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Laughlin’s quantum Hall wave function is obtained as an exact ground state Nfpanticle Hamiltonian,
in which the electrons themselves are coupled to the Chern-Simons field. The proof requires quantum field-
theoretic methods in the Scluimger picture, and clearly exhibits the relation to conformal field theory since
the Knizhnik-Zamolodchikov connection shows up and the Laughlin ground state is recognized as a conformal
block. A refined version of this approach can be applied for toroidal boundary conditions, i.e., the electrons are
confined to the physical interior of the Hall sample. The result turns out to be a nontrivial modification of the
p-fold degenerate Haldane-Rezayi wave function. Furthermore, it is shown that the degeneracy of the ground
state is accounted for by the quantum gradg(suw,) with deformation parametegy=exp(2ri/p) andp odd;
put differently, the possible quantum numbersf the quantum Hall effect, determining the filling fractions
v=1/p, can be explained by an underlying quantum symmetry.

INTRODUCTION AND SUMMARY structed a class of Hamiltonians for which Laughlin’s trial
wave function is exact; such an observation was also made
The quantum Hall effettis one of the most fascinating by Trugman and Kivelsd® for a model with short-range
phenomena which have been discovered in the last twnteraction. In the field-theoretic context, the bosonized ver-
decade$.But it has also proven to be one of the most diffi- sion of Laughlin’'s wave functicit was obtained by Kane
cult to understand. In addition, almost all of the more recenet al?* and Karlhedeet al?® from the effective Ginzburg-
important developments are expected to find an applicatiohandau theor§??%?°in the Gaussian approximation. In a
in this context. similar vein, Lopez and Fradidh found the modulus
Let us give some examples to certainly illustrate what wesquared of the Laughlin state in the long-wavelength ap-
have in mind. First, conformal field thedtpas its impact; in  proximation of the fermion Chern-Simons the®tin which,
particular, the Laughlin ground st4tean be constructed by following Jain?® an even number of flux quanta is attached
means of vertex operator methadsyen though there is no to the electrons in order to relate the fractional to the integer
explanation why these constructions do work at all. Secondguantum Hall effect. In another approach, using methods of
Laughlin’s excitations have been shdio carry fractional  collective field theory, Shengt al3® also gave a derivation
spin and statistics, and their anyonic behavior is accountedf the Laughlin wave function.
for by the “statistical” Chern-Simons gauge field. Third, We take another route to answer the question about the
infinite-dimensional Lie algebrsuch as Kac-Moody and origin of Laughlin’s trial wave function. The point of depar-
Virasoro algebras are involved through edge excitatiosts, ture resembles the fermion theory in that we couple the elec-
that chiral Wess-Zumino-Witten modéfsshould be of rel- trons themselves to the Chern-Simons connection. The rea-
evance as well; as opposed to the bulk system, for the edgsn is that in two dimensions they must necessarily follow
states the impact of conformal field theory is rather wellbraided paths. Hence, the constituent particles must also be
founded. Fourth, according to Wittéh, Chern-Simons subjected to the Chern-Simons field, whereas until now only
theory>2 is deeply related to knot theol};beyond this, the excitations have been accepted to “feel” the statistical
knot theory has been revolutionized by quantum groupinteraction. We differ from the fermion field thedfyjin that
theoretical concept¢Refs. 15 and 16; cf. also Ref. 17 an odd number of flux quanta is bound to the electrons; we
Hence one could also expect a quantum symmetry to beould also take the approaches of Katel?* and Karlhede
involved in this context; a first hint comes from the surpris-et al?® as a starting point, but we avoid to apply the ques-
ing observatiotf that the rather antique Landau theory in tionable singular gaug&and leave it with the original elec-
two dimensions carries a quantum group structure. trons. Furthermore, we neglect the repulsive electron inter-
In spite of all these insights or conjectures, however, theraction, and so one might object that we arrive at what is
is no conclusive answer to the one basic question of whyalled the anyon gas. This model has been devised to de-
Laughlin’s celebrated trial ground state seems to be almosicribe the excitations of the quantum Hall system, but it is
exact. also expected to play a decisive role in the context of high-
There have been several attempts to reach a more detailéemperature superconductivity and has been intensively stud-
understanding of Laughlin’s variational guess, which can béed over the yeard Our approach, however, differs in one
motivated by following the analogy with superfluidityNu-  crucial aspect from the anyon gas because we do not elimi-
merical studies for small numbers of electrons havenate the “redundant” Chern-Simons connection beforehand,
showrf?° that Laughlin’s wave function is a nearly perfect at the expense of obtaining a rather untractaiparticle
ground state, being largely independent of the detailed fornschralinger equation with the nonlocal statistical interaction,
of the electron interaction. Furthermore, Halddreas con-  for which an exact solution seems to be out of reach. Instead,
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we treat the Chern-Simons field as a degree of freedorthat the total charge is bound to vanish on a compact closed
which must fully be quantized from the outset. The reason isurface. Hence it will be essential to overcome the barrier of
that one is deep down in the intricacies of constrainedotal charge zero, and we shall see in Secs. Il and Il that a
systems’”? Though the Chern-Simons field which is involved modification of the degenerate Haldane-Rezayi wave func-
here is Abelian so that the machinery of Becchi-Rouet-Stordion is required to circumvent this restriction.

quantization is not needed, nevertheless there are two subtle The result is obtained on elaborating techniques, devel-
points which require special care. First, the Chern-Simon§Ped by Bos and Nalif in a different setting. However, in
action is a Hamiltonian first-order actidhin which the spa- the present context it will be an essential step to avoid a

tial componentA=(A;,A,) of the connection form a sym- Wilson-like treatment of matter particles, which also ob-
plectic vector: if one iél’enztifieAl as a coordinate andi, as scures that it is indeed a ground state which is determined.

a momentum, rotational invariance is lost. Hence holomorfurthermore, a concept is developed to derive the invariance

phic quantization appears to be the natural choice. Secon§roPerties of the wave functionals and the invariance condi-
the time componem, of the Chern-Simons connection is a tions to be |mpose<_j, beln_g superior to the technique of in-
Lagrange multiplier, the variation of which yields the con- spired guess gsed in the literature.

straint, and so one must decide whether one restricts the 11US: also in the present context, the ground state of the
symplectic phase space at the classical level and quantiz@santum Hall effect turns out to be degenerdtsg that it is
afterwards, or quantizes first and restricts to physical stateg1e ground—state degenerayhich now (_jetermmes the fll-

by the requirement that they are annihilated by the operatdf'd fraction »=1/p for p odd. The origin of this fact has
constraints? Since these two processes need not commuté}lways been a matter of debate and attributed to a “topologi-

139 1 1 H 1
the two resulting quantum systems may turn out to be essefydl order,”“"but this is just a r}arl]mde.fWe Sh_OW in Sec. IV that
tially different. The present problem, i.e., two-dimensionaltn® quantum groupJq(su,) with deformation parametey

electrons in the presence of the Chern-Simons field, can €XP(27i/p) provides an explanation, because fhiold de-

serve as a prime example, where this happens to be the cadgnerate ground state yields an irreducible representation of

The elimination at the classical level before quantizing re-NiS quantum algebra. _ » ,
Hence a quantum symmetry yields the organizing prin-

sults in the standard symmetric “statistical” connection of

the anion gas, whereas the inverse process yields, as we wfiP/e and can thus be seen—much in the same way as the
show, an Abelian Knizhnik-Zamolodchikov connectfén, SPIN With its underlying “classical’su, symmetry provides
which is unsymmetric. Hence the system we investigate diffor @n explanation of level splittings in atomic spectra—to
fers from the anyon gas in a crucial aspect. account for the experimentally observed filling fractioms

These matters form the content of Sec. |, where it is= 1/P of the quantum Hall effect, witlp an odd integer.
shown that if we quantize first and constrain afterwards, thef\n0ther way to put this outcome into perspective is to draw
techniques from the Schdinger quantization of quantum a0 analogy with elementary particle theory! Where_the advent
field theory?® make the ground state an exactly calculable®f @ Néw quantum number is always associated with a new or
quantity, which turns out to be a conformal block and re-€nlarged Lie symmetry. However, in the present case we do
duces to Laughlin’s trial wave function for odd filling frac- Not find an ordinary symmetry, but a quantum symmetry
tions. Hence, unlike other alternative frameworks to quantiz&€Merges. Section V is devoted to some concluding remarks.
this theory, the approach chosen in the present paper allows
an unambigious determination of Laughlin’s wave function
as an exact ground state, which here follows for rather “ki-
nematic” reasons from the coupling of the electrons to the
Chern-Simons connection. The present results also entail that It is shown that the Laughlin’s trial wave function in the
conformal field theory is involved in this context in a pre- plane may be obtained from first principles, being two in
scribed way, whereas the observation that Laughlin’s triahumber. The first derives from the observation that the
wave function can also be obtained by vertex operatospace-time trajectories of electrons living in two dimensions
techniqued is a purely “experimental” fact. We conclude must necessarily follow braided paths, because the particle
Sec. | with a brief discussion of excitations, which emerge intrajectories cannot intersect due to the exclusion principle.
a rather straightforward way in this context. Hence the configuration space is multiply connected, its ho-
Of course, the present model is a drastic oversimplificamotopy group being given by the braid group. Path-integral
tion of the quantum Hall system since the repulsive Coulomimethods then tell d§ that one has also to sum over all
interaction and impurities are boldly ignored. The hard prob-classes of nonhomotopic paths, making itself felt in a phase
lems which remain to be solved are that the formation of theactor, describing the braiding of the paths. This phase adds
ground state is stabilized by interactions, and thaf for as a topological term to the action, which can be rewritten as
~1/70[or for v~1/7 (Ref. 3] Wigner crystallization sets a line integral over the “statistical” gauge field so that the
in. particles now experience a nonlocal interaction. The crucial
Another basic question is related to the fact that Laughinsight then is that the statistical gauge field can be imple-
lin’s wave function is defined in the entire plane only, andmented by the local coupling to the Chern-Simons fiskek,
does not take into account the finite extent of the Halle.g., Ref. 4L It is important to stress that this kind of rea-
sample. Profound work on this problem is due to Haldanesoning forbids the presence of a term of Maxwell type; only
and Rezay?' these authors imposed toroidal boundary conthe Chern-Simons term is induced.
ditions, which is the really natural choice. But a further prob-  Hence, it is entirely natural and well founded to couple
lem comes in since one expects from general argurtierits the electrons to the Chern-Simons field, since they must be

I. LAUGHLIN'S WAVE FUNCTION AS AN EXACT
GROUND STATE
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endowed with the degrees of freedom appropriate to the twochern-Simons field in the Schiimger picture of quantum

dimensional case. Though this may be seen as a change fiéld theory>® these two basic principles allow for an exact

attitude because only the excitations are generally acceptatbtermination of the ground state wave function.

to carry fractional statistics, nevertheless we stick to the To begin with, we need to make a decision how to quan-

above assumption and explore its consequences. tize the Chern-Simons field. One could select one component
Thus, the Lagrangian for two-dimensional nonrelativisticof A at will as the generalized coordinate and the remaining

electrons with chargeg,, in an external magnetic fielB is  one as the corresponding momentum, but it is advantageous

taken to be to choose holomorphic quantization whth
. Meis o A g A=Ay A—z—5 1
L= 2 | 5 Xn8ij3h = AalAi(Xn) + Ai(X0) 15— ArAo(Xp) A AT A (1.9
n=1 2 z

The Bargmann inner product for Schiinger wave function-
+ . .
Les: @D s Y[AF](Xq,... Xy) is then
whereA;(x) = — %Bsiij with i=1 and 2 denotes the classi-
cal external gauge field, andAg,A) the Chern-Simons (| thr) = f d[A,A,]

gauge field with Lagrangian

k R
k ] -
LCS:_47T f d2X S#VPAM[QVAP XGX[{ - ; f d2X A?A‘z) ’//1[Az] (//Z[Az]:
(1.6

k -
:EJ d?x &'l (AJA|+AgFi)). (1.2 where, for the time being, the, dependence is suppressed.
The constraint, which commutes with the Hamilton opera-
The integration extends over a two-dimensional doni&in tor, in the present notation reads
which, in the present section, is taken to be the whole plane.

On obtaining the second form, it is assumed that the compo- A ko2 A

nentA,, which plays a special role, vanishes on the bound- C=i ;(@AZ_‘?ZAz)_p' 1.7

ary of . Then the surface term arising from a partial inte- _ o

gration can safely be ignored. Furthermore, the operator obtained by exponentiation
The Chern-Simons part is a first-order Lagrangian, and so

the kinetic term on the right-hand side of E(q:Z) gives the U[g]=ex;< _if d?x aC|, (1.9

symplectic 2-form, which determines the Poisson bracket to

be (cf. Ref. 33 with g=exp(~ia)eU(1), yields a(prope) representation of

o time-independent gauge transformations, acting on the
{A(X),A(Y)}=— €l S(X—y) (1.3  Schralinger wave functionals as
whereas the terms proportional Ag yield the constraint UlglylAd=exp—io[g.Az])¢lg *Azl, (1.9

K wheregA;= A+ dya, andw is the 1-cocycle

77 F1200=p00 =2 Gn8(x—xy), (1.4 .
0[9,A7]= —J d’X ap+i —J d?x Az0,a
which is first class in Dirac's? nomenclature. ™
The system described by Lagrangian equati@n® and k

(1.2, and its quantization, has extensively been studied, —iz—f d?x dzad,a. (1.10

where the generally applied strategy is to eliminate the gauge .

connections by means of the constréfnt;**however, some These gauge transformations play the role (offinite-

care is required in applying this elimination procedure, sincedimensional Wigner symmetry transformations, and so it

it must be performed in a gauge invariant way in order tomakes sense to require the wave functionals to be invariant

respect the commutation relations of the Chern-Simonsyith respect to these, i.e.,

field.** This approach has also been used to oBtantwo-

dimensional analog of the Wigner-Jordan transformation. Ul gl A7]= ¥ A7, (1.11

We proceed differently, and this constitutes the second ) . L )

basic principle: treating the Chern-Simons connection as &' @ccordance with Dirac’s prescription that the constraint

quantum field so that the constraint must be imposed as @USt annihilate physical states. ,

physical state conditiorA priori, there are two possibilities; _ 1ne invariance condition can be employed to determine

one can either restrict the classical phase space by means € Az dependence of the wave functional. For this purpose,

the constraint in advance and quantize afterwards, or one cdl USe the parametrization

guantize first and restrict afterwards. The importance of this . (1.12

point has often been stressédince these two acts need not 2T ’

commute?® and this will happen to be the case for the systemwhere y is complex so that gauge invariance is maintained.

under consideration. As we shall see then, when treating th€his relation is inverted by means of the Green’s function
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P(x—y)=—49,G(x—y) of the operatord,, where G(x
—y)=—(1/47)In|u(z—w)[? is the standard propagator with
u the infrared cutoff; in particular, we obtain

8 B
A —f dzyP(x—y)W. (1.13

Observe that the transformation la.9) is a purely alge-
braic result; thus it holds as well ¢ is generalized to be an
element of the complexificatiod (1)“. Then one can choose
a= y to obtain

w[AzMxl,...,xN):exp(ig AnX (Xn)

k
" Ef d*x @Xﬁzx) WX, X,
(1.14

and this is the result at which we aimed.
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vz

n

(1.22

In the second version of Eq1.21), the term withm=n is
indeed absent, since both the infrared regulatoand the
short-distance cutoft drop out. For the former, this is ob-
vious; for the latter, the assertion follows if we define it by
means of the heat-kernel expansion to be

7,

1
dr({x|e” ™|x)=— 77 n(ue),
(1.23

so that in flat space is x independent, which is the property
we need. Beyond this, the definition also shows that the ul-
traviolet regulator has geometrical significance.

Here we make contact with conformal field theory since
the operatorg1.21) and (1.22 are recognized a®Abelian)
Knizhnik-Zamolodchiko¥ derivatives. It is an essential
point that they take an unsymmetric form because the anti-
holomorphic partner of the Knizhnik-Zamolodchikov con-

IMG(x—y)= Jlm

y—x e

What remains to investigate is the Hamiltonian which, innection

the present notation, reads

“ 1 A A ~
Hz—ﬁ; 2(b; D, +b, D7), (1.15
with the covariant derivatives
R ~ 1 o “ ~ 1
zn:Vzn 4_/ZQnan Dfn_v 4_/ZQn
(1.16

Here we have split off the contribution of the external mag-

netic field, being hidden in the magnetic lengtk= 1/B in

units withs=c=e=1. The Chern-Simons part is contained

in the operators

~ LT ) 1)
Vzn=&Zn+| Fq” d<x P(xn,x)m, (1.17
V3 = 07 —iGndz x(X0). (1.18

They act on the wave functionals as

Dznlp[Aﬂ(Xl yee 1XN)

k
:ex%i% qmX(Xm)"'EJ de&EXazX>

XDy h(Xq,....X (1.19

ND

and analogously foﬁ;n. The operators

1
4/2 0nZn
(1.20

D,=V, — z,, Dz =Vz+

n 4/2CIn

n

closely resemble Eq$1.16), but now we have

OnQm
Zm'

(1.20)

Vzn: 7, anE OmP (Xn  Xm) = &n

kmstn Zn—

Um
Zm

i
Az =~ P

>

m#n Zp—

(1.29

is simply absent? This is a fact being well known to math-
ematiciangRef. 48; see also Ref. 4%ut not appreciated in
the quantum Hall effect literature. In the present approach,
the Knizhnik-Zamolodchikov connection appears as the relic
of the Chern-Simons connection, and it is in its unsymmetry
that the treatment of the Chern-Simons field as a quantum-
mechanical degree of freedom, which is not eliminated be-
forehand at the classical level, manifests itself.

The HamiltonianH acts ony(Xq,...,Xy) as the operator

H

1
_EE (DzD, +D, D7), (1.29
n
and we restrict ourselves to the determination of the ground
state with zero-point energyEy=3,1/2w,, where o,
=(q,B/m is the cyclotron frequency. This is accomplished
by requiringD7_¢o(X1,....Xn) =0, which is solved by

1
'r/fo(xly---aXN):eXF( - m; qnlzn|2) ®©o(X1, -+ XN

(1.26
with
V?n(Po(Xl,...,XN):O. (127)
What remains is
1 2
Hibo(Xa,- X) = €XB| = 772 2 Cin|Zn
1
X —EZ V2V, +Eo| @o(Xy, .- Xn),
n
(1.29

so that we are done if we also require
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V2 ®o(X1,... Xy) =0. (1.29 K(Xl,___'XN):(detA)UZM—(l/k)st—(1/k)2nqﬁ
The solution of the Knizhnik-Zamolodchikov equations g
(1.27 and(1.29 is the Abelian conformal block Xﬂl:[m | X Xpp| 2 GnIm 7, (1.39

, Restricting ourselves to the ground-state wave functional, we
QDO(Xl""’XN):NOnE[m (2y=2) W%, (1.30 want to achieve that the cutoffs cancel in the inner product.
But we then see that choi¢é.30 for ¢q is not quite right,
where no regularization problems become involved at thisut (on appealing to the vertex operator analogy, alluded to
stage. As for the quantum Hall effect we are only interestedbove we can correct for this by instead choosing
in the properties of the electrons, and so we can take
=0 in the wave functional; furthermore, on choosigg 27
—1 andk=1/p, with p an odd integer, we thus obtain, with $0(X1:-+-Xn) =No ex% B T;n GnAmG (20— Zm)
Egs.(1.26 and(1.30, the Laughlin wave function, as prom- '
ised. . _ _ » = Ny V2@ (120300 [T (2, 2,,) Inim
The derivation clearly shows that this state is of minimum ok & "1l (20— 2Zm) '
energy and, in addition, provides for an explanation of the
main series of filling fractiong= 1/p. A basic assumption in (1.39
obtaining this result has been that it is not enough to simplyyhere G(z) is the holomorphic part of the propagator, and
cancel the third coordinate in order to describe quantumay, is cutoff independent. The right-hand side of Ef35) is
mechanical particles restricted to two dimensions; they musist the inverse of the holomorphic square root of 834,

be supplied with the degrees of freedom, being specific to thgo that the cutoff dependent contributions precisely cancel.
two-dimensional case, and this is accomplished by means ¢fence the inner product
the Chern-Simonsgquantum field.

The conformal blockpy can be interpreted as the vacuum (Po(Xq, o XN)| o (X1, o XN))= | NVp|2(detA )22
expectation value ofN chiral vertex operators with 1
“charges” qn/\/E, and this may be seen as an explanation of % exp{ _ _2 UnlZo|2 (1.36
the hitherto rather accidental, fact that the holomorphic part 2/ 45 men

of the Laughlin ground-state wave function can also be ob
tained by means of vertex operator techniqugsf. 5; see
also below.

Up to now, we could avoid regularization problems; how-
ever, they come in on adressing normalization issues. Fro

is a finite quantity if the determinant of the Laplacian is
understood to be regularized by meansZdtinction tech-
niques. Finally, the, integrations remain to be done, but for
rﬂ”: 1 they pose no problem since they are all Gaussian.
. ) It is noteworthy that the present approach provides for a
Eq. (1.6), for the inner product we obtain rather unexpected resolution of the normalization problem
/ for the Laughlin wave function. Furthermore, let us stress
(PO X[ (X, X)) that if we ha% we attempted to regularize the wave functional
detA — k 5 — itself, and not its inner product, we would have run into
= WJ d[X,X]eXF< - ;J' d Xﬁzxﬁz)() trouble. As is well known, the ultraviolet cutoff can be ab-
sorbed in a multiplicative renormalization of the vertex op-
X [ox](Xe, o X)W [I2x (X, - XN (1.3) erator by normal ordering, but what is left is the infrared
cutoff, which enforces the total chargg=>.,qg, to vanish.
One could dispose of this restriction by means of the
®Dotsenko-Fateev background charge mettobut in the
present context there is no point in so doing. We only have to
guarantee the wave functional to be normalizable, and this is
the reason why one can escape the conclusion that the total

where we have factored out the volunig of the gauge
rewrite this in the multiplicative form

(P(Xg, e X)W (X, XN))

=% (X s XK (X o XN & (X1, XN charge must be zero. We shall have occasion to return to this
topic repeatedly in the course of the further development.
(1.32 We end this section with a brief discussion of excitations,
with the diagonal kernel which may be obtained in a rather straightforward manner

within the present approach. Let us assume the existence of
2k charged excitations, which are designed to balance a small
K(le---,XN)ZdetAJ d[d)]exr( - 7J d*x dzpd, b increase of the external magnetic field such that the filling is
locked at the original value= 1/p with p>1 odd. Since the
energy of the fictious particles should be strictly less than the
(1.33 zero-point energy= w/2 per electron, it is tempting to as-
sume that their charge* is fractional; in particular, we
and wherepp=Im y. The functional integral is recognized as choosee* =e/p. Under the further assumption that the mass
the vacuum expectation value of the producNdihonchira) of the excitations equals that of the electrons, we have then
vertex operators with “imaginary charges,” which can be achieved thatn* = w/p, and so the zero-point energy of an
evaluated to give excitation is strictly less than that of an electron. The exci-

—22 qnb(Xn)
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tations are also subject to the coupling to the Chern-Simon® the plane, because the general rule that the constraint

field; hence we can now use the above reqsk® Eq(1.26  C[a]=[d?xaC can be identified with the generator of

and(1.35], where it will pay that we have not specified the gauge transformations no longer applies to a system re-
charges of the constituents from the outset. Thus, partitionsricted to a finite domain. What is to be called the generator
ing the coordinates intox,....xy) With chargese(q,=1)  of gauge transformations can be inferred from the classical
for the electrons, andyg,....,ym) Wwith chargese*(dn  symmetries. The Chern-Simons part of the Lagrangian is not
=1/p) for the excitations, we immediately obtain the jnvariant under time-independent gauge transformations, but
ground-state wave function changes by a total time derivative only so that the general-

ized Noether procedutyields the conserved quantity
l/’O;N,M(Xl!' .. 1XN ;yl!' e ryM)

k
1 11 C =—i—jd2X&A—ﬁA—fd2X :
:NO;N,M ex%—m; |Zn|2—4_/26% |Wm|2 Q[CY] - ( ZOR, 7 ?) ap

(2.1

N,M where again the hats signify the transition to the operator

N M
_ _ _ 1 N
X H, (zn Zn’)pl_r[n (Zn= W) H, (Win = W)™, level. This differs from the constrai@[ «] through a crucial
n<n ' m<m . .
boundary term, which cannot be neglected since the Chern-
(1.37 Simons gauge fieldA;,A,) neither vanishes on the bound-

of energy Eqg. v=1/20[N+(1/p)M], and the normaliza- &ry, nor may be assumed to be periodic. If we now define the
tion factor is operator of gauge transformations by

Nonm=Nou[NTPIMI (U2[pN+(Lp)M], (1.39 U[g]:exp(—ié[a]), (2.2

This is recognized as Laughlin’s trial state wihelectrons then the transformation law of the Schiger wave func-
and M excitations, where only the last factor is less well tional takes the same form, as given in EGs9) and(1.10
known; this immediately shows that, whereas the convenabove.

tional statistics of the electrons is not changed by the cou- Butone must qualify what kinds of gauge transformations
pling to the Chern-Simons field, the statistics of the excita-9(X) =exd —i(X)] are allowed: we postulate that they must
tions withs* = 1/p is fractional® Of course, we do not claim be doubly periodic. This requirement permits two
to have given any additional insight into the origin of the classes: small gauge transformations with doubly periodic
excitations, which remains obscure; a deeper understandirRprametersy(x), and large gauge transformations
requires a second quantized description of the electrons, .

which will be given elsewhere. I(m; my(X) =X~ i @(m; my(X)]

depending on two integers; andm,, with “parameters”

(2.3

Il. ELECTRONS ON THE TORUS

. . X X
We want to generalize the results obtained so far to real- @y my) (X) = 21.,( ml_1 + mz—z), (2.9
istic boundary conditions; thus the electrons are restricted to Ly Lo
a rectangular domain in the plane of extensitgsandL,,  not being continuosly connected to the identity. Accordingly,

i.e., the torus. For the time being, we only keep the Chernwe allow for gauge fields which, in addition to the standard
Simons field; the external magnetic field will be taken carecontribution(1.12), contain a constant term, as well as a term

of at the very end. depending linearly on the coordinates. We make the choice
Beyond the seminal work of Haldane and ReZdyan
abundant literature is available on this subj&dn which the AZX)=dx(x)+a+bz (2.5

classical reduction procedure is used throughout. For thsvh ; b andy tak mpex val is required t
present approach, the work of Bos and N&ef. 13; cf. also erea, b, andy take compex values angis required to

Ref. 53, though not devoted to the quantum Hall effect, will be doubly periodic; the nonstandabderm will turn out to

be of special relevance. These authors treated the gener%? of special relevance. Again, the small gauge transforma-

case of a Riemann surface of arbitrary genus with Wilsontlons only affecty, whereas the large gauge transformations

lines inserted; however, they explicitly restricted the investj-ca" be absorbed in the constant taywhich is mapped into
gation to the case of vanishing total charge, a restriction, -

which is generally believed to be unavoidable on a closed a'=a+i—(my,—7mmy), (2.6)
surface(cf. also Ref. 11 Hence, it will be essential for what Lo

follows to circumvent this verdict, which also seems to bewherer=ilL,/L, is the modular parameter of tiieectangu-
one of the main Stumbling blocks in related inveStigationS. |ar) torus. Theb term is left inert under both types of trans-

So let us return to the first part of Sec. | where all inte-formations; we shall see that it will play an essential role in
grations are now understood to extend over the fundamentgbtaining value€Q+0 of the total charge.

domain of the torus. But it is essential to note that we can no | et us return to operato2.2), implementing the gauge
longer ignore boundary terms; they must all be kept. TheRransformations on wave functionals. It is easy to see that the
the basic results contained in formuléls1)—(1.10 remain  cocycle condition

valid with one exception; formulg1.8), which must be

modified. Here we encounter a basic difference, as compared o[hg,A;]— w[h,A;]— w[g,h " 1A;]=0 (2.7
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only holds for small gauge transformations, whereas fomwhere it makes no difference which of the two Green’s func-
large gauge transformations it is violated by a nonvanishingions we use. As a last remark, the propagd®y is not

boundary term. For the operatorst(m )= €xp modular invariant; this property can be supplied for on re-
12 placing the prime fornE by*®

F(v)=01(v|7)5(7), (2.19

wherez is the Dedekind function; however on passing to Eq.
_ . ~ (2.13, modular invariance is lost again.

X (MaNz=MaN1) JUn, )Yy ms) With these preliminaries out of the way, the inversion can

(2.9 be done, and we end up

(—iQ[a(ml'mz)]), this entails that they do not commute,

U(ml'mz)U(nl,nz): exd 2mik

in spite of the fact that, classically, the large gauge transfor- S S 1
mationsg(m, ,m,) form an Abelian group. Thus we are faced A —J’ d?yP(x,y) W+ V3a (2.16
with a gauge anomaly. ‘

Of special importance for the further development will be Note that the coefficierit does not get involved on the right-
the central extension hand side; it is not quantized. An adequate decription of the

b term appears to be that it plays the role of a classical
Q(Nm " ):)\Q(m s (2.9  Chern-Simons background field.

e re Now we would like to proceed as in Sec. | to determine
with A =exp(mikn) and neZ, which is a Heisenberg-Weyl the y dependence of the wave functional by means of small
group with composition law gauge transformations, so we could try again to impose the

) ) requirement thatl[g] acts as the identity operator on physi-
(N;mg,my)(N;m],my)=(\N\'e kMM~ MoMy). iy, cal states. However, on so doing, one soon runs into severe
, , consistency problems, which may be traced back for the
+mp,my+m;) (210 pterm. Its contributon to the 1-cocycle reads
Realization(2.9) is an operator-valued representation of this(K/ 7) bfd®x 20,a = (kI m)b[d*x 9,(za) — (kI m)b[d* a,
discrete group in the ordinary sense. and we would prefer if we co_uld get rid of the nasty bound-
Ary term. For the moment, this remark should suffice to mo-

It is essential to note that small and large gauge transfor= h | . hvsical f ional b
mations commute. Furthermore, they commute with the cofElvate that we only require physical wave functionals to be

variant derivativesV; and V, , and thus with the Hamil- invariant up to a phase, i.e.,
tonian as well. In addition, they are unitary with respect to Olgly{Az]l=e" " Lely[As], (2.17
the Bargmann inner product.
In the following, we need the inversion of the parametri- Where the phase
zation (2.5); this is accomplished by means of the doubly K
periodic propagato6(x,y) with the propertie® Sla]=i ;bf d2x 9, za(x)] (2.18

1
AG(xy)=d(x.y)~ i f d’x G(x,y)=0, (2.1) s linear ina, and thus respects the group law. Becalgg]
acts unitarily?® the above conditiori2.17 also respects the
whereV=L,L,. It is given in terms of another propagator inner product. On passing to the complexificatidfl )", we
Go(x—y), only obeing the first of the above properties, thus obtain

which is
. k 2
1 , 1 [Im(v —w)]? PLAZI(Xq,. .. Xn) =X |; QnX(Xn)_;bf d°x x
Go(x—y)=—Eln|E(v—w)| T M, .
12 + o [ x| vl x).
wherev=2z/L, and E(v)= 6,(v|7)/01(0|7) are the prime
form; 6, is the odd Jacobi theta functidh The propagator (2.19

we need then igcf. also Ref. 57 so that they and a dependences factorize. As a check, one

1 verifies directly that this wave functional indeed obeys the
G(X,Y)=Go(x—Yy)— _f A2/ [Go(x—X")+Go(X' —Y)] condition(2.17) that we began with.
\ What remains to discuss is the role of the constraint,
1 which in terms of the new variables reads as follows:
+Wf d?x'd%y' Go(x'—y'), (2.13 ’ .
CX)=—i———i—d X)— O(X—x,)—i—b
and it is easy to check that it is indeed orthogonal to the zero (x) ox(x) 202x(X) ; And0X=n) =1
mode. We also shall have need for

Tl o 9
POXy)=—40,G(xy)=Po(x.y), (214 *vj Y Sy (2.20
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As we have already commented upon, for a system living irstates, now appears in a different perspective, since it may be

a domain of finite extent, gauge invariance and the imposiseen as a statement about “global” gauge invaridrtethe

tion of the constraint are different issues. Hence, imposingemark following Eq(2.22)]. Indeed, fora anx independent

the constraint is a separate requirement, which amounts togauge transformation, we hav@[&]=—-&Q and ¢[&]
=i(k/m)bVa, so that Eq(2.17) yields the assertion.

C ] 2 o = As to large gauge transformations, however, things are
CoydLAel \ f &y ox(y) vAz=0. (223 rather different. For a proper understanding of their finesses,

and this condition fixes the value bfto b&® it is helpful to forget for a moment the matter part, i.e., we
only investigate pure Chern-Simons theory on the torus; but

7 Q we could also take a Riemann surface of arbitrary géhus.
b=i+v" (222 Then it is rather straightforward to show that the operators

! , . U(m m,)» for the special valuesn; =0, my=—1 andm,
Note then that the first two terms in the exponential on the_ll’ 2_0 incide with the hol
right-hand side of Eq(2.19 add up to give an effective » M,=0, coincide with the holonomy operators
charge density of the total effective charge zero.
Let us turn to large gauge transformations, the explicit N o ~ ~ . A
form of which follows from Eqs(1.9) and(1.10 to be Uo-1=expk aAdX’ U10=expik ﬁAdX’

0 (2.27
U A7 =exp(q-r— (my—7m;)Z—Z(m,— rm,)
(ml'mz)w[ 2 Lz[ g ' 2 V] wherea and 8 denote the two independent homology cycles

on the torus. Thus, for a pure Chern-Simons theory the gen-
X exp( —ikL,(m,—7m;)a erators of large gauge transformations have deep geometrical
topological significancécf. Ref. 11). Hence one expects the

operatorsﬂ(ml,mz) to be of comparable importance as well if

matter particles are present: however, then such a Wegner-
Wilson type interpretation is no longer available.

Returning to the problem at hand, for large gauge trans-
' formations, the boundary terrf2.25 does not degenerate
(2.23 into ac number; in particular, one verifies that the operators
. _ . ' exp—iB[a(m, my] andU m, m,) act identically on wave func-
with L=L,+iL,; furthermore, we have introduced the cen- tionals, as one expects, and so we may leave it with the

ter of chargeZ=%,q,2,/Q, which always appears in the |auer Fyrthermore, it would be inconsistent to require the
form QZ, and so makes sense as well for the case of vanish-

ing total charge. These transformations only affectdtte-  CPEA(m; my) to act as the identity operator on physpal
pendence, and thus we can takéo be zero. At this point, Wave functionals, because they need not commute for differ-
one could guess that invariance under large gauge transfopnt values of y,m,). Taking k to be rational, i.e.k
mations should as well be imposed only up to phéseg,  =Ki/kz, with k; andk; coprime integers, we can avoid a
i.e., in the same manner as for small ones. But this guess ontradiction if we only requirwkz(mlymz) to act as an iden-
wrong, as we want to make plausible now, and for this purity up to anm-dependent phase. Specifically, we chotge
pose, we return once more to small gauge transformationgyso Ref. 52

Its generators may be split as

+ m;)L kWL1 T
2L2(m2 7my) 2L2(m2 )

X(mZ_Tml)) l!/[A?_i Ll(mz_Tml)
2

Ola]=Cla]+B[a], (2.24 Ui, my 0¥l Azl=e 2" 1My AZ],

with the “boundary” operator

B —'de 5+'kfd2aA
[a]=—i xza5A? |7T X d,( A7),

(2.25 with 7, ,€[0,1], since it is this choice, which prevents the
' conflict with the(globa) gauge anomaly.

depending only on the Chern-Simons field and not on the Now it amounts to a lengthy but straightforward calcula-

matter part. For the parametrizati¢®.5), this operator re- tion to solve these conditions in terms of Jacélfiinctions®

Uy om, WAz =€ 2™ 72M2y{ A, (2.28

duces to with characteristicsy, Be R,
Bla]=d¢[al, (2.26 . ba
with @[ a] the phase introduced in Eq2.18); this is ac a[ﬂ}(WW):nE_w exp{mio(n+a)?
number only, and so it is obvious thatandC commute. We _
thus have revealed the origin of conditith17), because the +27i(n+a)(W+ B)}, (2.29

imposition of the constraint just yields the invariance up to a
phase. After all, conditioi2.22), having been obtained from wherew, o e C and Imo>0. There arek;k, linear indepen-
the requirement that the constraint annihilates physicatlent solutions of Eq(2.28), which may be written as
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On
Vzn(P(Xla----XN): ﬁzn_?aan am
m
1
XInE L_l(Z"_Zm) (X1, XN)-
(2.36

They may appropriately be addressed to as the Knizhnik-
Zamolodchikov derivatives on the torus. Accodingly, the fi-
nal form of the wave functionals reads

A, - ) =ogi [ i p- O
k
+§f dzx&gxé’zx}

k _
. \/32_j —
Xexp( 27_rVa iQ(Z—2)a

with =1, ... kik,. ForQ=0, Eq.(2.30 coincides with an 7 Q
analogous result in Ref. 13 by specializing to the case of — __z n|22|+ 2 UnZ )
genus one there. kV 2k V

However, this is not the final form, we still have to dis-

cuss the Hamiltonian

. 1 A A A A
H:—ﬁ; 2(VzV, +V, Vz), (2.3)
where the covariant derivatives are given by
- : T Q
V%:@—|qn(a;nx(xn)+a+|ivzn, (2.32
50 iny 41 2| Pl 0 T 2
2,7 92,711 Gn X (Xnyx)m— XV 34
(2.33

If these are applied to the wave functioné2s19 and(2.30),
we have to commute them through in frontgfon so doing,
it proves to be advantageous to define

2 QZ
B0, X0 = exp( V12 52
T Q
E EQn|Zn|2
Q
lkv; (P(le !XN)a
(2.39

so that the covariant derivatives act gnin the simplified
forms

V?n(P(Xl,-..,XN):&Z](P(X]_,...,XN), (235)

o -Lalari22)

1 Q

X 6
+9k
71 2 2
Ky 7 Q
X —|7TL a+|k ) ki ko7
X(P(Xl,...,XN). (237)
The HamiltonianH acts ong as the operator
1
Ho=— E; (Vz2V, +V, V7)o, (2.39

with the derivatives as shown.

It is a straightforward matter now to determine the mini-
mum energy state of the reduced Hamilton{@r88 by fol-
lowing the same logic as in the plane. This is the solution of
the equations
Xn)=0 (2.39

VZH(PO(Xli"'IXN):OI V?n(po(xly---

and is obtained to be

Po(Xq,..

)qnqm/k

XN = NO]._.[ SanZKH E(_(Zn Zy)

n<m

(2.40

where the normalization constanf, is cutoff independent
since there is no infrared regulator on a compact surface.
Hence the ground states of the system turn out to be exactly
solvable.

Let us specialize the above result to the case relevant for
the quantum Hall effect. Because the wave functional must
be completely antisymmetric in the electron coordinates, this
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requiresk; =1 andk,=p to be odd integers. At this point we with the y dependence remaining unaltered. Inspection
come into contact with the work of Haldane and ReZ&yi ~ shows, however, that there are again additional exponential
which Laughlin’s ansatz is generalized to the torus; this waprefactors forQ+0. As we see it, there is no special advan-
also discussed by Cristofarat al® by means of vertex op- tage in working with these wave functionals. This is essen-
erator technique¥ If we define i A[AZ] y—a=o(X1,.+ . XN) tially different from the situation one encounters in the one-
=11(X1,... . Xyn), We expect these wave functions to verify particle Landau theory, where toroidal boundary conditions
the Haldane-Rezayi ground states. However, the explicican only be imposed in the unsymmetric gafigje.
form

Ill. MODULAR INVARIANCE AND RENORMALIZATION

lﬁo;l(xly---,XN):eXF{ - E %2 Onl Znl >+ 21 v E UnZ> The torus can be realized as the quotief(tZ+ 77), with
n C its universal covering space. The lattige- 77 derives
from large diffeomorphismg—z+n;+ 7n,, and this inter-
+ ——j qnzn> pretation is in line with the notion that it should make no
2k v difference, physically, which one of the tori labeled by
Q andn, one selects. These diffeomorphisms are generated by
—| 1+ 7+ > p) modular transformations! € SL(2,7), and so the request for
modular invariance is of direct physical relevance.
Though the coordinateg, are modular parameters as
mt jp well, we restrict ourselves to the pusedependence. Thé
functions depend ona through the variable v=
—(i/7)(L,/p)a with 1>v,=0 andL,/L,>v,=0. Accord-
Po(X1,-.- Xn) ingly, the variables in the general deflnltl()z 29 are to be
identified asw=pv and oc=pr, where we have suppressed
(2.41)  the complex conjugation af, and

X6

1
X| p—2 anzs|pT
Ll n

reveals that our result differs, among other things, in a deci-
sive exponential prefactor, one can get rid of only if the total a=
chargeQ=23,q, is required to vanish. Hence the degenerate

Haldane-Rezayi ground state appears to be restricted to thgote that it isv and 7, which are the modular parameters of
sector of total charge zero, and so should hardly be related t@e true torus.

B= 771+§p. (3.1

1 | Q
o Tt 5P,

the quantum Hall effect. Under a modular transformation
One could object that the final resu({&37) and(2.40 an
“gauge dependent” in the sense that théerm in Eq.(2.5 a b
can be modified. But we could as well have chosen an “un- M= c d (3.2

symmetric gauge,” for which the parametrization takes the
form they are transformed intb

w'=w/(co+d), o’'=(ac+b)/(co+d) (3.3

.7 Q
AZX)=dzx(X)+a+i ?V(Z_Ej' (2.42 and

Then one can follow similar steps as before to obtain the B'=aB—ba+3ab, a'=-cB+da+3cd. (3.9

analog of result2.37), which reads . )
It is a known result that th@ functions behave under these

transformations as

¢|[a](xl,...,xN)=exr( - %Vaz—iQ(Z—Z)a

P Z:}(Wr|0_r):eMewi¢M(a,ﬁ)(CO_+d)1/2e77i[c/(c:a+d)]w2
7 Q _
+ﬂv2 Qn(zn_zn)z) o
n X 60 B}(WM), (3.5
7 Q
Xex;{ QL,| a+i EVZ” with
1 (14 7,4 Oky) pw(a,B)=—apf+(ap—ba)(—c+da)
x 0| kiky - T2TER2 +(—cp+da)ab 3.6
N and ey, a complicated eighth root of unity, which only de-
ky 7 Q pends onV.
X| =i ;Lz ati VZ> Kk The modular group is generated by two elemevitsand

M,, and we begin withM,=(%"}), transforming thed
X @(Xq 5o XN) s (2.43  function into



PRB 61 FRACTIONAL QUANTUM HALL EFFECT AND QUANTUM . .. 5493

—-B

o’ 1 Here the first factor is the ordinary integral
Gﬁ,}(wﬂa’):& (v' BT'), (3.7

with v’ =v/7andr’ = —1/7. However, it is not the result we J,,,—f dla, a]exp( - —J d?x
want since the right-hand side must depend pn’(p7’),

X yi[a]y [al, (3.11
and the second factor the functional integral

a+|——Z

but this can be corrected to give

o’ ) ,
0[[3’}(\/\/"0,):2 Q2 ()1 = 71— (Q/2)p]!
II

1 Q K(xl,...,xN)=det’Af d[q&]exr{ - ZLJ d?x dpap
-2 w
X0 o | [P, -2 [ a2 dpur. (312
5> P
3.9 where the prime on dét denotes the omission of the zero
' mode; furthermore¢=Im y and
so that the arguments of thefunction now only contain the
modular transformed values of the variables of the true torus. 1/0Q 0 o)
For the second generathz—(O l) a similar reasoning peg(X) = E qnd?(X—Xp) + = (—15(x2)+|_—25(x1))—2v.
yields (3.13
o We begin with the latter one, which could be interpreted as
a|l the vacuum expectation value Nf(nonchira) vertex opera-
‘9[,3'}(W lo")=6 B—a+t 1| (pv|pT+1) tors with “imaginary charges,” were it not for the two ad-
2 ditional terms in Eq.(3.13. The third derives from thd
1 Q term in Eq.(2.19, whereas the second in brackets has its
=exp[ mi(p—1)= I+772+—p) origin in the nasty boundary termp[ x] [see Eq.(2.18];
p 2 remember that in Sec. Il some work was required to get rid
of it, but now we cannot avoid coming across this boundary
— 1+ 7+ gp) _1} term again. However, in the present context, both additional
2 terms serve an important purpose because the second can be
Q interpreted as an additional charge density of total ch@rge
|+ 7+ _p) being concentrated on the boundary of the fundamental do-
Y 2 [po|p(r+1)] main of the torus, and the third is a background charge so
p ' that
—(I+ 7))+ 5
3.9 f d2X peg(X)=0 (3.14

What must finally be achieved is that tiddunction charac-
teristics, appearing on the right-hand sides of E§) and  holds. Hence the theory by itself manages to make the quan-
(3.9), only take values in the same range, as do the charadum field-theoretic system, as described by the functional
teristicse and 8 given in Eq.(3.1); this restricts the admis- integral(3.12, overall neutral. It is in this way that the ver-
sible values of the phases. The computation shows that thict, according to which the total charge on a closed surface
requirement is met fom,=7,=0 if Q is odd, andy,=3 must vanish, is avoided. The functional integration can now
=— 5, if Qis even, including the value zero. be done with the result

The remaining part of this section is devoted to normal-
ization problems. As we have seen, in the plane there is one 2
ground state, which is also normalizable since the cutoff de- K(xl,...,xN):(det’A)l’Zexr{TJ f d2x d?ypeg(X)
pendence cancels. On the torus, however, the ground state is
degenerate, and it will prove essential to ascertain thapthe
linearly independent wave functionals can indeed be chosen XG(ny)Peff(y))v (3.19
to be orthonormal.

For the proof, we return to the Bargmann inner productwhere again it makes no difference which of the two propa-
Because thg anda dependences factorize, we can write Eq.gators we choose. The argument of the exponential is an

(1.6) as the product ambiguous expression; we will discuss regularization issues
below.
(X e o) [ 1 (X s X)) What remains is the integral (3.11), which can be re-

duced to the orthogonality relations of thlefunctions. A
=5 (Xq e XK (X gy e e XN) (3.10 rather long calculation is required to show that all the indi-
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vidual exponential prefactors in E(.37) serve their special
purpose in obtaining the result doalal(Xg,... Xn) =ex

k
—_\/a2—j _
27TVa i En (zh—zy)a

7 N o N
o 2 2
kV;|Zn|+2k Ezn

n

[ ol
xexp{—ENf(aJrlEvEn: zn>

27 Q
Jn'(Xl,-..,XN):NﬁufeXF{ - Tvz Anl Znl?
n

™ Q )
+ﬂv; an(zy+2p)

m Q2 7 Q? ! I+ 7 +Np
X (L Zelz) - X p 2t 2
xex;(ZKV(LZJrLZ) KV %0 p .

mt -

X(Z_Z)Z)|§D(X11"'!XN)|2! (316)

with M anl-independent normalization constant. On combin-
ing Egs.(3.16 and (3.15 according to Eq.(3.10, where X @o(Xqy.eeXN)- (4.2

boundary contributions are ignored, one finds ) i
As generators of the discrete Heisenberg-Weyl grfcfp

Egs.(2.9 and(2.10], the two operators

2 o - -
ex Tffd X dyp(X)Go(X,Y)p(Y) | I/ (Xq, ... XN) S=Uqy. T=Uqy 4.2

are selected, obeying the relation
_ 112 _7Q 2, ™ Q
=Mdet A) ex;{ " VEn: Onlza%+ eTRY,

_ 5 TS=qST, 4.3
X Ly +L ~ ()% ndy
; itz +lz) e nl;lm with q=exp(2mi/p). On using known properties of func-
1 - tions, one can show by means of the explicit fa@23 that
<E L_l(zn_zm)) lo(Xg, e %) 280 - they act on the ground-state wave functions as

3.1
( 7) S'J/O;l[a](xl1"'!XN)=q|+n211[/O;|[a](Xl!"'1XN)1 (44)

In particular, for the ground-state wave functi40), the
factors with the product of prime forms and the ultraviolet Tolal(Xy,. . Xn) =AM, _a[al(Xy,... Xn). (4.5
regulator are cancelled, and so only the square root of the
regularized determinant of the Laplacian together with thedence the transformation of the variakelenay be rewritten
exponential prefactor remain. Thus the ground states have$p as to result in a unitary transformation of the basis of
finite, cutoff-independent, norm, and can be assumed to bground-state wave functions, and we can legitimatelyaset
orthonormal, because faj,= 1 the finalx, integrations are equal to zero.
(incomplet¢ Gaussian integrals which can be done, at least These(Verlinde-type operators are the building blocks of
in principle. a quantum enveloping algebfa,as we will demonstrate
now®* On passing from the discrete Heisenberg-Weyl group
to its group algebra, it makes sense to form linear combina-
IV. QUANTUM SYMMETRY tions of the generating elemen® and T and products
thereof. In particular, we choose
There is a relic of large gauge transformations, which will
prove to be of crucial importance in the following. This
comes about since the invariance under large gauge transfor- qT1?%s—q 251

mations has not fully been exploited so far, and the operators J.= q=q ¢ T, K=-§, (4.6)
O(ml,mz) still act as symmetries of the system. o .

We simplify the discussion by limiting ourselves to a case@nd it is _stralghtf_orward to prove that these operators obey
relevant for the quantum Hall effect. Hence we chogge the defining relations of the quantum algebfg(sw,), i.e.,
=1 for all n, i.e.,Q=N, and restrict the Chern-Simons cou-
pling constant to valuels= 1/p, with p an odd integer. Omit- .
trggdthex dependence, the ground staftese Eq(2.37)] then [3,..]= T KILK-1=q*2).. (4.7




PRB 61 FRACTIONAL QUANTUM HALL EFFECT AND QUANTUM . .. 5495

On thep-dimensional basis of ground statésl), they act  structure, whereL,/pN and L,/pN are the lattice
as constant$’
1 ) As a check, the “quantum plane” relatiori4.3) are eas-
J.[0;1)= 5 0:1=1), Klo;h)=—q ily verified for the new versiofEgs. (4.10 and (4.11)] of
the generators, from now on being taken as the definition for
for 7,=7,=0° where[x]=(q*—q *)/(q—q ). As we the operators of large “diffeomorphisms.” An acid test con-
know from Sec. lll, the basis can be chosen to be orthonorsists in showing that indeed they respect the conditame
mal; furthermore, the operators of large gauge transformakd. (2.28)]
tions are unitary with respect to the Bargmann inner product.
Accordingly, the quantum algebra generatdrs andK are ~ _ .
Hermitian in the sensd’ =J. andK'=K 1. Representa- p(my mp) Y01 (X0, -+ Xy) = X =27 (My 7+ M 772)
gcr)tri]e(sé.w) is indeed compatible with these Hermiticity prop- — PN, o4 (Xq .. XN,
Up to now, we have not assumed the algebra, defined by (4.12
Eq. (4.7), to be equipped with a quasitriangular structure. If
the deformation parameter is a pure phase, or even a root @fhich may also be understood as a quasiperiodicity require-
unity, it is a subtle problem to provide for#astructure of ment.
Uq(sw) as a quasitriangular Hopf algebra. The standard Finally, let us turn to the case we are ultimately interested
definition (Ref. 66, see also Ref. 1®nly covers the case in, the quantum Hall effect. We may be brief since most of
that q takes real values. This problem can be sofédny  the work has already been done. On adding the clasBical
means of a modification of the standardtructure. Hence it field, we use the background field metHdrhen the small
may be taken for granted that the representatib8) is in-  and large gauge transformations leave the clasd&cphrt
deed unitary folJ,(suw,) as a quasitriangular Hopf algebra, untouched so that all the results of Sec. Il concerningxthe
and not as an algebra only. anda dependences, remain valid. Only the determination of
Let us mention that the representations encountered in the ground-state wave function requires modification, but we
present context are somewhat special because they hagan follow similar steps as in Sec. I, to obtain
guantum dimension O, i.e., Kr=0, and as such are often
regarded as “unphysical’(cf. Ref. 16.
Having provided for a quantum group structure of the ‘PO(Xlu---aXN):NOH gNpi2
ground-state wave functionals, we would like to obtain n
something similar for the wave functio®.40 and(2.41) as

well. This can be achieved by absorbing the transformation xeXp( — LZE |Zn|2>

of the variablea in the center of charge coordinai by 47

replacing thez, simultaneously byz;=z,—(L,/pN)(m, p

—7m,), and one finds x I E( Zm)) . (413
n<m

O(ml,mz)lﬂo;l[a](xla---:XN)
After all, the ground-state wave functions of the quantum

(mz—?ml)L Hall effect with natural boundary conditions thus turn out to
be

|_|Z

o - T
=exp — — >, Z)(My—1my) + =
L4 2

T Ly
- __(m2 Tml)(mz_Tml)) N
b Po1(Xq,... XN) =€X —w—pE |24 2+ __pE 2
Y V 5 2V
X galal(Xy, ... XQ)- (4.9
1 Np
We are enabled now to sat=0, thus obtaining for the gen- 7 Np p |+ >
erators N ’ VL Zn) )
S E 7 N m Ly n @
Yo (Xe, - Xy T !
! ! 1
X¢O;|(X1,...,XN). (41@ X pL_Z Zn pT ¢O(X1,,,,,XN),
with zy=2z,+(L,/pN), and 1°m
. T -, . N
T¢0,|(X111XN):eXF(_IL_12 Zn_|7L—1L (41[9
n
where, for definitenessee Sec. I)l, we have choseN to be

v

“2pL )’»”m(xl, LX), (410 odd.

The quantum group properties, having been established
above, remain valid up to one qualification. Only the quasi-
with z,=z,—i(L,/pN). The effect on thex, coordinates periodicity propertieg4.10 and(4.11) take a slightly differ-
may be looked upon as providing the torus with a latticeent form, because there is an additional contribution from
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a1 _ _
oy, Xn) =Xl — 5 2 [(M=TMy)Z,+7,
2 n
X L Th T
(my—7my)] EL_Z(mz M)
X(mZ_Tml) (PO(Xﬁll_!rxll\l) (415)

Here we have identifietlp with the degree of degeneracy of

Landau’s theory, i.eNp=V/27/?. But again, it is the ac-
tion of the operator§ andT [cf. Egs.(4.4) and(4.5)]

slosy=d'|o;l), Tloi)=l0l-1),  (4.16
which counts since this result entails E¢.8), which is the
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the Hall ground-state wave functions, differing in the expo-
nential prefactor and in the characteristics of thRinction
from what has been proposed by Haldane and RéZzayid
others, should be an improvement of the Laughlin ground
state for natural boundary conditions.

At this point one is faced with the, at first sight, strange
fact that the ground state jsfold degenerate; hence it is the
degree of degeneracy, which now determines the filling frac-
tion. But, at second sight, a quantum group turns out to pro-
vide for the explanation since it discriminates between the
different ground states, and thus the organizing principle be-
hind is a quantum symmetry, as opposed to a standard Lie
group symmetry.

We may revert the argument on taking the quantum group
to be given giriori. Then the possible quantum numbers are

essential property. Unitarity, however, remains an issue sinc@btained by classifying the relevant representations of the

our attempts to orthonormalize the wave functiddsl4)
have been unsuccessful. To summarize,gtield degener-

deformationUy(su,). This investigation has been ddfe
with the result that, for an odd root of unity=exp(2i/p),

ate ground state of the quantum Hall effect can be equippetere is just one unitary and irreducible representation with

with a quantum symmetr}? hence the quantum “group”

vanishing quantum dimension for each given valu@.df is

Uq(sly), with g an odd root of unity, tumns out to be the in this sense, that a quantum symmetry provides for an ex-

spectrum generating algebra of the quantum Hall effect.

V. CONCLUSION

planation of the quantum numbers for the experimentally
observed values of the filling fractiom= 1/p, with p an odd
integer.

Of course, many problems remain. The most serious

Let us give a resume of what has been shown. There is nomission is that we have not touched at all the effect of the

dispute that Laughlin’s variational wave function capturesrepulsive Coulomb interaction, which should lead to a stabi-
the essential properties of the quantum Hall system. Henckzation of the system at the filling fractions=1/p, i.e., give

the assumption made in Sec. | that the electrons themselveise to the formation of the Hall plateaus. Furthermore, the
must be coupled to the Chern-Simons quantum field folmbove treatment of excitations is insufficient; as will be
rather “kinematical” reasons is indeed the missing link shown elsewhere, they may be given a satisfactory explana-
since, in the absence of interactions, it opens the way for &on, which also provides for a representation of the braid
consistent derivation as an exact ground state. But the quagroup on the toru&® and thus yields the relation to knot

tum numberp, which determines the filling fractiorv
=1/p, remains more or less unexplained.

theory. The ultimate aim, however, will be a second quan-
tized description of the matter particles at nonzero tempera-

A realistic theory of the quantum Hall effect, however, ture, with an eye toward supplying for a derivation of the
must take into account the finite extent of the Hall samplegffective Chern-Simons actidr;*®?° which has been pro-
and for this reason we have investigated the generalization fposed as an analog of the Ginzburg-Landau effective détion

the torus. Thus the final resultggs. (4.13 and (4.14)] for

of superconductivity, from microscopic properties.
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