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A self-consistent theory of shot noise in ballistic two-terminal conductors under the action of long-range
Coulomb correlations is presented. Analytical formulas for the electron distribution function and its fluctuation
along the conductor, which account for the Coulomb correlations, have been derived. Based upon these
formulas, the current-noise reduction factor has been obtained for biases ranging from thermal to shot-noise
limits as dependent on two parameters: the ratio between the length of the sample and the Debye screening
lengthA=d/Lp and the applied voltaggU/kgT. The difference with the formulas for a vacuum diode is
discussed.

[. INTRODUCTION that are necessary for the Coulomb regulation effect and
shot-noise reductiom the whole frequency spectrutm oc-

Recently, significant attention has been focused on theur: (i) the existence of a potential barrier inside a device or
study of nonequilibrium fluctuations of currefghot nois¢  at the interface with an injecting electron reservoir, which
in mesoscopic conductotsThe term “shot noise,” appear- controls the currentii) the dependence of the barrier height
ing originally in the context of pure ballistic electron trans- and/or carrier transmission on the current. If no barrier is
mission in vacuum-tube devicédas acquired nowadays a present, no shot-noise reduction at low frequencies due to
much broader usage and refers to different mesoscopic struGoulomb repulsion is expected. At high frequencies, how-
tures, including diffusive conductors, and resonant-tunnelingver, the noise level may also be affected by Coulomb cor-
devices, where the carrier flow exhibits nonequilibrium noiserelations due to screening in an external environmafit.
proportional to the electric curreht. The potential barrier, which controls the current, appears

A matter of particular interest is the significance of long-in an ordinary situation of the space-charge-limited transport.
range Coulomb correlations in the noise-reduction eftéct. For ballistic nondegenerate conductors this case has been
Coulomb interactions may keep nearby electrons apart angeated recently by Monte Carlo simulatifisand attracted
more regularly spaced rather than strictly at random, whictsome attention in Ref. 24 for degenerate case. For the case of
leads to the noise reduction, as pointed out by Landauerdiffusive nondegenerate conductors, studied by the Monte
This effect occurs in different physical situations. Among Carlo technique in Ref. 25, the self-consistent kinetic theory
them are charge-limited ballistic transport, resonant tunnelef noise, which takes into account Coulomb correlations, has
ing, single-electron tunneling, etc. For the ballistic conduc-been developed recently in Refs. 26 and 27. A similar kinetic
tors an electrostatic potential barrier is formed near an injecttheory for the ballistic case is lacking.
ing contact. The barrier fluctuates synchronously with It is the aim of this paper to address the problem of Cou-
random electron passages through it, which leads to noidemb correlations irballistic conductors and present a self-
reduction, as evidenced recently by Monte Carlo simulationgonsistent theory of shot noise in these conductors by solving
for semiconductor ballistic diod€dn this way, an incoming analytically the kinetic equation coupled self-consistently
Poissonian flow is converted into an outgoing sub-Poissoniawith the Poisson equation. It is important to compare the
flow, exhibiting a motional electron-number squee#ifithis  present noise theory for a semiconductor ballistic diode with
effect is similar to that leading to shot-noise suppression irthat for a vacuum diode developed long &joThe main
vacuum diode$-® Under the resonant tunneling effect, a advance for the latter has been done in the celebrated paper
built-in charge inside a quantum well affects the position ofby North published in 1940, where he derived an asymptotic
the resonant level and prevents the incoming carriers fronformula for the current-noise spectral density at the high
passing through the well, thereby resulting in carrier correvoltage limit® Monte Carlo simulations of noise in vacuum
lation and shot-noise reductith®? in a certain range of diodes are also availabfé-*It should be stressed, however,
biases®>!4 The Coulomb correlations in these systems acthat despite the similarity of the underlying physias both
under the coherent as well as under the sequential tunnelintpses the nondegenerate Boltzmann electron gas without col-
regime of the carrier transport. The carrier correlations reachisions in the electrostatic field is under considerafjche
their extreme form of the Coulomb blockade of the electroncase of the semiconductor diode differs by several features:
transfer under the single-electron tunneling effect, leading tgi) due to a two-terminal geometry, there are two opposing
the noise reduction studied theoretically’°and observed in  currents instead of a single current, which results in different
experiment! current-voltage characteristics at low and moderate biftses;

All the above-mentioned cases have the common featurd$ ) the ballistic transport regime is limited by the presence of
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disorder, impurities, etc. Even in a pure and perfect solid,
carriers may interact with a lattiog@honon$, which at high
biases becomes significant and breaks down the ballistic re
gime. This makes it practically impossible to attain in solids
the regime where the known formulas for vacuum electron-
ics, such as the Child law fdrV characteristics or North's
asymptotic formula for the noise, may be applied. This issue
will be addressed in the paper, using the derived formulas
and considering them in a full range of biases. Finally, we
suggest an electron spectroscopy experiment to make the
Coulomb correlations effect observable. The possibility of
such an experiment is based on recent advances in hanoscale
fabrication techniques and shot noise measurent&rts.

The paper is organized as follows. In Sec. Il we describe
the semiconductor ballistic structure and discuss the main
assumptions concerning underlying physics. In particular,
the validity of the one-dimensional plane geometry approxi-
mation for the fluctuation problem is addressed. In Sec. llI
we introduce the basic equations that describe the space- n i n
charge-limited semiclassical transport: the collisionless ki-
netic equation coupled self-consistently with the Poisson FiG. 1. Schematic band-energy diagram fond-n ballistic
equation. The steady-state problem is solved in Sec. IV, angiode under a space-charge-limited conduction. Two different types
the results are compared with the Monte Carlo simulationsef the contacts are showiia) homojunctionsi(b) heterojunctions.

In Sec. V we solve analytically the fluctuation problem andshadowed regions illustrate the energy distribution function of elec-
derive the formula for the current-noise spectral density thairons at the contact-sample interfaces.

covers the range of biases from thermal to the shot-noise

limits. The results for the noise-reduction factor are com-

pared with Monte Carlo simulations and North’s asymptoticwhich leads to the nondegeneracy of the electron gas in the
formula for vacuum diodes. The contributions of different pallistic part of the diode. The theory is therefore applicable
electron energy groups to the noise are found, and the corrés quantum heterostructures with over-barrier transfort,
lations in energies for the electrons collected at the receivingvhere current is determined by a tail in the distribution func-
contact are discussed. Finally, Sec. VI summarizes the maifion (ballistic-injection, real-space-transfer devices, )etas
contributions of the paper, and in the Appendix we presenivell as for the homodiode with a nondegenerate electron gas
mathematical details concerning the derivation of the flucin the contacts.

tuations of the electron distribution function in the self- |n order to simplify the problem, we assume that under
consistent electric field. the range of biases of interest, due to the large difference in
the carrier density between the contacts and the sample, and
hence in the corresponding Debye screening lengths, all the
band bending occurs in the ballistic base, and therefore the

Before proceeding with a discussion of the prob|em’ Werelative pOSition of the conduction band and the Fermi level
will specify the structure under consideration and the mairfc— &r does not change in the contacts. For such a modeling,
assumptions concerning the underlying physics. Consider all of the potential drop takes place exclusively inside the
two-terminal semiconductor ballistic sample with plane par-ballistic base between the positioXs-0 andX=d in Fig. 1,
allel contacts aX=0 andX=d (see Fig. 1 The contacts, and the contacts may be excluded from the consideration.
which we denote by andR (left and right, are assumed to This assumption is better fulfilled for the case of the hetero-
be heavily doped semiconductors with a contact electroftinctions because of much higher electron densities in the
density much higher than that in the sample. The structuréontacts.
may then be considered asna-n diode operating under a The carriers inside the contacts are assumed to remain at
space-charge-limited current regime in which the current ighermal equilibrium, and their injected part is distributed
determined by a charge injection from the contacts rathePVer the energy according to the Maxwell-Boltzmann distri-
than by intrinsic carriers of the active regidhTwo different ~ bution function at lattice temperatufle For the ballistic part
types of the contacts may be considered depending offf the diode, we suppose
whether the contact and the sample are fabricated of the
same or different material. For the former case the diode is Ay<d=N\,, D
composed of two homojunctiorig. 1(a)], while for the
latter, it is composed of two heterojunctions with a jump ofwith A, the electron wavelength ang, the mean free path,
the conductance bang at the contact-sample interfafeig.  so that electrons may be considered as classical particles
1(b)]. The underlying physics is similar if in both cases themoving ballistically between the contacts and interacting
contact doping is such that the Fermi leegl is sufficiently  with each other electrostatically. This regime is accessible in
below the edge of the conduction band in the sample. In suctnodern device fabrication technologies for which the mean
a case, only the tail of the distribution function is injected, free path\ , may be as high as $610° nm in modulation-

Il. THE PHYSICAL MODEL
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doped structuregfor instance, in GaAs/AGa,_,As at low  order to use the one-dimensional electrostatic screening pic-

temperature$#9 and~10° nm in the purest bulk material, ture for the fluctuations. Otherwise, each carrier perturbs the

whereas the Fermi wavelength is about 40 nm. electrostatic potential independently and the three-
Next we assume that the transversal size of the diode idimensional approach is needed. On the other hand, the as-

sufficiently thick(much larger than the screening lengi).  sumption of the nondegenerate electron gas restricts our ap-

This allows us to treat the steady-state electrostatic problerroach by a maximum electron concentration dependent on

as a one-dimensional one in the plane geometry. However, tb For temperatures in the range 10-77 K, these maximal

use the same one-dimensional consideration for the fluctugoncentrations are estimated to be in the range1@" to

tion problem, we need an additional justification. The fluc-6x 10" cm™2. These estimates show that the approach un-

tuating current is determined by a random transmission oflertaken below covers a wide range of typical diode param-

discrete electron charges of the amountjoEssentially, this ~ €ters: electron concentrations, diode lengths, and tempera-

discreteness of charge transmission together with randongures.

ness leads to the shot noise. In principle, each single electron

while transmitted between the contacts disturbs the electric Ill. BASIC EQUATIONS

field and thereby interacts with other electrons of the current

flow in both longitudinal and transversal directions. The A semiclassical space-charge-limited transport in a ballis-

electrostatic screening in such a prob|em is threeIiC conductor is Completely described by the electron distri-

dimensional. Nevertheless, we shall treat the problem as RBution function F(X,v,,t) and the electrostatic potential

one-dimensional one considered in the plane geometry by(X,t). Here,v, is theX component of the electron velocity

averaging the fluctuations over the transversal directiongandt is the time. The potentiap(X,t) inside the sample is

This is justified if the average distance between the excesgetermined by the distribution of space charge from the Pois-

(fluctuating carriers in transversal direction is much smallerSon equation

than the characteristic scale of the electrostatic potential

variation in that direction. This condition may be written as d’¢ q
W: ;N(X,t), (4)
L2d(6n?)>1, 2)

whereL , is the transverse characteristic scalés the typi-  With the boundary conditions

cal electron density in the ballistic region, a@d its fluc-

tuation. To estimate the order of magnitude of the fluctuation e(O)=eL, e(d)=e¢r. ®)
on, we use Poissonian statistics, leading to the relatio
(6n?)~n/(L?d). Thus, the condition(2) becomesnL?d
>1. The scald_, depends on the ratio between the longitu-
dinal dimensiond of the sample and the Debye screening
lengthLp in the active region. For nondegenerate electrons
the latter is defined alsp = \kkgT/(g?n), with x being the
dielectric permittivity andkg the Boltzmann constant. To
estimate the magnitude af, , we distinguish two different N(x,t):f
cases:(i) Weak screeningd<Lp: For this caseL, ~d,*

and condition(2) becomesn>d 3, which for d~300 nm
requiresn>10" cm 3. (ii) Strong screeningd>L: For
this casel, ~Lp, and condition(2) becomesn>L%d 2. A
After the substitution of the expression for the screening | t):_q_
length, it is seen that this condition becomes independent of dJo
n, although it requires a sufficiently long samplé, ) . ]
> g% (kkaT) ~2a0(Eo/ksT), Whereao=x#%/(mcp) is the WhereCo=«A/d is a capacitance and the cross-sectional
effective Bohr radius and,=q%(2«a,) is the effective area. Due to a flxed-apphed-voltage_ condition, in what fol-
Rydberg energy in the material. For GaAsa, lows we shall neglect the last term in =@ coming from.
~10 nm, Ey~5 meV, which corresponds to the tempera- th.e.dlsplacement qurrent pontrlputlon. In addition, for sim-
ture of about 60 K. Then foF~10 K, d>120 nm, which plicity, we shall omlt the minus sign for the current, which is
is supposed to be fulfilled. On another hand, the condition ofPPOSed to the direction of electron flow. Moreover, as will

strong screening requirgs>L,, which leads to the condi- be shown below, the _current is conserved along the sample
tion on the electron density due to the conservation of electron energy under ballistic

motion (this is true for both the stationary current and its

rJI'he voltage bias between the contatis og— ¢, is as-
sumed to be fixed by a low-impedance external circuit. The
electron densityN(X,t) at any planeX is determined by
integrating the local electron distribution function over ve-
focities

[

F(X,vy,t)doy, (6)

whereas the current in the external lead is giveh by

» aU
J vxF (X,oy, D dy | dX+Co—r, (7)

T 1 fluctuatior). Therefore, the integration oveX becomes
ns . (3)  trivial and it will be disregarded.
Eo 2a,d? Under ballistic motion the distribution function

For the same set of parameters, one 0% 104 cm3. F(X,vy,t) obeys the collisionless kinetic equation

Therefore, for both cases of weak and strong screening, there
is a requirement on the minimal electron density or, equiva-

GF  9F qde oF
— v — — — — ’
lently, on the minimal density of the injection current in gt~ " ¥axX mdX v,

®
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wherem stands for the electron effective mass. The distribu-=F(x v, )+ SF(X,v,,t), N(X,t)=N(X)+ N(X,t), ¢(Xt)
tion functions injected from the contacts electrons are S 5(X) + Sp(X.t), andl (t) =1 + &1 (1).

sumed to be given as Introducing the Fourier transform for the fluctuations of

_ the distribution function 6F ,(X,v,) and the potential
F00xOl,0=FL(vx), d¢,(X), the kinetic equation takes on the form

€)
F(d.vx.Dl,<0=Fr(vx.t). | 05F, qdg aoF, q dF ddg,
o o . . SIS vyt e = D=0,
The kinetic equatior(8) with the electrostatic potential de- X ~mdX dvy, madv, dX
termined self-consistently from Eq<l) and(6) are known as (15

the Vlasov system of equatidisdescribing the dynamical \yith the boundary conditions at the contacts
screening of the interaction in plasria.
Equation(8) may also be expressed as 5Fw(o,vx)|vx>0= SF(vy),

(16
dr _o, 10 OF (L0l 0= FF (03,

traject .
e where 6F” and 6F g are the Fourier transforms of the sto-

sinceF is constant along an electron trajectory, i.e., the disthastic functions from Eq11). The equation for the fluctu-

tribution function at any planX can be expressed through ating potentialde,, is trivially obtained from Egs(4) and
the functionsF,(v,t), k=L,R defined at the boundaries. (6),

Each of these functions is considered to consist of two terms,
a stationary part describing the stationary injection and a d2se,,
time-varying stochastic component. Explicitly, Ve,

Frlvx,t)=Fi(v) + 0F(vy,t), k=L,R. (11)  the poundary conditions for which follows from E),

Under nondegenerate and equilibrium conditions in the con-
tacts, we assume for the stationary part of the injection func-
tion the half-Maxwellian distribution

=%J OoF ,(X,v,)dv,, (17

5¢{(0)=0, S¢a(d)=0. (18)

Below we restrict ourselves to the calculation of the low-
frequency plateau of the noise spectrum; thus one can omit
Fu(v,) = 2No e valvg (120  the term proportional ta in Eq. (15). It can be shown that

voVT this approximation is valid if the shortest fluctuation period
in 6F,(t) is considered to be sufficiently greater than the
average electron transit time; across the diode, i.ew

— BRoTIm s the th [velocity. Th distributi <71, Thus, the above self-consistent equations completely
= v2KkgT/m s the thermal velocity. The contact distribution yoqcrine the stationary transport and low-frequency fluctua-

functions(12) are normalized in such a way that the integra-yo s in the ballistic sample, and below we shall omit the
tion over a half-velocity space yields the density of electronsmdex ®

injected from the contact

with v,>0 for k=L andv,<0 for k=R. Here, Ny is the
density of electrons injected from the contacts argl

It is advantageous to rescale all the variables as follows:

No= f Fu(v0du,= f Fru)do,.  (13) we e X de
vy>0 vy<0 Uo, LD, kBT
The stochastic term$F,, k=L,R in Eq. (11) are the _ (19
only sources of noise under ballistic transport considered _l f—Eﬂ Sf—SF Vo
here, since the electron motion between the contacts is noise- "ZoNgT TN 7 2Ng”
less. Their equal-time correlation, due to equilibrium condi- ) ] ) )
tions, is given bff In such units the basic equations contain only two
dimensionless parametersi) the length of the sample
_ _ ) —Aq/ O 0
(SF (v 1) F e (v] 1)) = CF(u)[1— F(vy)] (or the screening parameter\=d/Ly, where Lp

=/ekgT/(29°N,) is the Debye screening length corre-
X Sy (v —vy), (149 sponding to the electron densityNg, and (ii) the applied

h h T is d ined f h lizati voltage biasv=qU/(kgT). Below we use the dimensionless
where the constar€ is determined from the normalization | . iables in all the equations.

condition. Since the injected electron gas is nondegenerate,

F<1, and the factor £+ F will be ignored.

As a consequence of the fluctuations inside the contacts
(whose origin is ultimately the carrier scattering processes The calculation of fluctuations in the ballistic conductor
both the electron distribution function and electrostatic po+equires the knowledge of the stationary distribution of elec-
tential in the ballistic sample fluctuate, leading to the currentrostatic field, which, in turn, can be determined by solving
fluctuations. These quantities will be presented as a sum dhe full steady-state problem. The self-consistent steady-state
stationary and fluctuating contributions:F(X,v,t) problem can be solved as follows. First, we solve the station-

IV. STEADY-STATE PROBLEM
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ary collisionless kinetic equation for the distribution function where the indicet andR refer to the left and right contacts,

f(x,w) and the indiceg andr distinguish the transmitted and re-
flected groups of carriers, respectively. The boundary condi-
Wl rdy ot (20  tions for these functions read
ax 2 dx dw

) . ) ) fL(Owe)=f (we)B(we—wy),
at a given electrostatic potentigl(x). Integrating f(x,w)
over w, we then find the electron density profiteg) in fL,r(Och):fL(Wc)a(WE_Wg)!
terms of the potentiaj(x). Then we should solve the Pois- (25)
son equation
fri(N,We) = fr(We) O(—we—wg),

d2y
preaallSor @D Frr (N W) = Fr(W) B(WE—W2),
with the boundary conditions wherew, is thex velocity component of injected electrons at
the contactsg is the Heaviside step function, and the distri-
P(0)=y =0, Y(N)=¢r=V. (22 bution function of injected electrons is determined by Eq.

. (12), which in dimensionless units reads
Here, we set the zero value of the potential at the left contact.

1
A. Stationary distribution function fL(we)=fr(we) = \/—;e We. (26)

To solve the stationary kinetic equatié®0), we have to
specify the boundary conditions for this equation at a given We can solve now the collisionless kinetic equati@f)
¥(x). Generally, thenonstationarykinetic equation(8) and  explicitly for a given potential profiles(x). Indeed, one can
the distribution function$9) of injected electrons completely easily see that its solution is an arbitrary function dependent
determine the nonstationary solutibfx,w,t). However, the on the total electron energy(e,)=F(W?— (x)). The
steady-stateequation (20) requires a specification of the boundary condition$25) determine the shape of this func-
boundary conditions for the distribution function of all the tion. By using the electron-energy conservation law
electrons: thosénjected from the contacts into the sample
and thoseleaving the sample. Let the space charge in the Wi () =wi— ¢, k=L,R, (27)

sample be such that a potential minimufg, occurs atx wherew, and ¢ are the parameters at the contacts, we ex-

=X, Which acts as a potential barrier for electrons. We . - . k
define the total electron energy=w?— y(x). For a given CI.Ude.WC n the boynd'ary'cond|t|on625) and obtain the con
tributions in the distribution function as

potential, the distribution function should consist of the
terms originating from two electron streams injected by the 1

left and right contacts. Electrons injected from each of the fL(X,W)= _9(\,\,_\,\,*()())(3%2+ W)= (289
contacts fall into two groups depending on their injecting ' J

energies. If the initial energy is higher than the height of the

barrier, electrons obviously reach the opposite contact and 1 5

contribute to the electric current. These electrons are not re- fri(X,W) = —=0(—w—w, (x))e" "V "X~ Ir (28D
flected back. Note that the height of the barrier is different Vm

for the electrons injected from the left and right contacts. For L
those injected from the left, it ig, — =V, Which is the 5 w2 _

potential minimum depth, while for those injected from the fir(X,w) = \/—Ee(w*(x)—wz)e T, (289
right, it is yr— ¥n=V+V,, (see Fig. 1 Accordingly, the

lower bounds for the velocities of theansmittedelectrons wherek=L,R, and the functiond_; andfg, for the trans-

are given by mitted electrons are defined in the whole rangexe<\,
whereas the expressions for the reflected electfonsand
W =V = = VVm, fr, are valid in the intervals €x<x,, and X, <x<\, re-

(23)  spectively. In Egs(28) we have introduced the quantity

WRr= \/wR_ Pm= \/Vm+V-

Electrons of the second group, which we shall call tee W )=V = dim @9
flectedelectrons, are reflected by the barrier and do not conwhich has a meaning of the maximal velocity of reflected
tribute to the currenthowever, both groups affect the elec- €lectrons at a point. For the sake of clarity, in Fig. 2 we
trostatic potential An electron from the second group being show the electron trajectories in the phase space)( cor-
injected with a velocityw returns to the contact with the responding to different electron groups. It is worth stressing
opposite velocity of the same valuew. Taking into account  that the distribution$28) depend on the local potentigi(x)
the above consideration, the electron distribution functioraind the potential minimung,, as well, i.e., the distribution
f(x,w) at any planex may be written as function dependsionlocallyon the potential profile.

Summing up all the contribution®8), the total distribu-

f=f +fL +irit TRy (24)  tion function takes on the form



5516 O. M. BULASHENKO, J. M. RUE;l AND V. A. KOCHELAP PRB 61

where, as before, the upper sign applies in the interval 0O
<X<Xq and the lower sign applies in the intervgl,<x
<. Note that in equilibrium,vV=0, B,=2, B8,=0, the
Boltzmann distributiom(x) =e”™ is recovered throughout
the sample. Furthermore, E¢33) is valid for a single-
injection (vacuum diode, assuming; = B,=18°

In the following we shall use the shifted potential mea-
sured from the minimum

7(X)= (X)) = ¥, (39
and Eq.(33) in terms of the new variabley becomes
n(7)=nne”[1=Berfy7y], (35

wheren,,= 2B,e Vm is the electron density at the potential
FIG. 2. Typical electron trajectories in the phase spaca) minimum, and
for different electron groupd: andR refer to the carriers originated

from the left and right contacts, aricandr refer to the transmitted B2 \%
and reflected groups of carriers. The separating curves are the criti- B= E =tan)‘(§) : (36)
cal velocities=w, (x), which intersect at the point of the potential
minimum (x,,0). The results are fax=30, V=10. ) .
C. Steady-state electrostatic potential
1 , e, W= F W, (X) Having found the analytical expression fof), we have
fx,w)=—=e "%y _ to use it to solve the Poisson equati@i). Multiplying both

Vm e W< +W*(X)'(30) sides of Eq(21) by d¢/dx and integrating, one gets
Here, and throughout the paper, we shall use the upper sign d_z/;)zzsz n(9)d (37)
for the left side of the potential minimum<Ox<x,, and the dx ¥m '

lower sign for the right side of the potential minimuxy, . -
<X<N\. It is seen that the obtained distribution function is where we have used the property of the potential minimum

discontinuous onw at the points wherev=w, (x) (see also (d¢/dX)|x:xm:0- Changing to the shifted-potential variable

Fig. 7 discussed below|t is not surprising, since only a 7 and carrying out the integration, one gets

discontinuous solution can satisfy the first-order equation A2

(20) and simultaneously two different arbitrary functions 12[ =7} _p= ) (38)
. . ml g V("] )

given at the boundaries. X

where 1Vr2n=2nm=,81e‘vm and the function
B. Electron density

The distribution function(30) allows us to find the elec- SN ” 2
tron density at a slice as hv(n)=e’=1xp| e erfyy \/;\/; ’ (39
1 o 5 depends on the applied voltagethrough 8. Taking into
n(x)= —e¥™ e’wtf_ e Vdw accountd 7/dx<0 for 0<x<x,, anddz/dx>0 for x,<Xx
Vm W () <\, the electric field is given by
FWy () —
vein| eWZdW} N R
odx | = hI (D), Xn<X<A
1
=Ee‘”(x)(e””t{lieri[w*(x)]} which is measured in units ofzT/qLY . Integrating Eq.
(38), one obtains the distribution of the potential in an im-
+e R{1xerflw, (X)]}), (31  plicit form,
where erf@)=(2/\/F)fée‘“2du stands for the error func- 7 dpy
tion. By using the values for the potenti@l2) at the contacts Im o)’ 0<X<Xm (413
and denoting e AN
v v (32 xlf"R dn <x<\  (41b
=1+e ", =1—-e ", 32 - v Xm<<X
B1 B2 "), Jho(m m

the electron density can be written as a functionof
where the boundary conditions fai(x) are

1
n(iﬂ)zze"/][ﬁliﬁzerf( le_lﬂm)]! (33) n(O)EnL:me n()\)EnR:Vm—’_V (42)
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For the givenV,\, the only unknown parameter in Eqg.) 40 @
is the potential minimun¥,,. The latter is found by match- present theory
ing EqQ.(41) at x=x,,, wheren(x,,) =0, and one gets * Monte Carlo
B
Vo) dy V)V dy = -

A (V)=f —t —, 43

where
Am=AV2Np, (44

is the screening parameter renormalized to the electron den-
sity at the potential minimum rather than to the contact elec-
tron density as before.

D. Steady-state current

This brief description of the steady state is then completed

= 107!
by the expression for the stationary current. Substituting the ¥ 1 °
distribution function into Eq(7) and changing the variables "
with the help of Eq(27) aswdw=w.dw,, one obtains L p—
. o W) 1% 00 05 10
=2l J th(X,W)WdW-l-j th(x,W)de} x/h

wr(x) —o '

FIG. 3. Spatial profiles for the normalized quantitiés: poten-

® ® tial ¢, (b) electric fieldE, and(c) electron density (all solid lineg
f fL(Owe)wedw,— f fR,t()\aWc)chWc}, for A=30.9 and several applied biasésThe corresponding units
Wi WR are kgT/q, kgT/qLY, and N,. The results are shown to be in

(45) excellent agreement with the Monte Carlo simulatidRef. 48

=2\xl,

symbolg.
where (sy 3
1 _ injection in the opposite direction, and it tends to 1gal
IC=\/—;qN0v0A=qN0vA (46)  >KkgT. (For the vacuum diode case, this factor is set to 1
because of only one injecting contact.
is the emission current from each contédoniting value for Summarizing this section, we note that the above relations

the total current atV—o, V,,—0) and U_:UO/\/E solve completely the steady-state problem for the ballistic
=\2kgT/(7m) is the average velocity of the injected elec- two-terminal conductor: Eqg41) determine the distribution
trons with the half-Maxwellian distribution. Only the part of Of the potential across the diode in an implicit form, and Egs.
the distribution function corresponding to the transmitted(43) and (47) determine the current-voltage characteristics.
electrons has been taken into account, since the reflectddote that in Eq(47) the current depends on voltage through
carriers gives no contribution to the currefithis is in con-  both the explicit terme™" and the potential minimunvy,,
trast to the case of the calculation of the electron deri8ity ~ Which is a function of voltage. Equation83), (39)—(43),

for which both transmitted and reflected carriers contriute.and(47) may be viewed as an extension of the Fry-Langmuir
It is seen from Eq(45) that the current is the same for any theory for a single-injection vacuum didtie*” to the
sectionx of the sample, given by its value at the injected double-injection case. The Fry-Langmuir formulas are ob-
contacts. Substituting the functiori@5) into Eq. (45) and  tained by settingg; = 8,=1, 1z, =0.

carrying out the integration, we obtain the current as a sum

of two opposing currents; g andl g, caused by the injection

from the left and right contacts, respectively, E. Results
_ v VY Figure 3 shows the typical spatial distributions of the po-
=lce 'm=lee "m =l r—lgL. (47)  tential ¢, electric fieldE, and electron density along the

diode obtained from Eq%$35), (40), (41), and(43). With the

aim to compare our theory with the results of the Monte

Carlo simulation$® we present the spatial profiles for the

value of A =30.9 and various applied bias¥sAs it is seen

; (48 from the figure, the agreement is excellent for all the quan-
tities.

whereN,,=2Ngn,,. This formula justifies the usage of the  The space-charge-limited conduction is characterized by a

term “virtual cathode” referred to the location of the poten- strong transport inhomogeneity in the ballistic region and by

tial minimum, since it is seen that the current is determinedhe presence of the potential minimdfig. 3(a)] due to the

by the injection of the electron densily,, from the virtual  injected space charge. The minimum acts as a barrier for the

cathode. The additional tanh() factor takes into account thelectrons moving in both directions. Its magnitude progres-

The formula for the current may be written through the elec
tron density at the potential minimum, that is,

_ - qu
I=2n,l.8=qNvAtan m
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FIG. 5. Current and its components coming from two opposite
electron flowd =1, g—I g, (in units ofl ;) vs biasV for \=50. The
height of the potential barriev,,, and its locatiorx,,/\ are also
shown.

mum approaches the left contaathich leads to the validity
of the virtual-cathode approximation with the boundary con-

FIG. 4. Profiles for the steady-state quantities in units of thedition E(0)=0. The universal profiles obey the asymptotic

potential-minimum parameteréa) potential,(b) electric field, and bezhavior/ aty—o:  p(x)=fax*? E|m=.—a)(1/3, n/ngy,
(c) electron density. The limiting universal profiles dt— are =Z2ay 23, wherea=(3/7)*~0.9847. Going back frony
shown by solid lines. to thex coordinate, and using the Child laiw4), which will

be discussed below, one can obtain the asymptotic formula

sively decreases as the applied bias is increased, simultéer the potential profilern(x) =V(x/\)*3, x—=. The latter
neously shifting towards the left contact on which the potends valid not only for the present nondegenerate-electron-gas
tial is fixed. model, but for an arbitrary distribution function of the in-

The obtained solutions are determined by two dimensionjected electrons, provide®/—, \A—o (virtual-cathode
less parametera: andV. The spatial distributions, however, approximation.*® The related formulas foE(x), n(x) may
may be presented in a more universal form by using forlso be obtained by taking the derivatives.
scaling the potential minimum parameters. We define the The choice of the potential minimum parameters as refer-
new coordinatey=(x—xq)/l,, where the characteristic ence coordinates is of traditional use in vacuum-diode
lengthl,,=(2n,,)~ Y2 dependent on the electron density atliterature®°4°Since only one contagtathodg is considered
the potential minimum, has been introduced in Sec. IV Cas injected for these diode8=1 for any bias, and the uni-
This is equivalent to scale the original coordinatén units  versal potential profile independent of the diode parameters
of the screening length referred to the electron density at this obtained for any bias, as it was tabulated in the original
potential minimum rather than to the contact electron denwork by Langmuir?® For the case of the two-terminal semi-
sity. In such a unit, the parameteris scaled away from the conductor diode, that universality is broken at low and mod-
equation for the potential, remaining only in the upper anderate biases due to the contribution to the current from the
lower bounds of the function variation. Explicitly, E41)  second injecting contact, but it is recovered however at high

becomes biasesV—o when the influence of the second contact be-
comes negligible, as it is demonstrated in Fig. 4. We remark
(7 = _ additionally that the virtual-cathode approximation is only

fo [dn/Vhy ()], = Xmlm=<Xx <0, valid when beside&/— another condition is fulfilled si-

(49 multaneouslyyV <V, . Otherwise, the transport is no longer

X_
f”[dn/\/h(;(y;)], 0<x<(N =X/ . limited by the space charge, the current saturates=dt,
0 and the value of the electric field at the left injecting contact

Therefore, all the solutions may be presented as a ondS NO longer zeroE(0)<0. This change in the transport
parameter family of curves dependent on the applied Wias "€9ime is clearly seen in Fig. 5, where the current and its
only. Moreover, at high-voltage limi¢¥=5, B8—1, the func- components coming from two opposite electron flows
tions hy;(7) become independent of bias, and the spatiaF |Lr—IrL Versus bias/ are plotted for a particular value of
distributions tend to the limitinginiversal profilesfor each A Itis seen that the current is an increasing function of the
quantity which are free from any parameter. This is valid forPias up to the critical valu¥,, after which it is saturated at
all the spatial characteristics as it is seen from Fig. 4, wheré=1.. At that point the potential minimum vanishes. Rér
the potentialy= — ¢, the electric fielcel,,, and the elec- =<5 the contribution to the current from the right-contact
tron densityn/n,, are plotted. Moreover, at this limit the part electrons is also essential.

of each profile aty<O tends to vanistithe potential mini- Thel-V curves for different levels of screening are shown
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FIG. 6. Current-voltage characteristics for different levels of

screening\ obtained as solutions of the present the@ligamonds. FIG. 7. Electron distribution function over dimensionless ve-

For comparison, the approximate solutions are shown: linear depefcities f(w) at different sections of the diode for several bias&s

dences given by Eq50) (solid); Langmuir formula given by Eq. and\=30.

(54) (dotg; the Child 3/2-power law given by Ed53) (dashey

parameterg, shown by long dashes, when approaching to 1 indi-limit V—o, N—%, one may negleck,, andV,, as com-

cates the bias(~5) over which the effect of the second contact on pared to\ andV, respectively, and one obtains the Child

I-V curves becomes negligible. Monte Carlo simulation results3/2-power law, which is free from the potential minimum

(Ref. 48 for A=30.9 are shown by squares. parameters

in Fig. 6. We have checked that the obtained solutions are in
excellent agreement with the Monte Carlo simulatf8rithe |Ch_|d:§\/;|
case of\ =30.9 is compared in the figure hegrre
The analysis shows the following behavior. At low biases,
the I1-V curves are linear for alk despite the fact that the It is seen from the figure, that this asymptotic formula accu-
transport is space-charge-limited. The curves for this case arately describes thé-V curves only at very high values of
described by the parametersx=10°, V=10°. However, as we have dis-
o cussed earlier, there is a relevant difference between the
lin=I.Ve Vm, V=1, (500  semiconductor and vacuum ballistic diodes. In vacuum di-
: —_ . - odes the applied voltage may be quite large without breakin
WhereVOm is the equilibrium value of the potential minimum down the Fl;FE)I”iStiC tragsportyregirie. In (?ontrast, in solids,g

whose value depends on In the range £V=10 thel-V' ¢jecirons even for a pure material interact with a lattice. Un-
curves deviate to sublinear dependence. At high biases, staia 5 |ow-bias regime this interaction is weak, but it becomes
ing approximately a¥~5 where—1, the effect of injec-  qyite strong at high biases due to the significant increase of
tion from the second contact becomes negligiblg,<l g the electron energy. For instance, the threshold for the opti-
(see also Fig. b Furthermore, folV>V,>1 the analytical 3| phonon generation in GaAs is about 0.036 eV, which
solution may be found. In this regime, the functibi(7)  corresponds ty~40 atT~10 K. Thus, one cannot bias the

may be approximated by leading-order terms of a se(rji%s €X%sample to the voltage more than that value, since a strong
pansion in a similar way as in the case of a vacuum diode jnteraction with the lattice will break down the ballistic re-

V3/2

F. (54)

NS gime. The allowed range of biases is typically restricted by
h(m=~2vnim=1, n—e. (5D U=50kgT/q. Then, for real structures the ballistic lengths
In this regime from Eq(41b) one can write is well below 100. Therefore, the Child 3/2-power law is
hard to achieve in semiconductor ballistie -n diodes, and
V4V dny one should use the full set of formulas described in the
)\_Xmmlmfﬁm m (52) present paper from which follows the linear or sublineaf

dependences in a wide range of biases even under a strong
from which by using |,~1/\/J follows the Langmuir limitation of transport by a space charge.
formula 647 Finally, Fig. 7 illustrates the stationary electron distribu-
tion function over velocitie$(w) at different sections of the
8 (V+V,,)%? 3 diode for several biase¥. The distribution functions are
'Lang=§\/;|c (A —%)2 + (M (V+V ) | (53) discontinuous aitv=w* (x) sgn(x—X,,), as discussed in Sec.
m m IV A. It is interesting to note that at high biases the arriving
In Fig. 6 we present the curves calculated from this formulaglectrons at the righreceiving contact exhibit a sharp peak
and they are seen to describe accuratelyl thecharacteris- separated in energy from the intrinsic contact electfig.
tics for the highest biases. For higher the range of biases 7(d)] and thus may be distinguished in an experin@nt.
where this formula may apply is wider. In the asymptotic While the injected carriers are uncorrelated, electrons arriv-
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ing at the receiving contact that belong to that peak exhibit 1 o Sl (&)de
correlations in energy. This interesting result will be dis-sn'"(x)= f _
cussed in Sec. V H. 2wl KETR S v+ (X) —
V. FLUCTUATION PROBLEM VL me, 0<X<Xn
o . S 1 ) e+ (X)) — iy
We will find here the fluctuations of the distribution func-
tion, ele_ct_ron de_n5|ty, electr_ostatlc pptentlal, and current in \/;|C Vet Sle(e)de
the ballistic region of the diode, which are caused by the f — | Xp<X<A\.
fluctuations in the contacts. To solve the fluctuation problem Yr— () Ve + (X)) — g
(15—(18) self-consistently, we undertake the same approach (60)
as used above for the steady-state problem. First, we calcu-
late the fluctuation of the distribution functia¥f in a given
electrostatic potential(x) + ¥(x) by solving the perturbed B. Induced electron-density fluctuations
kinetic equation The electron-density fluctuations induced at a shday

the fluctuations of the potential is obtained by summing up

gof 1dyaof 1 9f doy all the contributiongA16), and one gets

Wox T2 axow T2 aw ax © (59

The sol_ution_s forof (x,w) f_or different groups of electrons SniN(x) = n(x) Sub(x) = J [ S(X)— iy,

are derived in the Appendix, where we also present the cor- 2\/;W*(x)

responding electron density fluctuatioAa(x) obtained by (61)

integration over velocities. The fluctuatiod, which are _

the functions of 8y and the contact fluctuationsf, and WhereJ=I1/I., and the upper sign applies in the interval

5fr, should then be substituted into the perturbed PoissoR<X<Xp and the lower sign applies in the interval

equation Xm<X<N\. This term along with the terrf60) should then be
used in the perturbed Poisson equation.

d2sy

dx?

= én(x) (56) C. Current fluctuations

The expression for the fluctuation of the current in any

with the boundary conditions section of the sample is given by

o(0)=5¢(\)=0 (57)

to find the self-consistent fluctuations of the potendigi

The fluctuations of the distribution functions of injected
electronséf, and 6fg are supposed to be given by the cor- Now we have to substitute into E@2) the fluctuation of the
relator (14). It is advantageous, however, to express thendistribution function, which is convenient to consider here as
through the injected current fluctuations. For each injectiora sum of the homogeneous and nonhomogeneous parts of the

sl :N;'CF St(x,w)w dw. (62)

energys=w?, their relationship is given by solution of the kinetic equatiofsee Eq(A4) in Appendix.
The contribution of the nonhomogeneous term is zero, which
Sly(e)= \/Flcﬁfk(s), k=L,R, (58) can be easily checked by direct integration of Ej7). The

) ) homogeneous term consists of the transmitted and reflected
where 4l is the low-frequency Fourier component of the parts given by Eqs(A6). Again, the reflected electrons give
injection current fluctuation, andi; is the mean emission ;qrq contribution to the current fluctuations, since the func-
cgrrent defined by Eq(4§). The correlator forély is ob-  ions (A6b) are even onw, so that the integran@2) is an
tained from that foréFy given by Eq.(14), and one gets  qqd function and its integration from o to o yields zero.

S . , The only nonzero contribution comes from the ter(A$a)
(li(e)dl(e"))=2qlcAte “Gudle—e’), (59 for transmitted perturbing electrons. Substituting them into
with Af the frequency bandwidth. The obtained correlatorEd: (62) and changing the variable of integration framto
shows that the electrons with different energies are uncorrélc, We obtain
lated, which is a consequence of the Poissonian injection

statistics. The fluctuations at the left and right contacts are ., * YR
assumed to be uncorrelated as well. sl=2\nl. fWL OfL(We)Wedwe+ f_w OTr(We) We dWe
(@ L—a ¥
A. Injected electron-density fluctuations +lcetm(e L —e "R) Sy (63

The electron-density fluctuations at a slikecaused by from which it is seen that the current fluctuation is indepen-
stochastic injection from the contacts is obtained by sumsdent of the positiorx. By using the definition for the injected
ming up all the contributionéA15) derived in the Appendix. current fluctuation(58) and the formulg47) for the average
In terms of the injected current fluctuatio(8), we obtain  current, the final expression for the current fluctuation takes
the following expression: on the form
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% % _ ditional difficulty. Nevertheless, we will show that it can be
ol= L ol (e)de— L +v5l r(e)de—16Vy, (64  solved exactly without any approximation. First of all, it is
m

m advantageous to introduce a new stochastic quantity
wheresdV,,=— (X, is the potential minimum fluctuation.

6l depends on the magnitude of the fluctuating potential bar- 9715 = Sp(X) = Om, (66)

rier irrespective of its random location. This is a consequencevhich is the potential fluctuation at a sligemeasured from

of the current conservation along the diode. the fluctuating potential minimum. Thus, due to our choice,
Equation(64) is a central one, which determines the fluc- at the potential minimundz, =0, wherex,=x2+ 8xy, is a

tuation of the transmitted current through the fluctuationssiochastic location of the potential minimum fluctuating

injected from the contacts. The first two terms in the rhsy.ond its steady-state positio«ﬂr The latter fluctuation,

repres_ent the current fluctuations tran_smitted directly to th‘?]owever, may be neglected, since it is only of second order

opposite contact from the left and right contacts, respec, yagnect to the potential fluctuations, because of the prop-

tively. Since the injected electrons of different energies areerty of the minimumy’ (x%) =0. Thus, one gets the stochas-
uncorrelated, they give the full shot noise. It is the last termy. . “yitferential equation m ' '

—16V,,, caused by the self-consistent potential fluctuation

(long-range Coulomb correlationsthat compensates the . d? J

current fluctuation and may result in the noise reduction. We Lony=|—— —N(X)F—=—=|d7x

note, first, that it is proportional to the current and thus exists dx VA 7(X)

only under nonequilibrium conditions. Second, it depends on = —n(x) 87+ onM(x). (67)

the potential barrier fluctuatiodV,,. When the barrier does
not appear under certain conditions, all the injected fluctualhe boundary conditions for this equation follows from Eqs.
tions are transmitted to the opposite contact and the noise ¢p7) and (66):
the transmitted current is expected to be the same as that for S = Spoe — 8 68
the injected carriers, i.e., the full Poissonian shot noise. The L= ONR= ~ O (68)
compensating behavior may occur only when the potentia§ince the potentiaby, is referenced to the fluctuating mini-
barrier is present. Notice that the contributions of the left-mum, its values on the contacts are not zero, while in a
and right-injected fluctuations are of the opposite sign, i.e.stationary frame they are zero due to a fixed-applied-voltage
61 . >0 increases the fluctuation of the transmitted currentconditions.
while §1g>0 decreases it. To find the solution of Eq(67), we use a method we have
Among all the injecting perturbing electrons, only thoserecently applied for a stochastic drift-diffusion equation
able to pass over the potential barrier contribute to the transwhich has a similar form? Essentially, this method is based
mitted current fluctuation. This fact is reflected in the loweron the possibility of finding twdarbitrary) linearly indepen-
integration limits that contain the height of the potential bar-dent solutions of the corresponding homogeneous equation

rier. In constrast, all the injected electrons contribute to thef 5, —0, which can further be used to construct the solution
potential br?lrrier fluctuatipns: and thereby participate in'thqor the nonhomogeneous equation satisfying the appropriate
compensation effect, as it will be shown in the next sectionpoundary conditions. One of the solutions is proportional to
(dy/dx), which can be seen by differentiating the Poisson
D. Self-consistent potential fluctuations equation(21) and comparing the result with E¢67) with
zero rhs. For convenience, we take it B&) = — (d/dx)
so the solution coincides with the electric field profile. In
generaf? the second solution can be obtained from the first
d one by using the formulau(x)=E(x)fé[W(y)/E2(y)]dy,
where W(x) =E(x)u’(x) —E’(x)u(x) is the WronskianC
is an arbitrary constant, the prime stands for the derivative,
andE(x)#0, Vx is assumed. However, this formula cannot
be applied for our problem, sinde(x)=0 precisely at the

We find the potential barrier fluctuatia¥V,,, which is of
prime interest, from the linearized Poisson equati®) for
the potential fluctuation®. By substituting the electron-
density fluctuation$n consisting of the injected and induce
contributions found in Secs. V A and V B, we obtain for the
self-consistent potential fluctuations

2
d 5"//=5nind(x)+5nini(x) point of the potential minimum and the integral diverges.
dx? Alternatively, we use another formula for the second solution
] u which has no divergence in the whole region. Explicitly,
=N(X) SP(X) = = SPY(X) — 8] + SN (X). Wix W
2\mw, (x) U(x)= — ,( ) FEM) (>I/)Q(3;) dy, (69
65 E'(x) c [E'(y)]
This is a second-order nonhomogeneous differential equatiofnere the functionQ(x) = =n(x)+J/vam7(x) is a free
with spatially dependent coefficients, where the tetnff'/,  term in the operatot., and the necessary conditid (x)

dependent on the fluctuations at the contadlts [see Eq. 70 is fulfilled. Next we notice that the differential operator
(60)], plays the role of a stochastic noise source. To find itd. given by Eq.(67) does not contain the term with the first
solution in a general form is a complicated problem. In ad-derivative, which leads to the constant Wronskian. The value
dition, we remark that the term with\/ (x) is singular at  of this constant is not actually important, since it will be
the potential barrier minimum= x,, which produces an ad- canceled as will be seen below, so we takéx)=1. The
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arbitrary constan€ in Eq. (69) does not influence the final 10
results. It is convenient, however, to define it by the condi- )
tionsu(0)=u(\)=0 at the ends of the diode, which corre- al

spond to the homogeneous boundary conditions for the
Green functions of the operatbrand provide the most com-

pact intermediate expressions. To satisfy the zero boundary &
conditions on both ends of the diode, one can take the func- §
tion u(x) as consisting of two branches. As a result, we 4r

obtain the following expression:

1
u(x)= va E(x)

xJv(y)+n(y) 1
5 dy— , o 0<x<Xp

0 n<(y) nLE. FIG. 8. Functionu(x) which shows the relative contributions of
X the noise sourcedn'™ (x) to the potential barrier fluctuations for

Aw(y)—n(y) 1 A =100 and for several bias& The potential minimum is located

f y— v Xm<X<N\, at y=0.
x  ni(y) NRERr
o A= g+ [ uoonood 79
=—_———_ u(xyn(x)dx.
wherev(x)=1/J/4m5(x) andn(x) andE(x) are the steady- EL Er Jo

state spatial profiles of the electron density and electric field,
which take the values at the left and right contagiSE,
andng,ERr, respectively. The function(x)=0 is continu-
ous in the entire region@x<\, including the point of the
potential minimum, where it takes the valuéx,,) = 1/n,.

At that point, however, it has an infinite derivative, which is

The last integral can further be reduced by substituting
—dE/dx and the expression fou(x) given by Eg.(70).
Integrating by parts, one gets the simple formula

a consequence of the zero of the field. A1 1

The general solution of Eq67), satisfying the boundary A=5+ B, Eq (75)
conditions(68) and the condition&(x,,) =0, d7, =0, then
reads

The obtained analytical expressiofg) with the parameten

X Xm given by Eq.(75) yields the fluctuation of the barrier height
Sny= E(x)f u(y)és, dy+ u(x)J E(y)ds,dy in terms of the spatially distributed “noise sourcéh'™!(x)
0 X caused by the random injection from the contacts. The
E(x) weight functionu(x) shows the relative contributions of the
+ 7. E 0<X<Xp, (713  “noise sources” to the potential barrier fluctuations. Its be-

havior is illustrated in Fig. 8, where we presemormalized
\ « to 1h,, as a function of the coordinate=(X—Xy)/In. In
Sny=— E(X)f u(y) s, dy— u(x)f E(y)ds,dy such a scaling for a fixed voltage( x) n,, is almost indepen-
x Xm dent of A with a slight deviation at the ends of the function
E(x) extensiqn. An linteresting property of those functions fpr dif-
+0 —, Xp<X<N\, (71p  ferent biases is that they cross the cunyg/n(x) (the in-
Er verse universal density profile as discussed in Sec.)dtE
wheress, =n(x) 87, — sn"(x) is the nonhomogeneous part two characteristic points: th_e potential m|n|mum0 where
of Eq. (67). Thus, one can find the potential fluctuatiény, dU/dX:fn’ and a.t th? maximum ai(x) (see Fig. & The
at any sectior of the sample. In particular, its value at the 'attér point has significance in that the electron-density fluc-
boundaries yields the potential barrier fluctuatiaV,, tuations there_have t_he largest _mfluence on th_e potential-
— 57, . We find the unknownsz, from the continuity con- b{irrlgr fluctuations. It is worth noting that the maximum con-
dition on the derivatived 7/dx at x=x,, trlbut_lon to é‘_\/m does not co_me_f_rom the potential minimum
location, as it would seem intuitively.

1 A
1) ———=juxb‘sdx. 72
& Er EL 0 (X) 05 (72 E. Current noise spectral density
Now recalling thatd7, has entered also ifis, we obtain Substituting the obtained formul@3) for 6V, into Eq.
(64), we obtain the current fluctuation as
1/ .
5Vm=KJ u(x)on"™(x)dx, (73

0 o o
with 5l=f n(s)ﬁlL(s)dswa yr(€)Slg(e)de, (76)

0 0
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—ZJJXLK(x,s)dx, <V,
0
y(e)= \ (77
1—Jj K(x,e)dx, &>V,
0
( A
—ZJJ*K(X,s—V)dX, e<V,+V
XR
Yr(e)= N
—1—\]] K(x,e—=V)dx, &>V, +V,
0
“ (78)

whereK (x,&) =u(x)/[2J7A e + (x)], andx} andx} are
found from e = — (X )=V —(x%). The functionsy,(&)
introduced for each contact have the meaningwfent fluc-
tuation transfer functionssince they represent the ratio of

the transmitted current fluctuation to the injected current

fluctuation for a particular injection energy The terms pro-
portional to the currend originate from the potential mini-
mum fluctuations, whereas the constant contributiahd
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wheres =& —V,, is the injection electron energy referenced
from the potential minimum,

A=A, L (82)
" m 2 hy(p) V()
- 2 =
H(n.S)E\/—;[\/nJre—\/i], (82)
- 4 =
G(7n,e)=—=\n+te. (83

N

Formulas(80a and (80b) with 8=1 correspond to the for-
mulas for a vacuum diode found by North within different
approacHsee Eqgs(31) and(38) of Ref. §|.

F. Nyquist equilibrium noise

In equilibrium,l_—>0, the compensating terFﬁVm in EQ.
(64) vanishes, and, comparing with E(Z6), the transfer

represent the direct transmission of fluctuations to the oppdunctions are simply the step functions with a step at the

site contact.
Equation(76) leads to the spectral density of current fluc-
tuations

S|=2q|cJ:[Yf(8)+7%(8)]6_50'8- (79

This equation withy,(e) given by formulag77) and(78) is

barrier height: y{%e)=0(s —Vy), Yg(e)=—60(e—Vy).

This means that only electrons able to pass over the barrier
contribute to the equilibriunitherma) noise. For this case,
one can easily obtain the Nyquist noise formula

Se9=4ql e~ Vm=4kgTgp, (84)

WheregodedUhHo is the zero-bias small-signal conduc-

the final result of our derivations. It allows us to obtain thetance.[To find the conductance we have made use of Eq.
current-noise spectral density, for the given level of screen¢47).] Both electron streams, from the left and right contacts,

ing A and applied voltag®/, from the steady-state distribu- equally contribute to the Nyquist noise. The space-charge
tions of the potentialy(x), electric fieldE(x), and electron effect on the equilibrium noise is present in the dependence
density n(x) by direct integration. Thus, the current-noise of g, on the potential minimunv,,.

level is directly related to the transport inhomogeneity in the

system. Note that the obtained formulas are exact for biases
ranging from thermal to shot-noise limits under a space-

G. Noise-reduction factor

charge-limited transport conditions.

For practical calculations of the transfer functiopnge),
one may integrate by parts the functi&nin formulas(77)
and (78), which leads to the following expressions corre-
sponding to each group of carriers:

e (E)=— Zim jg[ri((z;é]lfzd"’ 3<0, (803

+ fom#j]lmd"}' 3>0,  (80b
Yri(®)=~ me - Eﬁv”(;)_]:fz 7 <0, (800
yr(&)=y(e—-V) -2, >0,  (80d

The obtained formuld73) for the current-noise spectral
densityS, , which accounts for the long-range Coulomb cor-
relations, may be compared with the uncorrelated value
through the so-called noise-reduction factor. Out of equilib-
rium, if one neglects the termséV,, in Eq. (64), which is
responsible for the long-range Coulomb correlations between
the carriers, one obtaing;"°°'(e)=6(e — V), vk °(e)

(e —V,,—V), which leads to

SHMCOT= 2 (1 g+ 1 ry) =291 coth(V/2)
V2 51

(85)

which is nothing more than the Poissonian noise of two un-
correlated streams of carriers opposite each otaehigh
voltages the contribution from the right-contact stream be-
comes negligible It is reasonable, therefore, to define the
noise-reduction factor by

e S S
SUnCOr 2q1 coth(V/2)

(86)

By this definition, both the thermal noise and shot noise lim-
its are included.
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FIG. 10. Contributions to the current-noise-reduction fadtor

FIG. 9. Current-noise reduction factbrvs biasU for different  corresponding to different electron groups for the cask-660. L
levels of screening\=d/LY (solid). For comparison, North’s andR refer to the left and right contacts, ahdndr distinguish the
asymptotic solution given by E489) is shown(dotg. For the case transmitted and reflected groups of carriers. North’s asymptotic so-
of A=30.9, the results are shown to be in excellent agreement withution is shown by dots.
the Monte Carlo simulation&Ref. 5 (triangles.
tion to the noise from the region before the virtual cathode
may be neglected. Furthermore, at sufficiently high A,

Fi h li I f i .
igure 9 showd versus applied voltag® for various ~In/l ~Ix 3. Thus, one can write

screening parameters. At low values of A\, the noise-
reduction effect is weakl'~1. As \ increases, the noise

becomes substantially reduced in the range of bi&sds yi(e)~1— L (v H(e) 7

=qu<qU,,, whereU,, is a critical voltage for which the ’ MIJo [h (7)]1%?

potential minimum vanishe@ts value is a function ok ). At Van 3 3

U=Uy, the full shot-noise level is abruptly recovered. This L mR }+<§\/—_ NAITRL
sharp increase in the noise intensity when observed in an - AV 37\ gVToNeE '
experiment would indicate on the disappearance of the po-

tential barrier controlling the current. (87)

We have compared our results for the noise reductionvhere we have taken into account that the main contribution
factor with those obtained by the Monte Carlo simulations. comes at the upper integration limit and made use of the
The ag_reement was found to be p_erfect W|_th_|n numerlcabsymptotic expansion of the functidy, given by Eq.(51).
uncertainty of the Monte Carlo algorithm, as it is seen fromyt js also assumed here that for any fixed energy the bias is

Fig. 9 where we show such a comparison ior 30.9. The high, V>«. It is justified since the range of valuable energies

agreement for th_e noise characterlsucs,_ as well as for thigjteq by the Maxwellian exponentially decaying distri-
steady-state spatial profiles gh&( curves, indicates the cor- bution. Now, substituting the Langmuir expressi@3) for
respondence between our kinetic theory and the Monte Carlfhe current énd neglecting, andV,,, one obtains

m:

model used in Refs. 5, 6, and 48.

An advantage of our analytical approach is that, in addi- 3 Jr

tion to the net noise characteristics, one may distinguish the \/i— —) (89)
relative contributions to the noise from different groups of 2

carriers. In Fig. 10 we present the results for the noiserhjs formula, after the integration over the energies, leads to

reduction factod” as a sum of four contributions. It is seen norin's asymptotic formufafor the noise-reduction factor:
that in equilibrium only the transmitted electrons contribute

to the noisgequally from the left and right contagtdn the 9 o\ 1.9314
range V=10, the contribution from the reflected carriers I'~ v( 1- Z) =~V V—oo, (89
becomes appreciable with a maximum\&t3. At higher

voltages, as the potential barrier progressively decreases, tAdis formula is universal in the sense that it is free from any
role of the reflected carriers becomes less important. Thdiode parameter including the screening parametetow-
contribution of the right-contact transmitted electrons is negever, it is assumed that should be sufficiently high to sat-
ligible at V=5, as for the stationaryV characteristics. As a isfy the simultaneous conditions—o andV<V,,. As it is
result, in the high-voltage limit, only the left-contact trans- seen from Fig. 9, the noise-reduction faclorapproaches
mitted electrons contribute to the noise. This fact can behis asymptotic formula at high values of the parametkrs:
taken into account in analyzing the asymptotic behavior o=10°, V=10®. As we have already noted, in semiconduc-
the noise-reduction factor at high-voltage limit. In this limit tors it is hard to maintain the ballistic regime at biadés
the main contribution to the current fluctuation transfer func-=50 because of the increasing significance of electron-
tion comes fromy,_;. Under the conditionV,<V<V,,, phonon interactions, which destroy the ballistic regime. In
which is easy to satisfy at large, the first integral in Eq. the range of interest2V=50 the noise level is seen to be
(80b) is much less than the second one, so that the contribwsignificantly lower than North’s asymptotic curve. This

')/L,t(;)~ W
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function y'f(s)efg. At high biases, just after the peak at
=V,,, the point with zero contribution to the noise is ob-
served. While at equilibrium the maximum contribution
comes from the carriers injected wigh=V,,, at high biases,
when the noise reduction is significant, the main contribution
comes from the electrons that are injected above the potential
barrier height by the value abokigT. Therefore, the integral
noise-reduction effect is a consequence of the suppression of
the contributions from the electron energies in the vicinity of
e*.

The obtained exact solutions allows us to investigate in
great detail the correlations between different groups of car-
riers. While the injected carriers are uncorrelated, those in

i the volume of the conductor are strongly correlated, as fol-

lows from the derived formulas for the fluctuation of the

4 distribution function[see general expressiori&12) and
(A13) in the Appendi}. Those correlations may be observed

experimentally by making use of a combination of two al-

FIG. 11. Partial contributions to the current-noise spectral den'ready realized techniques: a hot-electron spectroffeter
sity from different energieg of electrons injected from the left and shot-noise measureme#ts3® The electron spectrom-
contact for biases/=0.01; 10; 50. The results for the right- oo piaced behind the receiving semitransparent contact,
contact electrons are approximately the same/fer0.01 and neg- acts as an analyzer of electron distribution over the

ligibly small for V=10 and 50. energy>®°1In this way spectroscopic information, that is, the

means that the full set of formulas are necessary to descri/érage partial current(e) and their fluctuationssl (e),
properly the noise intensity in the semiconductor ballisticmay be measured for different energiesof electrons col-
diodes. Another important conclusion from Fig. 9 is that forlected at the contact. This is similar to the energy-resolved
a nondegenerate electron gas there exists the lowest noigesise measurements realized in Ref. 54. The partial current
reduction level dependent only on the bias and the tempera&f the transmitted electrons at the receivinght) contact is
ture through the factogU/(kgT), and it is impossible to given by|(g):|ce_5_vm9(;)' where the threshold energy
surmount it by any choice of the material parameter and/of — o corresponds to the arriving electrons that have a zero

geometrical parameters of the diode. This universal mi“imalrongitudinal kinetic energy at the potential minimum. To find

\r)g;tsaegé:éjrve approaches North's asymptotic curve at hlgrt‘he fluctuationsl (), we consider the fluctuation of the dis-

tribution function §f(x,w) at x=A\. Since §#(\)=0, the
terms with §¢(x) vanish. Thus, for the transmitted over the
barrier electrons which contribute to the current, from Egs.
A great advantage of the derived formula9) for the  (Al2a) and(A13a) one obtains
current-noise spectral density is that one may obtain the par-
tial contribution to the noise from electrons of different in-
jection energies by computing the current fluctuation transfer
functions y,(g). The electrons for whichy,(¢)<0 reduce 1 5 1
the current fluctuations. For instance, the right-contact elec- ——e VsV, =—8(w—wg). (90
trons always reduce them, sineg(e)<0, Ve. The re- 77 W
flected carriers originated from the left contaet(V,,) also
provide negative values for the transfer function and comSince only the positive velocities are considered, one can
pensate the current fluctuations by virtue of the potentialchange the velocity variable to the energy by wz—wé,
barrier fluctuations. The same effect is produced by the leftand obtain
contact transmitted electrons with the energies slightly above
the barrier heigh¥/,,. From both groups, the most efficient
compensation carriers are those with energies in the vicinity
of V,, wherey, — — .53 They provide an overcompensation
of the injected from the contacts fluctuations. In constrast, (91)
the injected electrons whose energy greatly excégdpro-

duce negligible perturbations of the potential barrier, thusBy using the relation(58) between the fluctuation of the

leading to the asymptotic behavigf () —~1, yr(¢)——1  contact distribution function and that of the contact injection
ase— . There also exists the specific eneegy, for which  cyrrent, we obtain

the compensation fluctuation is exactly equal to the injected
fluctuation, giving no noise at ally, (¢*)=0. This curious

fact is illustrated in Fig. 11 where we present the contribu-
tion to the current-noise spectral density from different ener-
gies of electrons injected from the left contact by plotting theThus, the correlator for the current fluctuations becomes

0.00 : S —

H. Spectroscopy of shot noise

of L (N, w) =6 (N, W) O(w—wg)

- - - 1 - -
S (8) =8 (e + V) 0(e)— \/—;e’s’vmﬁvmé(s).

Sl(g)=08l (e+Vy) 0(e)— 1. VméV,,5(s). (92
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(5l (E)&I (E,)>|X:A:<5IL(E+Vm) Sl L(E,+Vm)> a cer;ai_n critical vqltage(jv) all thg transport and noise char-
acteristics determined by two dimensionless parameters: the
_|ce*Vm5(§')(6l L(EJer) Nm) screening parameter= d/L% and the biagiU/kgT.
_ _ Based on the derived formula for the current-noise spec-
—1.e"Vmd(e){ 8l (" +Vpm) V) tral density one may distinguish the relative contributions to

o~ 5 the noise_fror_n differen_t groups of carriers. We have analyzed
+1ge""md(e) (e’ )(6Vy), (93 the contributions coming from the transmitted and reflected
where the average is taken over the injected fluctuations. It igroups of carriers, as weI.I as the_ pamgl contnbt_mons_ to the
~~ ) : _ noise from electrons of different injection energies. Finally,
clear that fore,e’ >0 the carriers remain ugcoirelated SiNCejt should be noted that the analytical approach that we have
only the first term does not vanish. It is6(s —¢') due to  presented in the paper may be extended and applied to vari-
the imposed injection conditions that should lead to the fullous systems, e.g., for different kind of statistics of injecting
shot noise. In such a case, an interesting question ariseglectron§® and other types of the contacts. On the other
What is the reason for the noise reduction obtained for th@yand, the shot-noise suppression effect, which we treat ana-
total (integrated over the energjesurrent fluctuations? The |ytically, may lead to important applications for low-noise
answer is found looking at the electrons with energies closgmall-size semiconductor devices, generators of sub-
to the threshold energg=0 (“tangent” electrons. All Poissonian light sourcés,etc. Our work then offers new
other electrons are anticorrelated with that group. This meangerspectives on the study of Coulomb interactions and noise
that if there is a positive fluctuation of overbarrier electrons,in small-size ballistic devices, such as ballistic transistors,
there should be a negative one for the “tangent” electrongpoint contacts, etc.
and vice versa. This anticorrelation explains the overall noise
reduction. The tangent electrons can be thought as overcor-

related. The dispersiotisl?(z)) has a sharp peak at=0

and then decreases with energyeat0. This peak is diver-
gent (5-shapedin our collisionless theory. A small probabil-
ity of scattering will lead to its broadening and finite magni-
tude. Therefore, by measuring the dispersion of the partia
current fluctuations and/or their cross-correlations, one ma
observe a sharp peak and an anticorrelation of electrons, th
making the Coulomb correlations effect visible.
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APPENDIX: FLUCTUATIONS OF THE DISTRIBUTION
VI. SUMMARY FUNCTION AND ELECTRON DENSITY

In conclusion, we have presented a self-consistent theory In a similar way to the subdivision of the stationary dis-
of electron transport and noise in a ballistic two-terminaltribution function(24) into the components corresponding to
conductor under the conditions of nondegenerate electroflifferent groups of electrons classified in Sec. IV A, the fluc-
gas. Our description is valid for ballistic electrons in solidstuation 5f(x,w) may be expressed as
as well as in vacuum. By solving analytically the kinetic
equation coupled self-consistently with a Poisson equation, of = 6f ¢+ 6f |+ Ofg+ 6fr . (A1)
we have derived the electron distribution function and its
fluctuation at arbitrary sectior of the conductor. This al- The boundary conditions for these functions are obtained by
lowed us to obtain the steady-state spatial distributions of thperturbing the steady-state boundary conditi®® and us-
transport characteristics, theV curves, and the noise char- ing dw,/dym=—(2w,) ~ 1. One gets
acteristics. While the time-averaged quantities are not af-
fected by the Coulomb correlations, the noise characteristicgfL]t(o,wc): SFL(We) O(We— W)
are demonstrated to be drastically modified when those cor- L
relations are taken into account. Our results are in excellent
agreement with the preceding Monte Carlo simulatitffs. + z_vafL(WC)(S(WC_WL)‘S’/’m’ (A23)

The obtained formulas have been analyzed in a wide
range of biases and compared with the correspondent theor, _ 2 9 2 2
for gt;he vacuum diode. Inpparticular, we have l(Djemonstrate FLr(Owe) = SF (We) O(WL = We) =T (We) S(WL = W) Om,

; (A2b)
that the known formulas for vacuum electronics, such as the
Child 3/2-power law for |-V characteristics or North’s
asymptotic formula for the noise may not be applied for the®fri(A;We) = 6t (W) 0(—we—wg)
semiconductor diode at biases that are relevant for the bal- 1
listic transport regime. Instead, one should use the more gen- — —fr(We) 8(—W—WR) 8¢, (A2c)
eral formulas described in the present paper from which fol- 2w
lows (i) the linear or sublinedr-V dependences even under a
strong limitation of transport by a space charge; a noise  &fg (N, w,) = 5fr(W,) e(wﬁ—wg)
level significantly below the level obtained from North’s for- s
mula; (iii ) the sharp recovering of the full shot-noise level at — fr(We) S(Wr—W¢) 8¢, (A2d)



PRB 61 SELF-CONSISTENT THEORY OF SHOT NOISE IN . .. 5527

where the additional terms proportional &¢,,, describe the the components for the reflected groups of carriers are de-
changes in the distribution functions due to the potential barfined in the regions: &x<x,, for 6f“h°mandxm<x<)\ for

rier variation. Sfa"°M while those for the transmitted groups of carriers are
Now we have to solve the perturbed kinetic equatie®), givén in the whole range @x<\.
which may be rewritten as According to the electrostatic boundary conditiof3s)
the fluctuations of the potential at the contacts are equal to
( g 1dy g SE(xW) = — 1 9f déy (A3) 280, which leads to vanishing contributiof#s8) at the con-
T3 X ow ’ 2 ow dx’ tacts Sf""°MOw)=sf""°"X\,w)=0. The contributions

(A6) satisfy the boundary condition#2). Thus, the distri-

t caleulati | soluti £ thi h bution function in the form(A4) with eight contributions
or ca lcud%?onsz. Algenera_ SO.Ut'On ort 'Sf non cl)m_ogen?orL:s (A6) and (A8) is the solution of the problem for a given
partial differential equation is a sum of a solution of the 4. trostatic potential(x) + Sy(x).

Eomogeneous progllem aEnd I"." .pt)lartlcular solution of the non- For convenience of further consideration, we presgt
omogeneous probiem. EXplicitly, as a sum of the “injected” and “induced” contributions

where the rhs is supposed to be a given functfonthis step

h h — -
6fk]_6f om4 5fn Om, k—L,R, ]—t,r. (A4) 5fkj_5fln]+5f:(n]d, k:L,R, j:t,r. (Ag)

The solution for the homogeneous problem is determinedn terms of the contact velocities, (presented in such a
by the boundary conditiongA2). By making use of the form these equations will be frequently used throughout the

energy-conservation lag27), we make a replacement papel, those contributions are given by
We=Sgr(W) VW= gh(X) + i (A5) ST (W)= 8F (o) (= We—Wy), (A10a)
hom
and obtain different contributions f, ;" in the form |n](WC) SF (W) 9(Wk 5)' (A10b)
STRIM(X, W) = 8F (X, W) O W—w, (X)) and

1
oy KXW S(EW =W, (X)) 8, (AGB) SN, W) = Fi(We) | 0% We—wy) S(X)

hom 2 1
F00w) = O w) B0, () T S W= WL S0~ Sl (A11)
= 6 W) SWS (%) = W?) Sty (ABD) )
where &f'9™ and 5f}5™ are defined in the regions<Ox 8t (x,We) = fil(We){ B(w—w) 34(x) + S(wic—wg)
<Xm andxm<x<>\ respectively The upper sign applies for X[ SP(X)— St (A11b)

5f79™and the lower sign applies faif 3™, both terms valid

in the whole range @x<\. The critical velocityw, (x) is ~ Where the substitutiofAS) is assumed. The same terms as
given by Eq.(29). functions of k,w) are determined by the formulas

The solution of the nonhomogeneous problem can easily
be found through the steady-state distribution function
f(e)=f(W?— (X)) in terms of the total energy, or,

””(x w) =5 (x,w) 8(=w—w, (X)), (Al2a

equivalently, in terms of the injection velocity,, SEN (X, w) = 8F (X, W) WS (x) —w?),  (A12b)
and
of i 1 of
stghom= — — K 5y — — “ oA
&8'[ 2WC md 1 2+d/() y
X,W)=—=e W TPIT g(=w—w, (X)) Si(X
Differentiating Eqs(25), we find 1 (W)= Jr ( ( » ()84 (x)
) L 1
sfphem= fL(wc)éw(x) B(We— W)= 5 5(wc wL)} F oy OEW =W, (X)L Y(X) = Sfin] 1
(A8a) (A13a

[ 1
O™ (W) 8000 O~ We—w) + 5B~ we—we) |, LY
Cc

Fx,w)= \/1; WZW(X)*‘”k{a(Wi(x)—wz)ézp(x)

(A8b) +8(W2 (X) =W S¢(X) — Sih ]} (AL3b)

5fnhom f(We) SY(X)[ (W2 —w?)+ S(wZ—w?)].  (A8c) Apparently, 5t has a meaning of the distribution function

of randomly injected electrons, whilesf'"® describes the
In these equations the substitutiohb) is assumed, so that change in the steady-state distributimtucedby injected
the fluctuations are finally the functions of,(v). Notice that  electrons.
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The obtained fluctuations of the distribution function al-

lows one to compute each contribution to the fluctuations of

the electron densitysn(x) by integrating over velocities.
Changing the integration ovev to that over the contact in-
jection velocitiesw,, we find

5nk'j(X):J' 5kaj(X,W)dW

o

Of i j(We)wedwg

f—w SgNWe) VW2+ (X) —

(A14)

Thus, by using Eqs(tA10) and (A1l), one obtains for the
injected density fluctuations

WC)WCd W,

wL VW +‘/f X)— 'ﬂL

~wg of c) Wl We
(x)=—f_ Sfr(we)wdw,

= W2 g(X)— P

Sninl(x) = f (153

inj

SNg

(A15b)
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lnl(x) zf M (Al5C)
BT WG+ () = iy
and for the induced fluctuations
d e '//k '//m
'” ) — — O],
(X)) =Ny S(X) 2 Jw. (x )[ OP(X) = 6thm]
(Al6a)
lﬁk*l/’m

SNX) =Ny SP(X) + —=——[ SP(X) — S

(Al6b)

Jaw, (x)

Here, the contributiongA15) can be interpreted as the
electron-density fluctuations at a sligecaused by the sto-
chastic injection from the contacts to the base. The contribu-
tions (A16) are related to a variation of the stationary elec-
tron density due to a local variation of the potential and its
minimal value (a self-consistent responseAs before, the
terms on_, and dng, are defined on the intervals<(x
<Xm andx,<x<A\, respectively, while the termén, ; are
defined on the whole range<<{\.
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