 shows the universal thermoelastic damping curve

Q Y/Ag in relation to these two bounding Lorentzians. The
Because Zener’s approximatié8) using a single Lorent- inset shows the difference between Zener's Lorentzian ap-
zian in the variablev 5 is so good, it is illuminating to try to  proximation, which in the above notation takes the form
identify this Lorentzian behavior in our own res#9). To
do so, let us expand both numerator and denominator of
Q YAg in powers of¢,

2
Q#A@(%), (Ad)
4 8
ot Eftgft
Ap =6 1 1 and the exact resul29). Note thatw2/2=4.935 and+/24
1+ F§4+ §§8+ e =4.899 differ by less than 1%. It should be emphasized that
: : on the isothermal side of the pedkw frequenciesthe two
4 2.5l 3.51 expressions differ by less than 2%, which is the error antici-
agz 1+ T§4+ H§8+ . pated by Zener in keeping only the first term in his expan-
=6—— i | ' i . (A1) sion.On the adlc_’;\batlc s_lde of the pdalgh frequencieks the
145 (14 i§4+ i§8+ o error increases in the first decade to as much as 15%, reach-
4! 8! 12! ing 20% in the limit of infinite&.
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