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Fractional quantum Hall effect and quantum symmetry
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Laughlin’s quantum Hall wave function is obtained as an exact ground state of anN-particle Hamiltonian,
in which the electrons themselves are coupled to the Chern-Simons field. The proof requires quantum field-
theoretic methods in the Schro¨dinger picture, and clearly exhibits the relation to conformal field theory since
the Knizhnik-Zamolodchikov connection shows up and the Laughlin ground state is recognized as a conformal
block. A refined version of this approach can be applied for toroidal boundary conditions, i.e., the electrons are
confined to the physical interior of the Hall sample. The result turns out to be a nontrivial modification of the
p-fold degenerate Haldane-Rezayi wave function. Furthermore, it is shown that the degeneracy of the ground
state is accounted for by the quantum groupUq(su2) with deformation parameterq5exp(2pi/p) andp odd;
put differently, the possible quantum numbersp of the quantum Hall effect, determining the filling fractions
n51/p, can be explained by an underlying quantum symmetry.
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INTRODUCTION AND SUMMARY

The quantum Hall effect1 is one of the most fascinatin
phenomena which have been discovered in the last
decades.2 But it has also proven to be one of the most dif
cult to understand. In addition, almost all of the more rec
important developments are expected to find an applica
in this context.

Let us give some examples to certainly illustrate what
have in mind. First, conformal field theory3 has its impact; in
particular, the Laughlin ground state4 can be constructed b
means of vertex operator methods,5 even though there is no
explanation why these constructions do work at all. Seco
Laughlin’s excitations have been shown6 to carry fractional
spin and statistics, and their anyonic behavior is accoun
for by the ‘‘statistical’’ Chern-Simons gauge field.6,7 Third,
infinite-dimensional Lie algebras8 such as Kac-Moody and
Virasoro algebras are involved through edge excitations,9 so
that chiral Wess-Zumino-Witten models10 should be of rel-
evance as well; as opposed to the bulk system, for the e
states the impact of conformal field theory is rather w
founded. Fourth, according to Witten,11 Chern-Simons
theory12,13 is deeply related to knot theory;14 beyond this,
knot theory has been revolutionized by quantum gro
theoretical concepts~Refs. 15 and 16; cf. also Ref. 17!.
Hence one could also expect a quantum symmetry to
involved in this context; a first hint comes from the surpr
ing observation18 that the rather antique Landau theory
two dimensions carries a quantum group structure.

In spite of all these insights or conjectures, however, th
is no conclusive answer to the one basic question of w
Laughlin’s celebrated trial ground state seems to be alm
exact.

There have been several attempts to reach a more det
understanding of Laughlin’s variational guess, which can
motivated by following the analogy with superfluidity.19 Nu-
merical studies for small numbers of electrons ha
shown4,20 that Laughlin’s wave function is a nearly perfe
ground state, being largely independent of the detailed fo
of the electron interaction. Furthermore, Haldane21 has con-
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structed a class of Hamiltonians for which Laughlin’s tri
wave function is exact; such an observation was also m
by Trugman and Kivelson22 for a model with short-range
interaction. In the field-theoretic context, the bosonized v
sion of Laughlin’s wave function23 was obtained by Kane
et al.24 and Karlhedeet al.25 from the effective Ginzburg-
Landau theory23,26,25 in the Gaussian approximation. In
similar vein, Lopez and Fradkin27 found the modulus
squared of the Laughlin state in the long-wavelength
proximation of the fermion Chern-Simons theory28 in which,
following Jain,29 an even number of flux quanta is attach
to the electrons in order to relate the fractional to the inte
quantum Hall effect. In another approach, using methods
collective field theory, Shenget al.30 also gave a derivation
of the Laughlin wave function.

We take another route to answer the question about
origin of Laughlin’s trial wave function. The point of depa
ture resembles the fermion theory in that we couple the e
trons themselves to the Chern-Simons connection. The
son is that in two dimensions they must necessarily foll
braided paths. Hence, the constituent particles must als
subjected to the Chern-Simons field, whereas until now o
the excitations have been accepted to ‘‘feel’’ the statisti
interaction. We differ from the fermion field theory28 in that
an odd number of flux quanta is bound to the electrons;
could also take the approaches of Kaneet al.24 and Karlhede
et al.25 as a starting point, but we avoid to apply the que
tionable singular gauge23 and leave it with the original elec
trons. Furthermore, we neglect the repulsive electron in
action, and so one might object that we arrive at what
called the anyon gas. This model has been devised to
scribe the excitations of the quantum Hall system, but it
also expected to play a decisive role in the context of hi
temperature superconductivity and has been intensively s
ied over the years.31 Our approach, however, differs in on
crucial aspect from the anyon gas because we do not el
nate the ‘‘redundant’’ Chern-Simons connection beforeha
at the expense of obtaining a rather untractableN-particle
Schrödinger equation with the nonlocal statistical interactio
for which an exact solution seems to be out of reach. Inste
5483 ©2000 The American Physical Society
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5484 PRB 61G. GRENSING
we treat the Chern-Simons field as a degree of freed
which must fully be quantized from the outset. The reaso
that one is deep down in the intricacies of constrain
systems.32 Though the Chern-Simons field which is involve
here is Abelian so that the machinery of Becchi-Rouet-St
quantization is not needed, nevertheless there are two s
points which require special care. First, the Chern-Sim
action is a Hamiltonian first-order action33 in which the spa-
tial componentsA5(A1 ,A2) of the connection form a sym
plectic vector; if one identifiesA1 as a coordinate andA2 as
a momentum, rotational invariance is lost. Hence holom
phic quantization appears to be the natural choice. Sec
the time componentA0 of the Chern-Simons connection is
Lagrange multiplier, the variation of which yields the co
straint, and so one must decide whether one restricts
symplectic phase space at the classical level and quan
afterwards, or quantizes first and restricts to physical st
by the requirement that they are annihilated by the oper
constraints.32 Since these two processes need not comm
the two resulting quantum systems may turn out to be es
tially different. The present problem, i.e., two-dimension
electrons in the presence of the Chern-Simons field,
serve as a prime example, where this happens to be the
The elimination at the classical level before quantizing
sults in the standard symmetric ‘‘statistical’’ connection
the anion gas, whereas the inverse process yields, as we
show, an Abelian Knizhnik-Zamolodchikov connection34

which is unsymmetric. Hence the system we investigate
fers from the anyon gas in a crucial aspect.

These matters form the content of Sec. I, where it
shown that if we quantize first and constrain afterwards, t
techniques from the Schro¨dinger quantization of quantum
field theory35 make the ground state an exactly calcula
quantity, which turns out to be a conformal block and
duces to Laughlin’s trial wave function for odd filling frac
tions. Hence, unlike other alternative frameworks to quan
this theory, the approach chosen in the present paper al
an unambigious determination of Laughlin’s wave functi
as an exact ground state, which here follows for rather ‘‘
nematic’’ reasons from the coupling of the electrons to
Chern-Simons connection. The present results also entail
conformal field theory is involved in this context in a pr
scribed way, whereas the observation that Laughlin’s t
wave function can also be obtained by vertex opera
techniques5 is a purely ‘‘experimental’’ fact. We conclude
Sec. I with a brief discussion of excitations, which emerge
a rather straightforward way in this context.

Of course, the present model is a drastic oversimplifi
tion of the quantum Hall system since the repulsive Coulo
interaction and impurities are boldly ignored. The hard pro
lems which remain to be solved are that the formation of
ground state is stabilized by interactions, and that for4 n
;1/70 @or for n;1/7 ~Ref. 36!# Wigner crystallization sets
in.

Another basic question is related to the fact that Lau
lin’s wave function is defined in the entire plane only, a
does not take into account the finite extent of the H
sample. Profound work on this problem is due to Halda
and Rezayi;37 these authors imposed toroidal boundary co
ditions, which is the really natural choice. But a further pro
lem comes in since one expects from general arguments11,13
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that the total charge is bound to vanish on a compact clo
surface. Hence it will be essential to overcome the barrie
total charge zero, and we shall see in Secs. II and III tha
modification of the degenerate Haldane-Rezayi wave fu
tion is required to circumvent this restriction.

The result is obtained on elaborating techniques, de
oped by Bos and Nair13 in a different setting. However, in
the present context it will be an essential step to avoi
Wilson-like treatment of matter particles, which also o
scures that it is indeed a ground state which is determin
Furthermore, a concept is developed to derive the invaria
properties of the wave functionals and the invariance con
tions to be imposed, being superior to the technique of
spired guess used in the literature.

Thus, also in the present context, the ground state of
quantum Hall effect turns out to be degenerate,38 so that it is
the ground-state degeneracyp which now determines the fill-
ing fraction n51/p for p odd. The origin of this fact has
always been a matter of debate and attributed to a ‘‘topolo
cal order,’’39 but this is just a name. We show in Sec. IV th
the quantum groupUq(su2) with deformation parameterq
5exp(2pi/p) provides an explanation, because thep-fold de-
generate ground state yields an irreducible representatio
this quantum algebra.

Hence a quantum symmetry yields the organizing pr
ciple and can thus be seen—much in the same way as
spin with its underlying ‘‘classical’’su2 symmetry provides
for an explanation of level splittings in atomic spectra—
account for the experimentally observed filling fractionsn
51/p of the quantum Hall effect, withp an odd integer.
Another way to put this outcome into perspective is to dr
an analogy with elementary particle theory, where the adv
of a new quantum number is always associated with a new
enlarged Lie symmetry. However, in the present case we
not find an ordinary symmetry, but a quantum symme
emerges. Section V is devoted to some concluding rema

I. LAUGHLIN’S WAVE FUNCTION AS AN EXACT
GROUND STATE

It is shown that the Laughlin’s trial wave function in th
plane may be obtained from first principles, being two
number. The first derives from the observation that
space-time trajectories of electrons living in two dimensio
must necessarily follow braided paths, because the par
trajectories cannot intersect due to the exclusion princip
Hence the configuration space is multiply connected, its
motopy group being given by the braid group. Path-integ
methods then tell us40 that one has also to sum over a
classes of nonhomotopic paths, making itself felt in a ph
factor, describing the braiding of the paths. This phase a
as a topological term to the action, which can be rewritten
a line integral over the ‘‘statistical’’ gauge field so that th
particles now experience a nonlocal interaction. The cru
insight then is that the statistical gauge field can be imp
mented by the local coupling to the Chern-Simons field~see,
e.g., Ref. 41!. It is important to stress that this kind of rea
soning forbids the presence of a term of Maxwell type; on
the Chern-Simons term is induced.

Hence, it is entirely natural and well founded to coup
the electrons to the Chern-Simons field, since they mus
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endowed with the degrees of freedom appropriate to the t
dimensional case. Though this may be seen as a chang
attitude because only the excitations are generally acce
to carry fractional statistics, nevertheless we stick to
above assumption and explore its consequences.

Thus, the Lagrangian for two-dimensional nonrelativis
electrons with chargesqn in an external magnetic fieldB is
taken to be

L5 (
n51

N S m

2
ẋn

i d i j ẋn
j 2qn@Åi~xn!1Ai~xn!# ẋn

i 2qnA0~xn! D
1LCS, ~1.1!

whereÅi(x)52 1
2 B« i j x

j with i 51 and 2 denotes the class
cal external gauge field, and (A0 ,A) the Chern-Simons
gauge field with Lagrangian

LCS5
k

4p E d2x «mnrAm]nAr

5
k

4p E d2x « i j ~ȦiAj1A0Fi j !. ~1.2!

The integration extends over a two-dimensional domainS
which, in the present section, is taken to be the whole pla
On obtaining the second form, it is assumed that the com
nentA0 , which plays a special role, vanishes on the bou
ary of S. Then the surface term arising from a partial int
gration can safely be ignored.

The Chern-Simons part is a first-order Lagrangian, and
the kinetic term on the right-hand side of Eq.~1.2! gives the
symplectic 2-form, which determines the Poisson bracke
be ~cf. Ref. 33!

$Ai~x!,Aj~y!%52
2p

k
« i j d~x2y! ~1.3!

whereas the terms proportional toA0 yield the constraint

k

2p
F12~x!5r~x!5(

n
qnd~x2xn!, ~1.4!

which is first class in Dirac’s32 nomenclature.
The system described by Lagrangian equations~1.1! and

~1.2!, and its quantization, has extensively been stud
where the generally applied strategy is to eliminate the ga
connections by means of the constraint;42,7,43however, some
care is required in applying this elimination procedure, sin
it must be performed in a gauge invariant way in order
respect the commutation relations of the Chern-Sim
field.44 This approach has also been used to obtain45 a two-
dimensional analog of the Wigner-Jordan transformation

We proceed differently, and this constitutes the seco
basic principle: treating the Chern-Simons connection a
quantum field so that the constraint must be imposed a
physical state condition.A priori, there are two possibilities
one can either restrict the classical phase space by mea
the constraint in advance and quantize afterwards, or one
quantize first and restrict afterwards. The importance of
point has often been stressed32 since these two acts need n
commute,46 and this will happen to be the case for the syst
under consideration. As we shall see then, when treating
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Chern-Simons field in the Schro¨dinger picture of quantum
field theory,35 these two basic principles allow for an exa
determination of the ground state wave function.

To begin with, we need to make a decision how to qua
tize the Chern-Simons field. One could select one compon
of A at will as the generalized coordinate and the remain
one as the corresponding momentum, but it is advantage
to choose holomorphic quantization with47

Âz̄5Az̄ , Âz5
p

k

d

dAz̄
. ~1.5!

The Bargmann inner product for Schro¨dinger wave function-
als c@Az̄#(x1 ,...,xN) is then

^c1uc2&5E d@Az̄ ,Az#

3expS 2
k

p E d2x Az̄AzDc1@Az̄#c2@Az̄#,

~1.6!

where, for the time being, thexn dependence is suppresse
The constraint, which commutes with the Hamilton ope

tor, in the present notation reads

Ĉ5 i
k

p
~] z̄Âz2]zÂz̄!2r. ~1.7!

Furthermore, the operator obtained by exponentiation

Û@g#5expS 2 i E d2x aĈD , ~1.8!

with g5exp(2ia)PU(1), yields a~proper! representation of
time-independent gauge transformations, acting on
Schrödinger wave functionals as

Û@g#c@Az̄#5exp~2 iv@g,Az̄# !c@g21Az̄#, ~1.9!

wheregAz̄5Az̄1] z̄a, andv is the 1-cocycle

v@g,Az̄#52E d2x ar1 i
k

p E d2x Az̄]za

2 i
k

2p E d2x ] z̄a]za. ~1.10!

These gauge transformations play the role of~infinite-
dimensional! Wigner symmetry transformations, and so
makes sense to require the wave functionals to be invar
with respect to these, i.e.,

Û@g#c@Az̄#5c@Az̄#, ~1.11!

in accordance with Dirac’s prescription that the constra
must annihilate physical states.

The invariance condition can be employed to determ
the Az̄ dependence of the wave functional. For this purpo
we use the parametrization

Az̄5] z̄x, ~1.12!

wherex is complex so that gauge invariance is maintain
This relation is inverted by means of the Green’s functi
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5486 PRB 61G. GRENSING
P(x2y)524]zG(x2y) of the operator] z̄ , where G(x
2y)52(1/4p)lnum(z2w)u2 is the standard propagator wit
m the infrared cutoff; in particular, we obtain

d

dAz̄~x!
52E d2yP~x2y!

d

dx~y!
. ~1.13!

Observe that the transformation law~1.9! is a purely alge-
braic result; thus it holds as well ifg is generalized to be an
element of the complexificationU(1)C. Then one can choos
a5x to obtain

c@Az̄#~x1 ,...,xN!5expS i(
n

qnx~xn!

1
k

2p E d2x ] z̄x]zx Dc~x1 ,...,xN!,

~1.14!

and this is the result at which we aimed.
What remains to investigate is the Hamiltonian which,

the present notation, reads

Ĥ52
1

2m(
n

2~D̂z̄n
D̂zn

1D̂zn
D̂ z̄n

!, ~1.15!

with the covariant derivatives

D̂zn
5¹̂zn

2
1

4l 2 qnz̄n , D̂z̄n
5¹̂ z̄n

1
1

4l 2 qnzn .

~1.16!

Here we have split off the contribution of the external ma
netic field, being hidden in the magnetic lengthl 5A1/B in
units with \5c5e51. The Chern-Simons part is containe
in the operators

¹̂zn
5]zn

1 i
p

k
qnE d2x P~xn ,x!

d

dx~x!
, ~1.17!

¹̂ z̄n
5] z̄n

2 iqn] z̄n
x~xn!. ~1.18!

They act on the wave functionals as

D̂zn
c@Az̄#~x1 ,...,xN!

5expS i(
m

qmx~xm!1
k

2p E d2x ] z̄x]zx D
3Dzn

c~x1 ,...,xN!, ~1.19!

and analogously forD̂z̄n
. The operators

Dzn
5¹zn

2
1

4l 2 qnz̄n , Dz̄n
5¹ z̄n

1
1

4l 2 qnzn

~1.20!

closely resemble Eqs.~1.16!, but now we have

¹zn
5]zn

2
p

k
qn(

m
qmP~xn ,xm!5]zn

2
1

k (
mÞn

qnqm

zn2zm
,

~1.21!
-

¹ z̄n
5] z̄n

. ~1.22!

In the second version of Eq.~1.21!, the term withm5n is
indeed absent, since both the infrared regulatorm and the
short-distance cutoff« drop out. For the former, this is ob
vious; for the latter, the assertion follows if we define it b
means of the heat-kernel expansion to be

lim
y→x

G~x2y!5E
«

1/m

dt^xue2tDux&52
1

4p
ln~m«!,

~1.23!

so that in flat space« is x independent, which is the propert
we need. Beyond this, the definition also shows that the
traviolet regulator has geometrical significance.

Here we make contact with conformal field theory sin
the operators~1.21! and ~1.22! are recognized as~Abelian!
Knizhnik-Zamolodchikov34 derivatives. It is an essentia
point that they take an unsymmetric form because the a
holomorphic partner of the Knizhnik-Zamolodchikov co
nection

Azn
52

i

k (
mÞn

qm

zn2zm
~1.24!

is simply absent.50 This is a fact being well known to math
ematicians~Ref. 48; see also Ref. 49!, but not appreciated in
the quantum Hall effect literature. In the present approa
the Knizhnik-Zamolodchikov connection appears as the r
of the Chern-Simons connection, and it is in its unsymme
that the treatment of the Chern-Simons field as a quant
mechanical degree of freedom, which is not eliminated
forehand at the classical level, manifests itself.

The HamiltonianĤ acts onc(x1 ,...,xN) as the operator

H52
1

m(
n

~Dz̄n
Dzn

1Dzn
Dz̄n

!, ~1.25!

and we restrict ourselves to the determination of the gro
state with zero-point energyE05Sn1/2vn , where vn
5qnB/m is the cyclotron frequency. This is accomplishe
by requiringDz̄n

c0(x1 ,...,xN)50, which is solved by

c0~x1 ,...,xN!5expS 2
1

4l 2 (
n

qnuznu2Dw0~x1 ,...,xN!,

~1.26!

with

¹ z̄n
w0~x1 ,...,xN!50. ~1.27!

What remains is

Hc0~x1 ,...,xN!5expS 2
1

4l 2 (
m

qmuzmu2D
3S 2

1

m(
n

¹ z̄n
¹zn

1E0Dw0~x1 ,...,xN!,

~1.28!

so that we are done if we also require
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¹zn
w0~x1 ,...,xN!50. ~1.29!

The solution of the Knizhnik-Zamolodchikov equation
~1.27! and ~1.29! is the Abelian conformal block

w0~x1 ,...,xN!5N 08 )
n,m

~zn2zm!qnqm /k, ~1.30!

where no regularization problems become involved at
stage. As for the quantum Hall effect we are only interes
in the properties of the electrons, and so we can takeAz̄
50 in the wave functional; furthermore, on choosingqn
51 andk51/p, with p an odd integer, we thus obtain, wit
Eqs.~1.26! and~1.30!, the Laughlin wave function, as prom
ised.

The derivation clearly shows that this state is of minimu
energy and, in addition, provides for an explanation of
main series of filling fractionsn51/p. A basic assumption in
obtaining this result has been that it is not enough to sim
cancel the third coordinate in order to describe quantu
mechanical particles restricted to two dimensions; they m
be supplied with the degrees of freedom, being specific to
two-dimensional case, and this is accomplished by mean
the Chern-Simons~quantum! field.

The conformal blockw0 can be interpreted as the vacuu
expectation value ofN chiral vertex operators with
‘‘charges’’ qn /Ak, and this may be seen as an explanation
the hitherto rather accidental, fact that the holomorphic p
of the Laughlin ground-state wave function can also be
tained by means of vertex operator techniques~Ref. 5; see
also below!.

Up to now, we could avoid regularization problems; ho
ever, they come in on adressing normalization issues. F
Eq. ~1.6!, for the inner product we obtain

^c~x1 ,...,xN!uc8~x1 ,...,xN!&

5
detD

uGu E d@ x̄,x#expS 2
k

p E d2x ] z̄x]zx̄ D
3c* @] z̄x#~x1 ,...,xN!c8@] z̄x#~x1 ,...,xN!, ~1.31!

where we have factored out the volumeuGu of the gauge
group in order to count each gauge orbit only once. W
rewrite this in the multiplicative form

^c~x1 ,...,xN!uc8~x1 ,...,xN!&

5c* ~x1 ,...,xN!K~x1 ,...,xN!c8~x1 ,...,xN!,

~1.32!

with the diagonal kernel

K~x1 ,...,xN!5detDE d@f#expS 2
2k

p E d2x ] z̄f]zf

22(
n

qnf~xn! D ~1.33!

and wheref5Im x. The functional integral is recognized a
the vacuum expectation value of the product ofN ~nonchiral!
vertex operators with ‘‘imaginary charges,’’ which can b
evaluated to give
is
d

e

ly
-

st
e
of

f
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-

-
m

e

K~x1 ,...,xN!5~detD!1/2m2~1/k!Q2
«2~1/k!Snqn

2

3 )
n,m

uxn2xmu22~qnqm /k!. ~1.34!

Restricting ourselves to the ground-state wave functional,
want to achieve that the cutoffs cancel in the inner produ
But we then see that choice~1.30! for w0 is not quite right,
but ~on appealing to the vertex operator analogy, alluded
above! we can correct for this by instead choosing

w0~x1 ,...,xN!5N0 expS 2
2p

k (
n,m

qnqmG~zn2zm! D
5N0m~1/2k!Q2

«~1/2k!Snqn
2

)
n,m

~zn2zm!qnqm /k,

~1.35!

whereG(z) is the holomorphic part of the propagator, an
N0 is cutoff independent. The right-hand side of Eq.~1.35! is
just the inverse of the holomorphic square root of Eq.~1.34!,
so that the cutoff dependent contributions precisely can
Hence the inner product

^c0~x1 ,...,xN!uc0~x1 ,...,xN!&5uN0u2~detD!1/2

3expS 2
1

2l 2 (
n

qnuznu2D ~1.36!

is a finite quantity if the determinant of the Laplacian
understood to be regularized by means ofz-function tech-
niques. Finally, thexn integrations remain to be done, but fo
qn51 they pose no problem since they are all Gaussian

It is noteworthy that the present approach provides fo
rather unexpected resolution of the normalization probl
for the Laughlin wave function. Furthermore, let us stre
that if we had we attempted to regularize the wave functio
itself, and not its inner product, we would have run in
trouble. As is well known, the ultraviolet cutoff can be a
sorbed in a multiplicative renormalization of the vertex o
erator by normal ordering, but what is left is the infrare
cutoff, which enforces the total chargeQ5Snqn to vanish.
One could dispose of this restriction by means of t
Dotsenko-Fateev background charge method,51 but in the
present context there is no point in so doing. We only have
guarantee the wave functional to be normalizable, and th
the reason why one can escape the conclusion that the
charge must be zero. We shall have occasion to return to
topic repeatedly in the course of the further developmen

We end this section with a brief discussion of excitation
which may be obtained in a rather straightforward man
within the present approach. Let us assume the existenc
charged excitations, which are designed to balance a s
increase of the external magnetic field such that the filling
locked at the original valuen51/p with p.1 odd. Since the
energy of the fictious particles should be strictly less than
zero-point energye5v/2 per electron, it is tempting to as
sume that their chargee* is fractional; in particular, we
choosee* 5e/p. Under the further assumption that the ma
of the excitations equals that of the electrons, we have t
achieved thatv* 5v/p, and so the zero-point energy of a
excitation is strictly less than that of an electron. The ex
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tations are also subject to the coupling to the Chern-Sim
field; hence we can now use the above results@see Eq.~1.26!
and~1.35!#, where it will pay that we have not specified th
charges of the constituents from the outset. Thus, partit
ing the coordinates into (x1 ,...,xN) with chargese(qn51)
for the electrons, and (y1 ,...,yM) with charges e* (qm
51/p) for the excitations, we immediately obtain th
ground-state wave function

c0;N,M~x1 ,...,xN ;y1 ,...,yM !

5N0;N,M expS 2
1

4l 2 (
n

uznu22
1

4l 2

1

p (
m

uwmu2D
3 )

n,n8

N

~zn2zn8!
p)

n,m

N,M

~zn2wm! )
m,m8

M

~wm2wm8!
1/p,

~1.37!

of energyE0;N,M51/2v@N1(1/p)M #, and the normaliza-
tion factor is

N0;N,M5N0m@N1~1/p!M #«~1/2!@pN1~1/p!M #. ~1.38!

This is recognized as Laughlin’s trial state withN electrons
and M excitations, where only the last factor is less w
known; this immediately shows that, whereas the conv
tional statistics of the electrons is not changed by the c
pling to the Chern-Simons field, the statistics of the exc
tions withs* 51/p is fractional.6 Of course, we do not claim
to have given any additional insight into the origin of th
excitations, which remains obscure; a deeper understan
requires a second quantized description of the electr
which will be given elsewhere.

II. ELECTRONS ON THE TORUS

We want to generalize the results obtained so far to r
istic boundary conditions; thus the electrons are restricte
a rectangular domain in the plane of extensionsL1 andL2 ,
i.e., the torus. For the time being, we only keep the Che
Simons field; the external magnetic field will be taken ca
of at the very end.

Beyond the seminal work of Haldane and Rezayi,37 an
abundant literature is available on this subject,52 in which the
classical reduction procedure is used throughout. For
present approach, the work of Bos and Nair~Ref. 13; cf. also
Ref. 53!, though not devoted to the quantum Hall effect, w
be of special relevance. These authors treated the ge
case of a Riemann surface of arbitrary genus with Wils
lines inserted; however, they explicitly restricted the inves
gation to the case of vanishing total charge, a restrict
which is generally believed to be unavoidable on a clo
surface~cf. also Ref. 11!. Hence, it will be essential for wha
follows to circumvent this verdict, which also seems to
one of the main stumbling blocks in related investigation

So let us return to the first part of Sec. I where all in
grations are now understood to extend over the fundame
domain of the torus. But it is essential to note that we can
longer ignore boundary terms; they must all be kept. Th
the basic results contained in formulas~1.1!–~1.10! remain
valid with one exception; formula~1.8!, which must be
modified. Here we encounter a basic difference, as comp
s
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to the plane, because the general rule that the const
Ĉ@a#5*d2xaĈ can be identified with the generator o
gauge transformations no longer applies to a system
stricted to a finite domain. What is to be called the genera
of gauge transformations can be inferred from the class
symmetries. The Chern-Simons part of the Lagrangian is
invariant under time-independent gauge transformations,
changes by a total time derivative only so that the gene
ized Noether procedure54 yields the conserved quantity

Q̂@a#52 i
k

p E d2x~] z̄aÂz2]zaÂz̄!2E d2x ar,

~2.1!

where again the hats signify the transition to the opera
level. This differs from the constraintĈ@a# through a crucial
boundary term, which cannot be neglected since the Ch
Simons gauge field (A1 ,A2) neither vanishes on the bound
ary, nor may be assumed to be periodic. If we now define
operator of gauge transformations by

Û@g#5exp~2 iQ̂@a#!, ~2.2!

then the transformation law of the Schro¨dinger wave func-
tional takes the same form, as given in Eqs.~1.9! and~1.10!
above.

But one must qualify what kinds of gauge transformatio
g(x)5exp@2ia(x)# are allowed: we postulate that they mu
be doubly periodic. This requirement permits tw
classes: small gauge transformations with doubly perio
parametersa(x), and large gauge transformations

g~m1 ,m2!~x!5exp@2 ia~m1 ,m2!~x!# ~2.3!

depending on two integersm1 andm2 , with ‘‘parameters’’

a~m1 ,m2!~x!52pS m1

x1

L1
1m2

x2

L2
D , ~2.4!

not being continuosly connected to the identity. According
we allow for gauge fields which, in addition to the standa
contribution~1.12!, contain a constant term, as well as a te
depending linearly on the coordinates. We make the cho

Az̄~x!5] z̄x~x!1a1bz, ~2.5!

wherea, b, andx take compex values andx is required to
be doubly periodic; the nonstandardb term will turn out to
be of special relevance. Again, the small gauge transfor
tions only affectx, whereas the large gauge transformatio
can be absorbed in the constant terma, which is mapped into

a85a1 i
p

L2
~m22tm1!, ~2.6!

wheret5 iL 2 /L1 is the modular parameter of the~rectangu-
lar! torus. Theb term is left inert under both types of trans
formations; we shall see that it will play an essential role
obtaining valuesQÞ0 of the total charge.

Let us return to operator~2.2!, implementing the gauge
transformations on wave functionals. It is easy to see that
cocycle condition

v@hg,Az̄#2v@h,Az̄#2v@g,h21Az̄#50 ~2.7!
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only holds for small gauge transformations, whereas
large gauge transformations it is violated by a nonvanish
boundary term. For the operatorsÛ (m1 ,m2)5exp

(2iQ̂@a(m1,m2)#), this entails that they do not commute,

Û ~m1 ,m2!Û ~n1 ,n2!5exp@2p ik

3~m1n22m2n1!#Û ~n1 ,n2!Û ~m1 ,m2! ,

~2.8!

in spite of the fact that, classically, the large gauge trans
mationsg(m1 ,m2) form an Abelian group. Thus we are face
with a gauge anomaly.

Of special importance for the further development will
the central extension

Û ~l;m1 ,m2!5lÛ ~m1 ,m2! , ~2.9!

with l5exp(pikn) and nPZ, which is a Heisenberg-Wey
group with composition law

~l;m1 ,m2!~l8;m18 ,m28!5~ll8ep ik~m1m282m2m18!;m1

1m18 ,m21m28! ~2.10!

Realization~2.9! is an operator-valued representation of th
discrete group in the ordinary sense.

It is essential to note that small and large gauge trans
mations commute. Furthermore, they commute with the
variant derivatives¹̂ z̄n

and ¹̂zn
, and thus with the Hamil-

tonian as well. In addition, they are unitary with respect
the Bargmann inner product.

In the following, we need the inversion of the paramet
zation ~2.5!; this is accomplished by means of the doub
periodic propagatorG(x,y) with the properties55

DG~x,y!5d~x,y!2
1

V
, E d2x G~x,y!50, ~2.11!

whereV5L1L2 . It is given in terms of another propagato
G0(x2y), only obeing the first of the above propertie
which is

G0~x2y!52
1

4p
lnuE~v2w!u21

1

2

@ Im~v2w!#2

Im t
,

~2.12!

where v5z/L1 and E(v)5u1(vut)/u18(0ut) are the prime
form; u1 is the odd Jacobi theta function.56 The propagator
we need then is~cf. also Ref. 57!

G~x,y!5G0~x2y!2
1

V E d2x8@G0~x2x8!1G0~x82y!#

1
1

V2 E d2x8d2y8G0~x82y8!, ~2.13!

and it is easy to check that it is indeed orthogonal to the z
mode. We also shall have need for

P~x,y!524]zG~x,y!5P0~x,y!, ~2.14!
r
g

r-

r-
-

-

ro

where it makes no difference which of the two Green’s fun
tions we use. As a last remark, the propagatorG0 is not
modular invariant; this property can be supplied for on
placing the prime formE by58

F~v !5u1~vut!/h~t!, ~2.15!

whereh is the Dedekind function; however on passing to E
~2.13!, modular invariance is lost again.

With these preliminaries out of the way, the inversion c
be done, and we end up with59

d

dAz̄~x!
52E d2yP~x,y!

d

dx~y!
1

1

V

d

da
. ~2.16!

Note that the coefficientb does not get involved on the right
hand side; it is not quantized. An adequate decription of
b term appears to be that it plays the role of a class
Chern-Simons background field.

Now we would like to proceed as in Sec. I to determi
the x dependence of the wave functional by means of sm
gauge transformations, so we could try again to impose
requirement thatÛ@g# acts as the identity operator on phys
cal states. However, on so doing, one soon runs into se
consistency problems, which may be traced back for
b-term. Its contribution to the 1-cocycle read
(k / p)b*d2x z]za 5 (k/p)b*d2x ]z(za) 2 (k / p)b*d2x a,
and we would prefer if we could get rid of the nasty boun
ary term. For the moment, this remark should suffice to m
tivate that we only require physical wave functionals to
invariant up to a phase, i.e.,

Û@g#c@Az̄#5e2 if@a#c@Aẑ#, ~2.17!

where the phase

f@a#5 i
k

p
bE d2x ]z@za~x!# ~2.18!

is linear ina, and thus respects the group law. BecauseÛ@g#
acts unitarily,60 the above condition~2.17! also respects the
inner product. On passing to the complexificationU(1)C, we
thus obtain

c@Az̄#~x1 ,...,xN!5expS i(
n

qnx~xn!2
k

p
bE d2x x

1
k

2p E d2x ] z̄x]zx Dc@a#~x1 ,...,xN!,

~2.19!

so that thex and a dependences factorize. As a check, o
verifies directly that this wave functional indeed obeys t
condition ~2.17! that we began with.

What remains to discuss is the role of the constra
which in terms of the new variables reads as follows:

Ĉ~x!52 i
d

dx~x!
2 i

k

p
]z] z̄x~x!2(

n
qnd~x2xn!2 i

k

p
b

1
i

V E d2y
d

dx~y!
. ~2.20!



i
s
in
to

th

ic

n-
e
is

sf

s
ur
on

th

o

ic

y be

are
es,
e

but
s.
ors

es
en-

trical
e
if
ner-

ns-
e
rs

the
the
al
fer-

a

e

la-

5490 PRB 61G. GRENSING
As we have already commented upon, for a system living
a domain of finite extent, gauge invariance and the impo
tion of the constraint are different issues. Hence, impos
the constraint is a separate requirement, which amounts

Ĉ~x!c@Az̄#5
i

V E d2y
d

dx~y!
c@Az̄#50, ~2.21!

and this condition fixes the value ofb to be61

b5 i
p

k

Q

V
. ~2.22!

Note then that the first two terms in the exponential on
right-hand side of Eq.~2.19! add up to give an effective
charge density of the total effective charge zero.

Let us turn to large gauge transformations, the expl
form of which follows from Eqs.~1.9! and ~1.10! to be

Û ~m1 ,m2!c@Az̄#5expS p
Q

L2
@~m22 t̄m1!Z2Z̄~m22tm1!# D

3expS 2 ikL1~m22 t̄m1!a

1
p

2

Q

L2
~m22 t̄m1!L2k

p

2

L1

L2
~m22 t̄m1!

3~m22tm1! DcFAz̄2 i
p

L2
~m22tm1!G ,

~2.23!

with L5L11 iL 2 ; furthermore, we have introduced the ce
ter of chargeZ5Snqnzn /Q, which always appears in th
form QZ, and so makes sense as well for the case of van
ing total charge. These transformations only affect thea de-
pendence, and thus we can takex to be zero. At this point,
one could guess that invariance under large gauge tran
mations should as well be imposed only up to phase~2.18!,
i.e., in the same manner as for small ones. But this gues
wrong, as we want to make plausible now, and for this p
pose, we return once more to small gauge transformati
Its generators may be split as

Q̂@a#5Ĉ@a#1B̂@a#, ~2.24!

with the ‘‘boundary’’ operator

B̂@a#52 i E d2x ] z̄S a
d

dAz̄
D1 i

k

p E d2x ]z~aAz̄!,

~2.25!

depending only on the Chern-Simons field and not on
matter part. For the parametrization~2.5!, this operator re-
duces to

B̂@a#5f@a#, ~2.26!

with f@a# the phase introduced in Eq.~2.18!; this is a c

number only, and so it is obvious thatB̂ andĈ commute. We
thus have revealed the origin of condition~2.17!, because the
imposition of the constraint just yields the invariance up t
phase. After all, condition~2.22!, having been obtained from
the requirement that the constraint annihilates phys
n
i-
g

e

it

h-

or-

is
-
s.

e

a

al

states, now appears in a different perspective, since it ma
seen as a statement about ‘‘global’’ gauge invariance@cf. the
remark following Eq.~2.22!#. Indeed, forå anx independent
gauge transformation, we haveQ̂@å#52åQ and f@å#
5 i (k/p)bVå, so that Eq.~2.17! yields the assertion.

As to large gauge transformations, however, things
rather different. For a proper understanding of their finess
it is helpful to forget for a moment the matter part, i.e., w
only investigate pure Chern-Simons theory on the torus;
we could also take a Riemann surface of arbitrary genu53

Then it is rather straightforward to show that the operat
Û (m1 ,m2) , for the special valuesm150, m2521 and m1

51, m250, coincide with the holonomy operators

Û ~0,21!5expikE
a
Â dx, Û ~1,0!5expikE

b
Â dx,

~2.27!

wherea andb denote the two independent homology cycl
on the torus. Thus, for a pure Chern-Simons theory the g
erators of large gauge transformations have deep geome
topological significance~cf. Ref. 11!. Hence one expects th
operatorsÛ (m1 ,m2) to be of comparable importance as well
matter particles are present: however, then such a Weg
Wilson type interpretation is no longer available.

Returning to the problem at hand, for large gauge tra
formations, the boundary term~2.25! does not degenerat
into a c number; in particular, one verifies that the operato
exp2iB̂@a(m1,m2)# andÛ (m1 ,m2) act identically on wave func-
tionals, as one expects, and so we may leave it with
latter. Furthermore, it would be inconsistent to require
operatorsÛ (m1 ,m2) to act as the identity operator on physic
wave functionals, because they need not commute for dif
ent values of (m1 ,m2). Taking k to be rational, i.e.,k
5k1 /k2 , with k1 and k2 coprime integers, we can avoid
contradiction if we only requireÛk2(m1 ,m2) to act as an iden-
tity up to anm-dependent phase. Specifically, we choose~cf.
also Ref. 52!

Ûk2~m1,0!c@Az̄#5e22p ih1m1c@Az̄#,

Ûk2~0,m2!c@Az̄#5e22p ih2m2c@Az̄#, ~2.28!

with h1,2P@0,1#, since it is this choice, which prevents th
conflict with the~global! gauge anomaly.

Now it amounts to a lengthy but straightforward calcu
tion to solve these conditions in terms of Jacobiu functions56

with characteristicsa, bPR,

uFab G~wus!5 (
n52`

1`

exp$p is~n1a!2

12p i ~n1a!~w1b!%, ~2.29!

wherew, sPC and Ims.0. There arek1k2 linear indepen-
dent solutions of Eq.~2.28!, which may be written as
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c l@a#~x1 ,...,xN!5expF2
k

2p
VS a1 i

p

k

Q

V
ZD 2

1 iQZ̄S a1 i
p

k

Q

V
ZD G

3expF2
i

2
QL̄S a1 i

p

k

Q

V
ZD G

3uF 1

k1k2
S l 1h21

Q

2
k2D

h11
Q

2
k2

G
3F2 i

k1

p
L2S a1 i

p

k

Q

V
ZD Uk1k2tG

3f~x1 ,...,xN!, ~2.30!

with l 51, . . . ,k1k2 . For Q50, Eq.~2.30! coincides with an
analogous result in Ref. 13 by specializing to the case
genus one there.

However, this is not the final form, we still have to di
cuss the Hamiltonian

Ĥ52
1

2m(
n

2~¹̂ z̄n
¹̂zn

1¹̂zn
¹̂ z̄n

!, ~2.31!

where the covariant derivatives are given by

¹̂ z̄n
5] z̄n

2 iqnS ] z̄n
x~xn!1a1 i

p

k

Q

V
znD , ~2.32!

¹̂zn
5]zn

1 i
p

k
qnE d2xP~xn ,x!

d

x~x!
2 i

p

k

qn

V

d

da
.

~2.33!

If these are applied to the wave functionals~2.19! and~2.30!,
we have to commute them through in front off; on so doing,
it proves to be advantageous to define

f~x1 ,...,xN!5expS p

k

Q2

V
uZu22

p

2k

Q2

V
Z2

2
p

k

Q

V (
n

qnuznu2

1
p

2k

Q

V (
n

qnzn
2Dw~x1 ,...,xN!,

~2.34!

so that the covariant derivatives act onw in the simplified
forms

¹ z̄n
w~x1 ,...,xN!5] z̄n

w~x1 ,...,xN!, ~2.35!
f

¹zn
w~x1 ,...,xN!5F ]zn

2
qn

k
]zn(m qm

3 ln ES 1

L1
~zn2zm! D Gw~x1 ,...,xN!.

~2.36!

They may appropriately be addressed to as the Knizh
Zamolodchikov derivatives on the torus. Accodingly, the
nal form of the wave functionals reads

c l@Az̄#~x1 ,...,xN!5expF i E d2xS r2
Q

V Dx

1
k

2p E d2x ] z̄x]zxG
3expS 2

k

2p
Va22 iQ~Z2Z̄!a

2
p

k

Q

V (
n

qnuzn
2u1

p

2k

Q

V (
n

qnzn
2D

3expF2
i

2
QL̄S a1 i

p

k

Q

V
ZD G

3uF 1

k1k2
S l 1h21

Q

2
k2D

h11
Q

2
k2

G
3F2 i

k1

p
L2S a1 i

p

k

Q

V
ZD Uk1k2tG

3w~x1 ,...,xN!. ~2.37!

The HamiltonianĤ acts onw as the operator

Hw52
1

m(
n

~¹ z̄n
¹zn

1¹zn
¹ z̄n

!w, ~2.38!

with the derivatives as shown.
It is a straightforward matter now to determine the min

mum energy state of the reduced Hamiltonian~2.38! by fol-
lowing the same logic as in the plane. This is the solution
the equations

¹zn
w0~x1 ,...,xN!50, ¹ z̄n

w0~x1 ,...,xN!50 ~2.39!

and is obtained to be

w0~x1 ,...,xN!5N0)
n

«qn
2/2k )

n,m
ES 1

L1
~zn2zm! D qnqm /k

,

~2.40!

where the normalization constantN0 is cutoff independent
since there is no infrared regulator on a compact surfa
Hence the ground states of the system turn out to be exa
solvable.

Let us specialize the above result to the case relevan
the quantum Hall effect. Because the wave functional m
be completely antisymmetric in the electron coordinates,
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requiresk151 andk25p to be odd integers. At this point w
come into contact with the work of Haldane and Rezayi,37 in
which Laughlin’s ansatz is generalized to the torus; this w
also discussed by Cristofanoet al.5 by means of vertex op
erator techniques.62 If we definec0;l@Az̄#ux5a50(x1 ,...,xN)
5co; l(x1 ,...,xN), we expect these wave functions to veri
the Haldane-Rezayi ground states. However, the exp
form

co; l~x1 ,...,xN!5expS 2
p

k

Q

V (
n

qnuznu21
p

2k

Q

V (
n

qnzn
2

1
p

2k

Q

V
L̄(

n
qnznD

3uF 1

p S l 1h21
Q

2
pD

h11
Q

2
p

G
3S p

1

L1
(

n
qnznupt Dw0~x1 ,...,xN!

~2.41!

reveals that our result differs, among other things, in a d
sive exponential prefactor, one can get rid of only if the to
chargeQ5Snqn is required to vanish. Hence the degener
Haldane-Rezayi ground state appears to be restricted to
sector of total charge zero, and so should hardly be relate
the quantum Hall effect.

One could object that the final results~2.37! and~2.40! an
‘‘gauge dependent’’ in the sense that theb term in Eq.~2.5!
can be modified. But we could as well have chosen an ‘‘
symmetric gauge,’’ for which the parametrization takes
form

Az̄~x!5] z̄x~x!1a1 i
p

k

Q

V
~z2 z̄!. ~2.42!

Then one can follow similar steps as before to obtain
analog of result~2.37!, which reads

c l@a#~x1 ,...,xN!5expS 2
k

2p
Va22 iQ~Z2Z̄!a

1
p

2k

Q

V (
n

qn~zn2 z̄n!2D
3expF2QL2S a1 i

p

k

Q

V
ZD G

3uF 1

k1k2
~ l 1h21Qk2!

h1

G
3F2 i

k1

p
L2S a1 i

p

k

Q

V
ZD Uk1k2tG

3w~x1 ,...,xN!, ~2.43!
s

it
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with the x dependence remaining unaltered. Inspect
shows, however, that there are again additional expone
prefactors forQÞ0. As we see it, there is no special adva
tage in working with these wave functionals. This is ess
tially different from the situation one encounters in the on
particle Landau theory, where toroidal boundary conditio
can only be imposed in the unsymmetric gauge.63

III. MODULAR INVARIANCE AND RENORMALIZATION

The torus can be realized as the quotientC/(Z1tZ), with
C its universal covering space. The latticeZ1tZ derives
from large diffeomorphismsz→z1n11tn2 , and this inter-
pretation is in line with the notion that it should make n
difference, physically, which one of the tori labeled byn1
andn2 one selects. These diffeomorphisms are generate
modular transformationsMPSL(2,Z), and so the request fo
modular invariance is of direct physical relevance.

Though the coordinatesxn are modular parameters a
well, we restrict ourselves to the purea dependence. Theu
functions depend on a through the variable v̄5
2( i /p)(L2 /p)a with 1.y1>0 andL2 /L1.v2>0. Accord-
ingly, the variables in the general definition~2.29! are to be
identified asw5pv ands5pt, where we have suppresse
the complex conjugation ofv, and

a5
1

p S l 1h21
Q

2
pD , b5h11

Q

2
p. ~3.1!

Note that it isv andt, which are the modular parameters
the true torus.

Under a modular transformation

M5S a b

c dD ~3.2!

they are transformed into57

w85w/~cs1d!, s85~as1b!/~cs1d! ~3.3!

and

b85ab2ba1 1
2 ab, a852cb1da1 1

2 cd. ~3.4!

It is a known result that theu functions behave under thes
transformations as

uFa8
b8G~w8us8!5«Mep ifM~a,b!~cs1d!1/2ep i @c/~cs1d!#w2

3uFab G~wus!, ~3.5!

with

fM~a,b!52ab1~ab2ba!~2cb1da!

1~2cb1da!ab ~3.6!

and «M a complicated eighth root of unity, which only de
pends onM.

The modular group is generated by two elementsM1 and
M2 , and we begin withM15(1 0

0 21), transforming theu
function into
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uFa8
b8G~w8us8!5uF2b

a G S v8U 1

p
t8D , ~3.7!

with v85v/t andt8521/t. However, it is not the result we
want since the right-hand side must depend on (pv8upt8),
but this can be corrected to give

uFa8
b8G~w8us8!5(

l 8
e2p i ~1/p!@ l 82h12~Q/2!p# l

3uF 1

p S l 82h12
Q

2
pD

h21
Q

2
p

G ~pv8upt8!,

~3.8!

so that the arguments of theu function now only contain the
modular transformed values of the variables of the true to
For the second generatorM25(0 1

1 1), a similar reasoning
yields

uFa8
b8G~w8us8!5uF a

b2a1
1

2
G ~pvupt11!

5expH p i ~p21!
1

p S l 1h21
Q

2
pD

3F1

p S l 1h21
Q

2
pD21G J

3uF 1

p S l 1h21
Q

2
pD

h12~ l 1h2!1
p

2

G @pvup~t11!#.

~3.9!

What must finally be achieved is that theu-function charac-
teristics, appearing on the right-hand sides of Eqs.~3.8! and
~3.9!, only take values in the same range, as do the cha
teristicsa andb given in Eq.~3.1!; this restricts the admis
sible values of the phases. The computation shows that
requirement is met forh15h250 if Q is odd, andh25 1

2

52h1 if Q is even, including the value zero.
The remaining part of this section is devoted to norm

ization problems. As we have seen, in the plane there is
ground state, which is also normalizable since the cutoff
pendence cancels. On the torus, however, the ground sta
degenerate, and it will prove essential to ascertain that thp
linearly independent wave functionals can indeed be cho
to be orthonormal.

For the proof, we return to the Bargmann inner produ
Because thex anda dependences factorize, we can write E
~1.6! as the product

^c l~x1 ,...,xN!uc l 8~x1 ,...,xN!&

5Jll 8~x1 ,...,xN!K~x1 ,...,xN!. ~3.10!
s.

c-

is

-
ne
-
is

en

t.
.

Here the first factor is the ordinary integral

Jll 85E d@ ā,a#expS 2
k

p E d2xUa1 i
p

k

Q

V
ZU2D

3c l@a#c l 8@a#, ~3.11!

and the second factor the functional integral

K~x1 ,...,xN!5det8DE d@f#expS 2
k

2p E d2x ]f]f

22E d2x freffD , ~3.12!

where the prime on detD denotes the omission of the zer
mode; furthermore,f5Im x and

reff~x!5(
n

qnd2~x2xn!1
1

2 S Q

L1
d~x2!1

Q

L2
d~x1! D22

Q

V
.

~3.13!

We begin with the latter one, which could be interpreted
the vacuum expectation value ofN ~nonchiral! vertex opera-
tors with ‘‘imaginary charges,’’ were it not for the two ad
ditional terms in Eq.~3.13!. The third derives from theb
term in Eq. ~2.19!, whereas the second in brackets has
origin in the nasty boundary termf@x# @see Eq.~2.18!#;
remember that in Sec. II some work was required to get
of it, but now we cannot avoid coming across this bound
term again. However, in the present context, both additio
terms serve an important purpose because the second c
interpreted as an additional charge density of total chargeQ,
being concentrated on the boundary of the fundamental
main of the torus, and the third is a background charge
that

E d2x reff~x!50 ~3.14!

holds. Hence the theory by itself manages to make the qu
tum field-theoretic system, as described by the functio
integral ~3.12!, overall neutral. It is in this way that the ver
dict, according to which the total charge on a closed surf
must vanish, is avoided. The functional integration can n
be done with the result

K~x1 ,...,xN!5~det8D!1/2expS 2p

k E E d2x d2yreff~x!

3G~x,y!reff~y! D , ~3.15!

where again it makes no difference which of the two prop
gators we choose. The argument of the exponential is
ambiguous expression; we will discuss regularization iss
below.

What remains is thea integral ~3.11!, which can be re-
duced to the orthogonality relations of theu functions. A
rather long calculation is required to show that all the in
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vidual exponential prefactors in Eq.~2.37! serve their specia
purpose in obtaining the result

Jll 8~x1 ,...,xN!5Nd l l 8expS 2
2p

k

Q

V (
n

qnuznu2

1
p

2k

Q

V (
n

qn~zn
21 z̄n

2! D
3expS p

2k

Q2

V
~LZ̄1L̄Z!2

p

2k

Q2

V

3~Z2Z̄!2D uw~x1 ,...,xN!u2, ~3.16!

with N an l-independent normalization constant. On comb
ing Eqs. ~3.16! and ~3.15! according to Eq.~3.10!, where
boundary contributions are ignored, one finds

expS 2p

k E E d2x d2yr~x!G0~x,y!r~y! D Jll 8~x1 ,...,xN!

5N~det8D!1/2expS 2
p

k

Q

V (
n

qnuznu21
p

2k

Q

V

3(
n

qn~Lz̄n
1L̄zn

! D «2~1/k!Snqn
2

)
nÞm

U
3ES 1

L1
~zn2zm! D U2qnqm /k

uw~x1 ,...,xN!u2d l l 8 .

~3.17!

In particular, for the ground-state wave function~2.40!, the
factors with the product of prime forms and the ultravio
regulator are cancelled, and so only the square root of
regularized determinant of the Laplacian together with
exponential prefactor remain. Thus the ground states ha
finite, cutoff-independent, norm, and can be assumed to
orthonormal, because forqn51 the finalxn integrations are
~incomplete! Gaussian integrals which can be done, at le
in principle.

IV. QUANTUM SYMMETRY

There is a relic of large gauge transformations, which w
prove to be of crucial importance in the following. Th
comes about since the invariance under large gauge tran
mations has not fully been exploited so far, and the opera
Û (m1 ,m2) still act as symmetries of the system.

We simplify the discussion by limiting ourselves to a ca
relevant for the quantum Hall effect. Hence we chooseqn
51 for all n, i.e.,Q5N, and restrict the Chern-Simons co
pling constant to valuesk51/p, with p an odd integer. Omit-
ting thex dependence, the ground states@see Eq.~2.37!# then
read
-

t
e

e
a

be

st

l

or-
rs

c0;l@a#~x1 ,...,xN!5expS 2
k

2p
Va22 i(

n
~zn2 z̄n!a

2
p

k

N

V (
n

uznu21
p

2k

N

V (
n

zn
2D

3expF2
i

2
NL̄S a1 i

p

k

1

V (
n

znD G
3uF 1

p S l 1h21
Np

2 D
h11

Np

2

G
3F2 i

L2

p S a1 i
p

k

1

V (
n

znD UptG
3w0~x1 ,...,xN!. ~4.1!

As generators of the discrete Heisenberg-Weyl group@cf.
Eqs.~2.9! and ~2.10!#, the two operators

S5Û ~0,1!
21 , T5Û ~1,0!

21 ~4.2!

are selected, obeying the relation

TS5qST, ~4.3!

with q5exp(2pi/p). On using known properties ofu func-
tions, one can show by means of the explicit form~2.23! that
they act on the ground-state wave functions as

Sc0;l@a#~x1 ,...,xN!5ql 1h2c0;l@a#~x1 ,...,xN!, ~4.4!

Tc0;l@a#~x1 ,...,xN!5qh lc0;l 21@a#~x1 ,...,xN!. ~4.5!

Hence the transformation of the variablea may be rewritten
so as to result in a unitary transformation of the basis
ground-state wave functions, and we can legitimately sea
equal to zero.

These~Verlinde-type! operators are the building blocks o
a quantum enveloping algebra,15 as we will demonstrate
now.64 On passing from the discrete Heisenberg-Weyl gro
to its group algebra, it makes sense to form linear combi
tions of the generating elementsS and T and products
thereof. In particular, we choose

J65
q71/2S2q61/2S21

q2q21 T71, K52S2, ~4.6!

and it is straightforward to prove that these operators o
the defining relations of the quantum algebraUq(su2), i.e.,

@J1 ,J2#5
K2K21

q2q21 , KJ6K215q62J6 . ~4.7!
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On thep-dimensional basis of ground statesu0;l &, they act
as

J6u0;l &5F l 6
1

2G u0;l 61&, Ku0;l &52q2l u0;l & ~4.8!

for h15h250,65 where @x#5(qx2q2x)/(q2q21). As we
know from Sec. III, the basis can be chosen to be orthon
mal; furthermore, the operators of large gauge transfor
tions are unitary with respect to the Bargmann inner prod
Accordingly, the quantum algebra generatorsJ6 and K are
Hermitian in the senseJ6

† 5J7 and K†5K21. Representa-
tion ~4.8! is indeed compatible with these Hermiticity pro
erties.

Up to now, we have not assumed the algebra, defined
Eq. ~4.7!, to be equipped with a quasitriangular structure
the deformation parameter is a pure phase, or even a ro
unity, it is a subtle problem to provide for a* structure of
Uq(su2) as a quasitriangular Hopf algebra. The stand
definition ~Ref. 66, see also Ref. 15! only covers the case
that q takes real values. This problem can be solved63 by
means of a modification of the standard*-structure. Hence it
may be taken for granted that the representation~4.8! is in-
deed unitary forUq(su2) as a quasitriangular Hopf algebr
and not as an algebra only.

Let us mention that the representations encountered in
present context are somewhat special because they
quantum dimension 0, i.e., trK50, and as such are ofte
regarded as ‘‘unphysical’’~cf. Ref. 16!.

Having provided for a quantum group structure of t
ground-state wave functionals, we would like to obta
something similar for the wave functions~2.40! and~2.41! as
well. This can be achieved by absorbing the transforma
of the variablea in the center of charge coordinateZ by
replacing thezn simultaneously byzn85zn2(L1 /pN)(m1

2tm2), and one finds

Û ~m1 ,m2!c0;l@a#~x1 ,...,xN!

5expS 2
p

L2
(

n
z̄n8~m22tm1!1

p

2

N

L2
~m22 t̄m1!L

2
p

2p

L1

L2
~m22 t̄m1!~m22tm1! D

3c0;l@a#~x18 ,...,xN8 !. ~4.9!

We are enabled now to seta50, thus obtaining for the gen
erators

Sc0;l~x1 ,...,xN!5expS p

L2
(

n
z̄n82

p

2

N

L2
L2

p

2p

L1

L2
D

3c0;l~x18 ,...,xN8 !, ~4.10!

with zn85zn1(L1 /pN), and

Tc0;l~x1 ,...,xN!5expS 2 i
p
L1

(
n

z̄n82 i
p
2

N
L1

L

2
p
2p

L2

L1Dc0;l~x18 ,...,xN8 !, ~4.11!

with zn85zn2 i (L2 /pN). The effect on thexn coordinates
may be looked upon as providing the torus with a latt
r-
a-
t.

y
f
of

d

he
ve

n

structure, where L1 /pN and L2 /pN are the lattice
constants.67

As a check, the ‘‘quantum plane’’ relations~4.3! are eas-
ily verified for the new version@Eqs. ~4.10! and ~4.11!# of
the generators, from now on being taken as the definition
the operators of large ‘‘diffeomorphisms.’’ An acid test co
sists in showing that indeed they respect the condition@see
Eq. ~2.28!#

Ûp~m1 ,m2!c0;l~x1 ,...,xN!5exp@22p i ~m1h11m2h2!

2p ipm1m2#c0;l~x1 ,...,xN!,

~4.12!

which may also be understood as a quasiperiodicity requ
ment.

Finally, let us turn to the case we are ultimately interes
in, the quantum Hall effect. We may be brief since most
the work has already been done. On adding the classicB
field, we use the background field method.68 Then the small
and large gauge transformations leave the classicalB part
untouched so that all the results of Sec. II concerning thx
anda dependences, remain valid. Only the determination
the ground-state wave function requires modification, but
can follow similar steps as in Sec. I, to obtain

w0~x1 ,...,xN!5N0)
n

«Np/2

3expS 2
1

4l 2 (
n

uznu2D
3 )

n,m
ES 1

L1
~zn2zm! D p

. ~4.13!

After all, the ground-state wave functions of the quantu
Hall effect with natural boundary conditions thus turn out
be

c0;l~x1 ,...,xN!5expS 2p
Np

V (
n

uznu21
p

2

Np

V (
n

zn
2

1
p

2

Np

V
L̄(

n
znD uF 1

p S l 1
Np

2 D
Np

2

G
3S p

1

L1
(

n
znUpt Dw0~x1 ,...,xN!,

~4.14!

where, for definiteness~see Sec. III!, we have chosenN to be
odd.

The quantum group properties, having been establis
above, remain valid up to one qualification. Only the qua
periodicity properties~4.10! and~4.11! take a slightly differ-
ent form, because there is an additional contribution from
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w0~x1 ,...,xN!5expS 2
p

2

1

L2
(

n
@~m22 t̄m1!zn1 z̄n

3~m22tm1!#1
p

2p

L1

L2
~m22 t̄m1!

3~m22tm1! Dw0~x18 ,...,xN8 !. ~4.15!

Here we have identifiedNp with the degree of degeneracy o
Landau’s theory, i.e.,Np5V/2pl 2. But again, it is the ac-
tion of the operatorsS andT @cf. Eqs.~4.4! and ~4.5!#

Su0;l &5ql u0;l &, Tu0;l &5u0,l 21&, ~4.16!

which counts since this result entails Eq.~4.8!, which is the
essential property. Unitarity, however, remains an issue s
our attempts to orthonormalize the wave functions~4.14!
have been unsuccessful. To summarize, thep-fold degener-
ate ground state of the quantum Hall effect can be equip
with a quantum symmetry;69 hence the quantum ‘‘group’
Uq(sl2), with q an odd root of unity, turns out to be th
spectrum generating algebra of the quantum Hall effect.

V. CONCLUSION

Let us give a resume of what has been shown. There i
dispute that Laughlin’s variational wave function captur
the essential properties of the quantum Hall system. He
the assumption made in Sec. I that the electrons themse
must be coupled to the Chern-Simons quantum field
rather ‘‘kinematical’’ reasons is indeed the missing lin
since, in the absence of interactions, it opens the way fo
consistent derivation as an exact ground state. But the q
tum number p, which determines the filling fractionn
51/p, remains more or less unexplained.

A realistic theory of the quantum Hall effect, howeve
must take into account the finite extent of the Hall samp
and for this reason we have investigated the generalizatio
the torus. Thus the final results@Eqs. ~4.13! and ~4.14!# for
r-
t-

.

B

ce

ed

no
s
ce
es
r

a
n-

,
to

the Hall ground-state wave functions, differing in the exp
nential prefactor and in the characteristics of theu function
from what has been proposed by Haldane and Rezayi37 and
others, should be an improvement of the Laughlin grou
state for natural boundary conditions.

At this point one is faced with the, at first sight, stran
fact that the ground state isp-fold degenerate; hence it is th
degree of degeneracy, which now determines the filling fr
tion. But, at second sight, a quantum group turns out to p
vide for the explanation since it discriminates between
different ground states, and thus the organizing principle
hind is a quantum symmetry, as opposed to a standard
group symmetry.

We may revert the argument on taking the quantum gro
to be given apriori . Then the possible quantum numbers a
obtained by classifying the relevant representations of
deformationUq(su2). This investigation has been done63

with the result that, for an odd root of unityq5exp(2pi/p),
there is just one unitary and irreducible representation w
vanishing quantum dimension for each given value ofp. It is
in this sense, that a quantum symmetry provides for an
planation of the quantum numbers for the experimenta
observed values of the filling fractionn51/p, with p an odd
integer.

Of course, many problems remain. The most serio
omission is that we have not touched at all the effect of
repulsive Coulomb interaction, which should lead to a sta
lization of the system at the filling fractionsn51/p, i.e., give
rise to the formation of the Hall plateaus. Furthermore,
above treatment of excitations is insufficient; as will
shown elsewhere, they may be given a satisfactory expla
tion, which also provides for a representation of the br
group on the torus,70 and thus yields the relation to kno
theory. The ultimate aim, however, will be a second qua
tized description of the matter particles at nonzero tempe
ture, with an eye toward supplying for a derivation of th
effective Chern-Simons action,23,26,25 which has been pro-
posed as an analog of the Ginzburg-Landau effective actio71

of superconductivity, from microscopic properties.
c-
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