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Self-consistent theory of shot noise in nondegenerate ballistic conductors
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A self-consistent theory of shot noise in ballistic two-terminal conductors under the action of long-range
Coulomb correlations is presented. Analytical formulas for the electron distribution function and its fluctuation
along the conductor, which account for the Coulomb correlations, have been derived. Based upon these
formulas, the current-noise reduction factor has been obtained for biases ranging from thermal to shot-noise
limits as dependent on two parameters: the ratio between the length of the sample and the Debye screening
length l5d/LD and the applied voltageqU/kBT. The difference with the formulas for a vacuum diode is
discussed.
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I. INTRODUCTION

Recently, significant attention has been focused on
study of nonequilibrium fluctuations of current~shot noise!
in mesoscopic conductors.1 The term ‘‘shot noise,’’ appear
ing originally in the context of pure ballistic electron tran
mission in vacuum-tube devices,2 has acquired nowadays
much broader usage and refers to different mesoscopic s
tures, including diffusive conductors, and resonant-tunne
devices, where the carrier flow exhibits nonequilibrium no
proportional to the electric current.1

A matter of particular interest is the significance of lon
range Coulomb correlations in the noise-reduction effec3,4

Coulomb interactions may keep nearby electrons apart
more regularly spaced rather than strictly at random, wh
leads to the noise reduction, as pointed out by Landau3

This effect occurs in different physical situations. Amo
them are charge-limited ballistic transport, resonant tunn
ing, single-electron tunneling, etc. For the ballistic condu
tors an electrostatic potential barrier is formed near an inj
ing contact. The barrier fluctuates synchronously w
random electron passages through it, which leads to n
reduction, as evidenced recently by Monte Carlo simulati
for semiconductor ballistic diodes.5 In this way, an incoming
Poissonian flow is converted into an outgoing sub-Poisson
flow, exhibiting a motional electron-number squeezing.6 This
effect is similar to that leading to shot-noise suppression
vacuum diodes.7–9 Under the resonant tunneling effect,
built-in charge inside a quantum well affects the position
the resonant level and prevents the incoming carriers f
passing through the well, thereby resulting in carrier cor
lation and shot-noise reduction10–12 in a certain range of
biases.13,14 The Coulomb correlations in these systems
under the coherent as well as under the sequential tunne
regime of the carrier transport. The carrier correlations re
their extreme form of the Coulomb blockade of the electr
transfer under the single-electron tunneling effect, leading
the noise reduction studied theoretically15–20and observed in
experiment.21

All the above-mentioned cases have the common feat
PRB 610163-1829/2000/61~8!/5511~19!/$15.00
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that are necessary for the Coulomb regulation effect
shot-noise reductionin the whole frequency spectrumto oc-
cur: ~i! the existence of a potential barrier inside a device
at the interface with an injecting electron reservoir, whi
controls the current;~ii ! the dependence of the barrier heig
and/or carrier transmission on the current. If no barrier
present, no shot-noise reduction at low frequencies due
Coulomb repulsion is expected. At high frequencies, ho
ever, the noise level may also be affected by Coulomb c
relations due to screening in an external environment.22,23

The potential barrier, which controls the current, appe
in an ordinary situation of the space-charge-limited transp
For ballistic nondegenerate conductors this case has b
treated recently by Monte Carlo simulations5,6 and attracted
some attention in Ref. 24 for degenerate case. For the ca
diffusive nondegenerate conductors, studied by the Mo
Carlo technique in Ref. 25, the self-consistent kinetic the
of noise, which takes into account Coulomb correlations,
been developed recently in Refs. 26 and 27. A similar kine
theory for the ballistic case is lacking.

It is the aim of this paper to address the problem of Co
lomb correlations inballistic conductors and present a se
consistent theory of shot noise in these conductors by solv
analytically the kinetic equation coupled self-consisten
with the Poisson equation. It is important to compare
present noise theory for a semiconductor ballistic diode w
that for a vacuum diode developed long ago.8,9 The main
advance for the latter has been done in the celebrated p
by North published in 1940, where he derived an asympto
formula for the current-noise spectral density at the h
voltage limit.8 Monte Carlo simulations of noise in vacuum
diodes are also available.28–30It should be stressed, howeve
that despite the similarity of the underlying physics~in both
cases the nondegenerate Boltzmann electron gas without
lisions in the electrostatic field is under consideration!, the
case of the semiconductor diode differs by several featu
~i! due to a two-terminal geometry, there are two oppos
currents instead of a single current, which results in differ
current-voltage characteristics at low and moderate biase31

~ii ! the ballistic transport regime is limited by the presence
5511 ©2000 The American Physical Society



lid

r
ds
on

su
la

w
t
o
sc

ib
a
la
x
I

ac
k
o
an
n
nd
ha
ois
m
tic
n
r
in
a

en
uc
lf-

w
ai
er
ar

ro
tu

t
he

o
th

e

o

he

u
d

the
ble
t,
c-

gas

er
e in
and
the
the

vel
ing,
he

ion.
ro-
the

in at
d

tri-

,
icles
ing

in
an

pes

lec-

5512 PRB 61O. M. BULASHENKO, J. M. RUBI´, AND V. A. KOCHELAP
disorder, impurities, etc. Even in a pure and perfect so
carriers may interact with a lattice~phonons!, which at high
biases becomes significant and breaks down the ballistic
gime. This makes it practically impossible to attain in soli
the regime where the known formulas for vacuum electr
ics, such as the Child law forI -V characteristics or North’s
asymptotic formula for the noise, may be applied. This is
will be addressed in the paper, using the derived formu
and considering them in a full range of biases. Finally,
suggest an electron spectroscopy experiment to make
Coulomb correlations effect observable. The possibility
such an experiment is based on recent advances in nano
fabrication techniques and shot noise measurements.34–36

The paper is organized as follows. In Sec. II we descr
the semiconductor ballistic structure and discuss the m
assumptions concerning underlying physics. In particu
the validity of the one-dimensional plane geometry appro
mation for the fluctuation problem is addressed. In Sec.
we introduce the basic equations that describe the sp
charge-limited semiclassical transport: the collisionless
netic equation coupled self-consistently with the Poiss
equation. The steady-state problem is solved in Sec. IV,
the results are compared with the Monte Carlo simulatio
In Sec. V we solve analytically the fluctuation problem a
derive the formula for the current-noise spectral density t
covers the range of biases from thermal to the shot-n
limits. The results for the noise-reduction factor are co
pared with Monte Carlo simulations and North’s asympto
formula for vacuum diodes. The contributions of differe
electron energy groups to the noise are found, and the co
lations in energies for the electrons collected at the receiv
contact are discussed. Finally, Sec. VI summarizes the m
contributions of the paper, and in the Appendix we pres
mathematical details concerning the derivation of the fl
tuations of the electron distribution function in the se
consistent electric field.

II. THE PHYSICAL MODEL

Before proceeding with a discussion of the problem,
will specify the structure under consideration and the m
assumptions concerning the underlying physics. Consid
two-terminal semiconductor ballistic sample with plane p
allel contacts atX50 andX5d ~see Fig. 1!. The contacts,
which we denote byL andR ~left and right!, are assumed to
be heavily doped semiconductors with a contact elect
density much higher than that in the sample. The struc
may then be considered as an-i -n diode operating under a
space-charge-limited current regime in which the curren
determined by a charge injection from the contacts rat
than by intrinsic carriers of the active region.37 Two different
types of the contacts may be considered depending
whether the contact and the sample are fabricated of
same or different material. For the former case the diod
composed of two homojunctions@Fig. 1~a!#, while for the
latter, it is composed of two heterojunctions with a jump
the conductance band«c at the contact-sample interface@Fig.
1~b!#. The underlying physics is similar if in both cases t
contact doping is such that the Fermi level«F is sufficiently
below the edge of the conduction band in the sample. In s
a case, only the tail of the distribution function is injecte
,
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which leads to the nondegeneracy of the electron gas in
ballistic part of the diode. The theory is therefore applica
to quantum heterostructures with over-barrier transpor38

where current is determined by a tail in the distribution fun
tion ~ballistic-injection, real-space-transfer devices, etc.!, as
well as for the homodiode with a nondegenerate electron
in the contacts.

In order to simplify the problem, we assume that und
the range of biases of interest, due to the large differenc
the carrier density between the contacts and the sample,
hence in the corresponding Debye screening lengths, all
band bending occurs in the ballistic base, and therefore
relative position of the conduction band and the Fermi le
«c2«F does not change in the contacts. For such a model
all of the potential drop takes place exclusively inside t
ballistic base between the positionsX50 andX5d in Fig. 1,
and the contacts may be excluded from the considerat
This assumption is better fulfilled for the case of the hete
junctions because of much higher electron densities in
contacts.

The carriers inside the contacts are assumed to rema
thermal equilibrium, and their injected part is distribute
over the energy according to the Maxwell-Boltzmann dis
bution function at lattice temperatureT. For the ballistic part
of the diode, we suppose

lw!d&lp , ~1!

with lw the electron wavelength andlp the mean free path
so that electrons may be considered as classical part
moving ballistically between the contacts and interact
with each other electrostatically. This regime is accessible
modern device fabrication technologies for which the me
free pathlp may be as high as 104–105 nm in modulation-

FIG. 1. Schematic band-energy diagram for an-i -n ballistic
diode under a space-charge-limited conduction. Two different ty
of the contacts are shown:~a! homojunctions;~b! heterojunctions.
Shadowed regions illustrate the energy distribution function of e
trons at the contact-sample interfaces.
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PRB 61 5513SELF-CONSISTENT THEORY OF SHOT NOISE IN . . .
doped structures~for instance, in GaAs/AlxGa12xAs at low
temperatures39,40! and;103 nm in the purest bulk material
whereas the Fermi wavelength is about 40 nm.

Next we assume that the transversal size of the diod
sufficiently thick~much larger than the screening lengthLD).
This allows us to treat the steady-state electrostatic prob
as a one-dimensional one in the plane geometry. Howeve
use the same one-dimensional consideration for the fluc
tion problem, we need an additional justification. The flu
tuating current is determined by a random transmission
discrete electron charges of the amount ofq. Essentially, this
discreteness of charge transmission together with rand
ness leads to the shot noise. In principle, each single elec
while transmitted between the contacts disturbs the elec
field and thereby interacts with other electrons of the curr
flow in both longitudinal and transversal directions. T
electrostatic screening in such a problem is thr
dimensional. Nevertheless, we shall treat the problem a
one-dimensional one considered in the plane geometry
averaging the fluctuations over the transversal directio
This is justified if the average distance between the exc
~fluctuating! carriers in transversal direction is much smal
than the characteristic scale of the electrostatic poten
variation in that direction. This condition may be written

L'
2 dA^dn2&@1, ~2!

whereL' is the transverse characteristic scale,n is the typi-
cal electron density in the ballistic region, anddn its fluc-
tuation. To estimate the order of magnitude of the fluctuat
dn, we use Poissonian statistics, leading to the rela
^dn2&;n/(L'

2 d). Thus, the condition~2! becomesnL'
2 d

@1. The scaleL' depends on the ratio between the longi
dinal dimensiond of the sample and the Debye screeni
lengthLD in the active region. For nondegenerate electro
the latter is defined asLD5AkkBT/(q2n), with k being the
dielectric permittivity andkB the Boltzmann constant. To
estimate the magnitude ofL' , we distinguish two different
cases:~i! Weak screening,d&LD : For this caseL';d,41

and condition~2! becomesn@d23, which for d;300 nm
requiresn@1014 cm23. ~ii ! Strong screening,d@LD : For
this caseL';LD , and condition~2! becomesn@LD

22d21.
After the substitution of the expression for the screen
length, it is seen that this condition becomes independen
n, although it requires a sufficiently long sample,d
@q2/(kkBT);2a0(E0 /kBT), wherea05k\2/(mq2) is the
effective Bohr radius andE05q2/(2ka0) is the effective
Rydberg energy in the material. For GaAs,a0
'10 nm, E0'5 meV, which corresponds to the temper
ture of about 60 K. Then forT;10 K, d@120 nm, which
is supposed to be fulfilled. On another hand, the condition
strong screening requiresd@LD , which leads to the condi
tion on the electron density

n@
kBT

E0

1

2a0d2
. ~3!

For the same set of parameters, one getsn@231014 cm23.
Therefore, for both cases of weak and strong screening, t
is a requirement on the minimal electron density or, equi
lently, on the minimal density of the injection current
is
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order to use the one-dimensional electrostatic screening
ture for the fluctuations. Otherwise, each carrier perturbs
electrostatic potential independently and the thr
dimensional approach is needed. On the other hand, the
sumption of the nondegenerate electron gas restricts our
proach by a maximum electron concentration dependen
T. For temperatures in the range 10–77 K, these maxi
concentrations are estimated to be in the range 331016 to
631017 cm23. These estimates show that the approach
dertaken below covers a wide range of typical diode para
eters: electron concentrations, diode lengths, and temp
tures.

III. BASIC EQUATIONS

A semiclassical space-charge-limited transport in a ba
tic conductor is completely described by the electron dis
bution function F(X,vx ,t) and the electrostatic potentia
w(X,t). Here,vx is theX component of the electron velocit
and t is the time. The potentialw(X,t) inside the sample is
determined by the distribution of space charge from the P
son equation

d2w

dX2
5

q

k
N~X,t !, ~4!

with the boundary conditions

w~0,t !5wL , w~d,t !5wR . ~5!

The voltage bias between the contactsU5wR2wL is as-
sumed to be fixed by a low-impedance external circuit. T
electron densityN(X,t) at any planeX is determined by
integrating the local electron distribution function over v
locities

N~X,t !5E
2`

`

F~X,vx ,t !dvx , ~6!

whereas the current in the external lead is given by9

I ~ t !52
qA

d E
0

dF E
2`

`

vxF~X,vx ,t !dvxGdX1C0

]U

]t
, ~7!

whereC05kA/d is a capacitance andA the cross-sectiona
area. Due to a fixed-applied-voltage condition, in what f
lows we shall neglect the last term in Eq.~7! coming from
the displacement current contribution. In addition, for si
plicity, we shall omit the minus sign for the current, which
opposed to the direction of electron flow. Moreover, as w
be shown below, the current is conserved along the sam
due to the conservation of electron energy under balli
motion ~this is true for both the stationary current and
fluctuation!. Therefore, the integration overX becomes
trivial and it will be disregarded.

Under ballistic motion the distribution function
F(X,vx ,t) obeys the collisionless kinetic equation

]F

]t
1vx

]F

]X
1

q

m

dw

dX

]F

]vx
50, ~8!
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wherem stands for the electron effective mass. The distrib
tion functions injected from the contacts electrons are
sumed to be given as

F~0,vx ,t !uvx.05FL~vx ,t !,

~9!
F~d,vx ,t !uvx,05FR~vx ,t !.

The kinetic equation~8! with the electrostatic potential de
termined self-consistently from Eqs.~4! and~6! are known as
the Vlasov system of equations42 describing the dynamica
screening of the interaction in plasma.43

Equation~8! may also be expressed as

dF

dt U
tra jectory

50, ~10!

sinceF is constant along an electron trajectory, i.e., the d
tribution function at any planeX can be expressed throug
the functionsFk(vx ,t), k5L,R defined at the boundaries
Each of these functions is considered to consist of two ter
a stationary part describing the stationary injection an
time-varying stochastic component. Explicitly,

Fk~vx ,t !5F̄k~vx!1dFk~vx ,t !, k5L,R. ~11!

Under nondegenerate and equilibrium conditions in the c
tacts, we assume for the stationary part of the injection fu
tion the half-Maxwellian distribution

F̄k~vx!5
2N0

v0Ap
e2vx

2/v0
2

~12!

with vx.0 for k5L and vx,0 for k5R. Here,N0 is the
density of electrons injected from the contacts andv0

5A2kBT/m is the thermal velocity. The contact distributio
functions~12! are normalized in such a way that the integ
tion over a half-velocity space yields the density of electro
injected from the contact

N05E
vx.0

F̄L~vx!dvx5E
vx,0

F̄R~vx!dvx . ~13!

The stochastic termsdFk , k5L,R in Eq. ~11! are the
only sources of noise under ballistic transport conside
here, since the electron motion between the contacts is no
less. Their equal-time correlation, due to equilibrium con
tions, is given by44

^dFk~vx ,t !dFk8~vx8 ,t !&5CF̄~vx!@12F̄~vx!#

3dkk8d~vx2vx8!, ~14!

where the constantC is determined from the normalizatio
condition. Since the injected electron gas is nondegene
F̄!1, and the factor 12F̄ will be ignored.

As a consequence of the fluctuations inside the cont
~whose origin is ultimately the carrier scattering process!,
both the electron distribution function and electrostatic p
tential in the ballistic sample fluctuate, leading to the curr
fluctuations. These quantities will be presented as a sum
stationary and fluctuating contributions:F(X,vx ,t)
-
s-

-

s,
a

-
c-

-
s

d
e-

-

te,

ts

-
t
of

5F̄(X,vx)1dF(X,vx ,t), N(X,t)5N̄(X)1dN(X,t), w(X,t)
5w̄(X)1dw(X,t), andI (t)5 Ī 1dI (t).

Introducing the Fourier transform for the fluctuations
the distribution function dFv(X,vx) and the potential
dwv(X), the kinetic equation takes on the form

2 ivdFv1vx

]dFv

]X
1

q

m

dw̄

dX

]dFv

]vx
1

q

m

]F̄

]vx

ddwv

dX
50,

~15!

with the boundary conditions at the contacts

dFv~0,vx!uvx.05dFL
v~vx!,

~16!
dFv~L,vx!uvx,05dFR

v~vx!,

wheredFL
v and dFR

v are the Fourier transforms of the sto
chastic functions from Eq.~11!. The equation for the fluctu-
ating potentialdwv is trivially obtained from Eqs.~4! and
~6!,

d2dwv

dX2
5

q

eE dFv~X,vx!dvx , ~17!

the boundary conditions for which follows from Eq.~5!,

dwL
v~0!50, dwR

v~d!50. ~18!

Below we restrict ourselves to the calculation of the lo
frequency plateau of the noise spectrum; thus one can o
the term proportional tov in Eq. ~15!. It can be shown that
this approximation is valid if the shortest fluctuation peri
in dFk(t) is considered to be sufficiently greater than t
average electron transit timetT across the diode, i.e.,v
!tT

21 . Thus, the above self-consistent equations comple
describe the stationary transport and low-frequency fluct
tions in the ballistic sample, and below we shall omit t
index v.

It is advantageous to rescale all the variables as follow

w5
vx

v0
, x5

X

LD
, c5

qw̄

kBT
~19!

n5
N̄

2N0
, f 5F̄

v0

2N0
, d f 5dF

v0

2N0
.

In such units the basic equations contain only tw
dimensionless parameters:~i! the length of the sample
~or the screening parameter! l5d/LD

0 , where LD
0

5AekBT/(2q2N0) is the Debye screening length corr
sponding to the electron density 2N0, and ~ii ! the applied
voltage biasV5qU/(kBT). Below we use the dimensionles
variables in all the equations.

IV. STEADY-STATE PROBLEM

The calculation of fluctuations in the ballistic conduct
requires the knowledge of the stationary distribution of el
trostatic field, which, in turn, can be determined by solvi
the full steady-state problem. The self-consistent steady-s
problem can be solved as follows. First, we solve the stati
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ary collisionless kinetic equation for the distribution functio
f (x,w)

w
] f

]x
1

1

2

dc

dx

] f

]w
50 ~20!

at a given electrostatic potentialc(x). Integrating f (x,w)
over w, we then find the electron density profilen(c) in
terms of the potentialc(x). Then we should solve the Pois
son equation

d2c

dx2
5n~c!, ~21!

with the boundary conditions

c~0![cL50, c~l![cR5V. ~22!

Here, we set the zero value of the potential at the left cont

A. Stationary distribution function

To solve the stationary kinetic equation~20!, we have to
specify the boundary conditions for this equation at a giv
c(x). Generally, thenonstationarykinetic equation~8! and
the distribution functions~9! of injected electrons completel
determine the nonstationary solutionf (x,w,t). However, the
steady-stateequation ~20! requires a specification of th
boundary conditions for the distribution function of all th
electrons: thoseinjected from the contacts into the samp
and thoseleaving the sample. Let the space charge in t
sample be such that a potential minimumcm occurs atx
5xm , which acts as a potential barrier for electrons. W
define the total electron energy« t5w22c(x). For a given
potential, the distribution function should consist of t
terms originating from two electron streams injected by
left and right contacts. Electrons injected from each of
contacts fall into two groups depending on their injecti
energies. If the initial energy is higher than the height of
barrier, electrons obviously reach the opposite contact
contribute to the electric current. These electrons are no
flected back. Note that the height of the barrier is differe
for the electrons injected from the left and right contacts. F
those injected from the left, it iscL2cm5Vm , which is the
potential minimum depth, while for those injected from t
right, it is cR2cm5V1Vm ~see Fig. 1!. Accordingly, the
lower bounds for the velocities of thetransmittedelectrons
are given by

wL5AcL2cm5AVm,
~23!

wR5AcR2cm5AVm1V.

Electrons of the second group, which we shall call there-
flectedelectrons, are reflected by the barrier and do not c
tribute to the current~however, both groups affect the ele
trostatic potential!. An electron from the second group bein
injected with a velocityw returns to the contact with th
opposite velocity of the same value2w. Taking into account
the above consideration, the electron distribution funct
f (x,w) at any planex may be written as

f 5 f L,t1 f L,r1 f R,t1 f R,r , ~24!
t.

n

e
e

e
d

e-
t
r

-

n

where the indicesL andR refer to the left and right contacts
and the indicest and r distinguish the transmitted and re
flected groups of carriers, respectively. The boundary con
tions for these functions read

f L,t~0,wc!5 f L~wc!u~wc2wL!,

f L,r~0,wc!5 f L~wc!u~wL
22wc

2!,

~25!

f R,t~l,wc!5 f R~wc!u~2wc2wR!,

f R,r~l,wc!5 f R~wc!u~wR
22wc

2!,

wherewc is thex velocity component of injected electrons
the contacts,u is the Heaviside step function, and the dist
bution function of injected electrons is determined by E
~12!, which in dimensionless units reads

f L~wc!5 f R~wc!5
1

Ap
e2wc

2
. ~26!

We can solve now the collisionless kinetic equation~20!
explicitly for a given potential profilec(x). Indeed, one can
easily see that its solution is an arbitrary function depend
on the total electron energyF(« t)5F„w22c(x)…. The
boundary conditions~25! determine the shape of this func
tion. By using the electron-energy conservation law

w22c~x!5wc
22ck , k5L,R, ~27!

wherewc andck are the parameters at the contacts, we
cludewc in the boundary conditions~25! and obtain the con-
tributions in the distribution function as

f L,t~x,w!5
1

Ap
u„w2w* ~x!…e2w21c(x)2cL, ~28a!

f R,t~x,w!5
1

Ap
u„2w2w* ~x!…e2w21c(x)2cR, ~28b!

f k,r~x,w!5
1

Ap
u„w

*
2 ~x!2w2

…e2w21c(x)2ck, ~28c!

wherek5L,R, and the functionsf L,t and f R,t for the trans-
mitted electrons are defined in the whole range 0,x,l,
whereas the expressions for the reflected electronsf L,r and
f R,r are valid in the intervals 0,x,xm and xm,x,l, re-
spectively. In Eqs.~28! we have introduced the quantity

w* ~x!5Ac~x!2cm, ~29!

which has a meaning of the maximal velocity of reflect
electrons at a pointx. For the sake of clarity, in Fig. 2 we
show the electron trajectories in the phase space (x,w) cor-
responding to different electron groups. It is worth stress
that the distributions~28! depend on the local potentialc(x)
and the potential minimumcm as well, i.e., the distribution
function dependsnonlocallyon the potential profile.

Summing up all the contributions~28!, the total distribu-
tion function takes on the form
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f ~x,w!5
1

Ap
e2w21c(x)3H e2cL, w>7w* ~x!

e2cR, w,7w* ~x!.
~30!

Here, and throughout the paper, we shall use the upper
for the left side of the potential minimum 0,x,xm and the
lower sign for the right side of the potential minimumxm
,x,l. It is seen that the obtained distribution function
discontinuous onw at the points wherew5w* (x) ~see also
Fig. 7 discussed below!. It is not surprising, since only a
discontinuous solution can satisfy the first-order equat
~20! and simultaneously two different arbitrary function
given at the boundaries.

B. Electron density

The distribution function~30! allows us to find the elec
tron density at a slicex as

n~x!5
1

Ap
ec(x)Fe2cLE

7w
*

(x)

`

e2w2
dw

1e2cRE
2`

7w
*

(x)

e2w2
dwG

5
1

2
ec(x)

„e2cL$16erf@w* ~x!#%

1e2cR$17erf@w* ~x!#%…, ~31!

where erf(x)5(2/Ap)*0
xe2u2

du stands for the error func
tion. By using the values for the potential~22! at the contacts
and denoting

b1511e2V, b2512e2V, ~32!

the electron density can be written as a function ofc,

n~c!5
1

2
ec@b16b2 erf~Ac2cm!#, ~33!

FIG. 2. Typical electron trajectories in the phase space (x,w)
for different electron groups:L andR refer to the carriers originated
from the left and right contacts, andt andr refer to the transmitted
and reflected groups of carriers. The separating curves are the
cal velocities6w* (x), which intersect at the point of the potenti
minimum (xm,0). The results are forl530, V510.
gn

n

where, as before, the upper sign applies in the interva
,x,xm and the lower sign applies in the intervalxm,x
,l. Note that in equilibrium,V50, b152, b250, the
Boltzmann distributionn(x)5ec(x) is recovered throughou
the sample. Furthermore, Eq.~33! is valid for a single-
injection ~vacuum! diode, assumingb15b251.8,9

In the following we shall use the shifted potential me
sured from the minimum

h~x!5c~x!2cm , ~34!

and Eq.~33! in terms of the new variableh becomes

n~h!5nmeh@16b erfAh#, ~35!

wherenm5 1
2 b1e2Vm is the electron density at the potenti

minimum, and

b[
b2

b1
5tanhS V

2 D . ~36!

C. Steady-state electrostatic potential

Having found the analytical expression forn(c), we have
to use it to solve the Poisson equation~21!. Multiplying both
sides of Eq.~21! by dc/dx and integrating, one gets

S dc

dxD 2

52E
cm

c

n~ c̃ !dc̃, ~37!

where we have used the property of the potential minim
(dc/dx)ux5xm

50. Changing to the shifted-potential variab

h and carrying out the integration, one gets

l m
2 S dh

dxD 2

5hV
7~h!, ~38!

where 1/l m
2 52nm5b1e2Vm and the function

hV
7~h!5eh216bS eh erfAh2

2

Ap
Ah D , ~39!

depends on the applied voltageV through b. Taking into
accountdh/dx,0 for 0,x,xm and dh/dx.0 for xm,x
,l, the electric field is given by

E52
dh

dx
5HAhV

2~h!/ l m , 0,x,xm

2AhV
1~h!/ l m , xm,x,l

~40!

which is measured in units ofkBT/qLD
0 . Integrating Eq.

~38!, one obtains the distribution of the potential in an im
plicit form,

x55 l mE
h

hL dh

AhV
2~h!

, 0,x,xm

l2 l mE
h

hR dh

AhV
1~h!

, xm,x,l

~41a!

~41b!

where the boundary conditions forh(x) are

h~0![hL5Vm , h~l![hR5Vm1V. ~42!
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For the givenV,l, the only unknown parameter in Eqs.~41!
is the potential minimumVm . The latter is found by match
ing Eq. ~41! at x5xm , whereh(xm)50, and one gets

lm~V!5E
0

Vm(V) dh

AhV
2~h!

1E
0

Vm(V)1V dh

AhV
1~h!

, ~43!

where

lm5lA2nm ~44!

is the screening parameter renormalized to the electron
sity at the potential minimum rather than to the contact el
tron density as before.

D. Steady-state current

This brief description of the steady state is then comple
by the expression for the stationary current. Substituting
distribution function into Eq.~7! and changing the variable
with the help of Eq.~27! aswdw5wcdwc , one obtains

Ī 52ApI cF E
w* (x)

`

f L,t~x,w!wdw1E
2`

2w* (x)
f R,t~x,w!wdwG

52ApI cF E
wL

`

f L,t~0,wc!wcdwc2E
wR

`

f R,t~l,wc!wcdwcG ,
~45!

where

I c5
1

Ap
qN0v0A5qN0v̄A ~46!

is the emission current from each contact~limiting value for
the total current at V→`, Vm→0) and v̄5v0 /Ap
5A2kBT/(pm) is the average velocity of the injected ele
trons with the half-Maxwellian distribution. Only the part o
the distribution function corresponding to the transmitt
electrons has been taken into account, since the refle
carriers gives no contribution to the current.@This is in con-
trast to the case of the calculation of the electron density~31!
for which both transmitted and reflected carriers contribu#
It is seen from Eq.~45! that the current is the same for an
sectionx of the sample, given by its value at the inject
contacts. Substituting the functions~25! into Eq. ~45! and
carrying out the integration, we obtain the current as a s
of two opposing currents:I LR andI RL caused by the injection
from the left and right contacts, respectively,

Ī 5I ce
2Vm2I ce

2Vm2V[I LR2I RL . ~47!

The formula for the current may be written through the el
tron density at the potential minimum, that is,

Ī 52nmI cb5qNmv̄A tanhS qU

2kBTD , ~48!

whereNm52N0nm . This formula justifies the usage of th
term ‘‘virtual cathode’’ referred to the location of the pote
tial minimum, since it is seen that the current is determin
by the injection of the electron densityNm from the virtual
cathode. The additional tanh( ) factor takes into account
n-
-

d
e

ed

.

m

-

d

e

injection in the opposite direction, and it tends to 1 atqU
@kBT. ~For the vacuum diode case, this factor is set to
because of only one injecting contact.!

Summarizing this section, we note that the above relati
solve completely the steady-state problem for the ballis
two-terminal conductor: Eqs.~41! determine the distribution
of the potential across the diode in an implicit form, and E
~43! and ~47! determine the current-voltage characteristi
Note that in Eq.~47! the current depends on voltage throu
both the explicit terme2V and the potential minimumVm ,
which is a function of voltage. Equations~33!, ~39!–~43!,
and~47! may be viewed as an extension of the Fry-Langm
theory for a single-injection vacuum diode45–47 to the
double-injection case. The Fry-Langmuir formulas are o
tained by settingb15b251, I RL50.

E. Results

Figure 3 shows the typical spatial distributions of the p
tential c, electric fieldE, and electron densityn along the
diode obtained from Eqs.~35!, ~40!, ~41!, and~43!. With the
aim to compare our theory with the results of the Mon
Carlo simulations,48 we present the spatial profiles for th
value ofl530.9 and various applied biasesV. As it is seen
from the figure, the agreement is excellent for all the qu
tities.

The space-charge-limited conduction is characterized b
strong transport inhomogeneity in the ballistic region and
the presence of the potential minimum@Fig. 3~a!# due to the
injected space charge. The minimum acts as a barrier for
electrons moving in both directions. Its magnitude progr

FIG. 3. Spatial profiles for the normalized quantities:~a! poten-
tial c, ~b! electric fieldE, and~c! electron densityn ~all solid lines!
for l530.9 and several applied biasesV. The corresponding units
are kBT/q, kBT/qLD

0 , and 2N0. The results are shown to be i
excellent agreement with the Monte Carlo simulations~Ref. 48!
~symbols!.
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sively decreases as the applied bias is increased, sim
neously shifting towards the left contact on which the pot
tial is fixed.

The obtained solutions are determined by two dimensi
less parameters:l andV. The spatial distributions, howeve
may be presented in a more universal form by using
scaling the potential minimum parameters. We define
new coordinatex5(x2xm)/ l m , where the characteristi
length l m5(2nm)21/2, dependent on the electron density
the potential minimum, has been introduced in Sec. IV
This is equivalent to scale the original coordinateX in units
of the screening length referred to the electron density at
potential minimum rather than to the contact electron d
sity. In such a unit, the parameterl is scaled away from the
equation for the potential, remaining only in the upper a
lower bounds of the function variation. Explicitly, Eq.~41!
becomes

x55 2E
0

h

@dh/AhV
2~h!#, 2xm / l m,x,0,

E
0

h

@dh/AhV
1~h!#, 0,x,~l2xm!/ l m .

~49!

Therefore, all the solutions may be presented as a o
parameter family of curves dependent on the applied biaV
only. Moreover, at high-voltage limitV*5, b→1, the func-
tions hV

6(h) become independent of bias, and the spa
distributions tend to the limitinguniversal profilesfor each
quantity which are free from any parameter. This is valid
all the spatial characteristics as it is seen from Fig. 4, wh
the potentialh5c2cm , the electric fieldElm , and the elec-
tron densityn/nm are plotted. Moreover, at this limit the pa
of each profile atx,0 tends to vanish~the potential mini-

FIG. 4. Profiles for the steady-state quantities in units of
potential-minimum parameters:~a! potential,~b! electric field, and
~c! electron density. The limiting universal profiles atV→` are
shown by solid lines.
ta-
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e
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mum approaches the left contact!, which leads to the validity
of the virtual-cathode approximation with the boundary co
dition E(0)50. The universal profiles obey the asympto
behavior at x→`: h(x)5 3

4 ax4/3, Elm52ax1/3, n/nm
5 2

3 ax22/3, wherea5(3/p)1/3'0.9847. Going back fromx
to thex coordinate, and using the Child law~54!, which will
be discussed below, one can obtain the asymptotic form
for the potential profileh(x)5V(x/l)4/3, x→`. The latter
is valid not only for the present nondegenerate-electron-
model, but for an arbitrary distribution function of the in
jected electrons, providedV→`, l→` ~virtual-cathode
approximation!.49 The related formulas forE(x), n(x) may
also be obtained by taking the derivatives.

The choice of the potential minimum parameters as re
ence coordinates is of traditional use in vacuum-dio
literature.8,9,46Since only one contact~cathode! is considered
as injected for these diodes,b51 for any bias, and the uni
versal potential profile independent of the diode parame
is obtained for any bias, as it was tabulated in the origi
work by Langmuir.46 For the case of the two-terminal sem
conductor diode, that universality is broken at low and mo
erate biases due to the contribution to the current from
second injecting contact, but it is recovered however at h
biasesV→` when the influence of the second contact b
comes negligible, as it is demonstrated in Fig. 4. We rem
additionally that the virtual-cathode approximation is on
valid when besidesV→` another condition is fulfilled si-
multaneously,V,Vcr . Otherwise, the transport is no longe
limited by the space charge, the current saturates atĪ 5I c ,
and the value of the electric field at the left injecting conta
is no longer zero,E(0),0. This change in the transpo
regime is clearly seen in Fig. 5, where the current and
components coming from two opposite electron flowsĪ
5I LR2I RL versus biasV are plotted for a particular value o
l. It is seen that the current is an increasing function of
bias up to the critical valueVcr , after which it is saturated a
Ī 5I c . At that point the potential minimum vanishes. ForV
&5 the contribution to the current from the right-conta
electrons is also essential.

The I -V curves for different levels of screening are show

e

FIG. 5. Current and its components coming from two oppos

electron flowsĪ 5I LR2I RL ~in units of I c) vs biasV for l550. The
height of the potential barrierVm , and its locationxm /l are also
shown.



e

es

a

ta

e
e

la

tic

ld
m

u-
f
-
the
di-
ing
s,
n-
es

e of
pti-
ich
e
ong
-
by

is

the

trong

u-

.
g

k

riv-

o

pe

di
on
lt

e-

PRB 61 5519SELF-CONSISTENT THEORY OF SHOT NOISE IN . . .
in Fig. 6. We have checked that the obtained solutions ar
excellent agreement with the Monte Carlo simulations48 ~the
case ofl530.9 is compared in the figure!.

The analysis shows the following behavior. At low bias
the I -V curves are linear for alll despite the fact that the
transport is space-charge-limited. The curves for this case
described by

I lin'I cVe2Vm
0
, V&1, ~50!

whereVm
0 is the equilibrium value of the potential minimum

whose value depends onl. In the range 1&V&10 the I -V
curves deviate to sublinear dependence. At high biases, s
ing approximately atV'5 whereb→1, the effect of injec-
tion from the second contact becomes negligible,I RL!I LR
~see also Fig. 5!. Furthermore, forV@Vm@1 the analytical
solution may be found. In this regime, the functionh1(h)
may be approximated by leading-order terms of a series
pansion in a similar way as in the case of a vacuum diod47

h1~h!'2Ah/p21, h→`. ~51!

In this regime from Eq.~41b! one can write

l2xm' l mE
p/4

V1Vm dh

~2Ah/p21!1/2
, ~52!

from which by using l m'1/AJ follows the Langmuir
formula9,46,47

I Lang5
8

9
ApI c

~V1Vm!3/2

~l2xm!2 F11
3

A~4/p!~V1Vm!
G . ~53!

In Fig. 6 we present the curves calculated from this formu
and they are seen to describe accurately theI -V characteris-
tics for the highest biases. For higherl, the range of biases
where this formula may apply is wider. In the asympto

FIG. 6. Current-voltage characteristics for different levels
screeningl obtained as solutions of the present theory~diamonds!.
For comparison, the approximate solutions are shown: linear de
dences given by Eq.~50! ~solid!; Langmuir formula given by Eq.
~54! ~dots!; the Child 3/2-power law given by Eq.~53! ~dashes!;
parameterb, shown by long dashes, when approaching to 1 in
cates the bias (V'5) over which the effect of the second contact
I -V curves becomes negligible. Monte Carlo simulation resu
~Ref. 48! for l530.9 are shown by squares.
in

,

re

rt-

x-

,

limit V→`, l→`, one may neglectxm and Vm as com-
pared tol and V, respectively, and one obtains the Chi
3/2-power law, which is free from the potential minimu
parameters

I Child5
8

9
ApI c

V3/2

l2
. ~54!

It is seen from the figure, that this asymptotic formula acc
rately describes theI -V curves only at very high values o
the parameters:l*103, V*103. However, as we have dis
cussed earlier, there is a relevant difference between
semiconductor and vacuum ballistic diodes. In vacuum
odes the applied voltage may be quite large without break
down the ballistic transport regime. In contrast, in solid
electrons even for a pure material interact with a lattice. U
der a low-bias regime this interaction is weak, but it becom
quite strong at high biases due to the significant increas
the electron energy. For instance, the threshold for the o
cal phonon generation in GaAs is about 0.036 eV, wh
corresponds toV'40 atT;10 K. Thus, one cannot bias th
sample to the voltage more than that value, since a str
interaction with the lattice will break down the ballistic re
gime. The allowed range of biases is typically restricted
U&50kBT/q. Then, for real structures the ballistic lengthsl
is well below 100. Therefore, the Child 3/2-power law
hard to achieve in semiconductor ballisticn-i -n diodes, and
one should use the full set of formulas described in
present paper from which follows the linear or sublinearI -V
dependences in a wide range of biases even under a s
limitation of transport by a space charge.

Finally, Fig. 7 illustrates the stationary electron distrib
tion function over velocitiesf (w) at different sections of the
diode for several biasesV. The distribution functions are
discontinuous atw5w* (x) sgn(x2xm), as discussed in Sec
IV A. It is interesting to note that at high biases the arrivin
electrons at the right~receiving! contact exhibit a sharp pea
separated in energy from the intrinsic contact electrons@Fig.
7~d!# and thus may be distinguished in an experiment.50,51

While the injected carriers are uncorrelated, electrons ar

f

n-

-

s

FIG. 7. Electron distribution function over dimensionless v
locities f (w) at different sectionsx of the diode for several biasesV
andl530.
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ing at the receiving contact that belong to that peak exh
correlations in energy. This interesting result will be d
cussed in Sec. V H.

V. FLUCTUATION PROBLEM

We will find here the fluctuations of the distribution fun
tion, electron density, electrostatic potential, and curren
the ballistic region of the diode, which are caused by
fluctuations in the contacts. To solve the fluctuation probl
~15!–~18! self-consistently, we undertake the same appro
as used above for the steady-state problem. First, we ca
late the fluctuation of the distribution functiond f in a given
electrostatic potentialc(x)1dc(x) by solving the perturbed
kinetic equation

w
]d f

]x
1

1

2

dc

dx

]d f

]w
1

1

2

] f

]w

ddc

dx
50. ~55!

The solutions ford f (x,w) for different groups of electrons
are derived in the Appendix, where we also present the
responding electron density fluctuationsdn(x) obtained by
integration over velocities. The fluctuationsdn, which are
the functions ofdc and the contact fluctuationsd f L and
d f R , should then be substituted into the perturbed Pois
equation

d2dc

dx2
5dn~x! ~56!

with the boundary conditions

dc~0!5dc~l!50 ~57!

to find the self-consistent fluctuations of the potentialdc.
The fluctuations of the distribution functions of injecte

electronsd f L andd f R are supposed to be given by the co
relator ~14!. It is advantageous, however, to express th
through the injected current fluctuations. For each inject
energy«[wc

2 , their relationship is given by

dI k~«!5ApI cd f k~«!, k5L,R, ~58!

where dI k is the low-frequency Fourier component of th
injection current fluctuation, andI c is the mean emission
current defined by Eq.~46!. The correlator fordI k is ob-
tained from that fordFk given by Eq.~14!, and one gets

^dI k~«!dI k8~«8!&52qIcD f e2«dkk8d~«2«8!, ~59!

with D f the frequency bandwidth. The obtained correla
shows that the electrons with different energies are unco
lated, which is a consequence of the Poissonian injec
statistics. The fluctuations at the left and right contacts
assumed to be uncorrelated as well.

A. Injected electron-density fluctuations

The electron-density fluctuations at a slicex caused by
stochastic injection from the contacts is obtained by su
ming up all the contributions~A15! derived in the Appendix.
In terms of the injected current fluctuations~58!, we obtain
the following expression:
it
-

n
e

h
u-

r-

n

n

r
e-
n

re

-

dnin j~x!5
1

2ApI c
(

k5L,R
E

ck2cm

` dI k~«!d«

A«1c~x!2ck

1
1

ApI c 5 E
cL2c(x)

cL2cm dI L~«!d«

A«1c~x!2cL

, 0,x,xm

E
cR2c(x)

cR2cm dI R~«!d«

A«1c~x!2cR

, xm,x,l.

~60!

B. Induced electron-density fluctuations

The electron-density fluctuations induced at a slicex by
the fluctuations of the potential is obtained by summing
all the contributions~A16!, and one gets

dnind~x!5n~x!dc~x!6
J

2Apw* ~x!
@dc~x!2dcm#,

~61!

where J[ Ī /I c , and the upper sign applies in the interv
0,x,xm and the lower sign applies in the interv
xm,x,l. This term along with the term~60! should then be
used in the perturbed Poisson equation.

C. Current fluctuations

The expression for the fluctuation of the current in a
section of the sample is given by

dI 52ApI cE
2`

`

d f ~x,w!w dw. ~62!

Now we have to substitute into Eq.~62! the fluctuation of the
distribution function, which is convenient to consider here
a sum of the homogeneous and nonhomogeneous parts o
solution of the kinetic equation@see Eq.~A4! in Appendix#.
The contribution of the nonhomogeneous term is zero, wh
can be easily checked by direct integration of Eq.~A7!. The
homogeneous term consists of the transmitted and refle
parts given by Eqs.~A6!. Again, the reflected electrons giv
zero contribution to the current fluctuations, since the fu
tions ~A6b! are even onw, so that the integrand~62! is an
odd function and its integration from2` to ` yields zero.
The only nonzero contribution comes from the terms~A6a!
for transmitted perturbing electrons. Substituting them in
Eq. ~62! and changing the variable of integration fromw to
wc , we obtain

dI 52ApI cF E
wL

`

d f L~wc!wcdwc1E
2`

2wR
d f R~wc! wc dwcG

1I ce
cm~e2cL2e2cR!dcm ~63!

from which it is seen that the current fluctuation is indepe
dent of the positionx. By using the definition for the injected
current fluctuation~58! and the formula~47! for the average
current, the final expression for the current fluctuation ta
on the form
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dI 5E
Vm

`

dI L~«!d«2E
Vm1V

`

dI R~«!d«2 Ī dVm , ~64!

wheredVm[2dc(xm) is the potential minimum fluctuation
dI depends on the magnitude of the fluctuating potential b
rier irrespective of its random location. This is a conseque
of the current conservation along the diode.

Equation~64! is a central one, which determines the flu
tuation of the transmitted current through the fluctuatio
injected from the contacts. The first two terms in the r
represent the current fluctuations transmitted directly to
opposite contact from the left and right contacts, resp
tively. Since the injected electrons of different energies
uncorrelated, they give the full shot noise. It is the last te
2 Ī dVm , caused by the self-consistent potential fluctuat
~long-range Coulomb correlations!, that compensates th
current fluctuation and may result in the noise reduction.
note, first, that it is proportional to the current and thus ex
only under nonequilibrium conditions. Second, it depends
the potential barrier fluctuationdVm . When the barrier does
not appear under certain conditions, all the injected fluct
tions are transmitted to the opposite contact and the nois
the transmitted current is expected to be the same as tha
the injected carriers, i.e., the full Poissonian shot noise.
compensating behavior may occur only when the poten
barrier is present. Notice that the contributions of the le
and right-injected fluctuations are of the opposite sign, i
dI L.0 increases the fluctuation of the transmitted curre
while dI R.0 decreases it.

Among all the injecting perturbing electrons, only tho
able to pass over the potential barrier contribute to the tra
mitted current fluctuation. This fact is reflected in the low
integration limits that contain the height of the potential b
rier. In constrast, all the injected electrons contribute to
potential barrier fluctuations, and thereby participate in
compensation effect, as it will be shown in the next secti

D. Self-consistent potential fluctuations

We find the potential barrier fluctuationdVm , which is of
prime interest, from the linearized Poisson equation~56! for
the potential fluctuationsdc. By substituting the electron
density fluctuationsdn consisting of the injected and induce
contributions found in Secs. V A and V B, we obtain for th
self-consistent potential fluctuations

d2dc

dx2
5dnind~x!1dnin j~x!

5n~x!dc~x!6
J

2Apw* ~x!
@dc~x!2dcm#1dnin j~x!.

~65!

This is a second-order nonhomogeneous differential equa
with spatially dependent coefficients, where the termdnx

in j ,
dependent on the fluctuations at the contactsdI k @see Eq.
~60!#, plays the role of a stochastic noise source. To find
solution in a general form is a complicated problem. In a
dition, we remark that the term with 1/w* (x) is singular at
the potential barrier minimumx5xm which produces an ad
r-
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ditional difficulty. Nevertheless, we will show that it can b
solved exactly without any approximation. First of all, it
advantageous to introduce a new stochastic quantity

dhx5dc~x!2dcm , ~66!

which is the potential fluctuation at a slicex measured from
the fluctuatingpotential minimum. Thus, due to our choic
at the potential minimumdhxm

50, wherexm5xm
0 1dxm is a

stochastic location of the potential minimum fluctuatin
around its steady-state positionxm

0 . The latter fluctuation,
however, may be neglected, since it is only of second or
in respect to the potential fluctuations, because of the pr
erty of the minimumc8(xm

0 )50. Thus, one gets the stocha
tic differential equation

L̂dhx[F d2

dx2
2n~x!7

J

A4ph~x!
Gdhx

52n~x!dhL1dnin j~x!. ~67!

The boundary conditions for this equation follows from Eq
~57! and ~66!:

dhL5dhR52dcm . ~68!

Since the potentialdhx is referenced to the fluctuating min
mum, its values on the contacts are not zero, while in
stationary frame they are zero due to a fixed-applied-volt
conditions.

To find the solution of Eq.~67!, we use a method we hav
recently applied for a stochastic drift-diffusion equatio
which has a similar form.52 Essentially, this method is base
on the possibility of finding two~arbitrary! linearly indepen-
dent solutions of the corresponding homogeneous equa
L̂dhx50, which can further be used to construct the solut
for the nonhomogeneous equation satisfying the appropr
boundary conditions. One of the solutions is proportional
(dc/dx), which can be seen by differentiating the Poiss
equation~21! and comparing the result with Eq.~67! with
zero rhs. For convenience, we take it asE(x)52(dc/dx)
so the solution coincides with the electric field profile.
general,52 the second solution can be obtained from the fi
one by using the formulau(x)5E(x)*C

x @W(y)/E2(y)#dy,
whereW(x)5E(x)u8(x)2E8(x)u(x) is the Wronskian,C
is an arbitrary constant, the prime stands for the derivat
andE(x)Þ0, ;x is assumed. However, this formula cann
be applied for our problem, sinceE(x)50 precisely at the
point of the potential minimum and the integral diverge
Alternatively, we use another formula for the second solut
u which has no divergence in the whole region. Explicitly

u~x!52
W~x!

E8~x!
1E~x!E

C

xW~y!Q~y!

@E8~y!#2
dy, ~69!

where the functionQ(x)52n(x)7J/A4ph(x) is a free
term in the operatorL̂, and the necessary conditionE8(x)
Þ0 is fulfilled. Next we notice that the differential operato
L̂ given by Eq.~67! does not contain the term with the firs
derivative, which leads to the constant Wronskian. The va
of this constant is not actually important, since it will b
canceled as will be seen below, so we takeW(x)51. The
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arbitrary constantC in Eq. ~69! does not influence the fina
results. It is convenient, however, to define it by the con
tions u(0)5u(l)50 at the ends of the diode, which corr
spond to the homogeneous boundary conditions for
Green functions of the operatorL̂ and provide the most com
pact intermediate expressions. To satisfy the zero boun
conditions on both ends of the diode, one can take the fu
tion u(x) as consisting of two branches. As a result,
obtain the following expression:

u~x!5
1

n~x!
1E~x!

35 E
0

xJn~y!1n~y!

n2~y!
dy2

1

nLEL
, 0,x,xm

E
x

lJn~y!2n~y!

n2~y!
dy2

1

nRER
, xm,x,l,

~70!

wheren(x)[1/A4ph(x) andn(x) andE(x) are the steady-
state spatial profiles of the electron density and electric fi
which take the values at the left and right contactsnL ,EL
and nR ,ER , respectively. The functionu(x)>0 is continu-
ous in the entire region 0,x,l, including the point of the
potential minimum, where it takes the valueu(xm)51/nm .
At that point, however, it has an infinite derivative, which
a consequence of the zero of the field.

The general solution of Eq.~67!, satisfying the boundary
conditions~68! and the conditionsE(xm)50, dhxm

50, then
reads

dhx5E~x!E
0

x

u~y!dsy dy1u~x!E
x

xm
E~y!dsy dy

1dhL

E~x!

EL
, 0,x,xm , ~71a!

dhx52E~x!E
x

l

u~y!dsy dy2u~x!E
xm

x

E~y!dsy dy

1dhL

E~x!

ER
, xm,x,l, ~71b!

wheredsx5n(x)dhL2dnin j (x) is the nonhomogeneous pa
of Eq. ~67!. Thus, one can find the potential fluctuationdhx
at any sectionx of the sample. In particular, its value at th
boundaries yields the potential barrier fluctuationdVm
5dhL . We find the unknowndhL from the continuity con-
dition on the derivativeddh/dx at x5xm :

dhLF 1

ER
2

1

EL
G5E

0

l

u~x!dsxdx. ~72!

Now recalling thatdhL has entered also inds, we obtain

dVm5
1

DE0

l

u~x!dnin j~x!dx, ~73!

with
i-

e

ry
c-

d,

D5
1

EL
2

1

ER
1E

0

l

u~x!n~x!dx. ~74!

The last integral can further be reduced by substitutingn5
2dE/dx and the expression foru(x) given by Eq. ~70!.
Integrating by parts, one gets the simple formula

D5
l

2
1

1

EL
2

1

ER
. ~75!

The obtained analytical expression~73! with the parameterD
given by Eq.~75! yields the fluctuation of the barrier heigh
in terms of the spatially distributed ‘‘noise source’’dnin j (x)
caused by the random injection from the contacts. T
weight functionu(x) shows the relative contributions of th
‘‘noise sources’’ to the potential barrier fluctuations. Its b
havior is illustrated in Fig. 8, where we presentu normalized
to 1/nm as a function of the coordinatex5(x2xm)/ l m . In
such a scaling for a fixed voltage,u(x)nm is almost indepen-
dent ofl with a slight deviation at the ends of the functio
extension. An interesting property of those functions for d
ferent biases is that they cross the curvenm /n(x) ~the in-
verse universal density profile as discussed in Sec. IV E! at
two characteristic points: the potential minimumx50 where
du/dx5`, and at the maximum ofu(x) ~see Fig. 8!. The
latter point has significance in that the electron-density fl
tuations there have the largest influence on the poten
barrier fluctuations. It is worth noting that the maximum co
tribution todVm does not come from the potential minimu
location, as it would seem intuitively.

E. Current noise spectral density

Substituting the obtained formula~73! for dVm into Eq.
~64!, we obtain the current fluctuation as

dI 5E
0

`

gL~«!dI L~«!d«1E
0

`

gR~«!dI R~«!d«, ~76!

FIG. 8. Functionu(x) which shows the relative contributions o
the noise sourcesdnin j (x) to the potential barrier fluctuations fo
l5100 and for several biasesV. The potential minimum is located
at x50.
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gL~«!55 22JE
0

xL* K~x,«!dx, «,Vm

12JE
0

l

K~x,«!dx, «.Vm ,

~77!

gR~«!55 22JE
xR*

l

K~x,«2V!dx, «,Vm1V

212JE
0

l

K~x,«2V!dx, «.Vm1V,

~78!

whereK(x,«)5u(x)/@2ApDA«1c(x)#, andxL* andxR* are
found from «52c(xL* )5V2c(xR* ). The functionsgk(«)
introduced for each contact have the meaning ofcurrent fluc-
tuation transfer functions, since they represent the ratio o
the transmitted current fluctuation to the injected curr
fluctuation for a particular injection energy«. The terms pro-
portional to the currentJ originate from the potential mini-
mum fluctuations, whereas the constant contributions (61)
represent the direct transmission of fluctuations to the op
site contact.

Equation~76! leads to the spectral density of current flu
tuations

SI52qIcE
0

`

@gL
2~«!1gR

2~«!#e2«d«. ~79!

This equation withgk(«) given by formulas~77! and~78! is
the final result of our derivations. It allows us to obtain t
current-noise spectral density, for the given level of scre
ing l and applied voltageV, from the steady-state distribu
tions of the potentialc(x), electric fieldE(x), and electron
density n(x) by direct integration. Thus, the current-noi
level is directly related to the transport inhomogeneity in
system. Note that the obtained formulas are exact for bia
ranging from thermal to shot-noise limits under a spa
charge-limited transport conditions.

For practical calculations of the transfer functionsgk(«),
one may integrate by parts the functionK in formulas~77!
and ~78!, which leads to the following expressions corr
sponding to each group of carriers:

gL,r~ «̃ !52
b

2Dm
E

2 «̃

hL G~h,«̃ !

@hV
2~h!#3/2

dh, «̃,0, ~80a!

gL,t~ «̃ !512
b

2Dm
H E

0

hL H~h,«̃ !

@hV
2~h!#3/2

dh

1E
0

hR H~h,«̃ !

@hV
1~h!#3/2

dhJ , «̃.0, ~80b!

gR,r~ «̃ !52
b

2Dm
E

V2 «̃

hR G~h,«̃2V!

@hV
1~h!#3/2

dh, «̃,0, ~80c!

gR,t~ «̃ !5gL,t~ «̃2V!22, «̃.0, ~80d!
t

o-

-

e
es
-

where«̃5«2Vm is the injection electron energy reference
from the potential minimum,

Dm[
D

l m
5

lm

2
1

1

AhV
2~hL!

1
1

AhV
1~hR!

, ~81!

H~h,«̃ ![
2

Ap
@Ah1 «̃2A«̃ #, ~82!

G~h,«̃ ![
4

Ap
Ah1 «̃. ~83!

Formulas~80a! and ~80b! with b51 correspond to the for-
mulas for a vacuum diode found by North within differe
approach@see Eqs.~31! and ~38! of Ref. 8#.

F. Nyquist equilibrium noise

In equilibrium, Ī →0, the compensating termĪ dVm in Eq.
~64! vanishes, and, comparing with Eq.~76!, the transfer
functions are simply the step functions with a step at
barrier height: gL

eq(«)5u(«2Vm), gR
eq(«)52u(«2Vm).

This means that only electrons able to pass over the ba
contribute to the equilibrium~thermal! noise. For this case
one can easily obtain the Nyquist noise formula

SI
eq54qIce

2Vm
0
54kBTg0 , ~84!

whereg05d Ī /dUuU→0 is the zero-bias small-signal condu
tance.@To find the conductance we have made use of
~47!.# Both electron streams, from the left and right contac
equally contribute to the Nyquist noise. The space-cha
effect on the equilibrium noise is present in the depende
of g0 on the potential minimumVm .

G. Noise-reduction factor

The obtained formula~73! for the current-noise spectra
densitySI , which accounts for the long-range Coulomb co
relations, may be compared with the uncorrelated va
through the so-called noise-reduction factor. Out of equil
rium, if one neglects the termIdVm in Eq. ~64!, which is
responsible for the long-range Coulomb correlations betw
the carriers, one obtainsgL

uncor(«)5u(«2Vm), gR
uncor(«)

52u(«2Vm2V), which leads to

SI
uncor52q~ I LR1I RL!52q Ī coth~V/2! ~85!

'2q Ī , V*5,

which is nothing more than the Poissonian noise of two
correlated streams of carriers opposite each other~at high
voltages the contribution from the right-contact stream
comes negligible!. It is reasonable, therefore, to define th
noise-reduction factor by

G5
SI

SI
uncor

5
SI

2q Ī coth~V/2!
. ~86!

By this definition, both the thermal noise and shot noise li
its are included.5
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Figure 9 showsG versus applied voltageV for various
screening parametersl. At low values of l, the noise-
reduction effect is weak,G'1. As l increases, the nois
becomes substantially reduced in the range of biaseskBT
&qU,qUcr , whereUcr is a critical voltage for which the
potential minimum vanishes~its value is a function ofl). At
U>Ucr the full shot-noise level is abruptly recovered. Th
sharp increase in the noise intensity when observed in
experiment would indicate on the disappearance of the
tential barrier controlling the current.

We have compared our results for the noise reduc
factor with those obtained by the Monte Carlo simulation5

The agreement was found to be perfect within numer
uncertainty of the Monte Carlo algorithm, as it is seen fro
Fig. 9 where we show such a comparison forl530.9. The
agreement for the noise characteristics, as well as for
steady-state spatial profiles andI -V curves, indicates the cor
respondence between our kinetic theory and the Monte C
model used in Refs. 5, 6, and 48.

An advantage of our analytical approach is that, in ad
tion to the net noise characteristics, one may distinguish
relative contributions to the noise from different groups
carriers. In Fig. 10 we present the results for the noi
reduction factorG as a sum of four contributions. It is see
that in equilibrium only the transmitted electrons contribu
to the noise~equally from the left and right contacts!. In the
range 1&V&10, the contribution from the reflected carrie
becomes appreciable with a maximum atV'3. At higher
voltages, as the potential barrier progressively decreases
role of the reflected carriers becomes less important.
contribution of the right-contact transmitted electrons is n
ligible at V*5, as for the stationaryI -V characteristics. As a
result, in the high-voltage limit, only the left-contact tran
mitted electrons contribute to the noise. This fact can
taken into account in analyzing the asymptotic behavior
the noise-reduction factor at high-voltage limit. In this lim
the main contribution to the current fluctuation transfer fun
tion comes fromgL,t . Under the conditionVm!V,Vcr ,
which is easy to satisfy at largel, the first integral in Eq.
~80b! is much less than the second one, so that the contr

FIG. 9. Current-noise reduction factorG vs biasU for different
levels of screeningl5d/LD

0 ~solid!. For comparison, North’s
asymptotic solution given by Eq.~89! is shown~dots!. For the case
of l530.9, the results are shown to be in excellent agreement
the Monte Carlo simulations~Ref. 5! ~triangles!.
n
o-

n

l

e

lo

i-
e

f
-

the
e
-

e
f

-

u-

tion to the noise from the region before the virtual catho
may be neglected. Furthermore, at sufficiently highl, Dm

' 1
2 l/ l m' 1

2 lAJ. Thus, one can write

gL,t~ «̃ !'12
1

lAJ
E

0

V H~h,«̃ !

@hV
1~h!#3/2

dh

'12
p1/423/2V3/4

lAJ
F1

3
1S 3

4
Ap2A«̃ DV21/2G ,

~87!

where we have taken into account that the main contribu
comes at the upper integration limit and made use of
asymptotic expansion of the functionhV

1 given by Eq.~51!.
It is also assumed here that for any fixed energy the bia
high,V@ «̃. It is justified since the range of valuable energi
is limited by the Maxwellian exponentially decaying distr
bution. Now, substituting the Langmuir expression~53! for
the current and neglectingxm andVm , one obtains

gL,t~ «̃ !'
3

AV
SA«̃2

Ap

2 D . ~88!

This formula, after the integration over the energies, lead
North’s asymptotic formula8 for the noise-reduction factor:

G'
9

V S 12
p

4 D'
1.9314

V
, V→`. ~89!

This formula is universal in the sense that it is free from a
diode parameter including the screening parameterl. How-
ever, it is assumed thatl should be sufficiently high to sat
isfy the simultaneous conditionsV→` andV,Vcr . As it is
seen from Fig. 9, the noise-reduction factorG approaches
this asymptotic formula at high values of the parametersl
*103, V*103. As we have already noted, in semicondu
tors it is hard to maintain the ballistic regime at biasesV
*50 because of the increasing significance of electr
phonon interactions, which destroy the ballistic regime.
the range of interest 1&V&50 the noise level is seen to b
significantly lower than North’s asymptotic curve. Th

th

FIG. 10. Contributions to the current-noise-reduction factorG
corresponding to different electron groups for the case ofl550. L
andR refer to the left and right contacts, andt andr distinguish the
transmitted and reflected groups of carriers. North’s asymptotic
lution is shown by dots.



ri
tic

fo
oi
er

/o
a
ig

pa
n-
fe

le

m
ia
ef
ov
t

ni
n
s

u

te

u
e
he

b-
n

ion
ntial
l
n of
of

in
ar-
in

fol-
e

d
l-

-
tact,
the
e

ed
rent

y
ero
d
-

e
qs.

can

on

en
t
t-

PRB 61 5525SELF-CONSISTENT THEORY OF SHOT NOISE IN . . .
means that the full set of formulas are necessary to desc
properly the noise intensity in the semiconductor ballis
diodes. Another important conclusion from Fig. 9 is that
a nondegenerate electron gas there exists the lowest n
reduction level dependent only on the bias and the temp
ture through the factorqU/(kBT), and it is impossible to
surmount it by any choice of the material parameter and
geometrical parameters of the diode. This universal minim
noise curve approaches North’s asymptotic curve at h
voltages.

H. Spectroscopy of shot noise

A great advantage of the derived formula~79! for the
current-noise spectral density is that one may obtain the
tial contribution to the noise from electrons of different i
jection energies by computing the current fluctuation trans
functionsgk(«). The electrons for whichgk(«),0 reduce
the current fluctuations. For instance, the right-contact e
trons always reduce them, sincegR(«),0, ;«. The re-
flected carriers originated from the left contact («,Vm) also
provide negative values for the transfer function and co
pensate the current fluctuations by virtue of the potent
barrier fluctuations. The same effect is produced by the l
contact transmitted electrons with the energies slightly ab
the barrier heightVm . From both groups, the most efficien
compensation carriers are those with energies in the vici
of Vm wheregL→2`.53 They provide an overcompensatio
of the injected from the contacts fluctuations. In constra
the injected electrons whose energy greatly exceedsVm pro-
duce negligible perturbations of the potential barrier, th
leading to the asymptotic behaviorgL(«)→1, gR(«)→21
as«→`. There also exists the specific energy«* , for which
the compensation fluctuation is exactly equal to the injec
fluctuation, giving no noise at all,gL(«* )50. This curious
fact is illustrated in Fig. 11 where we present the contrib
tion to the current-noise spectral density from different en
gies of electrons injected from the left contact by plotting t

FIG. 11. Partial contributions to the current-noise spectral d
sity from different energies« of electrons injected from the lef
contact for biasesV50.01; 10; 50. The results for the righ
contact electrons are approximately the same forV50.01 and neg-
ligibly small for V510 and 50.
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function gL
2(«)e2«. At high biases, just after the peak at«

5Vm , the point with zero contribution to the noise is o
served. While at equilibrium the maximum contributio
comes from the carriers injected with«5Vm , at high biases,
when the noise reduction is significant, the main contribut
comes from the electrons that are injected above the pote
barrier height by the value aboutkBT. Therefore, the integra
noise-reduction effect is a consequence of the suppressio
the contributions from the electron energies in the vicinity
«* .

The obtained exact solutions allows us to investigate
great detail the correlations between different groups of c
riers. While the injected carriers are uncorrelated, those
the volume of the conductor are strongly correlated, as
lows from the derived formulas for the fluctuation of th
distribution function @see general expressions~A12! and
~A13! in the Appendix#. Those correlations may be observe
experimentally by making use of a combination of two a
ready realized techniques: a hot-electron spectrometer50,51

and shot-noise measurements.34–36 The electron spectrom
eter, placed behind the receiving semitransparent con
acts as an analyzer of electron distribution over
energy.50,51In this way spectroscopic information, that is, th
average partial currentsĪ ( «̃) and their fluctuationsdI ( «̃),
may be measured for different energies«̃ of electrons col-
lected at the contact. This is similar to the energy-resolv
noise measurements realized in Ref. 54. The partial cur
of the transmitted electrons at the receiving~right! contact is
given by Ī ( «̃)5I ce

2 «̃2Vmu( «̃), where the threshold energ
«̃50 corresponds to the arriving electrons that have a z
longitudinal kinetic energy at the potential minimum. To fin
the fluctuationdI ( «̃), we consider the fluctuation of the dis
tribution function d f (x,w) at x5l. Since dc(l)50, the
terms withdc(x) vanish. Thus, for the transmitted over th
barrier electrons which contribute to the current, from E
~A12a! and ~A13a! one obtains

d f L,t~l,w!5d f L~l,w!u~w2wR!

2
1

Ap
e2w21VdVm

1

2w
d~w2wR!. ~90!

Since only the positive velocities are considered, one
change the velocity variable to the energy by«̃5w22wR

2 ,
and obtain

d f L,t~ «̃ !5d f L~ «̃1Vm!u~ «̃ !2
1

Ap
e2 «̃2VmdVmd~«̃ !.

~91!

By using the relation~58! between the fluctuation of the
contact distribution function and that of the contact injecti
current, we obtain

dI ~ «̃ !5dI L~ «̃1Vm!u~ «̃ !2I ce
2VmdVmd~«̃ !. ~92!

Thus, the correlator for the current fluctuations becomes

-
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^dI ~ «̃ !dI ~ «̃8!&ux5l5^dI L~ «̃1Vm!dI L~ «̃81Vm!&

2I ce
2Vmd~«̃8!^dI L~ «̃1Vm!dVm&

2I ce
2Vmd~«̃ !^dI L~ «̃81Vm!dVm&

1I c
2e22Vmd~«̃ !d~ «̃8!^dVm

2 &, ~93!

where the average is taken over the injected fluctuations.
clear that for«̃,«̃8.0 the carriers remain uncorrelated sin
only the first term does not vanish. It is}d( «̃2 «̃8) due to
the imposed injection conditions that should lead to the
shot noise. In such a case, an interesting question ar
What is the reason for the noise reduction obtained for
total ~integrated over the energies! current fluctuations? The
answer is found looking at the electrons with energies cl
to the threshold energy«̃50 ~‘‘tangent’’ electrons!. All
other electrons are anticorrelated with that group. This me
that if there is a positive fluctuation of overbarrier electro
there should be a negative one for the ‘‘tangent’’ electro
and vice versa. This anticorrelation explains the overall no
reduction. The tangent electrons can be thought as over
related. The dispersion̂dI 2( «̃)& has a sharp peak at«̃50
and then decreases with energy at«̃.0. This peak is diver-
gent (d-shaped! in our collisionless theory. A small probabi
ity of scattering will lead to its broadening and finite magn
tude. Therefore, by measuring the dispersion of the pa
current fluctuations and/or their cross-correlations, one m
observe a sharp peak and an anticorrelation of electrons,
making the Coulomb correlations effect visible.

VI. SUMMARY

In conclusion, we have presented a self-consistent the
of electron transport and noise in a ballistic two-termin
conductor under the conditions of nondegenerate elec
gas. Our description is valid for ballistic electrons in soli
as well as in vacuum. By solving analytically the kinet
equation coupled self-consistently with a Poisson equat
we have derived the electron distribution function and
fluctuation at arbitrary sectionx of the conductor. This al-
lowed us to obtain the steady-state spatial distributions of
transport characteristics, theI -V curves, and the noise cha
acteristics. While the time-averaged quantities are not
fected by the Coulomb correlations, the noise characteris
are demonstrated to be drastically modified when those
relations are taken into account. Our results are in excel
agreement with the preceding Monte Carlo simulations.5,48

The obtained formulas have been analyzed in a w
range of biases and compared with the correspondent th
for the vacuum diode. In particular, we have demonstra
that the known formulas for vacuum electronics, such as
Child 3/2-power law for I -V characteristics or North’s
asymptotic formula for the noise may not be applied for
semiconductor diode at biases that are relevant for the
listic transport regime. Instead, one should use the more
eral formulas described in the present paper from which
lows ~i! the linear or sublinearI -V dependences even under
strong limitation of transport by a space charge;~ii ! a noise
level significantly below the level obtained from North’s fo
mula; ~iii ! the sharp recovering of the full shot-noise level
is
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a certain critical voltage;~iv! all the transport and noise cha
acteristics determined by two dimensionless parameters
screening parameterl5d/LD

0 and the biasqU/kBT.
Based on the derived formula for the current-noise sp

tral density one may distinguish the relative contributions
the noise from different groups of carriers. We have analy
the contributions coming from the transmitted and reflec
groups of carriers, as well as the partial contributions to
noise from electrons of different injection energies. Final
it should be noted that the analytical approach that we h
presented in the paper may be extended and applied to
ous systems, e.g., for different kind of statistics of injecti
electrons49 and other types of the contacts. On the oth
hand, the shot-noise suppression effect, which we treat
lytically, may lead to important applications for low-nois
small-size semiconductor devices, generators of s
Poissonian light sources,55 etc. Our work then offers new
perspectives on the study of Coulomb interactions and n
in small-size ballistic devices, such as ballistic transisto
point contacts, etc.

ACKNOWLEDGMENTS

We are grateful to T. Gonza´lez and L. Reggiani for fruit-
ful collaboration on the Monte Carlo investigation of th
present problem. This work has been partially supported
the Dirección General de Ensen˜anza Superior, Generalitat d
Catalunya, Spain, and the NATO linkage grant HTECH.L
974610.

APPENDIX: FLUCTUATIONS OF THE DISTRIBUTION
FUNCTION AND ELECTRON DENSITY

In a similar way to the subdivision of the stationary di
tribution function~24! into the components corresponding
different groups of electrons classified in Sec. IV A, the flu
tuationd f (x,w) may be expressed as

d f 5d f L,t1d f L,r1d f R,t1d f R,r . ~A1!

The boundary conditions for these functions are obtained
perturbing the steady-state boundary conditions~25! and us-
ing ]wk /]cm52(2wk)

21. One gets

d f L,t~0,wc!5d f L~wc!u~wc2wL!

1
1

2wL
f L~wc!d~wc2wL!dcm , ~A2a!

d f L,r~0,wc!5d f L~wc!u~wL
22wc

2!2 f L~wc!d~wL
22wc

2!dcm ,
~A2b!

d f R,t~l,wc!5d f R~wc!u~2wc2wR!

2
1

2wR
f R~wc!d~2wc2wR!dcm , ~A2c!

d f R,r~l,wc!5d f R~wc!u~wR
22wc

2!

2 f R~wc!d~wR
22wc

2!dcm , ~A2d!
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where the additional terms proportional todcm describe the
changes in the distribution functions due to the potential b
rier variation.

Now we have to solve the perturbed kinetic equation~55!,
which may be rewritten as

S w
]

]x
1

1

2

dc

dx

]

]wD d f ~x,w!52
1

2

] f

]w

ddc

dx
, ~A3!

where the rhs is supposed to be a given function~for this step
of calculations!. A general solution of this nonhomogeneo
partial differential equation is a sum of a solution of t
homogeneous problem and a particular solution of the n
homogeneous problem. Explicitly,

d f k, j5d f k, j
hom1d f k, j

nhom, k5L,R, j 5t,r . ~A4!

The solution for the homogeneous problem is determi
by the boundary conditions~A2!. By making use of the
energy-conservation law~27!, we make a replacement

wc5sgn~w!Aw22c~x!1ck ~A5!

and obtain different contributions tod f k, j
hom in the form

d f k,t
hom~x,w!5d f k~x,w!u„6w2w* ~x!…

6
1

2w
f k~x,w!d„6w2w* ~x!…dcm , ~A6a!

d f k,r
hom~x,w!5d f k~x,w!u„w

*
2 ~x!2w2

…

2 f k~x,w!d„w
*
2 ~x!2w2

…dcm , ~A6b!

where d f L,r
hom and d f R,r

hom are defined in the regions 0,x
,xm andxm,x,l, respectively. The upper sign applies f
d f L,t

hom and the lower sign applies ford f R,t
hom, both terms valid

in the whole range 0,x,l. The critical velocityw* (x) is
given by Eq.~29!.

The solution of the nonhomogeneous problem can ea
be found through the steady-state distribution funct
f (« t)5 f „w22c(x)… in terms of the total energy« t or,
equivalently, in terms of the injection velocitywc ,

d f k, j
nhom52

] f k, j

]« t
dc52

1

2wc

] f k, j

]wc
dc. ~A7!

Differentiating Eqs.~25!, we find

d f L,t
nhom5 f L~wc!dc~x!Fu~wc2wL!2

1

2wc
d~wc2wL!G ,

~A8a!

d f R,t
nhom5 f R~wc!dc~x!Fu~2wc2wR!1

1

2wc
d~2wc2wR!G ,

~A8b!

d f k,r
nhom5 f k~wc!dc~x!@u~wk

22wc
2!1d~wk

22wc
2!#. ~A8c!

In these equations the substitution~A5! is assumed, so tha
the fluctuations are finally the functions of (x,w). Notice that
r-

n-

d

ly
n

the components for the reflected groups of carriers are
fined in the regions: 0,x,xm for d f L,r

nhom andxm,x,l for
d f R,r

nhom, while those for the transmitted groups of carriers a
given in the whole range 0,x,l.

According to the electrostatic boundary conditions~57!
the fluctuations of the potential at the contacts are equa
zero, which leads to vanishing contributions~A8! at the con-
tacts d f nhom(0,w)5d f nhom(l,w)50. The contributions
~A6! satisfy the boundary conditions~A2!. Thus, the distri-
bution function in the form~A4! with eight contributions
~A6! and ~A8! is the solution of the problem for a give
electrostatic potentialc(x)1dc(x).

For convenience of further consideration, we presentd f
as a sum of the ‘‘injected’’ and ‘‘induced’’ contributions

d f k, j5d f k, j
in j1d f k, j

ind , k5L,R, j 5t,r . ~A9!

In terms of the contact velocitieswc ~presented in such a
form these equations will be frequently used throughout
paper!, those contributions are given by

d f k,t
in j~wc!5d f k~wc!u~6wc2wk!, ~A10a!

d f k,r
in j~wc!5d f k~wc!u~wk

22wc
2!, ~A10b!

and

d f k,t
ind~x,wc!5 f k~wc!H u~6wc2wk!dc~x!

7
1

2wc
d~6wc2wk!@dc~x!2dcm#J , ~A11a!

d f k,r
ind~x,wc!5 f k~wc!$u~wk

22wc
2!dc~x!1d~wk

22wc
2!

3@dc~x!2dcm#%, ~A11b!

where the substitution~A5! is assumed. The same terms
functions of (x,w) are determined by the formulas

d f k,t
in j~x,w!5d f k~x,w!u„6w2w* ~x!…, ~A12a!

d f k,r
in j~x,w!5d f k~x,w!u„w

*
2 ~x!2w2

…, ~A12b!

and

d f k,t
ind~x,w!5

1

Ap
e2w21c(x)2ckH u„6w2w* ~x!…dc~x!

7
1

2w
d„6w2w* ~x!…@dc~x!2dcm#J ,

~A13a!

d f k,r
ind~x,w!5

1

Ap
e2w21c(x)2ck$u„w*

2 ~x!2w2
…dc~x!

1d„w
*
2 ~x!2w2

…@dc~x!2dcm#%. ~A13b!

Apparently,d f in j has a meaning of the distribution functio
of randomly injected electrons, whiled f ind describes the
change in the steady-state distributioninducedby injected
electrons.
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The obtained fluctuations of the distribution function a
lows one to compute each contribution to the fluctuations
the electron densitydn(x) by integrating over velocities
Changing the integration overw to that over the contact in
jection velocitieswc , we find

dnk, j~x!5E
2`

`

d f k, j~x,w!dw

5E
2`

` d f k, j~wc!wcdwc

sgn~wc!Awc
21c~x!2ck

. ~A14!

Thus, by using Eqs.~A10! and ~A11!, one obtains for the
injected density fluctuations

dnL,t
in j~x!5E

wL

` d f L~wc!wcdwc

Awc
21c~x!2cL

, ~A15a!

dnR,t
in j ~x!52E

2`

2wR d f R~wc!wcdwc

Awc
21c~x!2cR

, ~A15b!
i-
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f dnk,r
in j~x!52E

Ack2c(x)

wk d f k~wc!wcdwc

Awc
21c~x!2ck

, ~A15c!

and for the induced fluctuations

dnk,t
ind~x!5nk,tdc~x!2

e2ck2cm

2Apw* ~x!
@dc~x!2dcm#,

~A16a!

dnk,r
ind~x!5nk,rdc~x!1

e2ck2cm

Apw* ~x!
@dc~x!2dcm#.

~A16b!

Here, the contributions~A15! can be interpreted as th
electron-density fluctuations at a slicex caused by the sto
chastic injection from the contacts to the base. The contri
tions ~A16! are related to a variation of the stationary ele
tron density due to a local variation of the potential and
minimal value ~a self-consistent response!. As before, the
terms dnL,r and dnR,r are defined on the intervals 0,x
,xm andxm,x,l, respectively, while the termsdnk,t are
defined on the whole range 0,x,l.
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4M. Büttiker, in 14th International Conference on Noise in Phys
cal Systems and 1/f Fluctuations, edited by V. Bareikis and R
Katilius ~World Scientific, Singapore, 1995!, p. 35; J. Math.
Phys.37, 4793~1996!.
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