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Thermoelastic damping in micro- and nanomechanical systems
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The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechani-
cal resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale elec-
tromechanical systems. The equations of linear thermoelasticity are used to give a simple derivation for
thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener’s well-known approxi-
mation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.
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I. INTRODUCTION

Microelectromechanical systems~MEMS! and more re-
cently nanoelectromechanical systems~NEMS! are being de-
veloped aggressively for a variety of applications as well
for accessing new regimes of basic experimental resea
Among the different applications envisioned for MEMS a
NEMS are ultrafast and high-precision actuators, sens
~such as accelerometers, bolometers, magnetometers,
calorimeters!, and narrowband high-frequency mechanic
filters, all with compact and low-power designs that can
fully integrated with modern semiconductor electronics. E
perimentally, it is hoped that NEMS will open the door to t
investigation of new regimes of phonon-mediated proces
as well as the quantum behavior of mesoscopic mechan
systems.1,2

For all these pursuits it is desired to design and const
systems with very little loss of energy or very high qual
factorsQ. Unfortunately, it has been consistently observ
that the quality factors of resonators decrease with s
significantly—even when made from pure single-crystal m
terials. It is therefore of great importance to understand
dominating energy dissipation mechanisms in mechan
resonators when one approaches submicron scales. W
these mechanisms one would like to identify those that
fundamental and always impose an upper limit on the qua
factor and those that might be eliminated through improv
design and fabrication.

In this work we examine the importance of the process
thermoelastic damping as a dissipation mechanism in ME
and NEMS. Although there has been some discussion of
ferent dissipation mechanisms in MEMS,3–9 very few au-
thors have addressed the question of thermoelastic dam
Roszhart3 observed thermoelastic damping in single-crys
silicon microresonators at room temperature; and Yasum
et al.9 recently reported thermoelastic damping in microre
nators an order of magnitude smaller than Roszhart’s in
con nitride, also at room temperature. The question ar
whether one should be surprised by such observation
whether one should expect to see thermoelastic dampin
these length scales. We establish in this paper that as lon
the system remains in the regime of ‘‘diffusive therm
phonons’’ ~to be discussed below! the latter is the case fo
two basic reasons:

~1! The strength of the damping caused by thermoela
PRB 610163-1829/2000/61~8!/5600~10!/$15.00
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coupling is independent of geometry. It depends only on
thermodynamic properties of the material as a function
temperature.

~2! In the case of flexural vibrations of thin beams t
position of peak damping as a function of frequency depe
on the dimensions of the beam. Therefore, even though
normal frequencies of the resonators increase as they bec
smaller so does the frequency at which peak damping occ

These effects conspire together to maintain the releva
of thermoelastic damping all the way down to the nanome
scale. In the next section we describe the process of t
moelastic damping, review some of the relevant literatu
and present the outline of this paper.

II. THE PROCESS OF THERMOELASTIC DAMPING

Acoustic modes—such as a sound wave traveling thro
an infinitely large elastic material or a normal mode of v
bration of an elastic resonator of finite geometry—will exp
rience damping due to their nonlinear interaction with a s
rounding bath of thermally-excited elastic modes, or
phonons. If the mean free path of these thermal phonon
much smaller than the wavelength of the acoustic mode, t
sufficient thermalization occurs on the scale of interest. I
then possible to define a temperature locally, even when
system is not in a state of thermal equilibrium. Equivalent
if the relaxation rate of the phonon distribution to a loc
Bose-Einstein distribution is much faster than the freque
of the acoustic mode, then one has a well-defined temp
ture field, and there is no need to treat the thermal phon
as individual excitations. In this regime, in which therm
phonons are said to be ‘‘diffusive,’’ the complicated intera
tion between the acoustic mode and the thermal phonon
in an isotropic solid is captured by a single macrosco
parameter—the material’s thermal-expansion coefficient

a5
1

L

]L

]T
, ~1!

which couples changes of length with changes of tempe
ture. Note that here and throughout the paper we make us
the linear coefficient of thermal expansion whose value
one third of the volumetric coefficient of thermal expansio

When an elastic solid is set in motion, it is taken out
equilibrium, having an excess of kinetic and potential e
5600 ©2000 The American Physical Society
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ergy. In an isothermal and perfectly linearelasticsolid such
a nonequilibrium state can exist forever. In athermoelastic
solid the coupling of the strain field to a temperature fie
provides an energy dissipation mechanism that allows
system to relax back to equilibrium. Relaxation of the th
moelastic solid is achieved through the irreversible flow
heat driven by local temperature gradients that through
coupling accompany the strain field. This process of ene
dissipation, calledthermoelastic damping,is a fundamental
one. As long asa—which acts as a coupling constant—
nonzero, thermoelastic damping introduces an upper lim
the quality factor of even the most perfectly designed a
constructed resonator.

To our knowledge, the first to realize that thermoelas
relaxation may be a significant source of damping in m
chanical resonators was Zener, who in a series of papers10 in
the 1930’s developed a general theory of thermoela
damping. Zener treated the problem in the framework of
so-called ‘‘standard model’’ of the anelastic solid11 and
showed that the damping behavior can be approximated
well by a single relaxation peak with a characteristic rela
ation time. This relaxation time corresponds to the therm
diffusion time across the widthb of the beam, which is pro-
portional tob2/x, wherex is the solid’s thermal diffusivity
@to be defined in Eq.~13!#. We shall review Zener’s theory in
Sec. III.

It was only two decades later that other researchers be
reexamining the question of thermoelastic damping by se
ing exact solutions to the coupled equations of linear th
moelasticity in various geometries. The solutions for pro
gating plane waves in an infinite thermoelastic solid12–15

showed that the two transverse modes, which propa
through the solid without causing any local volume chang
do not couple to the temperature field and hence suffer
damping. The longitudinal mode, on the other hand, d
couple to the temperature field and an exact expression
been obtained for its attenuation and dispersion. Soluti
for thermoelastic Rayleigh waves~two-dimensional surface
waves on a semi-infinite solid! immediately followed,16 but
progress on thermoelastic solids with finite geometries ca
much later due to the well-known difficulty of solving eve
the equations of linear elasticity with finite bounda
conditions.17 Nevertheless, analytic solutions now exist,
least in terms of the dispersion relations, for thermoela
waves in an infinite thin plate,18 and longitudinal waves in
infinite rods with circular cross sections.15,19,20Other geom-
etries, such as beams of rectangular cross sections, have
too difficult to solve analytically. To treat such problem
one generally needs to use approximate theories.

MEMS and NEMS resonators generally contain eleme
that vibrate in either torsional or flexural modes. Because
the way one fabricates such devices, rectangular cross
tions often turn out to be the most relevant. Pure torsio
modes of rectangular beams involve no local volu
changes, and therefore, just as for transverse waves in
bulk, they do not suffer any thermoelastic losses. For flexu
vibrations of thin rectangular beams, one may use Zene10

approximate expression@Eq. ~8!# for thermoelastic damping
This appears to be the general practice.3,9 On the other hand
one may try to seek exact solutions of the thermoela
equations for the case of athin beam under flexure. Landa
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and Lifshitz21 have provided an exact expression for the
tenuation coefficient of such vibrations without, howev
giving a rigorous derivation and solution of the equation
Shieh22 investigated the thermoelastic beam equations i
more general context while performing a dynamic instabil
analysis of vertically standing cantilevers. He solved t
equations, giving a plot of thermoelastic dampingQ21 in
thin rectangular beams, but fell short of providing an analy
expression forQ21.

To remedy this state of affairs, we give, in Sec. IV,
simple derivation of the approximate thermoelastic equati
for a thin beam under flexure and then solve these equat
in Sec. V to arrive at an exact expression@Eq. ~29!# for
thermoelastic damping in thin rectangular beams. Althou
Zener’s approximation is good for many situations, we su
gest that in the future the exact expression given here be
instead. In Sec. VI we discuss the experimental implicat
of our results showing the characteristic damping curves
pected for GaAs and silicon, which are typical materials us
in the fabrication of micrometer- and nanometer-scale re
nators. In Sec. VII we say a few words about thermoela
damping of longitudinal waves in MEMS and NEMS, and
Sec. VIII we conclude by discussing the validity of th
theory that we present here. In the Appendix we give a ca
ful analysis comparing the exact expression for thermoela
damping in thin beams with the approximate Lorentzian
havior, predicted by Zener.

III. ZENER’S STANDARD MODEL OF THE LINEAR
ANELASTIC SOLID

Zener’s standard model of anelasticity11 is based on an
extension of Hooke’s law to the most general linear hom
geneous equation involving stresss, straine, and their first
time derivatives,

s1teṡ5MR~e1tsė !. ~2!

The physical interpretation of the three parameters of
model is straightforward. When the strain is kept consta
the stress relaxes exponentially with a relaxation timete .
Similarly, ts is the strain relaxation time when the stress
kept constant.MR is the value of the pertinent elastic mod
lus after all relaxation has occurred.MU5MR(ts /te) is the
unrelaxed value of the elastic modulus.

Under periodic dynamical conditions

s~ t !5s0eivt and e~ t !5e0eivt, ~3!

the stress and strain amplitudes are related by a freque
dependent complex elastic modulus. The dissipation, or ‘
ternal friction,’’ in the solidQ21 is defined as the fraction o
energy lost per radian of vibration. If it is small, the dissip
tion is equal to the ratio of the imaginary and real parts of
complex modulus, giving

Q215DM

vt

11~vt!2 , ~4!

wheret5Atste, and
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DM5
MU2MR

AMRMU

~5!

is a dimensionless quantity called the ‘‘relaxation strengt
of the modulus.

Thus the dissipation exhibits a Lorentzian behavior a
function of vt with a maximum value ofDM/2 when vt
51. Dissipation peaks of this form, generally called ‘‘Deb
peaks,’’ are quite ubiquitous as to be expected from th
prediction by such a naive model. They occur for many d
ferent relaxation mechanisms such as point-defect relaxa
~‘‘Snoek peaks’’!, defect pair reorientation~‘‘Zener peaks’’!,
dislocation relaxation~‘‘Bordoni peaks’’!, grain-boundary
relaxation, and of course thermal relaxation.23 In many of
these examples there is not just one single relaxation timt,
and therefore one sees multiple or broadened Debye pe

One can understand qualitatively why there is a peak
dissipation whenvt51 in the following way: If the fre-
quency of vibrationv is much smaller than the effectiv
relaxation rate 1/t of the solid, then the system remains e
sentially in equilibrium and very little energy is dissipated.
the vibration frequency is much larger than the effective
laxation ratev@1/t, the system has no time to relax an
again very little energy is dissipated. It is only when t
vibration frequency is on the order of the system’s effect
relaxation rate that appreciable dissipation occurs. The
picture may be more complicated, however, because in s
casest itself can depend onv.

In the case of a thermoelastic solid the relaxation stren
~5! to be considered is that of Young’s modulus

DE5
Ead2E

E
5

Ea2T0

Cp
, ~6!

whose value is known from basic thermodynamics. HereEad
is the unrelaxed, oradiabatic,value of Young’s modulus and
E is its relaxed, orisothermal, value.Cp is the heat capacity
per unit volume at constant pressure, or stress, but repla
it by the heat capacityCv at constant volume, or strain, wi
introduce an error inDE , which is only on the order ofDE

2 .
SinceQ21, and therefore alsoDE , are assumed small, suc
an error is negligible. For similar considerations, no harm
done by replacingAEadE in the denominator of Eq.~5! by E.

Zener10,11 calculated the thermal relaxation times asso
ated with different transverse thermal modes for a thin be
under flexure. He showed that for rectangular beams
proximately 98.6% of the relaxation occurs through the fi
mode whose relaxation time is

tZ5
b2

p2x
, ~7!

wherex is the thermal diffusivity of the solid, andb is the
width of the beam. Only a very small error is therefore ma
by considering the vibrating thin beam as having a sim
relaxation~4! with a single relaxation timetZ ,

QZ
215

Ea2T0

Cp

vtZ

11~vtZ!2 . ~8!
’
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Nevertheless, we show below that for the simple geometr
a rectangular beam—which is the most relevant for ma
current MEMS and NEMS designs—such an expansion
transverse thermal eigenmodes is unnecessary, and anexact
expression for thermoelastic damping can easily be obtain

IV. THERMOELASTIC EQUATIONS OF A THIN BEAM

We consider small flexural displacements of a thin elas
beam of lengthL and rectangular cross section of dimensio
b3c. We define thex axis along the axis of the beam and th
y andz axes parallel to the surfaces of dimensionsb andc,
respectively. In equilibrium, the beam is unstrained, u
stressed, and at temperatureT0 everywhere. Departure of th
beam from equilibrium is described by a displacement fi
ui ( i 5x,y,z) and a temperature fieldT5T01u. The dis-
placement fieldui and the relative temperature fieldu, as
well as the strain and stress tensorsui j ands i j , are all func-
tions of position and time.

We consider pure transverse motionY(x) in the y direc-
tion and make the usual Euler-Bernoulli assumption that
transverse dimensions of the beam,b andc, are sufficiently
small compared with the lengthL of the beam and the radiu
of curvatureR of the bending that any plane cross sectio
initially perpendicular to the axis of the beam, remains pla
and perpendicular to the neutral surface during bending.
neutral surface is the one running through the length of
beam that suffers no extension or contraction during
bending.

We take the surfaces of the beam to be stress free, w
implies that all but thesxx component of the stress tens
vanish on the surface. Because the beam is thin, this app
mately holds in its interior as well. Hooke’s law for the the
moelastic beam then takes a rather simple form:

uxx5
1

E
sxx1au, ~9a!

uyy5uzz52
s

E
sxx1au, ~9b!

uxy5uyz5uzx50, ~9c!

whereE is Young’s modulus,s is Poisson’s ratio,a is the
linear thermal-expansion coefficient~1!, and we have taken
into account the fact that strain arises both from mechan
stress as well as thermal expansion. It is simple to show~see,
for example, Landau and Lifshitz21! that the longitudinal
strain componentuxx , a distancey away from the neutral
surface, is equal toy/R. By replacing the curvature of the
beam 1/R with 2]2Y/]x2, we may express the nonzer
components of the strain field in the beam as

uxx52y
]2Y

]x2 , ~10a!

uyy5uzz5sy
]2Y

]x21~11s!au. ~10b!
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Following the standard derivation procedure for isoth
mal beams with no thermoelastic coupling21 but with the
modified thermoelastic strain~10! leads to an equation o
motion for the beam of the form

rA
]2Y

]t2 1
]2

]x2 S EI
]2Y

]x21EaI TD50, ~11!

wherer is the density of the beam, andA5bc is the area of
its cross section. The quantitiesI andI T are integrals over the
cross section of the beam giving the mechanical and the t
mal contributions to its moment of inertia,

I 5E
A
y2dydz5

b3c

12
and I T5E

A
yu dy dz. ~12!

In evaluating the moment of inertiaI, we have neglected th
deviation of the cross section from its rectangular sha
which arises from having a nonzero Poisson ratios. Such an
approximation is justified for small deflections since the
ror it introduces is only on the order of the transverse be
dimension divided by the radius of curvature of the bendi

To the equation of motion~11! we add the heat equation
which in the presence of thermoelastic coupling is given b21

]u

]t
5x¹2u2

EaT

~122s!Cv

]

]t(j
uj j . ~13!

We make two simplifications to this equation. First, sinceu
!T0, we can safely replaceT by T0 in the second term on
the right-hand side of the equation. Not doing so will intr
duce unnecessary nonlinearities into the problem. Sec
noting that thermal gradients in the plane of the cross sec
along they direction are much larger than gradients along
beam axis and that no gradients exist in thez direction, we
replace ¹2u with ]2u/]y2. Substituting the value of the
strain field from Eq.~10!, we finally get

S 112DE

11s

122s D ]u

]t
5x

]2u

]y2 1y
DE

a

]

]t

]2Y

]x2 , ~14!

where we have identified the relaxation strength of Youn
modulusDE @Eq. ~6!#.

V. SOLUTION OF THE THERMOELASTIC EQUATIONS
FOR HARMONIC VIBRATIONS

To calculate the effect of thermoelastic coupling on t
vibrations of a thin beam, we solve the coupled thermoela
equations~11! and ~14! for the case of harmonic vibrations
We set

Y~x,t !5Y0~x!eivt, and u~x,y,t !5u0~x,y!eivt,
~15!

calculate the temperature profile along the beam’s cross
tion using the heat equation~14!, and substitute it into the
equation of motion~11! in order to obtain the normal mode
of vibration and their corresponding frequencies. We exp
to find that in general the frequencies are complex, the
part Re(v) giving the new eigenfrequencies of the beam
-

r-

e,

-
m
.

d,
n

e

s

ic

c-

ct
al

the presence of thermoelastic coupling, and the imagin
part uIm(v)u giving the attenuation of the vibration. Th
amount of thermoelastic damping, expressed in terms of
inverse of the quality factor, will then be given by

Q2152UIm~v!

Re~v!
U, ~16!

which is the fraction of energy lost per radian, the factor o
arising from the fact that the mechanical energy of the be
is proportional to the square of its amplitude.

Substituting Eq.~15! into the heat equation~14! and ne-
glecting the term of orderDE on its left-hand side~which
will only introduce a correction of orderDE

2 to the final re-
sult! yields the following equation foru0:

]2u0

]y2 5 i
v

x S u02
DE

a

]2Y0

]x2 yD , ~17!

whose solution is

u02
DE

a

]2Y0

]x2 y5A sin~ky!1B cos~ky!, ~18!

where

k5Ai
v

x
5~11 i !A v

2x
. ~19!

The coefficientsA andB are determined by taking as boun
ary conditions the requirement that there be no flow of h
across the boundaries of the beam so that]u0 /]y50 at y
56b/2. The temperature profile across the beam is th
given by

u0~x,y!5
DE

a

]2Y0~x!

]x2 S y2
sin~ky!

k cosS bk

2 D D . ~20!

Now that we have the temperature profile we can sub
tute it into the integralI T @Eq. ~12!# for the cross section’s
thermal moment. BecauseE, I, and DE5Ea2T0 /C are all
constant along the beam, the beam equation may su
quently be expressed as

v2Y05
EI

rA
$11DE@11 f ~v!#%

]4Y0

]x4 , ~21!

where the complex functionf (v) is given by

f ~v!5 f „k~v!…5
24

b3k3 Fbk

2
2tanS bk

2 D G . ~22!

The equation of motion for the beam~21! is formally
identical to that of the isothermal beam with no thermoelas
coupling. The only difference being that the isothermal va
of Young’s modulusE is replaced by a frequency-depende
modulus
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Ev5E$11DE@11 f ~v!#%. ~23!

Whenv becomes very large,f (v)→0, and Young’s modu-
lus tends to its adiabatic, or unrelaxed, valueEad5E(1
1DE). When v is very small, f (v)→21, and Young’s
modulus recovers its isothermal valueE, as expected. Fo
intermediate frequencies,Ev is complex.

The normal modes of vibration of the beam are given,
in the isothermal case, by

Y0~x!5A sin~qx!1B cos~qx!1C sinh~qx!1D cosh~qx!,
~24!

where the coefficientsA throughD and the allowed values o
q are determined, as usual, by the boundary conditions a
two ends of the beam. For example, for beams clampe
both ends or free at both ends qnL5an
5$4.730, 7.853, 10.996, . . . %, and for cantilevers clampe
at one end and free at the otherqnL5an
5$1.875, 4.694, 7.855, . . . %, in all three cases tending fo
largen to odd-integer multiples ofp/2. The dispersion rela
tion betweenv and qn for the thermoelastic beam is give
by

v5AEvI

rA
qn

25v0A11DE@11 f ~v!#, ~25!

wherev0 is the isothermal value of the eigenfrequency.
Neglecting corrections of orderDE

2 , we may replacef (v)
in the square root byf (v0). The dispersion relation~25! then
becomes

v5v0F11
DE

2
@11 f ~v0!#G , ~26!

from which we can easily extract the real and imagina
parts, giving the thermoelastic corrections of orderDE to the
eigenfrequencies of the beam as well as the correspon
attenuation coefficients

Re~v!5v0F11
DE

2 S 12
6

j3

sinhj2sinj

coshj1cosj D G , ~27a!

Im~v!5v0

DE

2 S 6

j3

sinhj1sinj

coshj1cosj
2

6

j2D , ~27b!

where

j5bAv0

2x
. ~28!

The universal behavior of the normalized frequency s
@Re(v)2v0#/v0DE and of the normalized attenuatio
Im(v)/v0DE as functions of the dimensionless variablej
are shown in Fig. 1.

Using the definition~16! of the quality factor, we arrive a
an expression for thermoelastic damping in a thin bea
which, to first order inDE , is given by
s

he
at

y

ng

t

,

Q215
Ea2T0

C S 6

j2 2
6

j3

sinhj1sinj

coshj1cosj D . ~29!

VI. DISCUSSION OF THE RESULTS AND THEIR
EXPERIMENTAL IMPLICATIONS

We show in the Appendix that the exact expression~29!
for thermoelastic damping is tightly bound between tw
Lorentzians in the variablej2/A24 and that it behaves asj2

for small j and as 1/j2 for large values ofj. We also com-
pare the exact result with Zener’s approximate express
~8!. The damping is peaked atj0.2.225 with a maximum
value of Qmax

21 /DE.0.494. The universal behavior o
Q21/DE as a functionj is shown in Fig. 2.

The first conclusion to be drawn from this universal b
havior is that the peak value of thermoelastic damping, giv
approximately by 0.494DE , is independent of the dimen
sions of the beam. It only depends on temperature thro
the thermodynamic propertiesE, a, and C of the material.
The values ofQmax

21 for GaAs and silicon, typical material
used in the fabrication of MEMS and NEMS, are plotted a
function of temperature in Fig. 3. Thus, for example, at roo
temperature one expects to observe quality factors no hig
than 103–104 if one is operating at aroundj52.225.

The dimensionless variablej2 is proportional to the prod-
uct vt used in Zener’s model of the anelastic solid. Becau
we are mainly concerned with the dependence of thermoe
tic damping on scale, and since bothv, the beam’s eigenfre-
quency, andt, its thermal relaxation time, depend on th
dimensions of the beam, we find it more suitable to explici
express the dependence ofj on the dimensions of the beam
Instead of the usual plots of Debye peaks as a function
frequency, we plot the damping curve as a function of
dimensions of the beam.

To do that, we express the~isothermal! eigenfrequencies
~25! in terms of the beam dimensions

v (n)5an
2 b

L2A E

12r
. ~30!

FIG. 1. Universal plots of the frequency shift and attenuatio
Eq. ~27!, of small flexural vibrations in thin rectangular beams d
to thermoelastic coupling.
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FIG. 2. Universal plot of thermoelastic damping of small flexural vibrations in thin beams~29!. The damping is plotted in units of the
relaxation strengthDE5Ea2T0 /C, as a function of the dimensionless variablej5bAv0/2x for one decade above and below its peak va
.0.494, occurring atj.2.225. The two bounding Lorentzians~A3! in the variablej2/A24 are shown along with Zener’s approximatio
QZ

21/DE @Eq. ~8!#. The relative error in Zener’s approximation (QZ
212Q21)/Q21 is shown in the inset.
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We then get

j25
an

2

4A3

b3

L2l T

, ~31!

where l T is a thermal diffusion length, proportional to th
phonon mean free path, given by

l T5xAr

E
. ~32!

We use experimentally reported values of the thermo
namic properties of GaAs~Ref. 24! and silicon25 to obtainl T
as well asDE(T), listed in Table I, for three representativ
temperatures: 10 K, 100 K, and 300 K. We then use th
values for illustrative purposes to plot the dependence
thermoelastic damping on geometry in three different wa
~1! Q21 vs beam widthb for fixed aspect ratioL/b, ~2! Q21

vs beam widthb for fixed beam lengthL, and ~3! Q21 vs
beam lengthL for fixed beam widthb. The outcome is
shown in Fig. 4 for the case of a beam clamped at both e
vibrating in its fundamental mode (an54.73). The slopes o
the curves, plotted in log-log scale, are61, 63, and62,
-

e
f
:

ds

respectively, which is easily understood through the relat
~31! and the fact thatQ21 grows asj2 for small j and
decays asj22 for largej.

It is clear from these examples that thermoelastic damp
is a significant source of dissipation for MEMS and NEM
at temperatures around 100 K and above. The reason for
is simple and follows from the fact that as the beam becom
smaller its eigenfrequency increases at the same time tha
thermal relaxation time decreases. The product of the t
which can be controlled by independently varying the tw
dimensionsb and L, can therefore remain of order unit
down to the nanometer scale.

VII. THERMOELASTIC DAMPING OF LONGITUDINAL
WAVES

For completeness we would like to say a few words
garding thermoelastic damping of longitudinal modes. Ev
though such modes do not come into play when conside
MEMS and NEMS resonators they may affect general qu
tions of heat flow and energy relaxation in other elements
MEMS and NEMS. The process of thermoelastic damping
longitudinal waves is similar to that of flexural waves in th
energy is dissipated through the irreversible flow of h
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from hot to cold regions of the solid. The difference is th
the distance between these regions is not fixed by the tr
verse geometry of the device. Because a longitudinal wav
a compression wave, hot and cold regions are separate
half a wavelengthl along the propagation direction of th
wave. The wavelengthl is inversely proportional to the fre
quency, and therefore the thermal relaxation timet l for a
longitudinal thermoelastic wave, which is proportional

FIG. 3. Peak value of thermoelastic dampingQmax
21 .0.494DE

~maximum value of the plot in Fig. 2! plotted for gallium arsenide
and for silicon as a function of temperature. Experimentally
ported values~Refs. 24 and 25! are used for the thermodynam
quantitiesE, a, andC.

TABLE I. Relaxation strengthsDE(T) and thermal diffusion
lengths l T ~in mm) for GaAs and silicon at three representati
temperatures. The values are calculated from experimental
~Refs. 24 and 25! and are used for generating the plots of Fig. 4

GaAs
T 10 K 100 K 300 K

DE(T) 2.61231028 1.71831025 2.65131024

l T (mm) 1.30031012 4.45631022 6.45531023

Silicon
T 10 K 100 K 300 K

DE(T) 2.319310210 1.23231026 7.94231025

l T (mm) 4.97731012 2.01731021 1.25731022
t
s-
is
by

l2/x, is in fact inversely proportional to the square of th
frequency. It is therefore the case that high-frequency wa
that have very short thermal relaxation times are isotherm
or relaxed, and low-frequency waves are adiabatic, or un
laxed. This quite counterintuitive situation is exactly the o
posite of what one has in the case of flexural vibrations
beams and is probably the best example of a system in w
the relaxation timet depends on the frequencyv.

Nevertheless, as can be seen, for example, in the wor
Chadwick and Sneddon,14 thermoelastic damping of longitu
dinal waves still takes the form of a relaxation peak, with t
isothermal and adiabatic limits exchanged, and with
geometry-independent characteristic thermal relaxation t
t l5x/cl

2 wherecl is the speed, or phase velocity, of long
tudinal waves. Thus, the position of peak thermoelas
damping for longitudinal waves is fixed and only depends
the thermodynamic properties of the material as a function
temperature. Some typical values for the thermal relaxa
rates of longitudinal waves in GaAs and silicon are given
Table II.

VIII. CONCLUSIONS

We have established here that thermoelastic damping
significant source of dissipation down to the nanome
scale. We gave a simple derivation of an exact express
~29! for thermoelastic damping in thin rectangular beam
compared this exact expression with Zener’s well-known
proximation~8!, and examined the implication of our resu
on micrometer- and nanometer-scale resonators. It is in
esting to note, as a consequence of our analysis@see Figs.
4~a! and 4~b!#, that for beams of constant aspect ratio a
constant temperature above a certain beamwidth the qu
factor increaseslinearly with the size of the beam. This ma
provide a partial explanation for the linear increase in dis
pation as systems become smaller.

We have made a number of approximations and assu
tions along the way that we would like to summarize her

~1! We have derived and solved the thermoelastic eq
tions of a thin beam undergoingsmall flexural vibrations.
We should not expect our result to strictly hold for beam
with small aspect ratiosL/b. Nevertheless, we do expect t
see the same kind of behavior, showing a Debye-like di
pation peak, even at smaller aspect ratios. We do not ex
our result to hold for large amplitude vibrations where t
Euler-Bernoulli assumption is known to fail, and where no
linear behavior begins to take over.

~2! In displaying the expected relaxation strengths~Fig. 3!
and damping curves~Fig. 4! for GaAs and silicon resonator
with various geometries, we used experimentally-repor
bulk elastic and thermodynamic properties. According to
cent molecular-dynamics simulations of thin quartz bea
by Broughtonet al.26 one is justified in using bulk propertie
down to beamwidths of about 10mm. For smaller widths,
quantities such as Young’s modulus change drastically
any case, one should consider the plots only as serving
illustrative purposes, in particular because some of the th
modynamic properties, especially below about 200 K, v
from sample to sample.

~3! The theory of thermoelasticity is valid in a regim
where thermal phonons are diffusive and a temperature fi

-

ta
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FIG. 4. Thermoelastic damping in gallium arsenide and silicon thin rectangular beams plotted for different geometries. In all c
beams are assumed clamped at both ends and vibrating at their fundamental flexural mode. The corresponding thermal diffusionl T

and relaxation strengthsDE(T), used here, are listed in Table I.
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can be defined locally. One should expect to see deviat
from this theory when the phonon mean free path beco
comparable to the system size, or when the relaxation rat
the phonons to their equilibrium Bose distribution becom
comparable to the resonator’s frequency. In the first ca
where the transport of thermal energy crosses over from
ing diffusive to being ballistic, one may expect to see th
mal relaxation times that are linear in the beamwidth~pro-
portional tob/v wherev is the phonon velocity! instead of
the diffusive quadratic dependenceb2/x. The second effec
introduces an additional dissipation mechanism that may
ns
es
of
s
e,
e-
-

e

viewed as caused by the ‘‘viscosity’’ of the phonon gas a
relaxes to its equilibrium state. This latter mechanism
called the ‘‘Akhiezer effect.’’27 We intend to explore these
corrections to the diffusive regime, as well as the fully b
listic phonon regime, in the context of mesoscopic syste
in a future publication.
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APPENDIX: WHERE IS THE LORENTZIAN?

Because Zener’s approximation~8! using a single Lorent-
zian in the variablevtZ is so good, it is illuminating to try to
identify this Lorentzian behavior in our own result~29!. To
do so, let us expand both numerator and denominato
Q21/DE in powers ofj,

Q21

DE
56

4

5!
j21

8

9!
j61•••

11
1

4!
j41

1

8!
j81•••

56

4

5!
j2S 11

2•5!

9!
j41

3•5!

13!
j81••• D

11
j4

4! S 11
4!

8!
j41

4!

12!
j81••• D . ~A1!

TABLE II. Thermal relaxation ratesn l51/2pt l5cl
2/2px for

longitudinal thermoelastic waves in GaAs and silicon at three r
resentative temperatures. The values are calculated from ex
mentally reported data~Refs. 24 and 25! and listed here to illustrate
the typical frequencies at which thermoelastic damping of long
dinal waves is most significant. The relaxation strengths at th
temperatures are the same as those listed in Table I.

GaAs
T 10 K 100 K 300 K

n l 7.1 MHz 10.0 GHz 138 GHz

Silicon
T 10 K 100 K 300 K

n l 3.1 MHz 7.6 GHz 121 GHz
s

to

u

a

o

c

-

of

One can clearly see that for small values ofj, the two
series in parentheses each tend to 1, their ratio approach
from above asj decreases. For large values ofj, the leading
1 in the denominator may be neglected, and one can s
with a little bit of effort that the ratio of the two series i
parentheses tends to 5/4 from below asj increases. Defining
L as the Lorentzian

L~h!5
h

11h2 , ~A2!

we see that for any value ofj, Q21/DE is bounded between
the two Lorentzians

2A6

5
LS j2

A24
D <

Q21

DE
<

A6

2
LS j2

A24
D . ~A3!

Figure 2 shows the universal thermoelastic damping cu
Q21/DE in relation to these two bounding Lorentzians. T
inset shows the difference between Zener’s Lorentzian
proximation, which in the above notation takes the form

QZ
215DELS j2

p2/2D , ~A4!

and the exact result~29!. Note thatp2/2.4.935 andA24
.4.899 differ by less than 1%. It should be emphasized t
on the isothermal side of the peak~low frequencies! the two
expressions differ by less than 2%, which is the error ant
pated by Zener in keeping only the first term in his expa
sion. On the adiabatic side of the peak~high frequencies!, the
error increases in the first decade to as much as 15%, re
ing 20% in the limit of infinitej.
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