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Chaotic dynamics in quantum-dot miniband superlattices
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We have theoretically studied chaotic dynamics of ballistic electrons in GaAs-based quantum dot miniband
superlattices under the influence of an intense terahertz electromagnetic radiation, using the balance equations
coupling the self-consistent field equation. The electron motion that incorporates the influence of the self-
consistent field within the miniband superlattices produces a cooperative nonlinear oscillatory mode, which can
lead to complicated chaotic dynamics with the driving amplitude, driving frequency, and the relaxation fre-
quency of the external circuit as the controlling parameters. The temporal behaviors of the solutions of the
nonlinear dynamical system are analyzed by using different methods, such as phase portrait, power spectra,
first return map, and Lyapunov exponent. The two-dimensional driving amplitude-frequency phase diagrams
are calculated with a realistic treatment of scattering contributions by impurity, acoustic phonon, and polar-
optic phonons in order to visualize the chaotic regions in the parameter space. The dependence of chaotic
regions on the superlattice parameter, lattice temperature, and external circuit condition, is extensively inves-
tigated, which provides useful guidance of controlling chaos in realistic device applications.

[. INTRODUCTION of operation and lead to the transition between the synchro-
nized current oscillation and various types of deterministic
Due to the advance in semiconductor nanostructure fabrispatiotemporal chaos. The bifurcation scenario to chaos for
cation and the development of free-electron laser, the norelectron transport was further studied experimentally in an
linear dynamics involving electron transport in semiconducincommensurately driven superlattice systém.
tor superlattice driven by an intense terahert¢THz) Theoretically, interaction of semiconductor superlattice
electromagnetic radiation has recently become a central fovith an intense electromagnetic radiation can be
cus of many experimental and theoretical studiésUnder  simulated=>'4"'"as the response of a biased or unbiased
the influence of external THz electric field, semiconductorsuperlattice to a large-amplitude high-frequency sinusoidal/
superlattices exhibit many interesting phenomena related toosinoidal field. For superlattice miniband transport the ear-
negative differential velocity(NDV) in the stationary liest model of Esaki and Tsticonsidering a single electron
current-voltage characteristic. It was reported that the curremoving in an one-dimensional miniband with a constant
through a dc-biased GaAs/AlAs superlattice miniband is rescattering time, gave a simple relation between the drift ve-
duced when the system is exposed to an intense ac fieldcity and the electric field. The another is the balance-
having a frequency from about 0.1Refs. 12-14 to  equation theory developed for miniband superlattice trans-
several'*! THz. Moreover, when a superlattice is driven by aport in  semiconductor superlattice®® with realistic
strong high-frequency electric field, abundant harmonicsmpurity scattering and electron-phonon interactions, pre-
may generate, and thus it is considered useful as a broaticting a widely varying temperature and miniband-width-
band source of THz radiatiof:'* Recently, by involving dependent velocity-field behavior. Recently, Alekseev
novel electromagnetic radiation sources and coupling techet al*® studied the influence of an intense THz electric field
niques the effect of THz radiation field on the nonlinearon the motion of ballistic electrons in a miniband superlattice
current-voltage characteristics of miniband superlattices hagsing a set of phenomenological balance equations coupling
been investigated experimentally, including multiphoton-the self-consistent field equation within the relaxation time
assisted resonant tunnelifgiegative absolute resistante, approximations. They showed that accounting for collective
and Shapiro steps on dc current-voltage ciinddso, it is  effects(via a self-consistent fiejJdeads to the possibility of
noted that when a miniband superlatlit® or a sequential chaotic dynamics, and investigated the dependence of cha-
resonant tunneling superlatti€e’®is subjected to a deac  otic dynamics on the relaxation times. The methoid simi-
field the superlattice system can produce an alternative modar with the Esaki-Tsu-type approach. However, the phenom-
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enological elastic and inelastic scattering times introduced ithe transverse ground and excited states, and the energy gap
the constant-relaxation-time approximatiGrare difficult to  between the longitudinal lowest and second minibands, are
estimate from the electron-impurity and electron-phonornlarge enough, then only the transverse ground state and the
coupling information of the materials. There is a clear needongitudinal lowest miniband need be taken into consider-
to understand the extent to which the phenomenologicahtion. We thus have a quasi-one-dimensional system, the
balance-equation approach correctly captures the realistic satate of which can be described by a one-dimensional wave
perlattice physics. The balance-equation th&b¥? may be  vector k,, with the energy dispersion, under the tight-

a good candidate for doing this since the realistic energybinding approximation, expressed in the form

dispersion relation and all realistic electron-impurity and

electron-phonon scatterings are taken into full account from A
the material information of the superlattice on the micro- e(ky) = 5[1~codk.d)], (1)
scopic level.

The purpose of this paper is to present a careful study afvhereA is the miniband width. When an external ac electric
chaotic dynamics of quantum-dot miniband superlatticefield with amplitudeE, and frequency),
driven by an intense THz radiation field based on the balance
equation$' =2 coupling the influence of the self-consistent Eex(t)=EqcogOt), 2
field.*® We provide a method for studying chaotic dynamics.

in miniband superlattice by considering detailed superlatticéS @Pplied in the superlattice direction, i.e., in the motion
physics without invoking the constant relaxation-time ap-diréction of electrons within the superlattice miniband. The

proximation. In contrast with the work by Alekseev al,*® self-consists fieltEg; is related to the voltage) across the
here we yield the energy-dependent momentum- and energgyPerlattice byEs= U/l with | the length of the superlattice.
relaxation times from the microscopic frictional acceleration ' he total current density through the superlattice consists
and energy-transfer rate functions with an accurate treatmeff two parts: the displacement currgpt,= esdEsc/dt (here,
of impurity, acoustic phonon(interacting with electrons €s IS the average dielectric constant for the superlattce
through deformation and piezoelectric potentiaésd polar-  the current of ballistic electrons=—envy, wheree is the
optic scatterings. This allows us to obtain self-consistentiycarrier chargen is the bulk density of carriers, ang, is the
the dependence of chaotic dynamics on the superlattice p&lectron velocity. Kirchoff's equation for the resistively
rameter and lattice temperature. shunted superlatticeis (esdEs/dt—envy)S+E/R=0,
The remainder of this paper is organized as follows. In'-€.,
Sec. Il, we describe the time-dependent momentum- and

energy-balance equations for a quantum-dot miniband super- dEsc: _ €Mug _AE 3)
lattice under the influence of an electric field and outline the dt € 5

derivation of the self-consistent field equation from Kir- . o o )

choff's theorem. In Sec. Ill, we calculate the steady-stateVhich provides the circuit contribution to the damping of the

velocity-field relations showing the NDV, and determine theself-consistent field generated by the electron current in the
energy-dependent momentum- and energy-relaxation timegperlattice. In Eq(3), A=(RC)™* is the relaxation fre-
from the frictional acceleration and energy-loss rate funcuency of the external circuiR is the resistance of the ex-
tions. The chaotic dynamics are studied in detail by severdernal circuit, andC= ¢S/l is the superlattice capacitance
different methods for detecting chaotic characteristics of avith Sthe cross area of the superlattice.

time series in Sec. IV. In Sec. V, the dependence of the The electric field acting on the electror&(t), is the sum
chaotic regions on the superlattice parameter, lattice tenPf the external ac fieldE,,(t) and the self-consistent field
perature, and the relaxation frequency of the external circuiEs{t), which incorporates the influence of the circuit and of
has been extensively investigated by performing a largéhe repulsive interaction with other electrons on a single
number of calculations for different quantum dot superlat-€lectron’s dynamics,i.e., F(t) = Es{(t) + Ey(t). According
tices at different lattice temperatures. In Sec. VI, we draw thdo the balance-equation thedunder the influence of elec-
main conclusions and remarks on the differences and coritic field F, the carriers in the superlattice are accelerated by

nections between the present work and other recent publicdhe field and scattered by impurities and by phonons, result-
tions. ing in an overall drift motion and possible heating of the

carrier system. Such a transport state of the system is de-
scribed by the center-of-mass momentBg=Npy (N is the
[l. BALANCE EQUATIONS FOR QUANTUM DOT total number of carriejsand the relative electron tempera-
MINIBAND SUPERLATTICES tureT,, and they are determined by the effective force- and

_ 2123
Consider a superlattice along tlzedirection, which is energy-balance equatiofts,

formed by periodical potential wells and barriers of finite dv
d

height. In thexy plane there exists an infinitely high- —S—eF/m*+A, (4)
potential wall such that electrons are confined in a small dt ‘

cylindrical region of diameted,. The single-electron state

of the system can be described by transverse quantum num- dhg

bers, a longitudinal miniband index and a longitudinal wave TR eFvg—W, ®)

vector k, (— w/d<k,<w/d, whered is the period of the
superlattice We assume that the energy separation betweeim which,
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_22 Otk T 6 . 1 (= coszdz
vam g v(DTelia) Tel ©  oa(Te=Tx0d) ., expl[(A/2)(1— cosz)— ulikaTe) + 1
is the average drift velocity of the electrons with(k,) w coszdz
=de(k,)/dk, the velocity function in thez direction, fwexp{[(AIZ)(l—cosz)—,u]/kBTe}Jrl
= . (15
2 — fﬂ dz

"N ; ek fle(ka) Tel, @) ~2exp([(A72)(1—cosz)— ullkgTet +1

is the average electron energy, and The thermal-equilibrium energy isigo=A/2[1— ay(T)]

with T the lattice temperature. In the Boltzmann’s distribu-
1 2 3 1 0|28(|<z)f ST ® tion limit (under the condition of a small carrier density and
m?* N o 52 dk§ [e(ky). Tel, a high temperatuje we have aq(Te)=11[A/(2kgTe)]/
o[ A/(2kgTe)] with 11(x)=1/7fcosfexpkcosh)ds and
is an ensemble-averaged inverse effective mass, introducqeg(x):1/7ngexp(xcosg)dg the modified Bessel functions.
to describe the response of the electron system to an externgl js Boltzmann’s constant.
field. In these expressionsf[e(k,),Te]=1/exp{[e(k,) In terms of physical meaning gby; we assumepyd/f
—ullkgTet+1) is the Fermi distribution function at the <[0,7], then Eqs(12) and(14) determine one 1 to 1 map
electron temperaturé,, u is the chemical potential deter- from point (py,Te) to (vg,he), i.€., ©q,he)=9(Pg,Te),
mined by the condition and its inverse mapg ! exists, which we define by
(Pg,Te)=9 *(vg,he), so for given ¢4,h,) we can obtain

_ - the only (pgy,Te) from Eqgs.(12) and(14). Therefore, accord-
N 2% fledks). Tel. © ing to definitions ofA andW, we can define the momentum-
and and energy-relaxation frequencies, respectively, by
_ A(py,T Alg Y(vg,h
ek = ok, pali), 10 = 2Pl A9 Wald] g
d d
is the relative electron energy. In Edd) and(5) A is fric-
tional acceleration consisting of the impurity- and phonon- W T Wig-1! h
induced frictional accelerationgy; and A,, and W is the V= h(pdr’] J_ [gh (Uhd' e)], (17)
e 'le0 e lleo

energy-transfer rate from the electron system to the phonon
system. They share the same expressions as those given in _ o _
Ref. 22, which are completely determined fy, T, andu For the calculations that follow, it is convenient to render
for a quantum dot miniband superlattice with the known conthe equations dimensionless. We set the scaling factors as
fined structure, impurity distributions, phonon modes,follows: velocity vs=vy,, energyhs=A/2, massms=M*,
electron-impurity potentials, and electron-phonon couplingrequencyws= ven/(esM*), time ts=1l/wg, electric field
matrix elements. E;=%w./(ed), electron temperaturd,=h./kg, momen-
With the miniband energy dispersion relation expressedum ps=7/d, accelerationAs=v/ts, and energy-transfer

by Eqg. (1), the electron density per unit length along the rate We=hg/ts. The dimensionless quantities are denoted
directionN; for the determination of the chemical potential by: electric fieldE=F/Eg, ac amplitudeE,=E(/Es, ve-

4 can be written & locity v=v4/vs, energye=h./hg, thermal equilibrium en-
ergyeo=heg/hg, time r=t/tg, ac frequencyw =Q/wg, Cir-

1 dz cuit relaxation frequencya=A/wgs, momentum- and

N,d= ;f_w exp{[(A/2)(1—cosz)— u]/kgTe}+1° energy-relaxation frequencies ,=v,, 1,/ ws, acceleration

(11 A=A/A,, and energy-transfer rate'= W/W;. Then, we ob-

. . . . ain the dimensionless equations of E@~—(5) as follows
The average drift velocity, the inverse effective mass, ané a B-O

the average energy of the system can be respectively ex-

d
pressed as d—l;_=(1—s)E— VU, (18)
= (Te)sin Pod 12
UVg=Umd1( e A de
E:EU_VS(&‘_FJO)- (19
1 1 Pqd
F = W(Jll(Te)CO T f (13) dE
z E=—v—aE+f(7), (20
A Pd
he==|1-a)(Te)cog ——| |, (14 in which f(7)=aE,cos@7)—E,wsin7), », and », are

calculated from the dimensionless version of Ed$) and
with v, =Ad/(24), M* =2#2/(Ad?), and 17), i.e.,
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A(v ,€) 020 Quarlnum-dot sluperlatticle E
V=T (21) A=TOmev _ ~T T=42K
W(v,e)
V= . (22
€T E&p

Now, we have three ordinary differential equatio(ss),
(19), and(20), which describe the motion of the electrons in
the miniband superlattice under the influence of the external

THz field, E,wCOS@T)’ and internal Self-qonsistent f_ield. FIG. 1. Velocity-field relations calculated from the steady-state
These equations have the same forms with those given Bysion of the balance Eq$18) and (19) with a self-consistent

Alekseehvet "’?'- ”;] R.e“' 4. (;I'fhe n:jOSt "Inpcr)]rtam dlﬁer%n(l:e be- treatment of the frictional acceleratidnand energy-transfer raié/
nNeent em is the input v andv, . In t, e present aapce for the quantum-dot miniband superlatticeof 70 meV at differ-
equationsy, and v, are given, respectively, by the micro- gn |attice temperatured=4.2, 77, 110, 150, 210, and 300 K, re-
scopic frictional acceleratiorA and energy-transfer rate spectively. The parameters: superlattice peribd15 nm, well

functions \7\/' which are completely determined by the width a=10 nm, transverse diametel,=10 nm, electron sheet
energy-wave-vector dispersion and scattering constants §ensity Ns=1.6x10cm2, and low-temperaturé4.2 K) linear
materials, while in the Alekseev's mode] and v, are sim- mobility xo=0.1 n?/V's, are maintained unchanged throughout the
ply two phenomenological constants unrelated to the equd?2Per:

tions and the material itself. For solving Eq48)—(20), we

set the initial conditions as(0)=0, £(0)=¢,, andE(0) as a function of the steady-state electric fi@ldin unit of
=E,, which correspond to the initially unexcited superlat- Eg) for the superlattice oA =70 meV at lattice temperatures
tice just being struck by the incident electromagnetic radiaT=4.2,77,110, 150, 210, and 300 K, respectively. They ob-
tion field. For the numerics we use the integrating-one-stepiously show a varying temperature-dependent negative-
Gill algorithm incorporating adaptive step size, convergencelifferential-velocity behavior.

checking with an accuracy of 16, and offset of accumula- In the recent work by Alekseest al,*°> phenomenologi-
tion error. cal constant relaxation frequencigsandv, are assumed to
study nonlinear dynamics of the miniband superlattice sys-
. STEADY-STATE VELOCITY-FIELD RELATIONS tem driven by a THz electric field. In real superlattices, how-
AND DETERMINATION OF ENERGY-DEPENDENT ever, the relaxation frequencies largely depend on micro-
RELAXATION FREQUENCIES scopic scattering mechanics and superlattice parameters. The

present balance-equation formulas allow one self-

To recall how we calculate the frictional accelerati@n consistently determining this dependence from 2. anq
~ (22) as follows. Letpyd/% e (0,7), and set the changing

and energy-transfer ram_/, as an example, we have calcu- range of the electron temperature to Bes/T e (1,160),
lated the steady-state drift velocity as a function of the elecynich are wide enough for hot-electron regime of the super-
tric field E from the steady-state version of the balance Eqsiytijce system considered here. Then, with changiggnd
tions (18) and (19) for a GaAs-based quantum-dot miniband 1 arpitrary in the setting range we simultaneously calculate
superlattice. Throughout the paper we assume the superla,;—vl v, , ande as functions opy andT,, respectively, from

tice periodd=15 nm, well widtha=10 nm, transverse di- Egs. (21) and (22), and the dimensionless energy=1

ameterd, =10 nm, low-temperaturé.2 K) linear mobility — ay(T.)cospyd/h) scaled from Eq(14). In Fig. 2, we show
wo=0.1 n?/Vs, and the carrier sheet density bf,=1.6

X 10 cm™? (per period in the transverse plane, corre-

sponding to a bulk density=Ns/d=1.07x10"¥ cm 3 or a 008} @T-a2Ka-70mev | ()T-77K a-70mev 008
line density N;d=(d,/2)?°Ny=1.257. Scatterings due to 0.04

charged impurities, acoustic phonofisteracting with elec-

trons through deformation and piezoelectric potentjasd 0.00

optic phonons are taken into account in the calculations. All >~* g04f 1004
the material constants used heére are typical values of bulk > g8l () T=300K, 4 =70mev (@) T=42K Aa=30meV 008
GaAs: mass density 5.31 g/ém electron-band-effective

cross massm=0.067, (m, is the free electron mags ooty ‘ 1°%
transverse sound velocity,=2.48x 10° m/s, longitudinal 0.00 TR 0.00
sound velocity v =5.29<10° m/s, LO phonon energy Y S 4004
0,0=354 meV, low-frequency dielectric constant 050 075 1.00 125 050 075 100 125 150
=12.9, optical dielectric constamt,=10.8, acoustic defor- £ £

r:i“ﬂ]xplc())ge\r}}ﬁhF?OSrﬁStﬁevs:ea&\cjeﬁer:rfgteelﬁ;}r:ngc;zspt:ﬁgttice FIG. 2. Calculated energy-dependent momentum-relaxation fre-
: : - - quenciesv, (open circley and energy-relaxation frequencies
structural parameter#, andW is completely determined as (open trianglesfor the quantum dot miniband superlattices f&of
functions ofpy and T, [see Eqs(10)—(12) in Ref. 22. In =30 and 70 meV at different lattice temperaturés:4.2, 77, and
Fig. 1 we show the calculated drift velocity(in unit of v) 300 K, respectively. The lines are the numerically-fitted results.
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1% with the critical electric fieldE.=+/v,v,, at which the dc
1 20 drift velocity peaks, and peak velocity,=v,/v,/2
[ 15 -a4(T), so in the regime oE>E_ there is a negative dif-

009} T=300K a=70mev
+ Analytical
Self-consistent

0.06 |

N 110 E,, ferential velocity. Also, we obtain the zero-frequency dc mo-
0.031 15 bility for the electric fieldE as
0.00F 0
ey v Ev,a(T
00 01 02 03 04 05 === L(), (28)
E E  E2+u,p,
FIG. 3. Steady-state electron velocities and electron temperaand the zero-frequency differential mobility as
tures as functions of the electric field for the quantum dot miniband
superlattice ofA=70 meV atT=300 K, respectively, calculated dv  (E?—v,v,)v.ay(T)
from the originalA and W (line9 and by the numerically-fitted Mo= dE . (29)

2 2
formula (25) (open circleg of v, and v, . (E+v,v,)

It is obvious that Eq(27) reduces to the Alekseev’s result
v, (open circleg and v, (open uptrianglesas a function of [see Eq.(6) in Ref. 4] in the Boltzmann limit{so a;(T)
energye calculated from Eqg21) and(22) for the quantum = |,[A/(2kgT)]/1o[A/(2kgT)]}, and furthermore reduces to
dot superlattices of miniband width=30 and 70 meV at the original Esaki-Tsu’s result in the zero-temperature limit
lattice temperatures=4.2, 77, and 300 K, respectively. The [so a,(T)=1] and when we choose,=v,=1/7, with 7,
lines in Fig. 2 are the numerically fitted energy-dependgnt the scattering time. In this regard, it is worth noting that the
(solid line) and energy-dependent (dashed lingby follow-  generalization of the formula of Esaki and Tsu to finite tem-

ing expressions, perature and to the case of+# v,, describes with reasonable
accuracy the steady-state transport properties of the mini-
v,=—0.01349-0.039189, band electrons in the Fermi distribution.

— _ _ 2 3
v,=—0.06645-0.21042~0.18993"+0.0569%", IV. CHAOTIC DYNAMICS IN THE PRESENCE

OF A THz FIELD

when A=70 meV, T=4.2 K, (23
To study the chaotic dynamics from Ed48), (19), and
v,=—0.01212+0.038%, (20), we need solve three independent variables: velacity
energye, and electric fieldg, involving three controlling
v,=—0.04324+0.15058 —0.137522+ 0.04178 3, parameters: ac amplitude,, ac frequencyw, and circuit
relaxation frequencyr. In principle, we can directly solve
when A=70 meV, T=77 K, (24

Egs. (18)—(20) with a self-consistent treatment &f and W
appearing in Eqg21) and(22). However, to do it like this is
very time consuming, thus preventing us from an extensive
investigation on different superlattice parameters and lattice

(25) temperatures, becaugeandW are in the form of multilay-
ered integral? On the other hand, the accuracy of multilay-

v,=0.0065H 0.03532,

v,=0.02009, whenA=70 meV, T=300 K,

v,=0.00488, v,=1.85341x10 %, ered numerically-integrating may I_ead some qncertainty o_f
the obtained results since the solution of a nonlinear dynami-
when A=30 meV, T=4.2 K. (26)  cal system is very sensitive to the numerics employed, so we

instead use the numerically fitted energy-dependent
The fitting processes are completed by Polynomial Remomentum- and energy-relaxation frequenciesand v,

gression with the standard deviations less than*1®s a given by Eqgs.(23)—(26) to explore the chaotic dynamics in
check of the accuracy of the analytical expressions, we showuantum-dot miniband superlattices. Since the average elec-
in Fig. 3 the steady-state electron velocity and electron temtron velocityv is the variable most directly related to experi-
perature as a function of electric fiellat A=70 meV and  mental observable, we study the temporal behavior of the
T=300 K, calculated, respectively, from the origiland  superlattice system from the electron velocity. By directly
W (liney and from the numerically-fitted formulags) — Solving Eqs.(18—(20) subject to different external ac elec-
(pluses. A good agreement is found between the two resultdric fields, we have found different temporal behavior of the
in the full range of the electric field. solutions of the miniband superlattice system, depending

Specially, when relaxation frequenciesandv, are both ~ Upon the amplitud&,, and frequencyv of the ac field. The
constant as the case Af=30 meV andT=4.2 K showed in  Pehavior of the solutions observed in our calculations can be
Eq. (26), a straightforward calculation from the steady-staterefe”ed to the following three types: periodic, chaotic, and

version of Eqs.(18) and (19) yields the dimensionless dc duasiperiodic, which are the typical modes commonly ap-
velocity-field relation, pearing in different nonlinear dynamical systeth3he “pe-

riodic” behavior means that the electron velocity varies pe-
E/E, riodically with just the fundamental frequency or its
e —— (27)  subharmonics of the external ac field. The synchronized os-
1+(E/Ee) cillation of the electron velocity with the external ac field is
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0.4 T=77 K; A=70 meV, 0:=0.0001, 0=0.3 ool T=77K a=70mev, a-0.0001
0.0 B A A ! E,=0.55, 0=0.37
0.4 . . . | @E, =025 = A,
0.2 ' ' ' ' i G 00
& A
> 00 45
02 (b) E, =0.55 0.2 ]
02 | | | I ) 0 50 100 150
0.0 U AT 7 (inunit of T,)
-0.2 . . .  (QE, =183
0 20 40 60 80 100 FIG. 5. Temporal convergences of the first three Lyapunov ex-
7 (inunitof T, ) ponentsA;, \,, and\; for the chaotic case oE,=1.83 as de-

scribed in Fig. 4b).
FIG. 4. Time-dependent electron drift velocities for the

quantum-dot miniband superlattice Af=70 meV atT=77 K, « . .
=0.0001, 0=0.37, and different ac amplitude&) E, = 0.25, (b) 0.6), as it should be. Following that, we study the same su-

0.55, and(c) 1.83, which respectively correspond to the periodic, perla_ttice system as_describEd_ in.Fig. 4 by changing the_ ac
chaotic, and quasiperiodic solutions. amplitudeE,,, to clarify the periodic regions and the aperi-
odic (quasiperiodic or chaoticregions in the parameter

referred to as “1:1” frequency-locking mode; for the “cha- SPace ofg,,. For this purpose, we require the help of Poin-
otic” behavior, the velocity varies erratically and with no care bifurcation diagram, thus needing to define Poincare
apparent periodicity for as long as we observe it, and it is thén@pping. We adopt the velocities at timeg=mT,., m
behavior in which we are most interested; while the “quasi-=1,2,3 . . ., (after the transients die guas the Poincare
periodic” behavior is somewhat similar either with the “pe- mappings ofg,,. For eachE,, , if the solutionv ,=v(7y,) is
riodic” or with the “chaotic” states, which are also often aperiodic, we eliminate the first 100 transient points and de-
encountered in simulations of nonlinear dynamical systemgdict the next 250 points of , as the mappings d,, . Oth-
and can be accurately defined by first return map of the tim@rwise we compute, until the solution becomes periodic
series(see the following Figure 4 shows the velocity vs ~ Within an accuracy of 10%, and depict all they, as the
time 7 for ac frequency»=0.37 and different ac amplitudes: mappings ofE,, . In the calculations, the parametgy, is
sz 0.25, 0.55, and 1.83, which respective|y Correspond§hang6d from 0.1 to 2.0. The calculated Poindafercation
periodic, chaotic, and quasiperiodic solutions for thediagram is shown in Fig. (@), and the corresponding first
quantum-dot superlattice of miniband width=70 meV at three Lyapunov exponenks , A,, andA; as functions ok,
lattice temperaturd =77 K and the circuit relaxation fre- are shown in Fig. @) for the superlattice oA =70 meV at
quency «=0.0001. To have an overview of the nonlinear @=0.37, T=77 K, anda=0.0001. The Poincadgfurcation
dynamical properties of the superlattice system, in the foldiagram indicates that the bifurcation scenario is quite com-
lowing subsections we analyze the behavior of the solutiong!ex, rather than a simple period-doubling cascade com-
for different controlling parameters, by using several differ-monly appearing in nonlinear dynamical systems. The tran-
ent methods, such as phase portrait, power spectrum anal§ition between periodic and aperiodic states changes
sis, first return map, and Lyapunov exponent, which are ofdiscontinuously with the parametgg, . Even in the periodic
ten used in detecting the chaotic characteristics of degion the bifurcation diagram can be discontinue, such as in
nonlinear dynamical system. the region ofE,e(0.9,1.1). For small ac amplitudds,

< 0.3 the solutions are “1:1” frequency-locking. As, in-

A. Lyapunov exponent and Poincarebifurcation diagram
0.2 T T r
Lyapunov exponents have proven to be the most useful T=77 K, 4=70 meV, 0~0.0001, &=0.37

dynamical diagnostic tool for a chaotic system, which are o1} @
obtained from the average exponential rates of divergence or e I
convergence of nearby orbits in phase space. Any system > 00p
containing at least one positive Lyapunov exponent is de-
fined to be chaotic. For the chaotic caseEf=0.55 de- 01F
scribed in Fig. 4b), we have calculated the first three

Lyapunov exponent& ;, \,, and\3 by using the standard

method and computational programs develdpéor an or- o
dinary differential equation system. In the calculations, the <
time interval used to average Lyapunov exponentris

=mT, With T,=27/w the driving period of the ac field,

and the maximal time delay, which we calculate is set to be

175T,.. The temporal convergencied (7)., Ao(7m),

and \3(7,) of the first three Lyapunov exponents
Nipg[=limy_.N1,47y)] are shown in Fig. 5. The FIG. 6. (a) Poincarebifurcation diagram andb) the first three
asymptotic value of the maximal Lyapunov exponeptr,) Lyapunov exponents,, \,, and\ for the quantum-dot miniband
for the chaotic case dE,=0.55 is greater than zef@bout superlattice ofA=70 meV atT=77 K, «=0.0001, andv=0.37.
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02| (@ E,-04225, 7-periodic ' ' Y From the velocity evolutions(7) (the left of Fig. 7, we can
O'OWWWWWWW loo clarify periqdic_ a_nd _a_periodic _sqlutio_ns, but o_nly _fro_m
v(7)-7 relation it is difficult to distinguish a quasiperiodic
021 . . T bl and chaotic solution from the aperiodic solutions. However,
800 810 %20 3% 03 00 03 this can be done with the help of the phase plot and first
01| (06025 chaotic Joos return maps. Experimentally, the velocity-field phase plot
' - looo could be measured by depicting the electron velocity as a
1005 function of the instantaneous value of external electric field.
T e e s oo o5 Phase plots for the period solutions appear as simple closed
——— - . ' : loops [Figs. Ma) and 7f)], those for the quasiperiod solu-
0.1 (c) 0.6225, quasiperiodic 40.06 . L . .
= g = tions look more compllcat_ecﬂFlgs.'Kc) and 7e)], while
< © 1000 X phase plots for the chaotic solutions become very much
{006 folder and irregulafFigs. Ab) and 7d)]. The Poincarenap-
300 310 820 330 840 05 00 05 pings used to obtain the bifurcation diagram of Fitg)&an
02 179 chaatic " " "~ Jo.1 be understood from the phase plétse right of Fig. 7 as the
00 w loo successive crossing points of the orbit through the vertical
' ' line E, cosr)=E,, corresponding to the times=mT,;
02 . . . . . Joa =2mm. For n-periodic solution the number of the crossing
g 30 S0 %0s 00 18 o points are jush, while for aperiodic solutions those crossing
(e) 1.83, quasiperiodic 1 points are distributed over some interyat intervalg of the
0.0 m 100 velocity.
< N X X \ 4-0.1
0%00 310 320 15 00 15 C. First return map and Fourier spectrum
02 () 1.895, 2-p'eriodic ' ' "o . . .
By sampling the electron velocity at timeg,=mT,,
0.0 M 100 one obtains the data set,=v(mT,.). The first return map
o2 . . . Ry is obtained by plotting 1 as a function ob,, (here,mis
300 305 310 -15 00 15 large enough such that the transient state dies buthe left
r(T) E cos(?) of Fig. 8 we show the first return maps for the six spedjc

as described in Fig. 7. It is indicated that the resultant attrac-
FIG. 7. Time-dependent electron velocitieér) (left) and the  tors forn-periodic solutions are just theseparate pointsee
corresponding velocity-field phase platight) for the six specific  Figs. 8a) and &f)], those for quasiperiodic solutions are
driving amplitudes:(a) E,=0.4225, (b) 0.6025, (c) 0.6225, (d) simple close curves with a regular distribution of the points
1.79,(e) 1.83, and(f) 1.895, for the quantum dot miniband super- [see Figs. &) and 8e)], while the chaotic attractors contain
lattice described in Fig. 6. Periodi¢a) and (f), quasiperiodic{c) infinite random point§whenm— ), forming several sepa-
and (e), and chaotic(b) and(d). rate branches and a multilayered structure with varying den-
sity of the points on different regiori§igs. 8b) and &d)].
creases, the frequency-locking solutions with period 2 and 3 Power spectrum analysis is usually considered as an ad-
etc. are observed, and the transitions from the periodic télitional effective method to detect chaos. We have calculated
aperiodic windows occur over a very small rangeEf. by using a fast Fourier transform algorithm and shown power
From the Lyapunov exponents shown in Figb)ewe can  spectraP(f) (arbitrary uni} in the right of Fig. 8 for the six
clarify the chaotic and quasiperiodic solutions, both having épecific values o€, as described in Fig. 7. It can be seen
large number of points in the bifurcation diagram. For thethat the power spectra for the periodic soluti¢fgs. 8a)
chaotic solutions\;>0, which indicates exponential diver- and 8f)] are smooth and have few peaks, corresponding to
gence of nearby trajectories; for the quasiperiodic solutionghe driving frequencyf,. and its harmonics, those for the
A ;=0 whenr—o; while for the periodic solutiona,<0.  quasiperiodic solutiongFigs. 8c) and 8e)] are relatively
In general, the bifurcation diagram structures shown in Figcomplex, while for the chaotic solutiofiigs. 8b) and §d)]
6(a) for the quantum dot miniband superlattice driven by athe power spectra become very irregular with a large number
THz field are quite different from those for the miniband Of peaks.
superlattice driven by a GHz field, which are related to the

formation and travelling of electric-field domatf. V. DEPENDENCE OF CHAOTIC REGIONS

ON CONTROLLING PARAMETERS

B. Evolution of solution and velocity-field phase plot The best overview of the behavior of the solutions of the

To have a more deeper insight into the time-dependerguperlattice system, chaotic vs periodic, is provided by a
behavior of the solutions of the miniband superlattice detwo-dimensional phase diagram showing the distribution of
scribed in Fig. 6, we study in detail six specific cases of thechaotic regions where all the maximal Lyapunov exponents
ac amplitudes(a) E,=0.4225, (b) 0.6025,(c) 0.6225,(d) are positive as functions of the controlling parameters, driv-
1.79,(e) 1.83, and(f) 1.895, respectively. In Fig. 7 we plot ing amplitudeE, and driving frequencyw. This kind of
the time-dependent velocity(7) and the corresponding amplitude-frequency phase diagram can give us a clear vi-
velocity-field phase plots for the six specific valuesky. sual presentation of the chaotic regions, and has been used
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FIG. 8. First return mapsleft) and the corresponding power
spectra(right) for the six specific driving amplitudes described in
Fig. 7. Periodici(a) and(f), quasiperiodic(c) and(e), and chaotic:
(b) and(d).
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FIG. 9. CalculatecE ,-w phase diagrams for the quantum dot
miniband superlattice 0A=70 meV ate=0.0001 and different
lattice temperaturesa) T=4.2, (b) 77, and(c) 300 K, respectively.

As reported by Ref. 4, we have also found from the cal-
culations that many of the positive maximal Lyapunov expo-
nents are nearly zero, thus they are sensitive to small effects
of the numerics used. It is therefore difficult to be certain of
the boundaries between periodic and chaotic behavior. To
illustrate the sensitivity to a cutoff on the size of the maximal
Lyapunov exponenk,, we have sorted the chaotic regions
by A; and shown in Fig. 10 the sorted phase diagrams by
setting: (@) A1>0.01, (b) A;>0.03, (c) A;>0.04, and(d)

very effectively in studies of chaos in nonlinear dynamical*1>0-05 for the superlattice described in Figbp With the

systems. The two-dimensionBl,-» phase diagrams in this
work are obtained as follows: for eaéh), we changeaw with

a stepdw=0.005 and calculate the maximal Lyapunov ex-

ponent\ ; for each set of E,,,w). If A, is positive thisw is
defined as one of the mappings®f , then theE -» phase

controlling value of\; increasing, the size of the chaotic
region decreases successively, and the periodic channels be-
come apparent. The presence of these periodic channels
within the chaotic region raises the possibility of observing
not only chaos in superlattice but also mode locking to vari-

diagram is achieved by depicting all the mappings of eaclPus subharmonics of the driving frequency. However, in

E, (the step oE, is also set to be 0.005 in the calculatipns

It is obvious that performing such a calculation of the phase
diagram is very time-consuming since we need calculate the

maximal Lyapunov exponerit, for each set of E,,,w) to
see if A\;>0. In Fig. 9, we present the calculatét],-

phase diagram for the GaAs-based quantum dot miniband

superlattice ofA =70 meV ate=0.0001 and different lattice
temperatureqia T=4.2, (b) 77, and(c) 300 K, respectively.

3

Every dot E,, w) in the figures stands for a chaotic solu-
tion. From Fig. 9 we can see an obvious effect of the lattice
temperaturel on the size of the chaotic region whdnis
varied fromT=4.2 to 300 K. With the lattice temperature
increasing, the chaotic region becomes smaller and the quali-
tative change of the pattern constructions is also observed.
The most striking qualitative feature shown in Fig. 9 is the FIG. 10. Phase diagrams with different cutoff values of the
clear distinction between the left down boundary of the chamaximal Lyapunov exponent;: (8 \;>0.01, (b) A;>0.03, (c)
otic region, which appears sharply defined, and the uppex,>0.04, and(d) \,>0.05, for the quantum-dot miniband super-
boundary, which is substantially more diffuse. lattice described in Fig.(®).
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tem and bringing more easily the electron motion into a pe-
riodic mode.

VI. CONCLUSIONS AND REMARKS

On the basis of the time-dependent balance equations for
miniband superlattices and the self-consistent field equation,
we have extensively investigated the nonlinear dynamical
] characteristics of the GaAs-based quantum dot miniband su-
i perlattices driven by the intense THz radiation field in the

(d) 2,50.04

. . . | T=4.2K, A=30 meV, a=0,0001 ] form of E cos(7) at various lattice temperatures, miniband
00 05 10 15 00 05 10 15 20 widths, and external circuit conditions. With the controlling
E, parameter&,,, w, anda varying in the parameter space, the

quantum dot miniband superlattice system is found to exhibit
three types of time-dependent behavior: periodic, quasiperi-
odic, and chaotic. For some parameters the solutions are cha-
otic and the bifurcation scenarios are very complex. The
two-dimensional amplitude-frequency phase diagrams are
calculated in order to detect and visualize the chaotic regions
o in parameter spaces. In the meantime, within the present bal-
some cases we have found no an apparent periodic channgl e equations we obtain the dependence of chaotic behavior
within the chaotic regions, as shown in Fig. 11 for the supery the superlattice system on superlattice parameters, lattice
lattice of A=30 meV atT=4.2 K anda=0.0001. Although e mperatures, and external circuit conditions, thus providing
the size of the chaotic region decreases with the controlling, possible tool to control chaos. The modulation and elimi-
value of\, increasing from O to 0.04, the chaotic regions arepaion of chaos are likely useful in the low-dimensional mi-
always diffuse. The physical origin for the differences of the oosiryctural devices and in the future nanofabricated semi-
pattern constructions of the chaotic regions between Figs. 10,,quctor integrated circuits.
and 11 is not clear so far. It may be related to the energy The present paper can be regarded as an extension of
dissipation of the electrons in the minibands. In the latter, theyjokseev's phenomenological balance-equation métheal
energy-relaxation frequency is smaller than the momentums mqre sophisticated physics-based treatment of chaotic dy-
relaxation frequencysee Eq.(26)]. _ _ namics in miniband superlattice, which was proposed as an
It is noted that the adjustable constantwhich describes open question in Ref. 4. The momentum- and energy-balance
the relaxation of the self-consistent field and the eXtema&quation used here are different from those of phenomeno-
circuit, can effect the chaotic behavior of the superlatticqogica| balance-equation metHttiin that in the present
system, so we have calculated and shown in Fig. 12 thgqationsy, and v, are derived with a reasonable accuracy
dependence of thé,,-» phase diagrams on the parameter from the microscopic frictional acceleratioh and energy-

for the superlattice oA =70 meV atT =300 K. When vary- T ) -
ing @ from 0.0001 to 0.03 the chaotic regions decrease raptansfer rate function§V, which are completely determined
by and easily calculated from the energy-wave vector disper-

idly. Since« is inversely proportional to the resistanReof p . ) 3 ,
the external circuitsee Sec. )| bigger a corresponds to  SION and scattering constants of materials. The microscopic

smaller external resistance. We may expect that, for smalldpformation about energy band structure and scattering pro-
external resistance, the periodic THz radiation encounters $€SS therefore enters into the calculation of the present bal-
less damping influence of the resistance, thus playing a m&nce equations in a self-consistent manner. This allows one
jor role in determining the behavior of the superlattice sys1C realistically treat the scatterings by impurities, acoustic
phonons and polar optic-phonons beyond the relaxation-time
approximationg:®

We should distinguish the present paper from a recent

FIG. 11. Phase diagrams with different cutoff values of the
maximal Lyapunov exponent;: (@) A\;>0, (b) A\;>0.02, (c) \;
>0.03, and(d) \;>0.04, for the quantum-dot superlattice &f
=30 meV atT=4.2 K ande=0.0001.

1.0 — T T T
T=300K, A=70 meV

2’2:(3)“=°-°9°1 study by the authors on B"NN* miniband superlattice

0'4 i rr 1 device driven by a GHz fiellft where we investigated field-

ML domain-induced nonlinear dynamics by using the time- and

02t ] space-dependent  hydrodynamic  balance  equations
S o0 developed®?’ for spatially-inhomogeneous semiconductor

o8 ] systems. When thd"NN™ superlattice device is subject to

061 _ _ ] a dc bias or de-ac bias with a GHz frequency, the occur-

041 ‘} ] rence of the space charge instability and the formation of

02r e e ] electric-field domain make a spatially-inhomogeneous treat-

00 o5 '"f:"" s o0 o5 1‘0 %0 ment of electron transport quite necessary. In the NDV re-

E gime the superlattice can no longer be treated as a spatially

homogeneous entity because any small doping/field pertur-
FIG. 12. CalculatecE,,-w phase diagrams at different: (a) bation can give rise to a large current instability of the entire

@=0.0001, (h) «=0.01, (c) «=0.02, and(d) «=0.03, for the  superlattice system. However, when applying an intense THz
quantum-dot superlattice d&=70 meV atT=300 K. electric field to the superlattice, one can sweep through the
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NDV regime with a speed faster than the development of th&Hz fields, which are related to the dynamics of spatiotem-
space charge instability and thus avoid the formation of theporal electric-field domain¥.

electric-field domain. In this way, we can therefore explore,
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