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We have theoretically studied chaotic dynamics of ballistic electrons in GaAs-based quantum dot miniband
superlattices under the influence of an intense terahertz electromagnetic radiation, using the balance equations
coupling the self-consistent field equation. The electron motion that incorporates the influence of the self-
consistent field within the miniband superlattices produces a cooperative nonlinear oscillatory mode, which can
lead to complicated chaotic dynamics with the driving amplitude, driving frequency, and the relaxation fre-
quency of the external circuit as the controlling parameters. The temporal behaviors of the solutions of the
nonlinear dynamical system are analyzed by using different methods, such as phase portrait, power spectra,
first return map, and Lyapunov exponent. The two-dimensional driving amplitude-frequency phase diagrams
are calculated with a realistic treatment of scattering contributions by impurity, acoustic phonon, and polar-
optic phonons in order to visualize the chaotic regions in the parameter space. The dependence of chaotic
regions on the superlattice parameter, lattice temperature, and external circuit condition, is extensively inves-
tigated, which provides useful guidance of controlling chaos in realistic device applications.
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I. INTRODUCTION

Due to the advance in semiconductor nanostructure fa
cation and the development of free-electron laser, the n
linear dynamics involving electron transport in semicond
tor superlattice1 driven by an intense terahertz~THz!
electromagnetic radiation has recently become a centra
cus of many experimental and theoretical studies.2–11 Under
the influence of external THz electric field, semiconduc
superlattices exhibit many interesting phenomena relate
negative differential velocity ~NDV! in the stationary
current-voltage characteristic. It was reported that the cur
through a dc-biased GaAs/AlAs superlattice miniband is
duced when the system is exposed to an intense ac
having a frequency from about 0.1~Refs. 12–14! to
several9,11 THz. Moreover, when a superlattice is driven by
strong high-frequency electric field, abundant harmon
may generate, and thus it is considered useful as a b
band source of THz radiation.10,11 Recently, by involving
novel electromagnetic radiation sources and coupling te
niques the effect of THz radiation field on the nonline
current-voltage characteristics of miniband superlattices
been investigated experimentally, including multiphoto
assisted resonant tunneling,6 negative absolute resistance7

and Shapiro steps on dc current-voltage curve.8 Also, it is
noted that when a miniband superlattice14,15 or a sequential
resonant tunneling superlattice16–19 is subjected to a dc1ac
field the superlattice system can produce an alternative m
PRB 610163-1829/2000/61~8!/5546~10!/$15.00
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of operation and lead to the transition between the synch
nized current oscillation and various types of determinis
spatiotemporal chaos. The bifurcation scenario to chaos
electron transport was further studied experimentally in
incommensurately driven superlattice system.20

Theoretically, interaction of semiconductor superlatti
with an intense electromagnetic radiation can
simulated2–5,14–17 as the response of a biased or unbias
superlattice to a large-amplitude high-frequency sinusoid
cosinoidal field. For superlattice miniband transport the e
liest model of Esaki and Tsu,1 considering a single electro
moving in an one-dimensional miniband with a consta
scattering time, gave a simple relation between the drift
locity and the electric field. The another is the balanc
equation theory developed for miniband superlattice tra
port in semiconductor superlattice21–23 with realistic
impurity scattering and electron-phonon interactions, p
dicting a widely varying temperature and miniband-widt
dependent velocity-field behavior. Recently, Alekse
et al.4,5 studied the influence of an intense THz electric fie
on the motion of ballistic electrons in a miniband superlatt
using a set of phenomenological balance equations coup
the self-consistent field equation within the relaxation tim
approximations. They showed that accounting for collect
effects~via a self-consistent field! leads to the possibility of
chaotic dynamics, and investigated the dependence of
otic dynamics on the relaxation times. The method4,5 is simi-
lar with the Esaki-Tsu-type approach. However, the pheno
5546 ©2000 The American Physical Society
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PRB 61 5547CHAOTIC DYNAMICS IN QUANTUM-DOT MINIBAND . . .
enological elastic and inelastic scattering times introduce
the constant-relaxation-time approximation4,5 are difficult to
estimate from the electron-impurity and electron-phon
coupling information of the materials. There is a clear ne
to understand the extent to which the phenomenolog
balance-equation approach correctly captures the realistic
perlattice physics. The balance-equation theory21–23 may be
a good candidate for doing this since the realistic ener
dispersion relation and all realistic electron-impurity a
electron-phonon scatterings are taken into full account fr
the material information of the superlattice on the mic
scopic level.

The purpose of this paper is to present a careful stud
chaotic dynamics of quantum-dot miniband superlatt
driven by an intense THz radiation field based on the bala
equations21–23 coupling the influence of the self-consiste
field.4,5 We provide a method for studying chaotic dynam
in miniband superlattice by considering detailed superlat
physics without invoking the constant relaxation-time a
proximation. In contrast with the work by Alekseevet al.,4,5

here we yield the energy-dependent momentum- and ene
relaxation times from the microscopic frictional accelerati
and energy-transfer rate functions with an accurate treatm
of impurity, acoustic phonon~interacting with electrons
through deformation and piezoelectric potentials!, and polar-
optic scatterings. This allows us to obtain self-consisten
the dependence of chaotic dynamics on the superlattice
rameter and lattice temperature.

The remainder of this paper is organized as follows.
Sec. II, we describe the time-dependent momentum-
energy-balance equations for a quantum-dot miniband su
lattice under the influence of an electric field and outline
derivation of the self-consistent field equation from K
choff’s theorem. In Sec. III, we calculate the steady-st
velocity-field relations showing the NDV, and determine t
energy-dependent momentum- and energy-relaxation ti
from the frictional acceleration and energy-loss rate fu
tions. The chaotic dynamics are studied in detail by sev
different methods for detecting chaotic characteristics o
time series in Sec. IV. In Sec. V, the dependence of
chaotic regions on the superlattice parameter, lattice t
perature, and the relaxation frequency of the external cir
has been extensively investigated by performing a la
number of calculations for different quantum dot superl
tices at different lattice temperatures. In Sec. VI, we draw
main conclusions and remarks on the differences and c
nections between the present work and other recent pub
tions.

II. BALANCE EQUATIONS FOR QUANTUM DOT
MINIBAND SUPERLATTICES

Consider a superlattice along thez direction, which is
formed by periodical potential wells and barriers of fin
height. In the xy plane there exists an infinitely high
potential wall such that electrons are confined in a sm
cylindrical region of diameterdr . The single-electron stat
of the system can be described by transverse quantum n
bers, a longitudinal miniband index and a longitudinal wa
vector kz (2p/d,kz<p/d, where d is the period of the
superlattice!. We assume that the energy separation betw
in
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the transverse ground and excited states, and the energy
between the longitudinal lowest and second minibands,
large enough, then only the transverse ground state and
longitudinal lowest miniband need be taken into consid
ation. We thus have a quasi-one-dimensional system,
state of which can be described by a one-dimensional w
vector kz , with the energy dispersion, under the tigh
binding approximation, expressed in the form

«~kz!5
D

2
@12cos~kzd!#, ~1!

whereD is the miniband width. When an external ac elect
field with amplitudeEV and frequencyV,

Eext~ t !5EVcos~Vt !, ~2!

is applied in the superlattice direction, i.e., in the moti
direction of electrons within the superlattice miniband. T
self-consists fieldEsc is related to the voltageU across the
superlattice byEsc5U/ l with l the length of the superlattice
The total current densityJ through the superlattice consis
of two parts: the displacement currentj disp5esdEsc/dt ~here,
es is the average dielectric constant for the superlattice! and
the current of ballistic electronsj 52envd , wheree is the
carrier charge,n is the bulk density of carriers, andvd is the
electron velocity. Kirchoff’s equation for the resistivel
shunted superlattice5 is (esdEsc/dt2envd)S1Escl /R50,
i.e.,

dEsc

dt
52

envd

es
2LEsc, ~3!

which provides the circuit contribution to the damping of t
self-consistent field generated by the electron current in
superlattice. In Eq.~3!, L5(RC)21 is the relaxation fre-
quency of the external circuit,R is the resistance of the ex
ternal circuit, andC5esS/ l is the superlattice capacitanc
with S the cross area of the superlattice.

The electric field acting on the electrons,F(t), is the sum
of the external ac fieldEext(t) and the self-consistent field
Esc(t), which incorporates the influence of the circuit and
the repulsive interaction with other electrons on a sin
electron’s dynamics,5 i.e., F(t)5Esc(t)1Eext(t). According
to the balance-equation theory,22 under the influence of elec
tric field F, the carriers in the superlattice are accelerated
the field and scattered by impurities and by phonons, res
ing in an overall drift motion and possible heating of th
carrier system. Such a transport state of the system is
scribed by the center-of-mass momentumPd5Npd (N is the
total number of carriers! and the relative electron tempera
ture Te , and they are determined by the effective force- a
energy-balance equations,21–23

dvd

dt
5eF/mz* 1A, ~4!

dhe

dt
5eFvd2W, ~5!

in which,
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vd5
2

N (
kz

v~kz! f @ «̄~kz!,Te#, ~6!

is the average drift velocity of the electrons withv(kz)
5d«(kz)/dkz the velocity function in thez direction,

he5
2

N (
kz

«~kz! f @ «̄~kz!,Te#, ~7!

is the average electron energy, and

1

mz*
5

2

N (
kz

1

\2

d2«~kz!

dkz
2

f @ «̄~kz!,Te#, ~8!

is an ensemble-averaged inverse effective mass, introd
to describe the response of the electron system to an ext
field. In these expressions,f @ «̄(kz),Te#51/exp„$@ «̄(kz)
2m#/kBTe%11… is the Fermi distribution function at th
electron temperatureTe , m is the chemical potential deter
mined by the condition

N52(
kz

f @ «̄~kz!,Te#, ~9!

and

«̄~kz!5«~kz2pd /\!, ~10!

is the relative electron energy. In Eqs.~4! and ~5! A is fric-
tional acceleration consisting of the impurity- and phono
induced frictional accelerations,Ai and Ap , and W is the
energy-transfer rate from the electron system to the pho
system. They share the same expressions as those giv
Ref. 22, which are completely determined bypd , Te , andm
for a quantum dot miniband superlattice with the known co
fined structure, impurity distributions, phonon mode
electron-impurity potentials, and electron-phonon coupl
matrix elements.

With the miniband energy dispersion relation expres
by Eq. ~1!, the electron density per unit length along thez
directionN1 for the determination of the chemical potenti
m can be written as22

N1d5
1

pE2p

p dz

exp$@~D/2!~12cosz!2m#/kBTe%11
.

~11!

The average drift velocity, the inverse effective mass, a
the average energy of the system can be respectively
pressed as

vd5vma1~Te!sinS pdd

\ D , ~12!

1

mz*
5

1

M*
a1~Te!cosS pdd

\ D , ~13!

he5
D

2 F12a1~Te!cosS pdd

\ D G , ~14!

with vm5Dd/(2\), M* 52\2/(Dd2), and
ed
nal

-

n
in

-
,
g

d

d
x-

a1~Te!5
1

pN1dE2p

p coszdz

exp$@~D/2!~12cosz!2m#/kBTe%11

5

E
2p

p coszdz

exp$@~D/2!~12cosz!2m#/kBTe%11

E
2p

p dz

exp$@~D/2!~12cosz!2m#/kBTe%11

. ~15!

The thermal-equilibrium energy ishe05D/2@12a1(T)#
with T the lattice temperature. In the Boltzmann’s distrib
tion limit ~under the condition of a small carrier density a
a high temperature!, we have a1(Te)5I 1@D/(2kBTe)#/
I 0@D/(2kBTe)# with I 1(x)51/p*0

pcosuexp(xcosu)du and
I 0(x)51/p*0

pexp(xcosu)du the modified Bessel functions
kB is Boltzmann’s constant.

In terms of physical meaning ofpd we assumepdd/\
P@0,p#, then Eqs.~12! and~14! determine one 1 to 1 mapg
from point (pd ,Te) to (vd ,he), i.e., (vd ,he)5g(pd ,Te),
and its inverse mapg21 exists, which we define by
(pd ,Te)5g21(vd ,he), so for given (vd ,he) we can obtain
the only (pd ,Te) from Eqs.~12! and~14!. Therefore, accord-
ing to definitions ofA andW, we can define the momentum
and energy-relaxation frequencies, respectively, by

n1v[2
A~pd ,Te!

vd
52

A@g21~vd ,he!#

vd
, ~16!

n1«[
W~pd ,Te!

he2he0
5

W@g21~vd ,he!#

he2he0
. ~17!

For the calculations that follow, it is convenient to rend
the equations dimensionless. We set the scaling factor
follows: velocity vs5vm , energyhs5D/2, massms5M* ,
frequencyvs5Ae2n/(esM* ), time ts51/vs , electric field
Es5\vs /(ed), electron temperatureTs5hs /kB , momen-
tum ps5\/d, accelerationAs5vs /ts , and energy-transfe
rate Ws5hs /ts . The dimensionless quantities are denot
by: electric fieldE5F/Es , ac amplitudeEv5EV /Es , ve-
locity v5vd /vs , energy«5he /hs , thermal equilibrium en-
ergy«05he0 /hs , timet5t/ts , ac frequencyv5V/vs , cir-
cuit relaxation frequencya5L/vs , momentum- and
energy-relaxation frequenciesnv,«5n1v,1« /vs , acceleration
Ã5A/As , and energy-transfer rateW̃5W/Ws . Then, we ob-
tain the dimensionless equations of Eqs.~3!–~5! as follows

dv
dt

5~12«!E2nvv, ~18!

d«

dt
5Ev2n«~«2«0!, ~19!

dE

dt
52v2aE1 f ~t!, ~20!

in which f (t)5aEvcos(vt)2Evvsin(vt), nv and n« are
calculated from the dimensionless version of Eqs.~16! and
~17!, i.e.,
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nv52
Ã~v,«!

v
, ~21!

n«5
W̃~v,«!

«2«0
. ~22!

Now, we have three ordinary differential equations,~18!,
~19!, and~20!, which describe the motion of the electrons
the miniband superlattice under the influence of the exte
THz field, Evcos(vt), and internal self-consistent field
These equations have the same forms with those given
Alekseevet al. in Ref. 4. The most important difference b
tween them is the input ofnv andn« . In the present balanc
equationsnv and n« are given, respectively, by the micro
scopic frictional accelerationÃ and energy-transfer rat
functions W̃, which are completely determined by th
energy-wave-vector dispersion and scattering constant
materials, while in the Alekseev’s modelnv andn« are sim-
ply two phenomenological constants unrelated to the eq
tions and the material itself. For solving Eqs.~18!–~20!, we
set the initial conditions asv(0)50, «(0)5«0, and E(0)
5Ev , which correspond to the initially unexcited superla
tice just being struck by the incident electromagnetic rad
tion field. For the numerics we use the integrating-one-s
Gill algorithm incorporating adaptive step size, convergen
checking with an accuracy of 1026, and offset of accumula
tion error.

III. STEADY-STATE VELOCITY-FIELD RELATIONS
AND DETERMINATION OF ENERGY-DEPENDENT

RELAXATION FREQUENCIES

To recall how we calculate the frictional accelerationÃ

and energy-transfer rateW̃, as an example, we have calc
lated the steady-state drift velocity as a function of the el
tric field E from the steady-state version of the balance E
tions ~18! and~19! for a GaAs-based quantum-dot miniban
superlattice. Throughout the paper we assume the supe
tice periodd515 nm, well widtha510 nm, transverse di
ameterdr510 nm, low-temperature~4.2 K! linear mobility
m050.1 m2/V s, and the carrier sheet density ofNs51.6
31012 cm22 ~per period! in the transverse plane, corre
sponding to a bulk densityn5Ns /d51.0731018 cm23 or a
line density N1d5p(dr /2)2Ns51.257. Scatterings due t
charged impurities, acoustic phonons~interacting with elec-
trons through deformation and piezoelectric potentials!, and
optic phonons are taken into account in the calculations.
the material constants used here are typical values of
GaAs: mass density 5.31 g/cm3, electron-band-effective
cross massm50.067me (me is the free electron mass!,
transverse sound velocityvst52.483103 m/s, longitudinal
sound velocity vsl55.293103 m/s, LO phonon energy
VLO535.4 meV, low-frequency dielectric constantk
512.9, optical dielectric constantk`510.8, acoustic defor-
mation potentialJ58.5 eV, and piezoelectric constante14
51.413109 V/m. From these given material and superlatti
structural parameters,Ã andW̃ is completely determined a
functions ofpd and Te @see Eqs.~10!–~12! in Ref. 22#. In
Fig. 1 we show the calculated drift velocityv ~in unit of vs)
al

by

of

a-

-
p
e

-
s.

at-

ll
lk

as a function of the steady-state electric fieldE ~in unit of
Es) for the superlattice ofD570 meV at lattice temperature
T54.2, 77, 110, 150, 210, and 300 K, respectively. They
viously show a varying temperature-dependent negat
differential-velocity behavior.

In the recent work by Alekseevet al.,4,5 phenomenologi-
cal constant relaxation frequenciesnv andn« are assumed to
study nonlinear dynamics of the miniband superlattice s
tem driven by a THz electric field. In real superlattices, ho
ever, the relaxation frequencies largely depend on mic
scopic scattering mechanics and superlattice parameters
present balance-equation formulas allow one s
consistently determining this dependence from Eqs.~21! and
~22! as follows. Let pdd/\P(0,p), and set the changing
range of the electron temperature to be:Te /TP(1,160),
which are wide enough for hot-electron regime of the sup
lattice system considered here. Then, with changingpd and
Te arbitrary in the setting range we simultaneously calcul
nv , n« , and« as functions ofpd andTe , respectively, from
Eqs. ~21! and ~22!, and the dimensionless energy«51
2a1(Te)cos(pdd/\) scaled from Eq.~14!. In Fig. 2, we show

FIG. 1. Velocity-field relations calculated from the steady-st
version of the balance Eqs.~18! and ~19! with a self-consistent

treatment of the frictional accelerationÃ and energy-transfer rateW̃
for the quantum-dot miniband superlattice ofD570 meV at differ-
ent lattice temperatures:T54.2, 77, 110, 150, 210, and 300 K, re
spectively. The parameters: superlattice periodd515 nm, well
width a510 nm, transverse diameterdr510 nm, electron shee
density Ns51.631012 cm22, and low-temperature~4.2 K! linear
mobility m050.1 m2/V s, are maintained unchanged throughout t
paper.

FIG. 2. Calculated energy-dependent momentum-relaxation
quenciesnv ~open circles! and energy-relaxation frequenciesn«

~open triangles! for the quantum dot miniband superlattices ofD
530 and 70 meV at different lattice temperatures:T54.2, 77, and
300 K, respectively. The lines are the numerically-fitted results.
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nv ~open circles! andn« ~open uptriangles! as a function of
energy« calculated from Eqs.~21! and~22! for the quantum
dot superlattices of miniband widthD530 and 70 meV at
lattice temperaturesT54.2, 77, and 300 K, respectively. Th
lines in Fig. 2 are the numerically fitted energy-dependennv
~solid line! and energy-dependentn« ~dashed line! by follow-
ing expressions,

nv520.0134910.03919«,

n«520.0664510.21047«20.18995«210.05691«3,

when D570 meV, T54.2 K, ~23!

nv520.0121210.0389«,

n«520.0432410.15058«20.13752«210.04178«3,

when D570 meV, T577 K, ~24!

nv50.0065110.03533«,

n«50.02009, when D570 meV, T5300 K,
~25!

nv50.00488, n«51.8534131024,

when D530 meV, T54.2 K. ~26!

The fitting processes are completed by Polynomial R
gression with the standard deviations less than 1024. As a
check of the accuracy of the analytical expressions, we s
in Fig. 3 the steady-state electron velocity and electron te
perature as a function of electric fieldE at D570 meV and
T5300 K, calculated, respectively, from the originalÃ and
W̃ ~lines! and from the numerically-fitted formulas~25!
~pluses!. A good agreement is found between the two resu
in the full range of the electric field.

Specially, when relaxation frequenciesnv andn« are both
constant as the case ofD530 meV andT54.2 K showed in
Eq. ~26!, a straightforward calculation from the steady-sta
version of Eqs.~18! and ~19! yields the dimensionless d
velocity-field relation,

v52vp

E/Ec

11~E/Ec!
2

, ~27!

FIG. 3. Steady-state electron velocities and electron temp
tures as functions of the electric field for the quantum dot miniba
superlattice ofD570 meV atT5300 K, respectively, calculated

from the original Ã and W̃ ~lines! and by the numerically-fitted
formula ~25! ~open circles! of nv andn« .
-

w
-

s

e

with the critical electric field,Ec5Anvn«, at which the dc
drift velocity peaks, and peak velocityvp5An« /nv/2
•a1(T), so in the regime ofE.Ec there is a negative dif-
ferential velocity. Also, we obtain the zero-frequency dc m
bility for the electric fieldE as

mc[
v
E

5
En«a1~T!

E21nvn«

, ~28!

and the zero-frequency differential mobility as

m0[
dv
dE

5
~E22nvn«!n«a1~T!

~E21nvn«!2
. ~29!

It is obvious that Eq.~27! reduces to the Alekseev’s resu
@see Eq.~6! in Ref. 4# in the Boltzmann limitˆso a1(T)
5I 1@D/(2kBT)#/I 0@D/(2kBT)#‰, and furthermore reduces t
the original Esaki-Tsu’s result in the zero-temperature lim
@so a1(T)[1# and when we choosenv5n«51/t0 with t0
the scattering time. In this regard, it is worth noting that t
generalization of the formula of Esaki and Tsu to finite te
perature and to the case ofnvÞnw describes with reasonabl
accuracy the steady-state transport properties of the m
band electrons in the Fermi distribution.

IV. CHAOTIC DYNAMICS IN THE PRESENCE
OF A THz FIELD

To study the chaotic dynamics from Eqs.~18!, ~19!, and
~20!, we need solve three independent variables: velocityv,
energy«, and electric fieldE, involving three controlling
parameters: ac amplitudeEv , ac frequencyv, and circuit
relaxation frequencya. In principle, we can directly solve
Eqs. ~18!–~20! with a self-consistent treatment ofÃ andW̃
appearing in Eqs.~21! and~22!. However, to do it like this is
very time consuming, thus preventing us from an extens
investigation on different superlattice parameters and lat
temperatures, becauseÃ andW̃ are in the form of multilay-
ered integrals.22 On the other hand, the accuracy of multila
ered numerically-integrating may lead some uncertainty
the obtained results since the solution of a nonlinear dyna
cal system is very sensitive to the numerics employed, so
instead use the numerically fitted energy-depend
momentum- and energy-relaxation frequenciesnv and n«

given by Eqs.~23!–~26! to explore the chaotic dynamics i
quantum-dot miniband superlattices. Since the average e
tron velocityv is the variable most directly related to expe
mental observable, we study the temporal behavior of
superlattice system from the electron velocity. By direc
solving Eqs.~18!–~20! subject to different external ac elec
tric fields, we have found different temporal behavior of t
solutions of the miniband superlattice system, depend
upon the amplitudeEv and frequencyv of the ac field. The
behavior of the solutions observed in our calculations can
referred to the following three types: periodic, chaotic, a
quasiperiodic, which are the typical modes commonly a
pearing in different nonlinear dynamical systems.24 The ‘‘pe-
riodic’’ behavior means that the electron velocity varies p
riodically with just the fundamental frequency or i
subharmonics of the external ac field. The synchronized
cillation of the electron velocity with the external ac field

a-
d
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referred to as ‘‘1:1’’ frequency-locking mode; for the ‘‘cha
otic’’ behavior, the velocity varies erratically and with n
apparent periodicity for as long as we observe it, and it is
behavior in which we are most interested; while the ‘‘qua
periodic’’ behavior is somewhat similar either with the ‘‘pe
riodic’’ or with the ‘‘chaotic’’ states, which are also ofte
encountered in simulations of nonlinear dynamical syste
and can be accurately defined by first return map of the t
series~see the following!. Figure 4 shows the velocityv vs
time t for ac frequencyv50.37 and different ac amplitudes
Ev50.25, 0.55, and 1.83, which respectively correspo
periodic, chaotic, and quasiperiodic solutions for t
quantum-dot superlattice of miniband widthD570 meV at
lattice temperatureT577 K and the circuit relaxation fre
quencya50.0001. To have an overview of the nonline
dynamical properties of the superlattice system, in the
lowing subsections we analyze the behavior of the soluti
for different controlling parameters, by using several diffe
ent methods, such as phase portrait, power spectrum a
sis, first return map, and Lyapunov exponent, which are
ten used in detecting the chaotic characteristics o
nonlinear dynamical system.

A. Lyapunov exponent and Poincare´ bifurcation diagram

Lyapunov exponents have proven to be the most us
dynamical diagnostic tool for a chaotic system, which a
obtained from the average exponential rates of divergenc
convergence of nearby orbits in phase space. Any sys
containing at least one positive Lyapunov exponent is
fined to be chaotic. For the chaotic case ofEv50.55 de-
scribed in Fig. 4~b!, we have calculated the first thre
Lyapunov exponentsl1 , l2, andl3 by using the standard
method and computational programs developed25 for an or-
dinary differential equation system. In the calculations,
time interval used to average Lyapunov exponent istm
5mTac with Tac52p/v the driving period of the ac field
and the maximal time delay, which we calculate is set to
175Tac. The temporal convergenciesl1(tm), l2(tm),
and l3(tm) of the first three Lyapunov exponen
l1,2,3 @[ limm→`l1,2,3(tm)# are shown in Fig. 5. The
asymptotic value of the maximal Lyapunov exponentl1(tm)
for the chaotic case ofEv50.55 is greater than zero~about

FIG. 4. Time-dependent electron drift velocities for th
quantum-dot miniband superlattice ofD570 meV atT577 K, a
50.0001,v50.37, and different ac amplitudes:~a! Ev50.25, ~b!
0.55, and~c! 1.83, which respectively correspond to the period
chaotic, and quasiperiodic solutions.
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0.6!, as it should be. Following that, we study the same
perlattice system as described in Fig. 4 by changing the
amplitudeEv , to clarify the periodic regions and the aper
odic ~quasiperiodic or chaotic! regions in the paramete
space ofEv . For this purpose, we require the help of Poi
caré bifurcation diagram, thus needing to define Poinca´
mapping. We adopt the velocities at timestm5mTac , m
51,2,3, . . . , ~after the transients die out! as the Poincare´
mappings ofEv . For eachEv , if the solutionvm5v(tm) is
aperiodic, we eliminate the first 100 transient points and
pict the next 250 points ofvm as the mappings ofEv . Oth-
erwise we computevm until the solution becomes periodi
within an accuracy of 1024, and depict all thevm as the
mappings ofEv . In the calculations, the parameterEv is
changed from 0.1 to 2.0. The calculated Poincare´ bifurcation
diagram is shown in Fig. 6~a!, and the corresponding firs
three Lyapunov exponentsl1 , l2, andl3 as functions ofEv

are shown in Fig. 6~b! for the superlattice ofD570 meV at
v50.37,T577 K, anda50.0001. The Poincare´ bifurcation
diagram indicates that the bifurcation scenario is quite co
plex, rather than a simple period-doubling cascade co
monly appearing in nonlinear dynamical systems. The tr
sition between periodic and aperiodic states chan
discontinuously with the parameterEv . Even in the periodic
region the bifurcation diagram can be discontinue, such a
the region ofEvP(0.9, 1.1). For small ac amplitudesEv

,0.3 the solutions are ‘‘1:1’’ frequency-locking. AsEv in-

,

FIG. 5. Temporal convergences of the first three Lyapunov
ponentsl1 , l2, and l3 for the chaotic case ofEv51.83 as de-
scribed in Fig. 4~b!.

FIG. 6. ~a! Poincare´ bifurcation diagram and~b! the first three
Lyapunov exponentsl1 , l2, andl3 for the quantum-dot miniband
superlattice ofD570 meV atT577 K, a50.0001, andv50.37.
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creases, the frequency-locking solutions with period 2 an
etc. are observed, and the transitions from the periodic
aperiodic windows occur over a very small range ofEv .
From the Lyapunov exponents shown in Fig. 6~b! we can
clarify the chaotic and quasiperiodic solutions, both havin
large number of points in the bifurcation diagram. For t
chaotic solutionsl1.0, which indicates exponential diver
gence of nearby trajectories; for the quasiperiodic soluti
l150 whent→`; while for the periodic solutionsl1,0.
In general, the bifurcation diagram structures shown in F
6~a! for the quantum dot miniband superlattice driven by
THz field are quite different from those for the miniban
superlattice driven by a GHz field, which are related to
formation and travelling of electric-field domain.14

B. Evolution of solution and velocity-field phase plot

To have a more deeper insight into the time-depend
behavior of the solutions of the miniband superlattice
scribed in Fig. 6, we study in detail six specific cases of
ac amplitudes:~a! Ev50.4225, ~b! 0.6025,~c! 0.6225,~d!
1.79, ~e! 1.83, and~f! 1.895, respectively. In Fig. 7 we plo
the time-dependent velocityv(t) and the corresponding
velocity-field phase plots for the six specific values ofEv .

FIG. 7. Time-dependent electron velocitiesv(t) ~left! and the
corresponding velocity-field phase plots~right! for the six specific
driving amplitudes:~a! Ev50.4225, ~b! 0.6025, ~c! 0.6225, ~d!
1.79, ~e! 1.83, and~f! 1.895, for the quantum dot miniband supe
lattice described in Fig. 6. Periodic:~a! and ~f!, quasiperiodic:~c!
and ~e!, and chaotic:~b! and ~d!.
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From the velocity evolutionsv(t) ~the left of Fig. 7!, we can
clarify periodic and aperiodic solutions, but only from
v(t)-t relation it is difficult to distinguish a quasiperiodi
and chaotic solution from the aperiodic solutions. Howev
this can be done with the help of the phase plot and fi
return maps. Experimentally, the velocity-field phase p
could be measured by depicting the electron velocity a
function of the instantaneous value of external electric fie
Phase plots for the period solutions appear as simple clo
loops @Figs. 7~a! and 7~f!#, those for the quasiperiod solu
tions look more complicated@Figs. 7~c! and 7~e!#, while
phase plots for the chaotic solutions become very m
folder and irregular@Figs. 7~b! and 7~d!#. The Poincare´ map-
pings used to obtain the bifurcation diagram of Fig. 6~a! can
be understood from the phase plots~the right of Fig. 7! as the
successive crossing points of the orbit through the vert
line Evcos(vt)[Ev , corresponding to the timest5mTac
52pm. For n-periodic solution the number of the crossin
points are justn, while for aperiodic solutions those crossin
points are distributed over some interval~or intervals! of the
velocity.

C. First return map and Fourier spectrum

By sampling the electron velocity at timestm5mTac ,
one obtains the data setvm5v(mTac). The first return map
is obtained by plottingvm11 as a function ofvm ~here,m is
large enough such that the transient state dies out!. In the left
of Fig. 8 we show the first return maps for the six specificEv

as described in Fig. 7. It is indicated that the resultant attr
tors forn-periodic solutions are just then separate points@see
Figs. 8~a! and 8~f!#, those for quasiperiodic solutions ar
simple close curves with a regular distribution of the poin
@see Figs. 8~c! and 8~e!#, while the chaotic attractors contai
infinite random points~whenm→`), forming several sepa
rate branches and a multilayered structure with varying d
sity of the points on different regions@Figs. 8~b! and 8~d!#.

Power spectrum analysis is usually considered as an
ditional effective method to detect chaos. We have calcula
by using a fast Fourier transform algorithm and shown pow
spectraP( f ) ~arbitrary unit! in the right of Fig. 8 for the six
specific values ofEv as described in Fig. 7. It can be see
that the power spectra for the periodic solutions@Figs. 8~a!
and 8~f!# are smooth and have few peaks, corresponding
the driving frequencyf ac and its harmonics, those for th
quasiperiodic solutions@Figs. 8~c! and 8~e!# are relatively
complex, while for the chaotic solutions@Figs. 8~b! and 8~d!#
the power spectra become very irregular with a large num
of peaks.

V. DEPENDENCE OF CHAOTIC REGIONS
ON CONTROLLING PARAMETERS

The best overview of the behavior of the solutions of t
superlattice system, chaotic vs periodic, is provided by
two-dimensional phase diagram showing the distribution
chaotic regions where all the maximal Lyapunov expone
are positive as functions of the controlling parameters, d
ing amplitudeEv and driving frequencyv. This kind of
amplitude-frequency phase diagram can give us a clear
sual presentation of the chaotic regions, and has been
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very effectively in studies of chaos in nonlinear dynamic
systems. The two-dimensionalEv-v phase diagrams in thi
work are obtained as follows: for eachEv we changev with
a stepdv50.005 and calculate the maximal Lyapunov e
ponentl1 for each set of (Ev ,v). If l1 is positive thisv is
defined as one of the mappings ofEv , then theEv-v phase
diagram is achieved by depicting all the mappings of e
Ev ~the step ofEv is also set to be 0.005 in the calculation!.
It is obvious that performing such a calculation of the pha
diagram is very time-consuming since we need calculate
maximal Lyapunov exponentl1 for each set of (Ev ,v) to
see if l1.0. In Fig. 9, we present the calculatedEv-v
phase diagram for the GaAs-based quantum dot minib
superlattice ofD570 meV ata50.0001 and different lattice
temperatures:~a! T54.2, ~b! 77, and~c! 300 K, respectively.
Every dot (Ev , v) in the figures stands for a chaotic sol
tion. From Fig. 9 we can see an obvious effect of the latt
temperatureT on the size of the chaotic region whenT is
varied fromT54.2 to 300 K. With the lattice temperatur
increasing, the chaotic region becomes smaller and the q
tative change of the pattern constructions is also obser
The most striking qualitative feature shown in Fig. 9 is t
clear distinction between the left down boundary of the c
otic region, which appears sharply defined, and the up
boundary, which is substantially more diffuse.

FIG. 8. First return maps~left! and the corresponding powe
spectra~right! for the six specific driving amplitudes described
Fig. 7. Periodic:~a! and~f!, quasiperiodic:~c! and~e!, and chaotic:
~b! and ~d!.
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As reported by Ref. 4, we have also found from the c
culations that many of the positive maximal Lyapunov exp
nents are nearly zero, thus they are sensitive to small eff
of the numerics used. It is therefore difficult to be certain
the boundaries between periodic and chaotic behavior.
illustrate the sensitivity to a cutoff on the size of the maxim
Lyapunov exponentl1, we have sorted the chaotic region
by l1 and shown in Fig. 10 the sorted phase diagrams
setting: ~a! l1.0.01, ~b! l1.0.03, ~c! l1.0.04, and~d!
l1.0.05 for the superlattice described in Fig. 9~b!. With the
controlling value ofl1 increasing, the size of the chaot
region decreases successively, and the periodic channel
come apparent. The presence of these periodic chan
within the chaotic region raises the possibility of observi
not only chaos in superlattice but also mode locking to va
ous subharmonics of the driving frequency. However,

FIG. 9. CalculatedEv-v phase diagrams for the quantum d
miniband superlattice ofD570 meV ata50.0001 and different
lattice temperatures:~a! T54.2, ~b! 77, and~c! 300 K, respectively.

FIG. 10. Phase diagrams with different cutoff values of t
maximal Lyapunov exponentl1: ~a! l1.0.01, ~b! l1.0.03, ~c!
l1.0.04, and~d! l1.0.05, for the quantum-dot miniband supe
lattice described in Fig. 9~b!.
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some cases we have found no an apparent periodic cha
within the chaotic regions, as shown in Fig. 11 for the sup
lattice ofD530 meV atT54.2 K anda50.0001. Although
the size of the chaotic region decreases with the control
value ofl1 increasing from 0 to 0.04, the chaotic regions a
always diffuse. The physical origin for the differences of t
pattern constructions of the chaotic regions between Figs
and 11 is not clear so far. It may be related to the ene
dissipation of the electrons in the minibands. In the latter,
energy-relaxation frequency is smaller than the moment
relaxation frequency@see Eq.~26!#.

It is noted that the adjustable constanta, which describes
the relaxation of the self-consistent field and the exter
circuit, can effect the chaotic behavior of the superlatt
system, so we have calculated and shown in Fig. 12
dependence of theEv-v phase diagrams on the parametera
for the superlattice ofD570 meV atT5300 K. When vary-
ing a from 0.0001 to 0.03 the chaotic regions decrease r
idly. Sincea is inversely proportional to the resistanceR of
the external circuit~see Sec. II!, bigger a corresponds to
smaller external resistance. We may expect that, for sma
external resistance, the periodic THz radiation encounte
less damping influence of the resistance, thus playing a
jor role in determining the behavior of the superlattice s

FIG. 11. Phase diagrams with different cutoff values of t
maximal Lyapunov exponentl1: ~a! l1.0, ~b! l1.0.02, ~c! l1

.0.03, and~d! l1.0.04, for the quantum-dot superlattice ofD
530 meV atT54.2 K anda50.0001.

FIG. 12. CalculatedEv-v phase diagrams at differenta: ~a!
a50.0001, ~b! a50.01, ~c! a50.02, and~d! a50.03, for the
quantum-dot superlattice ofD570 meV atT5300 K.
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tem and bringing more easily the electron motion into a
riodic mode.

VI. CONCLUSIONS AND REMARKS

On the basis of the time-dependent balance equations
miniband superlattices and the self-consistent field equat
we have extensively investigated the nonlinear dynam
characteristics of the GaAs-based quantum dot miniband
perlattices driven by the intense THz radiation field in t
form of Evcos(vt) at various lattice temperatures, miniban
widths, and external circuit conditions. With the controllin
parametersEv , v, anda varying in the parameter space, th
quantum dot miniband superlattice system is found to exh
three types of time-dependent behavior: periodic, quasip
odic, and chaotic. For some parameters the solutions are
otic and the bifurcation scenarios are very complex. T
two-dimensional amplitude-frequency phase diagrams
calculated in order to detect and visualize the chaotic regi
in parameter spaces. In the meantime, within the present
ance equations we obtain the dependence of chaotic beh
of the superlattice system on superlattice parameters, la
temperatures, and external circuit conditions, thus provid
a possible tool to control chaos. The modulation and elim
nation of chaos are likely useful in the low-dimensional m
crostructural devices and in the future nanofabricated se
conductor integrated circuits.

The present paper can be regarded as an extensio
Alekseev’s phenomenological balance-equation method4,5 to
a more sophisticated physics-based treatment of chaotic
namics in miniband superlattice, which was proposed as
open question in Ref. 4. The momentum- and energy-bala
equation used here are different from those of phenome
logical balance-equation method4,5 in that in the present
equationsnv andn« are derived with a reasonable accura
from the microscopic frictional accelerationÃ and energy-
transfer rate functionsW̃, which are completely determine
by and easily calculated from the energy-wave vector disp
sion and scattering constants of materials. The microsco
information about energy band structure and scattering p
cess therefore enters into the calculation of the present
ance equations in a self-consistent manner. This allows
to realistically treat the scatterings by impurities, acous
phonons and polar optic-phonons beyond the relaxation-t
approximations.4,5

We should distinguish the present paper from a rec
study by the authors on aN1NN1 miniband superlattice
device driven by a GHz field,14 where we investigated field
domain-induced nonlinear dynamics by using the time- a
space-dependent hydrodynamic balance equat
developed26,27 for spatially-inhomogeneous semiconduct
systems. When theN1NN1 superlattice device is subject t
a dc bias or dc1ac bias with a GHz frequency, the occu
rence of the space charge instability and the formation
electric-field domain make a spatially-inhomogeneous tre
ment of electron transport quite necessary. In the NDV
gime the superlattice can no longer be treated as a spat
homogeneous entity because any small doping/field per
bation can give rise to a large current instability of the ent
superlattice system. However, when applying an intense T
electric field to the superlattice, one can sweep through
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NDV regime with a speed faster than the development of
space charge instability and thus avoid the formation of
electric-field domain. In this way, we can therefore explo
with a spatially uniform treatment, the transport characte
tics of the superlattice under the influence of an intense T
electric field. Both from the model used in the calculatio
and from the results obtained, the present investigations
the chaotic dynamics in quantum dot miniband superlatti
driven by the THz fields are completely different from tho
in the N1NN1 miniband superlattice devices driven by th
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GHz fields, which are related to the dynamics of spatiote
poral electric-field domains.14
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