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Sound and heat absorption by a two-dimensional electron gas
in an odd-integer quantized Hall regime

S. Dickmann*
Max Planck Institute for Physics of Complex Systems, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

and Institute for Solid State Physics of Russian Academy of Sciences, 142432 Chernogolovka, Moscow District, Russia
~Received 19 August 1998; revised manuscript received 23 February 1999!

The absorption of bulk acoustic phonons in a two-dimensional~2D! GaAs/AlxGa12xAs heterostructure is
studied~in the clean limit! where the 2D electron-gas~2DEG!, being in an odd-integer quantum-Hall state, is
in fact a spin dielectric. Of the two channels of phonon absorption associated with excitation of spin waves,
one, which is due to the spin-orbit~SO! coupling of electrons, involves a change of the spin state of the system
and the other does not. We show that the phonon-absorption rate corresponding to the former channel~in the
paper designated as the second absorption channel! is finite at zero temperature (T), whereas that correspond-
ing to the latter~designated as the first channel! vanishes forT→0. The long-wavelength limit, being the
special case of the first absorption channel, corresponds to sound~bulk and surface! attenuation by the 2DEG.
At the same time, the ballistic phonon propagation and heat absorption are determined by both channels. The
2DEG overheat and the attendant spin-state change are found under the conditions of permanent nonequilib-
rium phonon pumping.
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I. INTRODUCTION

In recent years, considerable amount of interest has b
focused on the problem of the acoustic wave and heat
sorption by a two-dimensional electron gas~2DEG! in
GaAs/AlxGa12xAs heterostructures in the quantum Hall r
gime ~QHR!.1–12 This is connected with the search for a ne
way to study the fundamental properties of a 2DEG in
strong magnetic field~which is considered to be perpendic

lar to the layer, i.e., Bi ẑ) employing nonequilibrium
phonons2,3 or surface acoustic waves4–9 as an experimenta
tool. The basic idea is associated with the fact that the e
gies of phonons generated by heated metal films2,3,13 or the
energy of coherent phonons in semiconductor superlattic14

may be of the order of the characteristic gaps in the 2D
spectrum. At the same time, it is well known that in the QH
a change of the Landau level~LL ! filling factor n may dras-
tically renormalize the 2DEG excitation spectrum. Therefo
parameters such as the phonon lifetime~PLT! tph, the at-
tenuation, and the velocity of sound waves exhibit stro
oscillations as functions of the applied magnetic field.1,4–9

These spectrum alterations prevent development of an
versal approach to the theoretical problem of sound and
absorption by 2DEG.

Most of the relevant treatments10–12,15use the one-particle
approximation, i.e., the Coulomb electron–electron (e-e) in-
teraction is neglected or considered as a secondary phe
enon renormalizing the phonon displacement field~screening
in Ref. 12! or one-electron state density~Coulomb gap in
Ref. 15!. In these studies the LL width is determined by t
amplitudeD of the smooth random potential~SRP!, and the
phonon absorption occurs through the transition of an e
tron from one semiclassical trajectory to another in the S
field near the percolation threshold11,12 ~whenn is close to a
half integer! or by the electron variable-range hopping f
strongly localized electrons15 (n is close to an integer!. The
PRB 610163-1829/2000/61~8!/5461~12!/$15.00
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one-particle approximation is evidently justified in a qualit
tive sense as long as the number of charged quasiparticl
rather large, which does not hold in the integer~or ‘‘almost’’
integer! QHR. In this latter case, one should take into a
count a stronge-e interaction with the typical energy equa
to the Coulomb energyEC;e2/« l B @« is the dielectric con-
stant,l B5(\c/eB)1/2 is the magnetic length#, which exceeds
100 K for B.8 T. Since we haveEC /D*10 and because o
the absence of charged quasiparticles in the ground state
exactlyEC that determines the real LL width in the integ
QHR. Charge excitations are separated from the gro
state, not only by the gap, which is equal to the Zeem
energy for oddn or the cyclotron energy\vc for evenn, but
also by an additional energy of orderEC . This applies also
to the so-called Skyrmion charge excitations,16–18 which
seem to have been observed19,20 at n51. However, ifn de-
viates from unity then even the ground state has to be r
ized as a complex spin and charge texture in the form o
Skyrme crystal with a characteristic period proportional
un21u21/2 ~see Refs. 16, 21 and 22!, so that ignoring the
Skyrmions is only permissible forn close enough to unity.
Experiments19,20 indicate that this can indeed be done ifun
21u&0.01.

Therefore in integer QHR the phonon absorption
chargeless excitations has to be more efficient. The spec
calculation for low-energy excitations from the filled LL i
fortunately an exactly solvable problem to first order
EC /\vc , which is considered to be small~see Refs. 23–25!.
We will study the oddn only, since at evenn the cyclotron
gap for excitations substantially exceeds the possible ac
tic phonon energy. Forn52n11 when then th LL in the
ground state has a fully occupied lower spin sublevel and
empty upper one the lowest states in the spectrum are
excitons, which are in fact spin wave excitations. We w
call these simply spin waves~SW’s!. For them the gap is
ugmbBu'0.3B K/T, becauseg520.44 for GaAs. At tem-
5461 ©2000 The American Physical Society
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5462 PRB 61S. DICKMANN
peraturesT*0.1 an appreciable amount of ‘‘thermal’’ SW’
forms a rarefied 2D Bose gas, since SW density is still
less than the density of electrons in thenth LL ~i.e., than
1/2p l B

2). As a result, the electron-phonon (e-ph) interaction
can be represented as the SW-phonon interaction. Su
representation for thee-ph interaction Hamiltonian has al
ready been found earlier26 ~see also Sec. II of the prese
paper!, and as discussed it includes, in addition to sp
independent terms, the small terms arising from the elec
SO coupling. Precisely the latter ones determine the pho
absorption atT50.

We consider two channels of inelastic phonon scatter
The first one~Sec. III of the present paper! does not change
the 2DEG spin state. The rate of phonon absorption is p
portional to the conserved number of equilibrium SW’s a
vanishes whenT goes to zero. Therefore, as the 2DEG te
perature due to phonon absorption increases the S
chemical potential has to decrease in this case. After ave
ing with a certain phonon distribution over the momenta
find the mean effective inverse PLT 1/teff , and hence the
rate of the 2DEG heating as well as the corresponding c
tribution to the inverse thermal conductivity. The transiti
to the limit klB!1 @k5(q,kz) is the phonon wave vector#
allows one to find the ‘‘2D’’ contribution to the bulk an
surface acoustic wave attenuation. In this last case the pi
electric electron-lattice interaction plays the main role.

The second phonon absorption channel~Sec. IV! arises
from the SO coupling. It describes the SW generation fr
the 2DEG ground state. Absorption of a single phonon
duces by 1 both the spin componentSz and the total electron
spin numberS. As a consequence, the absorption rate is p
portional to the rate of spin momentum decrease. T
channel of scattering, which is pinched off for energies l
than the Zeeman energy gap, is only accessible for a sele
group of ‘‘resonant’’ phonons with a certain kinematic rel
tionship betweenq and kz wave vector components. O
course, the long-range wave limit is meaningless in this c
While the phonons of the resonant group occupy a comp
tively small phase volume ink space, their contribution to
the effective inverse PLT is rather significant and, being
dependent of temperature, can exceed the corresponding
tribution from the first absorption channel even atT&1 K.

In Sec. V, we consider both absorption channels in
problem of dynamic quasiequilibrium in a 2DEG under t
condition of ballistic phonon pumping. We find the depe
dence of the final temperature as well as the spin momen
of the 2DEG on the initial temperature of the 2DEG and
density of the nonequilibrium phonons. We note in pass
that the 2DEG adds a small correction to the bulk phon
scattering, connected mainly with the lattice defects a
sample boundaries. One can also get only a small~although
peculiar! 2DEG correction to the thermal conductance.1,10

The 2DEG contribution to the phonon absorption alwa
contains the factor 1/Lz (Lz is the sample thickness in theẑ
direction! in the expression for the value of 1/tph. We as-
sume that the distribution of the nonequilibrium phonons ik
space and the amplitude of the sound wave in the 2D ch
nel, which are determined by the acoustic-phonon scatter
to be known.

In closing this section we should like to mention the SR
role specifically in the case of the studied problem. T
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ground state in the clean limit with strictly oddn, being built
of one-electron states of the fully occupied lower spin su
level ~see Refs. 23, 24, 26, and 27!, is actually the same a
for the 2DEG without Coulomb interaction. Accordingly, th
ground state in the presence of SRP is of the same na
Note that the SRP would give rise to free charged quasip
ticles, were it not that the loss in energy due to interact
~which is on the order ofugmbBu1EC), was vastly in excess
of the gainD in energy due to fluctuations in the rando
potential.28 We have no free quasiparticles at temperatu
T!EC , and such a 2DEG is a spin dielectric. Furthermo
the neutral spin exciton with 2D momentum\qex has a di-
pole momentumelB

2qex3 ẑ ~see Refs. 23–25! and in SRP the
exciton may gain an energy on orderl B

2qexD/L in the dipole
approximation, whereL is SRP correlation length. The as
sociated loss is the ‘‘kinetic’’ energy (qexl B)2/2M (M
;EC

21 is the excitonic mass23–25!. Therefore, forqex&q0

5L21DM;D/ECL one has to take into account the SR
effect on the SW energy. Our approach to the phonon
sorption by the equilibrium SW’s ignores the presence
SRP in the system, so it is only correct for temperatureT
.(q0l B)2/2M;10 mK ~this estimate has been done forB
510 T, D51 meV, andL550 nm).

II. ONE-EXCITON STATES AND THE ELECTRON-
PHONON INTERACTION HAMILTONIAN IN

THE EXCITONIC REPRESENTATION

In this section, we introduce the so-called ‘‘excitonic re
resentation’’ of the Hamiltonian, and its eigenstates, desc
ing the 2DEG under consideration. Letap andbp be annihi-
lation operators for an electron in the Landau gauge s
Cp(x,y)5L21/2eipycn(plB

21x) at the lower and upper spin
sublevels, respectively. Here,L3L is the size of the 2D
system, andcn is thenth harmonic oscillator function. In the
‘‘one-exciton’’approximation, the absorption of one phono
which is not accompanied by a change in the spin state of
2DEG amounts to a transition between the one-spin-w
states of the 2DEG. The one-spin-wave state with 2D m
mentum\q is defined as

uq&5Qq
1u0&. ~2.1!

Here, the creation operator for SW,

Qq
15N 21/2(

p
e2 i l b

2qxpbp1 qy/2
1 ap2 qy/2 , ~2.2!

operates on the 2DEG ground stateu0&, andN5L2/2p l B
2 is

the number of magnetic flux quanta, or equivalently, t
number of electrons in thenth LL. The equations

ap
1u0&5bpu0&[0 for any p, ~2.3!

may be regarded as the definition foru0&. The main aspect of
the excitonic representation is that the state~2.1! is an eigen-
state of the full electron HamiltonianH involving the e-e
interaction: Huqex&5@E01e(qex)#uqex& @E0 is the 2DEG
ground-state energy ande(qex) is the SW energy#. Of course,
this is valid to first order inEc /\vc and in the 2D limit~we
assume thatd, l B,r b , wherer b is the Bohr radius in the
material andd is the effective 2DEG thickness!. In the limit
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qexl B!1 appropriate to our problem one may use the q
dratic approximation for the excitonic energy,

e~qex!5d1
~qexl B!2

2M
, ~2.4!

where

d5ugmbBu, ~2.5!

and

M 215 l B
2E

0

`p3dp

4p
V~p!e2p2l B

2 /2@Ln~p2l B
2/2!#2 ~2.6!

(Ln is thenth order Laguerre polynomial!, which is defined
in terms of the Fourier componentsV(q) of the Coulomb
potential in the heterostructure averaged over the 2D
thickness.26,27 Note that 1/M;Ec holds, besides our result
depend on the LL numbern only because the excitonic mas
~2.6! depends onn.

The excitonic representation for the interacting Ham
tonian involves the displacement operators:

S Aq
1

Bq
1D 5S A2q

B2q
D 5

1

N (
p

e2 i l b
2qxpS ap1 qy/2

1 ap2 qy/2

bp1 qy/2
1 bp2 qy/2

D .

~2.7!

The identities in Eq.~2.3! can be rewritten in the excitoni
representation as

Aq
1u0&[d0,qu0&, Bq

1u0&5Qqu0&[0. ~2.8!

The operator in Eq.~2.2! ~as well as its Hermitian conju
gate! seems to have been first introduced in Ref. 29. La
some of its combinations together with the operators~2.7!
were in fact used as the ‘‘valley wave’’30,31 or ‘‘iso-spin’’ 21

operators. In Ref. 26 the operators~2.2! and~2.7! have been
considered exactly in the present form. In what follows,
shall take advantage of the commutation relations

e2 iQ12@Aq1

1 ,Qq2

1 #52eiQ12@Bq1

1 ,Qq2

1 #52N 21Qq11q2

1 ,

~2.9!

and

@Qq1
,Qq2

1 #5eiQ12Aq12q2
2e2 iQ12Bq12q2

, ~2.10!

whereQ125 l B
2(q13q2)z/2.

The e-ph interaction Hamiltonian is presented as~see,
e.g., Refs. 10 and 26!:

He,ph5
1

L S \

Lz
D 1/2

(
q,kz ,s

Us8~k!Pk,sHe,ph~q!1H.c.,

~2.11!

wherePk,s is the phonon annihilation operator~index s de-
notes the polarization state, withs5 l denoting the longitu-
dinal ands5t the transversal polarization state!. The He,ph

operates on the electron states, andUs8(k) is the renormal-
ized vertex which includes the fields of deformation~DA!
and piezoelectric~PA! interactions. The integration with re
spect toz has been already performed, and reduces to
renormalizationUs8(k)5g(kz)Us(k), where the formfactor
-

G

-

r

e

g~kz!5E f * ~z!eikzzf ~z!dz ~2.12!

is determined by the wave functionf (z) of the correspond-
ing size-quantized level~which we have assumed to be ide
tical for all N electrons!. For the three-dimensional~3D!
vertex one needs only the expressions for the squares,

uUsu25p\vs,k /p0
3tA,s~k!, ~2.13!

where vs,k5csk are the phonon frequencies,p0
52.523106 cm21 is the material parameter of GaAs~Ref.
32!, andcl andct are the sound velocities. The longitudin
tA,l(k) and transversetA,t(k) times are 3D acoustic phono
lifetimes ~see Appendix I!. These quantities are expressed
terms of nominal timestD50.8 ps andtP535 ps character-
izing, respectively DA and PA phonon scattering in thre
dimensional GaAs crystal.~See Ref. 26 and cf. Ref. 32.!

Initially, of course, the originally spin-independen
Hamiltonian of thee-ph interaction~2.11! is used. However
it does not commute with the SO coupling part of the ele
tron Hamiltonian. Therefore, the operatorHe,ph including the
relevant off-diagonal corrections in the excitonic represen
tion has the following form26 ~we write it for qlB!1):

He,ph~q!5$N~Aq
11Bq

1!1N 1/2l B@~vq22 iuq1!Q2q

2~ iuq21vq1!Qq
1#%, ~2.14!

whereq657 i221/2(qx6 iqy). Here,u andv are dimension-
less parameters~just as in Ref. 26! characterizing the SO
coupling. The terms containing the coefficientv originate
from the absence of inversion in the direction perpendicu
to the 2D layer and hencev is proportional to the strength o
the normal electric field in the heterostructure.33 The terms
including u are related to the lifting of spin degeneracy f
the S band in A3B5 crystals.34 In deriving Eq. ~2.14!, we
have assumed that the normalẑ is parallel to the principal
@001# axis of the crystal. The final results depend only on t
combinationu21v2, which is of order 1025 for B510 T
with d55 nm and is proportional toB21 and also tod24 in
the asymptotic limitd→0.

Further in our estimations we proceed from the fieldsB
.5420 T, and sod ~2.5! has the same order of magnitud
as \cs / l B ~precisely l B.6411 nm, d.1.546 K, \cl l B

21

.347 K, \ctl B
21.244 K). The magnitude of the exciton

mass depends on the layer thickness according to Eq.~2.6!
becauseV(q) depends on the size-quantized functionf (z);
for real heterostructuresM 21.40480 K.

Note also that everywhere below, the specific magne
field dependence of our results is given at constantn, i.e., the
surface electron density is always considered to be pro
tional to B.

III. PHONON ABSORPTION WITHOUT
A CHANGE OF THE SPIN STATE

„THE FIRST ABSORPTION CHANNEL …

Considering for the present the first absorption chann
we find the PLT from the well known formula
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1

ts~k!
5(

iÞ f
Wi f ~k!@bT~e i !2bT~e f !#, ~3.1!

where the scattering probability

Wi f ~k!5
2p

\
uM i f

s,ku2d~e i2e f1\vs,k! ~3.2!

contains the matrix element of the Hamiltonian~2.11! ~Ref.
35!. The value ofM i f

s,k is determined by the annihilation o
one phonon having momentum\k and by the transition of
the 2DEG between the statesu i &5uqex& and ^ f u5^qex1qu,
whereq is the component ofk in the 2DEG plane~for the
analogous formulas for phonon absorption by free electro
see, e.g., Refs. 10, 12, and 32!. Here e i5e(qex) and e f
5e(qex1q) and the functionbT(e) in Eq. ~3.1! corresponds
to the Bose distribution for SW’s,

bT~e!5
1

exp@~e2m!/T#21
where m,d. ~3.3!

According to Eqs.~2.11! and~2.14! the square of the modu
lus is

uM i f
s,ku25

pug~kz!u2\2vs,k

p0
3L2LztA,s~k!

z^qex1quHe,ph~q!uqex& z2.

~3.4!

Naturally, we suppose that the internal equilibrium in t
2DEG among SW’s is established faster than the equilibr
between the phonons and the 2DEG~see the comment in
Appendix II!.

Equating the argument of thed-function in Eq.~3.2! to
zero, (qexl B)2/2M1\csk5uqex1qu2l B

2/2M , one can find the
kinematic relationship forqex, which reduces to

qexcosb5Rs,k5\csl B
22Mk/q2q/2, ~3.5!

whereb is the angle betweenqex andq. We have used here
the quadratic approximation~2.4!, since only the low-
temperature caseT!Ec is relevant to our problem. As i
follows from Eq.~3.5!, the corresponding 2D component
phonon momentum for smallqex must also be small, i.e.
qlB!1. Exploiting the commutation relations~2.9! and
~2.10! as well as the properties~2.8! of the ground state, one
can easily find the matrix element^ . . . & in Eq. ~3.4! for the
operator~2.14!:

^ . . . &5N^0uQqex1q~Aq
11Bq

1!Qqex

1 u0&

52i sinS 1

2
l B
2qqexsinb D' i l B

2qqexsinb. ~3.6!

Finally, substituting Mq21l B
22d(qexcosb2Rs,k) for d(e i

2e f) into Eq.~3.2!, and replacing summation by integratio
we find with Eqs.~3.3!, ~3.4!, and~3.6! that

1

ts~k!
5Ap

2

\csugu2M5/2T3/2

p0
3l BLztA,s~k!

kq@f3/2~w!2f3/2~w8!#.

~3.7!

Here,
s,

w5exp@~m2d!/T2~\csMk/ l Bq2qlB/2!2/2MT#,

w85w exp~2\csk/T!, ~3.8!

and f3/2(w)5wF(w,3/2,1), where F is the Lerch
function,36 i.e.,

fn~w!5 (
k51

`

wk/kn. ~3.9!

Generally speaking, the inverse time~3.7! is a rather com-
plicated function of the direction ofk relative to the crystal
axes. Let us setq5(k sinu cosw,ksinu sinw) and consider
the important special cases.

A. The long-wavelength limit and sound attenuation

To find the 2D absorption of a macroscopic sound wa
we consider the case

klB!~8MT!1/2 and T;1 K. ~3.10!

Then, excluding a narrow region of sin2 u&(\cslB
21)2M/2T, w

does not depend onk. Besides, in case of a completely equ
librium 2DEG when we neglect the heating, we can setm
50. Therefore,

w~u!5expS 2
d

T
2

hs

sin2u
D where hs5

\2cs
2M

2TlB
2

.

~3.11!

Substituting Eqs.~A.1! and ~A.2! ~see Appendix I! into Eq.
~3.7! we find the acoustic wave attenuation coefficientGs
51/csts . Using the condition~3.10! and taking into accoun
that in our caseg'1 holds, we obtain the result for differen
polarizations

Gs;
1029

Lz
kB23/4T1/2 exp~2ugmBu/T!

3@Ps~u!ps~w!1Ds~u!#cm K21/2~Tesla!3/4.

~3.12!

For a longitudinal wave the PA interaction leads to the fun
tions

Pl52 sin5u cos2ued/Tf1/2@w~u!# and pl~w!5sin22w,
~3.13!

and the DA interaction gives

Dl5
1.2310211k2

B
sinued/Tf1/2@w~u!# cm2 T.

~3.14!

It is seen that the indicated long-wave condition~3.10!
enables us to take into account the DA interaction only
special directions ofk, namely, when the termPl(u)pl(w)
vanishes.

For transverse polarization we haveDt[0. If the wave is
polarized in the direction perpendicular toẑ and k @i.e., ty
50, tx51 in Eq. ~A.2!#, then we havePt5P' , where

P'54 sin3u cos2ued/Tf1/2@w~u!#, p'~w!5cos22w.
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For a transverse wave polarized in the plane of the vectoB
andk (tx50 ty51) we getPt5Pi , where

Pi5sin3u~2 cos2u2sin2u!2ed/Tf1/2@w~u!#,

and

pi~w!5sin2 2w.

The dependencePs(u) is illustrated graphically in Fig. 1 for
the caseT51 K.

Thus, our result is that the bulk sound-wave-attenuat
coefficient, being determined by the PA interaction, is p
portional to k and, naturally, inversely proportional to th
dimensionLz . The latter dependence arises from the norm
ization of the wave displacement field to the whole sam
volumeL2Lz ~cf. also Ref. 10!. Further, it is easy to estimat
how our results are modified in the case of a surface acou
wave. The essential difference is that the displacement fi
for a surface wave has to be normalized toL2/ukzu, wherekz
takes an imaginary value characterizing the spatial sur
wave attenuation in theẑ direction. Actually we haveukzu
5bk, whereb;1 is a numerical factor~see Refs. 12 and
37!. As a result the attenuation coefficient is obtained
multiplying Eq. ~3.12! by a factor of orderkLz . The corre-
sponding estimate forB510 T yields

G;10210k2S T

1 KD 1/2

expS 2
3 K

T D cm. ~3.15!

The surface acoustic wave attenuation in the half-inte
QHR has been considered in Ref. 12, and the attenua
coefficient was found to be of order 1025k ~correspondingly,
the k-independent attenuation has been obtained in
model for the bulk sound wave10,11!. The Fermi energy was
assumed there to be close to the center of the LL. Accord
to estimates,12 this zero-temperature result should be valid
to T;1 K. At the same time, the calculated value ofG be-
comes very small when the Fermi energy deviates subs
tially from the center to the LL edges. One can actually s
that our case, which is only applicable to the upper edge

FIG. 1. Angular dependence of the acoustic-wave attenua
coefficients for various polarizations. These results are obtained
T51 K, B510 T, 1/M560 K; consequentlyd53.0 K, h l50.2,
h t50.07.
n
-

l-
e
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ce
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r
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g
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the LL, yields a result of the same order as in Ref. 12~for the
LL center! even fork;105 cm21, provided thatT;1 K.

The hopping transport and absorption of a surface aco
tic wave near the integer QHR was studied by Aleiner a
Shklovskii ~Ref. 15!. These authors take into consideratio
the Coulombe-e interaction within the framework of the
ac-hopping conductivity theory.38 Then they use a simple
equation connecting the conductivitysxx(v,k) due to the
piezoelectric coupling with the attenuationG for the surface
wave. In the long-wave regionklB,0.2, provided the rela-
tionship sxx5«jv/6 holds (j is the localization radius,j
; l B for n close to an integer!, one can see from the resul
of Ref. 15 thatG;10210k2 cm for B510 T and for tempera-
tures T,\vs . This is in agreement with our result ifT
;1 K. At the same time our theory gives the dependen
B23/4 exp(2ugmBu/T) for G, in contrast toB21/2 in Ref. 15,
and besides our attenuation vanishes asT1/2e2d/T as T de-
creases@of course, as long as the inequality~3.10! is valid#,
whereas the corresponding result in Ref. 15 is tempera
independent.

B. The short-wave limit and the heat absorption

In order to gain insight into such quantities as the rate
ballistic phonon absorption or the contribution of the 2DE
to the thermal conduction, we need to consider the sh
wavelength limit. Fork2l B

2.28MT ln(8MT) one can see
with the help of Eqs.~3.7!–~3.9! and ~A1! that the PA ab-
sorption for the longitudinal phonon even at its maximu
becomes less than the DA absorption. Hence, in the c
which will be considered now,

klB*1 ~k*106 cm21!, ~3.16!

so that we may neglect the piezoelectric part of the inve
PLT for the LA phonons. Also in this case the parameterw
~3.8! has a narrow maximum atu5u0, where

sin2u052\csM /klB
2!1. ~3.17!

Thus, only the longitudinal phonons withk almost parallel to
ẑ (q&0.1kz) effectively interact with the 2DEG. As an ex
ample, in Fig. 2 the angular dependence of the evolution

n
or

FIG. 2. The inverse time~3.7! may be represented in the form
t l

215Lz
21exp@(m2d)/T#•F(B,T,k,u). In this figure,F is calculated

for B510 T, T51 K, m2d53 K.
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the PLT ~3.7! is shown for a range ofk ~the cases5 l is
considered!. Obviously, for the phonon momentum strict
parallel toẑ ~i.e., whenq50) Eq.~3.7! also yields zero. The
width of this absorption region is obtained asD(sin2 u)
;(\csT)1/2M /k3/2l B

2 .
Now let us find the rate~or flux! of phonon absorptionRs

and the heat dissipation rateQs in a 2DEG:

S Rs

Qs
D 5NsE nph

(s)~q,kz!S 1

\vs,k
D ts

21~k!d3k
L2Lz

~2p!3
.

~3.18!

Here Ns is the spatial density of thes-type nonequilibrium
phonons in the sample, andnph

(s) is their normalized distribu-
tion function @*nph

(s)d3k/(2p)3[1#. We assume the phono

distribution to be a broad smooth function in the (x̂,ŷ) plane;
therefore due to the conditions~3.16! and~3.17! we may set
nph

( l )(q,kz)'nph
( l )(0,kz) in the integrals~3.18!. Note that the

condition~3.16! partly determines the apparent choice of t
distribution nph

( l ) : this distribution has to be mainly concen
trated in the range ofk satisfying Eq.~3.16!. Substituting Eq.
~3.7! into Eq. ~3.18! and taking into account thatk'kz we
find for the longitudinal polarization:

S Rl

Ql
D 5

NlL
2M4~\cl !

2T2

ptDp0
3l B

4 E
2`

1`

dkzS 1

\cl ukzu
D

3ukzg~kz!u2nph
( l )~0,kz! (

k51

`
exp@k~m2d!/T#

k2

3V~k\cl ukzu/2T!, ~3.19!

whereV(j)5(11j)(12e22j)/2j.
In contrast, for transverse phonons, when only the

interaction determines the absorption, smallk of order
(MT)1/2/ l B still play the main role. When the distributio
nph

(t)(k) is sufficiently long-range and provides the same pr
ability for both transverse polarizations, we may assu
nph

(t)(k)5nph
(t)(0) in Eq. ~3.18! @of course, settingg(kz)

'g(0)[1# and then use Eq.~A.3!. Nevertheless, real distri
butions arising from the metal film heaters are really
Planck ones for small phonon momenta,39,40andnph

(s)(0) goes
to infinity. For this reason we assume that the following co
ditions take place for the functionnph

(s)(k) characterized by
the effective temperatureT and by some angle distributio
F(u) isotropic in the (x̂,ŷ) plane:

nph
(s)~k!'~\cs /T!2F~u!/k when \csk!T,

~3.20!

nph
(s)~k!!~\cs /T!3 when \csk@T.

Then assuming thatF(u)&1, and

T@T, ~3.21!

we obtain forTA phonons from Eq.~3.18! in the lowest-
order approximation:
A

-
e

e

-

S Rt

Qt
D 5

5L2Nt~M\ct!
4T2

8app0l B
4tPT 2

3 (
k51

`
exp@k~m2d!/T#

k2 E
0

p

duF~u!

3~9 cos4u2cos 2u!S sinu

25/2\ctl B
21ApMT/k D ,

~3.22!

wherea5ct
2/cl

2 , which is '0.36 for GaAs. We have sub
stituted into Eq.~3.18! the formula~3.7! for t t

21 employing
Eq. ~A.3! from Appendix I.

Dividing the valueRs by NsL
2Lz , one finds for the ap-

propriate effective inverse PLT,

F teff
( l )21

teff
(t)21G;

M4~\cl !
2T2

Lzp0l B
4

3exp@~m2d!/T#F ~l/p0!2tD
21

~\ct /T!2tP
21G , ~3.23!

and the ratio teff
( l ) /teff

(t);(\ctp0 /lT)2tD /tP , where l
5ug( l BT/\cl)u. This means that the absorption of longitud
nal phonons is larger by a factor of order 100 than that
transverse phonons for the same distribution~3.20!–~3.21!.
~It is also assumed thatT;10 K andl;1). Analogous re-
sults are obtained for the ratioQt /Ql .

Finally, in order to find the absolute magnitudes of t
relevant absorption characteristics we should determine
SW chemical potentialm. This is found from the conserva
tion of the total 2DEG spinSor, what is the same, the equa
tion for the conservation of the total number of SW’s:

NSW5N2S52MTN ln$12exp@~m2d!/T#%.
~3.24!

This is simply the number of free 2D Bose particles at te
peratureT and chemical potentialm ~see, e.g., Ref. 26!.
Equating this value to the same one at the initial tempera
T0 and at zero chemical potential~describing the 2DEG be
fore the heating was started! we get

exp@~m2d!/T#512@12exp~2d/T0!#T0 /T. ~3.25!

Thus,m is determined by temperaturesT andT0, and to first
order in DT/T0 we may substitute exp(2d/T0) for exp@(m
2d)/T# into Eqs.~3.19!, ~3.22!, and~3.23!.

Specifically for the times~3.23! in the case of a fieldB
510 T one can estimate

1

teff
(s)

; f s

T0
2

Lz
expS 2

3 K

T0
D • cm

K2s
, ~3.26!

where f l;141021 for LA phonons, andf t;102141022

for TA modes.
The quantities~3.23! and~3.26! determine the 2DEG con

tribution to the inverse total thermal conductance, which m
be estimated by means of the kinetic formula
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D~J21!;Cph
21S 1

cl
2teff

( l )
1

1

ct
2teff

(t)D , ~3.27!

whereCph is the 3D lattice heat capacity. One can see t
even under favorable experimental conditions we h
JD(J21)&1024. Therefore, a small value of Eq.~3.27!
does not permit us to consider our mechanism relevan
heat absorption under the experimental conditions of Re
where the sensitivity allowed only the variationsJD(J21)
.531023 to be measured.

IV. PHONON ABSORPTION AT ZERO
TEMPERATURE AND SPIN STATE CHANGE
„THE SECOND ABSORPTION CHANNEL …

If the 2DEG temperature goes to zero then the above
sults of the first absorption channel vanish. On the other h
the SO terms in Eq.~2.14! can give a substantial contributio
to the inverse PLT even at zeroT. These terms allow the
absorbed phonon to create a spin wave, thereby changin
spin state. Evidently this is the transition between the 2D
statesu i &5u0& and ^ f u5^qu, provided the absorbed phono
has the wave vectork5(q,kz). Only phonons with energie
higher than the thresholdd can be absorbed. The quantity

W̃s~qex,k!5
2p

\
uM̃s~q!u2d@e~qex!2\vs,k#dqex ,q

~4.1!

is the probability of this process, and the kinematic relat
holds:\csAkz

21q25d1(qlB)2/2M . Therefore

kz56K~q!'6~d1q2l B
2/2M !/\cs . ~4.2!

One can see that only a selected resonant group of pho
takes part in this process. The possible magnitude ofkz ~4.2!
always satisfies the conditionukzu@q as well askzl B*1 for
our QHR parameter region. In addition, just as in the sh
wave limit of the first absorption channel~see the previous
section!, we again find that only the phonons with momen
almost parallel to the normalẑ interact effectively with the
2DEG.

The calculation of the matrix elementMs of the Hamil-
tonian~2.11! reduces to the calculation of^quHe,phu0& and is
substantially simplified by the commutation relation~2.10!
and Eqs.~2.8!. Eventually, Eqs.~2.8!–~2.14! enable us to
obtain

uM̃su25
\2cskug~kz!u2@~u21v2!q222uvqxqy#

4Lzp0
3tA,s~k!

.

~4.3!

From this the inverse lifetime of a nonequilibrium phon
with the mechanism of SW creation,

1

t̃s~k!
5(

qex

W̃s~qex,k!5
uM̃su2Lzk

\2cskz

@dkz ,K(q)1dkz ,2K(q)#,

~4.4!

is readily obtained. After averaging over theq directions and
also over thet directions for TA phonons~see Appendix I!
we have
t
e

to
1,

e-
d

the
G

n

ns

t-

1

t̃ (s)~q,kz!
5E

0

2pdw

2p

1

t̃s~k!

'
ugu2~u21v2!q2K~q!

4p0
3t0s~q,kz!

@dkz ,K(q)1dkz ,2K(q)#,

~4.5!

where

1/t0l'1/tD , 1/t0t'
5p0

2q2

atPk4
. ~4.6!

The expression for 1/t0t follows from Eq.~A.3! of Appendix
A; numerical calculation givest0t'40k4/q2 ps nm2.

In spite of the small factoru21v2 for such resonant
phonons, the inverse time in Eq.~4.5! is comparatively large
~of order 106 s21 for q;0.1 nm21) and does not depend o
the temperature. The reason for this lies in the fact that
rate of SW creation and of phonon absorption is proportio
to the large degeneracy factorN of the LL, whereas the
corresponding value of the inverse PLT~3.7! calculated in
the previous section is proportional only to the SW dens
which is exponentially low~at low T) due to Eqs.~3.1! and
~3.3!.

The effective inverse PLT’s are more important for t
applications. These quantities, which characterize the rat
SW creationR̃s ~equivalent to the phonon absorption rat!

and of heat absorptionQ̃s are determined as follows:

1

t̃eff
(s)

5E nph
(s)~q,kz!

t̃ (s)~q,kz!

d3k

~2p!3
,

1

t̃Q
(s)

5
\cs

d E nph
(s)~q,kz!

t̃ (s)~q,kz!

kd3k

~2p!3
. ~4.7!

Accordingly, from Eq.~3.18! we have

R̃s5NsL
2Lz / t̃eff

(s) and Q̃s5NsL
2Lzd/ t̃Q

(s) . ~4.8!

As a result, using Eqs.~4.5! and ~4.6! we obtain

F1/t̃eff
( l )

1/t̃Q
( l )G5

~u21v2!~\clM !2

4pp0
3l B

4LztD

3E
ukzu.k0l

n ph
( l )~0,kz!ug~kz!u2~ ukzu2k0l !

3F ukzu

\clkz
2/dGdkz , ~4.9!

and



d

lo

an
-

g

w
a
th
e
r

lib
en
il
u
on
he
th

ea

s
s
f
e-

t a

ns,
ho-

by

n
ith-

res-

to

for
-

n

sion

5468 PRB 61S. DICKMANN
F1/t̃eff
(t)

1/t̃Q
(t)G5

5~u21v2!~\ctM !3

2pap0l B
6LztP

3E
ukzu.k0t

n ph
(t)~0,kz!ug~kz!u2~ ukzu2k0t!

2

3F ukzu23

\ct /kz
2dGdkz ,

wherek0l5d/\cl and k0t5d/\ct . Here we have assume
that for smallq @that is for q;(M\cs)

1/2/ l B
3/2, which give

the main contribution to the integrals in Eq.~4.7!#
nph

(s)(q,kz)'nph
(s)(0,kz).

We now compare the values found here with the ana
gous ones of the first absorption channel~3.23!. One can
estimate for the distribution function~3.20! the ratio of
PLT’s for LA phonons

@ t̃eff
( l )#21/@teff

( l )#21;
~u21v2!exp@ ugmbBu/T0#

8p~MT0!2
, ~4.10!

and for the TA mode

@ t̃eff
(t)#21/@teff

(t)#21;
~u21v2!\2ct

2 exp@ ugmbBu/T0#

MT0
2l B

2 ugmbBu
.

~4.11!

Here we have assumedT@T0, and uT2T0u!T0. Substitu-
tion of the characteristic numerical magnitudes for the qu
tities entering in Eqs.~4.10! and ~4.11! results in the obser
vation that: in spite of the small spin-orbit parameteru2

1v2, the inverse PLT for the second channel atT0&1 K
may be comparable or even larger than that correspondin
the first channel.

V. QUASIEQUILIBRIUM TEMPERATURE AND SPIN
MOMENTUM OF 2DEG IN THE PRESENCE

OF NONEQUILIBRIUM PHONONS

So far, we have calculated the absorption rates~in the
form of the phonon-number and heat absorption fluxes! de-
termined exclusively by the nonequilibrium phonons. Ho
ever, one should bear in mind that these calculations le
the 2DEG temperature undetermined. Below we study
growth of T due to the processes considered above, sinc
a real experiment the observation time may be of the orde
or even much longer thanteff and t̃eff found in the previous
sections. Therefore, it is of interest to find the quasiequi
rium T andm for the SW gas in the presence of perman
phonon pumping. Here, in addition to finding these, we w
estimate the amount of time required for the dynamic eq
librium to be established. Recall that the SW distributi
function in Eq.~3.3! is supposed to apply always, since t
time required for establishing thermal equilibrium among
SW’s is relatively short~see Appendix II!.

The dependence ont of T(t) and m(t) is determined by
the following balance equations for the SW number and h

(
s

@R̃s2R̃s
(0)#5dNSW/dt,

(
s

@Qs1Q̃s2Q s
(0)2Q̃s

(0)#5dESW/dt. ~5.1!
-

-

to

-
ve
e
in
of

-
t
l
i-

e

t:

The fluxesR̃s , Qs, andQ̃s have been found in the previou
sections. The fluxR̃s

(0) is the rate of spin relaxation to it
equilibrium magnitude atT0. In other words, it is the rate o
SW annihilation~which is the process inverse to that corr
sponding to the second channel! due to acoustic phonon
emission. The heat fluxesQ s

(0) andQ̃s
(0) ~correspondingly of

the first and the second channel! are the back flows carrying
the heat from the overheated 2DEG to the lattice held a
fixed temperatureT0. ~The overheatingDT5T2T0, which
occurs due to the presence of nonequilibrium phono
causes these fluxes from the SW gas to the equilibrium p
non bath atT0). The SW numberNSW is determined by the
formula ~3.24!, and the quantityESW(T,m) is the spin-wave-
excitation part of the 2DEG energy, which is determined

ESW5N SWd1NT2Mf2~% !

3$where %5exp@~m2d!/T#%, ~5.2!

for 2D Bose particles with the quadratic spectrum~2.4!. By
definition, the flux(sQ s

(0) describes for the first absorptio
channel the energy exchange with equilibrium phonons w
out a change in the SW number; we have

Q s
(0)5\(

k
(
iÞ f

vs,kWi f ~k!$bT~e i !@11bT~e f !#

3@11nT0

(0)~k!#2bT~e f !@11bT~e i !#nT0

(0)~k!%.

~5.3!

Here,Wi f is determined again by Eq.~3.2! with the argument
of the d-function replaced bye i2e f2\vs,k ; bT(e) is, as
before, the function presented in Eq.~3.3!, and nT

(0) is the
Planck function for the equilibrium phonons,nT

(0)(k)
51/@exp(\vs,k /T)21#. The right side in Eq.~5.3! may be
easily transformed in such a way that we obtain an exp
sion similar to that in Eq.~3.18! for Qs with PLT ~3.1!. In so
doingNsnph

(s)(k) there should be replaced bynT
(0)(k)-nT0

(0)(k);

however, the following manipulations are quite analogous
those done when deriving the formulas~3.7!, ~3.19!, and
~3.22!. Fortunately, the rather cumbersome expression
the sum(sQ s

(0) may be simplified, provided that the tem
perature is reasonably low. Namely, if

T&M1/5~\cl / l B!6/5~p0l B!4/5 ~5.4!

~specifically T&1 K), then the piezoelectric interactio
gives the main contribution to the sum(sQ s

(0)'Q P
(0) ,

where

Q P
(0)5

45~\clL !2M9/2T5/2~T2T0!

4p1/2p0l B
5tP

exp@~m2d!/T#.

~5.5!

We assume further that

exp@~m2d!/T#!1, ~5.6!

which has already been used when obtaining expres
~5.5!.

We determineR̃s
(0) andQ̃s

(0) in Eq. ~5.1! from the expres-
sions
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S R̃s
(0)

Q̃s
(0)D 5(

k
(
qex

W̃s~qex,k!S 1

\vs,k
D @bT~qex!2nT0

(0)~k!#.

~5.7!

The sum(sR̃s
(0) in Eq. ~5.1! has been calculated in Ref. 2

for the caseT5T0 @cf. Eq. ~6.27! herein# and can be deter
mined in a similar way in our case. Assuming thatT@T0 and
taking into account the condition in Eq.~5.6!, we neglect the
PA interaction and obtain(sR̃s

(0)'R̃D
(0) , (sQ̃s

(0)'R̃D
(0)d,

where

R̃D
(0)5

~u21v2!~LMT!2d

2p\clp0
3l B

4tD

exp@~m2d!/T#. ~5.8!

With all terms on the left sides of Eq.~5.1! thus determined,
we can find the dependence ont of T(t) andm(t). However,
this would be meaningful only for comparison with a certa
experiment. For the present we restrict ourselves to con
eration of two special cases. Assuming further that only
phonons are pumped into the sample, Eq.~5.1! transform
into

R̃l2R̃D
(0)5dNSW/dt,

and

Ql1Q̃l2Q P
(0)2R̃D

(0)d5dESW/dt. ~5.9!

A. Appreciable initial temperature;
predominance of the first absorption channel

Here, we assume that the initial temperature satisfies
conditions DT5T2T0!T0,d. We further assume tha
Eqs.~5.4! and~5.6! apply. We observe that under these co
ditions, the terms corresponding to the second absorp
channel are much smaller than the others in the first equa
in Eq. ~5.9!. Supposing again that the features of the no
equilibrium phonon distribution expressed by Eq.~3.20!
hold, we find from the equationQl5Q P

(0) @see Eqs.~3.19!
and ~5.5!# the temperature shift

DT;
Nll BTtP

p0
2~MT0!1/2tD

. ~5.10!

For Nl51015 cm23, T510 K, l B58 nm, and (MT0)1/2

50.1 we haveDT;100 mK. The resulting overheat~5.10!
is determined only by the first absorption channel. Hen
one can ignore the SO channel of absorption only for not
low-initial temperaturesT0.0.1 K.

Let us now also estimate the time (Dt)T needed to estab
lish the quasiequilibrium temperature. Fort;(Dt)T the three
d-

he

-
n

on
-

,
o

termsQ P
(0) , Ql , anddE SW/dt in Eq. ~5.1! become of the

same order. We equate the expression~5.5! and the rate of
heatingdESW/dt'CNDT/Dt, whereCN is the heat capacity
of the 2D Bose gas at constant SW number~3.24! ~the in-
equality ~5.6! enables us to findCN'NSW). The result is

~Dt !T;
p0l B

3tP

45~\cl !
2M7/2T3/2

;1027S B

1 TeslaD
1/4S T

1 KD 23/2

s.

~5.11!

Note that this value does not depend on the level of pho
pumpingNl . The time (Dt)T is found to be shorter than th
spin relaxation time26 @see the expression for (D t̃ )T in Eq.
~5.18! below# down to temperaturesT0;10 mK, i.e., leav-
ing the principle of SW number conservation intact.

B. Negligible initial temperature

Now let us study the opposite case as that conside
above, where the initial 2DEG temperature is assumed to
very low, T0!T, and find the 2DEG final temperatureT and
the chemical potentialm. To this end we set the terms on th
right-hand sides of Eq.~5.9! equal to zero, substitute Eqs
~3.19!, ~4.8!, ~4.9!, ~5.5!, and~5.8! for the fluxes in Eq.~5.9!,
takeT050 and employ the condition~3.20! of phonon dis-
tribution. Upon this and some algebraic manipulations,
obtain the following results:

exp@~m2d!/T#5
Nl~\cl !

3

2T2d

3E
ukzu.k0l

nph
( l )~0,kz!ug~kz!u2

3~ ukzu2k0l !ukzudkz , ~5.12!

and

T3/25T1
3/21T̃3/2, ~5.13!

where

T1
3/25

2Nl\cl~tP /tD!

45~pM !1/2p0
2 E

2`

1`

dkznph
( l )~0,kz!ug~kz!u2ukzu2,

~5.14!

and

T̃3/25C~u21v2!~tP /tD!l BTeffd

M5/2~\cl !
3p0

2
~5.15!

with C5p7/2/675z(3)50.0677. The quantityTeff in the last
equation is
Teff5
30z~3!\cl

p4

E
ukzu.k0l

n ph
( l )~0,kz!ug~kz!u2~ ukzu2k0l !

2ukzudkz

E
ukzu.k0l

n ph
( l )~0,kz!ug~kz!u2~ ukzu2k0l !ukzudkz

. ~5.16!
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If the distribution ~3.20! is the Planck distribution withT
@\cl / l B , it follows thatTeff5T.

Thus, the final quasiequilibrium temperature is det
mined by two terms corresponding to different types of ph
non dissipation. The first one in the formula~5.13! occurs
due to the first absorption channel and is proportional to
level of the phonon excitation,Nl . One can see that th
condition~5.6! together with Eq.~5.12! restricts this value to
Nl&1015 cm23, which is appropriate for a real experiment
situation~see, e.g., Refs. 2, 3, and 13!. For T510 K one has
the following result:

T1!T̃;~0.0140.05!S B

1 TeslaD
1/2

K;204200 mK.

~5.17!

The basic mechanism of such 2DEG heating, starting fro
very low temperature (T0,T̃), is related to the second ab
sorption channel. In this way the final temperature turns
to be independent of the nonequilibrium phonon densityNl
and depends only on the effective nonequilibrium phon
temperature~5.15!.

Let us now obtain an estimate for the time (D t̃ )T required
for the dynamic equilibrium to establish. Analogously to t
calculation of (Dt)T , the relationships Q̃l;R̃D

(0)d

;dESW/dt hold, provided thatt;(D t̃ )T . Here, according
to Eq. ~5.2! and the condition in Eq. ~5.6!, ESW
'd•MTN exp@(m2d)/T#. Therefore, making use of Eq
~5.8! for T;T̃ we obtain

~D t̃ !T5
\cl l B

2p0
3tD

~u21v2!MT̃d
;1025S 1 Tesla

B D 1/2S 1 K

T̃
D s}1/B.

~5.18!

This is the spin relaxation time26 for temperatureT̃ ~5.17!.
The details of how the final temperature is established

the caseT0!T̃ are as follows. The generation of the SW
determined by the second channel of the phonon absorp
The resulting SW’s which have energies on the order ofTeff
lose it rapidly@during the time interval (Dt)T in Eq. ~5.11!,
where one has to substituteTeff for T#, and thus become
‘‘cool’’ through phonon emission process associated with
first channel. Provided the ‘‘cooling’’ during a short lifetim
is weak, it follows that the shorter the lifetime, the grea
the mean SW energy (;T̃) becomes. This lifetime (D t̃ )T ,
given in Eq.~5.18!, which is the spin relaxation time,26 it is
inversely proportional tou21v2, and thusT̃ increases with
the growth of the SO coupling. Besides, the additio
‘‘warming’’ of the available SW’s occurs due to the firs
absorption channel, which determines the value ofT1. Natu-
rally, the intensity of the latter effect becomes larger as
phonon densityNl increases.

In contrast, the SW number and spin change, which in
case equal to

NSW5uDSu52S0MT exp@~m2d!/T# ~S05N/2!,
~5.19!

is according to Eq.~5.12! proportional to the densityNl , so
that the spin changeDS satisfies
-
-

e

a

t

n

n

n.

e

r

l

e

r

DS/S0;10216B23/2Nl cm3~Tesla!3/2 ~5.20!

~recall thatDSz5DS). If one were able to create a distribu
tion with a sufficiently large number of the resonant phono
(.531015 cm23), then the observable deviation of the sp
number from the ground state valueS0 could be obtained.

VI. SUMMARY

The main results of the present work are as follows:
First, there are two different absorption channels in

problem of acoustic phonon absorption by 2D spin dielect
The basic result is the PLT calculation

1/tph~k!51/ts~k!11/t̃s~k! ~6.1!

@see Eqs.~3.7! and ~4.4!#. It is a building block in the study
of the effects of sound attenuation and heat absorpt
though the value~6.1! itself cannot be measured directly i
the experiments. The specific averaged time characteris
for the first absorption channel are presented by Eqs.~3.23!
and ~3.26!.

Second, in spite of the small spin-orbit parameters
temperature-independent value 1/t̃eff

(s) ~4.7! in case of the sec-
ond absorption channel may be comparable or even hig
than the corresponding first channel value atT&1 K @see
Eqs.~4.10!–~4.11!#.

Third, according to our calculation, the acoustic bulk a
surface wave absorption by a 2D spin dielectric@Eqs.~3.12!
and ~3.15!# may be of the same order or even stronger th
the corresponding value in a 2D conductor~e.g., if filling is
n.n11/2).

Fourth, even though the 3D sample temperature is ne
gible (T0,0.02 K), the 2DEG temperature due to the ph
non heating turns out to be substantially higher thanT0,
being independent of the nonequilibrium phonon dens
over a wide range: 1011 cm23,Ns,1015 cm23 @see Eqs.
~5.15! and ~5.16! and Appendix II#.

Fifth, phonon absorption could lead to an observa
change of the total spin momentum~5.19!–~5.20!, if one
creates a sufficiently large number of nonequilibriu
phonons in a sample. At the same time, the evident exp
mental difficulty is that one should be able to pump a s
nificant amount of nonequilibrium phonons into the samp
keeping the 2DEG temperature rather low.

And finally, the method of excitonic representation us
is straightforward and very suitable to calculate the relev
transition matrix elements between the 2DEG states.
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APPENDIX A: THE THREE-DIMENSIONAL PLT’S tA,s

The derivation of the expressions fortA,l and tA,t is
analogous to that of similar formulas in Ref. 26. The on
difference is that now we consider a more realistic c
where clÞct . Nevertheless, as in the previous work w
again use the isotropic model neglecting the dependence
the sound velocities on the orientation with respect to
crystal axis. This enables us to take into account the de
mation and piezoelectric fields independently,32 so that the
squared valueuUs(k)u2 can be transformed to the sum of th
appropriate squares of each type of interaction. In addit
the transverse phonons in a cubic crystal do not induc
deformation field.

If we takex̂,ŷ,ẑ to be the directions of the principal crys
tal axes, then for a longitudinal phonon we have

1

tA,l~k!
5

1

tD
1

45p0
2

k8tP

qx
2qy

2kz
2 , ~A1!

and for a transverse phonon

1

tA,t~k!
5

5~clp0!2

ct
2q2k8tP

@ tx~qy
22qx

2!kkz1ty~2kz
22q2!qxqy#

2.

~A2!

Here, tx and ty are the components of the polarization u
vector in the plane (x̂8,ŷ8), which is perpendicular tok and
has thex̂8 axis along the line of intersection of the (x̂,ŷ) and
( x̂8,ŷ8) planes. We keep the previous notation so the no
nal timestD andtP in Eqs.~A1! and ~A2!,

tD
215

x2p0
3

2p\rcl
2

, tP
215S ee14

« D 2 8pp0

5\r0cl
2

,

e

ci

.

r
i.

t

e

-

.

s

e

of
e
r-

n,
a

i-

have exactly the same magnitudes as they had in Ref.
~The notation not explained in the main text is the deform
tion potentialx, the piezoelectric constante14, and the crys-
tal densityr0.!

If the transverse phonon distribution satisfies the con
tion that their polarizations are equiprobable, then averag
of Eq. ~A.2! over all t directions and subsequent multiplica
tion by 2 to account for the existence of two transverse p
larizations yield

2tA,t
215

5~clp0!2

ct
2k6tP

S qx
2qy

21q2kz
22

9qx
2qy

2kz
2

k2 D . ~A3!

APPENDIX B: ESTIMATE OF THE TIME
OF ADIABATIC EQUILIBRIUM ESTABLISHMENT

We should check that the time of establishment of ad
batic equilibrium in 2DEG is shorter than the typical time
~5.11! and ~5.18! ~since we have used the Bose distributio
~3.3! everywhere!. The estimation of this time (Dt)ad may be
obtained from the kinetic relationship (Dt)ad

21

;(NSW/L2) v̄SWl , where NSW/L2 is the SW density,v̄SW

5\21]e(qex)/]qex, which is the mean SW velocity, andl
;q̄exl B

2 , which is the characteristic cross-section for 2D e
citon. Now using Eqs.~3.24! and ~2.4!, and taking into ac-
count thatq̄ex

2 l B
2/2M;T, we find (Dt)ad

21;MT2%/\, where
%5exp@(m2d)/T# is determined in the limiting cases by Eq
~3.25! or by Eq. ~5.12! ~according to the magnitude of the
temperatureT0). One can see that the double inequali
(Dt)ad!(Dt)T!(D t̃ )T holds. Only in the case of very low
temperatureT0 (T0,T̃) with simultaneously low noneqilib-
rium phonon density (Ns,1011 cm23) do we find (Dt)ad

*(D t̃ )T, and the presented theory fails. This special regi
of T0 andNs is beyond the scope of our study.
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