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Nonlinear THz response of a one-dimensional superlattice
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The dynamics of an electron in a one-dimensional superlattice is investigated under the action of a THz
electric field. The density matrix equations of motion within a single miniband are solved using a relaxation-
time approximation for scattering. The electronic response to THz radiation is obtained by calculating the
dipole moment, whence we compute the power dissipated, the THz reflection coefficient and dipole radiation.
Collisions are essential in eliminating transients and bringing the electron in phase with the field at dynamic
localization. The optical properties of the superlattice bear strong signatures of dynamic electron localization
such as oscillations with varying field strengths. In addition, the response is multivalued in the incident field
owing to the nonlinear relation between the incident and internal fields of the superlattice. The optical prop-
erties are robust with respect to the inclusion of higher harmonics, weak collisions, and deviations from a
tight-binding miniband dispersion.
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I. INTRODUCTION

Recently, there has been considerable theoretical and
perimental progress in studying the dynamics of charges
semiconductor superlattice in response to intense ultra
external fields. Following the suggestions of Esaki and Ts1

fabrication of semiconductor superlattices with atomic le
precision is now routinely achieved. In a superlattice,
large periodicity (;100 Å! of the multiple quantum well
potential makes the minibandwidth much smaller (;1 meV!
than the bulk semiconductor bandwidth (;1 eV!. This
means that a modest electric field of around 10 KV/cm c
accelerate electrons to the band edge faster than the av
electronic collision time (;1 ps!. The driven electrons in the
superlattice can then respond to the nonparabolic minib
dispersion at the band edge by exhibiting a host of nonlin
optical properties, which would otherwise be masked
collision-induced drifts in bulk semiconductors. In this p
per, we analyze some consequences of the nonlinea
sponse, in particular Bloch oscillations and dynamic loc
ization.

Central to Bloch oscillation phenomena2,3 is a DC exter-
nal field E0 on a particle in a periodic potential~periodd),
with a relaxation rate that is slower than the Bloch oscillat
frequencyvB5eE0d/\. The electron is then localized b
the driving field and Bloch oscillates atvB . Bloch oscilla-
tions of electrons in superlattices and their energy dom
counterpart—Wannier-Stark ladders, have been observed
perimentally using a host of nonlinear optical techniqu
The existence of Bloch oscillations has even been confirm
up to room temperature.4 In addition, Bloch oscillations have
been demonstrated in other periodic systems such as
quasicharges in Josephson junctions5 and dilute gas atoms in
optical potentials6, and their existence predicted in the m
tion of magnetic solitons in anisotropic spin-half chains.7

Considerably more dramatic is the prediction that an
ternating field that otherwise causes an electron to drift w
localize it at a discrete set of field values—a phenome
known as ‘‘dynamic localization.’’8,9 For an ac fieldE(t)
5E1 cosvt, the electron dynamics is governed by the para
PRB 610163-1829/2000/61~8!/5423~8!/$15.00
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eterQ[eE1d/\v[vB
AC/v, wherevB

AC is the ac Bloch os-
cillation frequency. When this parameterQ is a root of the
zeroth order Bessel function, the electron is predicted to
ecute bounded ac Bloch oscillations, else it drifts off. Th
behavior is easily understood in terms of a simple semic
sical picture;10 the electron continues to execute ac Blo
oscillations in phase with the incident field if it manages
complete an integer number of oscillations in half an ac
riod ~i.e., before the field switches sign!. If the incident and
ac Bloch frequencies are not synchronized however, the m
match causes the electron to drift off. The dynamic locali
tion is expected to persist, albeit modified, in the presenc
multibands,11 scattering,12 and other nonlinearities.13

Theory has so far failed to identify a direct experimen
realization of dynamic localization in superlattices. In tran
port measurements with photon-assisted tunneling, the
pearance of absolute negative conductance has been a
uted to dynamic localization.14 In addition, dynamic
localization is expected to suppress the dc component o
incident dc-ac field, which has also been experimenta
observed.15 However, the experience with Bloch oscillation
argues for a more direct measurement of dynamic local
tion. One reason why such a measurement has been elu
so far is the high frequency and power requirements that
incident field has to satisfy if the dynamic localization is
dominate over collision effects. The collision time restrictio
requires the incident frequency to be in the THz regime.
such high frequencies the generation, propagation, and de
tion of coherent radiation can only be done optically. W
the recent availability of free electron lasers as THz sourc
the ability to spatially combine inputs to and outputs fro
superlattices in a quasioptical setup,16 and ultrafast detectors
one should anticipate the direct observation of dynamic
calization. With this in mind, we analyze the nonlinear op
cal response of a superlattice in an intense THz field.

The organization of the paper is as follows. In Sec. II, w
write down the density matrix equations of motion for a
electron in a superlattice under the action of a THz field. T
electronic dipole moment of an electron exhibits Bloch o
cillations in a dc field, and dynamic localization in an a
5423 ©2000 The American Physical Society
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field. In Sec. III, we discuss the importance of collision
both in eliminating the transient response and in enab
power dissipation. The reflection coefficient is calculated
Sec. IV, which demonstrates oscillations as a function of
electric field, associated with dynamic localization. Multis
bility effects arising from nonlinear penetration of the inc
dent field into the superlattice are dealt with in Sec. V. S
tion VI deals with dipole radiation, which can be channeliz
into a few frequency modes by simply tuning the field a
plitudes. Finally, in Sec. VII we discuss the corrections
our model due to higher harmonic feedback, collisions a
nontight-binding miniband dispersion.

II. DIPOLE MOMENT

Focussing on the dipole moment leads to both an effic
derivation and a straightforward interpretation of the nonl
ear optical properties. For a one-dimensional, one minib
superlattice with growth directionz ~also the direction of the
incident THz electric field!, the dipole matrix elementm̂kk8 is
defined in terms of electron wave functions in the super
tice Ck(z):

m̂kk8[eE
2`

`

dzCk8
* ~z!zCk~z!. ~1!

The superlattice wave functionCk(z) can be written in an
envelope-function approximation as a superposition of w
functions localized at the quantum wells modulated by
plane wave. The wave functions may be approximated
sinusoids in the wells and decaying exponentials in the b
riers. Assuming overlap between nearest-neighboring w
only, the dipole matrix element then simplifies to

m̂kk85
ie

\

]

]k
dkk8 . ~2!

This form is the same as in a bulk semiconductor. The
rivatives of the Kronecker delta will appear only in conjun
tion with a sum over the quasimomentum.

The dipolar interaction of the electron with the elect
field in the superlattice is described by the Hamiltonian

Ĥ5(
k

ekck
†ck2E~ t !(

kk8
m̂kk8ck

†ck8 , ~3!

wherec† andc are the electron creation and destruction o
erators, respectively. For a one-dimensional superlattice
periodd, the conduction miniband energyek approximately
follows a tight-binding dispersionek52(D/2)cos(kd),17 the
miniband widthD depending on the coupling between neig
boring quantum wells. The typical interminiband separati
80 meV, substantially larger than laser energies (;10 meV!,
justifies a one miniband assumption. Electrons can be in
duced into the conduction miniband either by photoexc
tion, or by doping~in the case of doping, additional compl
cations could arise due to domain formation.18 At THz
frequencies, however, the electrons are driven faster than
typical domain formation rate, so we ignore domains here
ter!.

The nonlinear optical properties associated with electr
in the conduction miniband subjected to a high frequen
electric field are effectively described by the time-depend
,
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density matrix. In terms of the ‘‘center of mass’’ coordina
K[(k1k8)/2 and ‘‘relative’’ coordinate q[k2k8, this
reads

NKq5^cK1q/2
† cK2q/2& . ~4!

The Hamiltonian~3! allows us to compute the time evolutio
of the density matrix19

]NKq

]t
5 i

~eK1q/22eK2q/2!

\
NKq2

eE~ t !

\

]NKq

]K
. ~5!

The equation for the diagonal component (q50) above is
identical in form to the semiclassical Boltzmann transp
equation for the electron distribution function, except for
collision integral on the right-hand side. We include the c
lision through a relaxation-time approximation. As we sh
see, the collisions are important in dropping the transi
electromagnetic response of the superlattice electrons.

An important corollary to the density matrix equation
the acceleration theorem for a single miniband in absenc
collisions,\dK/dt5eE(t). This equation turns out to be th
equation for the characteristic curves21 of Eq. ~5! along
which the density matrixNKq(t) is stationary. Note that in
our analyses we are using a semiclassical approximat
which is justified for a superlattice since the wavelength
the field (;0.1 mm for a THz pulse! is much larger than the
typical length of a superlattice (;1mm).

In terms of the time-dependent density matrix describ
the distribution of electrons in the quasimomentumk space,
the ensemble-averaged electronic dipole moment is t
given by

m~ t !5Tr~m̂N!52
ie

\ (
K

F]NKq~ t !

]q G
q50

. ~6!

Using Eqs.~5! and~6!, we verify that the above form of the
dipole moment satisfies the following equation:20

]m

]t
1

m

t
5e(

K
vKNK0~ t !, ~7!

wherevK[]eK /](\K) is the band velocity of the electrons
Note that the dipole momentm depends only on the diagona
(q50) components of the density matrix, i.e., on the ele
tronic distribution function.

The various experimentally realizable nonlinear respon
can now be illustrated for simple models of dipole dynami
free electron and tight-binding dispersions in dc and ac e
tric fields. The initial distribution of the electron is assum
to be Gaussian inK, centered aroundk0 with a widths. We
solve the density matrix Eq.~5! using the method of
characteristics21 and then use Eq.~7! to get the dipole mo-
ment. The following simple cases summarize the variety
nonlinear responses to different time-dependent fields in
absence of collisions (t5`):

~i! E50, free electron: The electron simply moves at
constant velocity fixed by the initial quasimomentum of t
center of the wave-packet:m(t)5evk0

t.

~ii ! E50, tight-binding miniband: Here too, the electron
shows a steady drift:m(t)5evk0

t exp@2s2d2/2#. For an
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PRB 61 5425NONLINEAR THz RESPONSE OF A ONE-DIMENSIONAL . . .
electron with a narrow initial distribution function, the initia
quasimomentumk0 is well defined, and the drift is linear in
time.

~iii ! dc field E5E0, free electron: The electron acceler
ates under the influence of the electric field, so the dip
moment increases quadratically with time:

m~ t !5
Dd2

4E0
F S k01

eE0t

\ D 2

2k0
2G ~8!

~iv! dc field E5E0, tight binding: An initially localized
electron exhibits Bloch oscillations in a dc field at a fr
quencyvB5eE0d/\:

m~ t !5
D

2E0
e2s2d2/2@cos~k0d!2cos~k0d1vBt !#. ~9!

One can also see that the amplitude of the Bloch oscillati
is inversely proportional to the field. A stronger field th
tends to localize the electron, while at the same time cau
it to oscillate faster. Moreover, if we excited an initial distr
bution of carriers around the miniband center (k0'
6p/2d), the net dipole moment of the system vanishes
cause the individual contributions around6k0 oscillate at
vB out of phase with each other. The electronic center
mass does not Bloch oscillate under these circumstances
the envelope expends and contracts at the Bloch freque
generating a ‘‘breathing mode.’’3

~v! ac field E5E1 cos(vt), tight binding: The electron
now exhibits dynamic localization.9 The dipole moment has
a term linear in time corresponding to a uniform drift, and
additional bounded oscillating term arising from ac Blo
oscillations. The linearly growing term bears a Bessel p
factor, which controls the localization properties of the ele
tron. If Q5eE1d/\v is a root of the Bessel function, the
we are left with the oscillating part of the dipole momen
and the electron is dynamically localized

m t~ t !5
Ded

2\
e2s2d2/2@sin~k0d!„tJ0~Q!1Au~ t !…

2Av~ t !cos~k0d!#, ~10!

whereAu(t) andAv(t) are given by a superposition of ha
monics

Au~ t ![2(
p51

`
J2p~Q!

2pv
sin~2pvt !

Av~ t ![2(
p50

`
J2p11~Q!

~2p11!v
cos@~2p11!vt#. ~11!

In presence of collisions, the dipole momentm t(t) corre-
sponds, as we shall see, to a transient term. The time ev
tion of m t(t) is seen in the graphs in Fig. 1 at small tim
(t!t). We set the incident angular frequencyv51 THz and
the collision timet510 ps and varyQ by varying the field
amplitudeE1. For the dashed curves, the electron is in
middle of a Bloch oscillation when the field switches sign,
the response is a drift. At dynamic localization~solid curves!
however,Q is a root of the zeroth order Bessel function. F
the corresponding field values the electron is now comp
le
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ing an integer number of Bloch oscillations in half an
period (;3.14 ps!, and exhibits bounded ac Bloch oscilla
tions.

III. ROLE OF COLLISIONS

Collisions are crucial both in eliminating the transient r
sponse and in enabling power dissipation. Equation~10! for
the dipole moment in an ac field was derived in the collisio
less limit (t5`). The corresponding dipole moment co
forms to the heuristic description of dynamic localization
the Introduction. Introducing collisions through a relaxatio
time approximation leads to a transient and a steady-s
response in the solution to the density matrix equati
While dc Bloch oscillation is atransient phenomenon ob-
served only within the relaxation-timet, dynamic localiza-
tion is a steady-stateresponse, observed beyond the rela
ation time, as energy is pumped into the system. For
steady-state ac response therefore, we must first drop
transient response~10!, which persists for about a picosec
ond, and then take a weak collision limit (vt→`) over the
pulse length (;1 ms). This yields the steady-state dipo
moment

mss~ t !5
Ded

2\
e2s2d2/2J0~Q!$sin~k0d!@tJ0~Q!1Au~ t !#

2Av~ t !cos~k0d!%. ~12!

In contrast to expression~10!, the steady-state expressio
above has an overall Bessel renormalization factor, wh
causes the dipole moment to vanish completely at dyna
localization ~solid lines in Fig. 1 at timest@t). The time-
dependent dipole moment at arbitrary times is given b

FIG. 1. Effect of ac electric field on the electronic dipole m
ment m(t) plotted versus time for varying values ofQ
5eE1d/\v. We setv51 THz, t510 ps, with an initial Gaussian
distribution centered aroundk05p/2d. The solid lines describe dy
namic localization while the dotted lines correspond to mot
away from dynamic localization. At small times (t!t) the dipole
moment grows linearly in time except at dynamic localizati
where an integer number of ac Bloch oscillations~one in the left
graph, two on the right! are completed in half an AC period, and th
motion is oscillatory@Eq. ~10!#. For large times (t@t) the steady-
state dipole moment is oscillatory in general, but vanishes at
namic localization@Eq. ~12!#.
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5426 PRB 61AVIK W. GHOSH AND JOHN W. WILKINS
mixture of the transient response~10! and the steady-stat
response~12! ~plotted in Fig. 1!

m~ t !5m t~ t !e2t/t1mss~ t !~12e2t/t!

2
Ded

2\
J0

2~Q!sin~k0d!te2t/te2s2d2/2. ~13!

For small times (t!t), the transient response~10! domi-
nates, while at large times (t@t@2p/v), we get the steady
state response~12!. In the following, we assume a
momentum-independent initial electronic distribution b
tween6kF . This corresponds to settingk050 above, and
replacing exp@2s2d2/2# by sin(kFd)/kFd. We will absorb this
factor in the overall electron densityn. The steady-state di
pole moment then assumes the form described in Ref. 2

The steady-state current density can be obtained in
weak-collision limit by differentiating the dipole momen
with respect to time and multiplying by the electron dens
n

j ~ t !5
nedD

2\
J0~Q!sin~Q sinvt !. ~14!

This form is the same as obtained by Ignatovet al.22 and
Holthaus,23 namely, proportional to the electron densityn
and the instantaneous band velocity, but with the ove
Bessel renormalization term. The Bessel factor arises ex
sively out of the act of dropping the transient response~terms
}exp@2t/t#). Note that the above current density isout of
phasewith the incident field in the weak-collision approx
mation.

The power dissipated in the superlattice, however,
pends on the component of the current densityin phasewith
the external field. In other words, we need to retain the le
ing collisional corrections to the current density in Eq.~14!
instead of taking the collisionless limit. In terms of the e
fective massm* [2\2/Dd2 of the electrons at the bottom o
the conduction miniband, the dissipated power turns ou
be22,24

P[
v

2pE0

2p/v

j ~ t !E1 cos~vt !5
n\2

m* d2t
@12J0

2~Q!#.

~15!

At low-field values (Q!1), the above power dissipatio
approximates to the Drude limitne2E1

2/2m* v2t, which cor-
responds to a quadratic rise with the field. At large fie
values, the power dissipation saturates to a field indepen
value n\2/m* d2t5nD/2t determined by the average e
ergy absorbed between two successive collisions by the e
trons from the field.

The power dissipation varies with the electric field in
manner shown in Fig. 2. The initial quadratic rise as p
dicted by the Drude model is shortly replaced by a satu
tion, with oscillations reaching maximum at the Bessel roo
This may seem counterintuitive, since dynamic localizat
implies a small current, and in particular, zero current fot
@t. The explanation lies in the relative behaviors of curre
components in-phase and out of phase with the electric fi
~Fig. 3!. The component of the current density in phase w
the field is typically 1/vt times weaker than the out-of-phas
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term, and is zero in the collisionless limit. At dynamic loca
ization, the larger out-of-phase component diminishes, le
ing to an overall reduction in the current. However, the
phase component actually increases, since the electron
comes into phase with the electric field~recall the heuristic
description of dynamic localization in the Introduction!. In

FIG. 2. Power dissipated in a superlattice, plotted versus
parameterQ5eE1d/\v. At low-field values, the dissipation is
quadratic in the field, as predicted by the Drude model. At hig
fields, the nonlinear response of the electron causes the dissip
to oscillate as it approaches saturation. The dissipation is maxim
at dynamic localization, which occurs whenQ is a root of the
zeroth order Bessel function. At these values the current is in ph
with the incident field.Inset: The decay length of the signal, plotte
versusQ. This is often the physically measured quantity~except for
an overall minus sign!. While the dissipated power saturates wi
high field, the incident powerP0 grows quadratically with the inci-
dent field. Thus, the decay length drops drastically with increas
field, and the oscillations due to the Bessel functions form sm
ripples on it.

FIG. 3. Current density plotted versus time for different valu
of Q5eE1d/\v, along with time-dependence of the~cosine! THz
field, for vt510. Notice that over one period, the average curr
density is in general zero. However at dynamic localizationQ
52.4048), the current density drops in amplitude but comes
phase with the incident field, so the average current density is
longer zero. Thus, dynamic localization decreases the overall
rent density while increasing the dissipation.
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other words,dynamic localization causes the electrons
localize, and at the same time to come into phase with
incident field.This diminishes the current while at the sam
time increasing the dissipation.

In most experiments however, the physically measu
quantity is the decay length, defined as the distance o
which the incident powerP0 decays by a factor 1/e. The
incident power is quadratic inQ, while the dissipated powe
approaches saturation at high fieldsQ. Hence the decay
length; ln(P/P0) decreases drastically with the field~inset in
Fig. 2!. This washes out the Bessel oscillations, which o
appear as ripples on the sharply decreasing background

IV. REFLECTION COEFFICIENT

In contrast to the decay length, the THz reflection coe
cient of the superlattice turns out to be a more sensi
probe of dynamic localization. We analyze the reflection
the superlattice in terms of an effective dielectric functi
eeff(Q) obtained from the coefficient of the first harmon
term in Eq. ~12! for k050. This corresponds to a linea
response analysis in the time dependence cos(vt), not in the
field Q. Taking into account the background dielectric co
stante0'12.9 of the GaAs substrate, we have20

eeff~Q!5e0F122
vP

2

v2

J0~Q!J1~Q!

Q G . ~16!

The electronic response appears through the part invol
the plasma frequencyvP[A4pne2/m* e0. For Q!1, the
‘‘linear response’’ regime, the above dielectric function r
duces to that for three-dimensional~3D! plasmons. We com-
pute the reflection coefficient derived from the above non
ear dielectric function.25

The reflection coefficient as a function ofQ has been
computed in Ref. 20 forvP /v58 ~for a superlattice with
period 100 Å, miniband width 18 meV, and an incident a
gular frequency 2p31 THz, this corresponds to an electro
density;7.531011 cm22 per well!. At low fields, plasmons
screen the field in the superlattice leading to total reflecti
while at high fields the reflection reaches the background
value as the plasmon screening becomes ineffective. S
ingly the reflection coefficient exhibits prominent oscill
tions around the background, matching the background v
at dynamic localization, dictated by the roots of the tw
Bessel functions in Eq.~16!. In fact, the first root is in the
total reflection regime, so there is a window of low reflecti
in the otherwise high reflectivity zone. So strong is the no
linear response due to dynamic localization that it co
pletely overwhelms the plasmon screening.

In computing the above reflection coefficient, we ha
restricted ourselves to one miniband and delibera
dropped the higher harmonics. One way of incorporating
contributions of the higher harmonics is to use a meth
suggested by Broer for an arbitrary nonlinearity.26 The result
exhibits high frequency wiggles on top of the reflecti
graph calculated in Ref. 20, as well as a shift in the zeros
the reflection from the roots of the higher order Bes
functions.24 The overall field dependence of the reflecti
coefficient is thus hardly affected by the inclusion of high
harmonics.
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V. OPTICAL BISTABILITY

The nonlinear response also affects the way the incid
field penetrates into the superlattice, and turns out to be
cause for optical bistability in the system. Moreover, the
sponse does not compartmentalize naturally into exclusiv
propagating or decaying waves in the medium. For a hi
electron density~large vP) the nonlinear penetration in
volves a transformation that makes the fieldES inside the
superlattice a multivalued function of the incident fieldEI .
The electron responds directly to the local field inside
superlattice. In order to make contact with experiments,
will first need to make a variable transformation fromES to
EI . This transformation is nonlinear, and makes the lo
field a multivalued function of the incident field.

The variablesES andEI are connected via boundary con
ditions at the surfacex50, wherex is the propagation direc
tion of the THz wave. The boundary conditions are obtain
by matching tangential components of electric and magn
fields at the superlattice surface. Thex-dependence of
QS(x)5eESd/\v is obtained by writing down the wave
equation inside the superlattice, ignoring higher harmon
as before.20 The prominent field-dependences are

~a! propagating, eeff(Q0)50. Here, the amplitude is con
stant with respect tox, souQS(x)u5uQS(0)u5Q0. The wave
equation then gives us the familiar propagation condit
eeff(Q0).0, whereQ05QS(0);

~b! decaying, *0
QS(x)yeeff(y)dy,0. For a decaying wave

uQS(x)u5QS(x) as far as position-dependence is concern
The wave equation then assumes the form

d2QS~x!

dx2
52H v2

c2
eeff@QS~x!#J QS~x!. ~17!

The equation can be integrated betweenx and infinity, as-
suming the field decays to zero far into the superlattice
yield

1

2 FdQS~x!

dx G2

52
v2

c2 E
0

QS(x)

yeeff~y!dy. ~18!

The derivativedQS(x)/dx should be a real function ofx for
a decaying wave, which leads to the self-consistency co
tion *0

QS(x)yeeff(y)dy,0.27

The conditions for propagating and decaying waves in~a!
and ~b! are neither mutually exclusive, nor exhaustive.This
means that there are certain fieldQS inside the superlattice
which support both kinds of waves, and certain other fi
values which cannot be propagated within the superlatti
In the special case whereeeff@QS(x)#5constant, however
conditions~a! and~b! correspond to the two familiar disjoin
sectors, viz.,eeff.0 in ~a! andeeff,0 in ~b!.28

The solutions to the wave equation in regions~a! and~b!,
in conjunction with the boundary conditions at the surfa
give us the nonlinear transformationQS vs Q I .20 For a given
incident laser power there are multiple solutions for the lo
field inside the superlattice. Each such local field uniqu
determines the electronic response. So the behavior of
electron to a given incident power depends on the branc
the transformation curve that we are sitting on. Incorporat
the nonlinear transformation into the reflection coefficie
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leads to multistable loops and oscillations in the reflect
coefficient as a function of the incident laser power.20

VI. DIPOLE RADIATION

In calculating the optical properties so far, we ignored
higher harmonics in comparison to the fundamental
sponse. If we look at dipole radiation, however, the situat
changes completely. Higher harmonics tend to radiate m
since dipole radiated power varies as the fourth power of
dipole oscillation frequency. However, there is a natural
off for the highest harmonic allowed in the system. This
controlled by the parameterQ[vB

AC/v, which fixes the
maximum number of ac Bloch oscillations in half the peri
of the incident field.

Operationally, we use Larmor’s formula for dipo
radiation.31 This gives us the dipole radiated power as a fr
tion of the incident power

Prad

PI
5

8p

3Aspot
FNe

2e2

m* c2G 2
J0

2~Q!

Q2 (
p50

`

~2p11!2J2p11
2 ~Q!,

~19!

whereAspot is the spot area of the superlattice illuminated
the incident THz radiation, andNe is the number of radiating
electrons. The above sum is finite; in fact, when the index
a Bessel function is greater than the argument, the Be
terms decrease exponentially with the index, so harmo
beyond (2p11)'Q do not contribute much to the radiation
This gives us the cut-off harmonic.24

Critical in the applicability of Larmor’s formula above i
the fact that we are using the form for a point dipole. Th
makes it essential to put the detector at a distance m
larger than the wavelength (;0.1 mm! of the THz radiation.
The effect of several electrons is included simply by mu
plying the individual dipole moment byNe . This is true as
long as all the electrons are moving coherently in the sa
direction. However, if the extent of the superlattice along
x direction is larger than half a THz wavelength for a pa
ticular mode, then the electrons in the superlattice will div
into segments moving in opposite directions, and their ra
ated fields would tend to cancel out. One way to avoid th
while at the same time keepingNe reasonably large, would
be to inactivate odd half wavelengths of the superlattice
ion-implantation.

Figure 4 shows a plot of the fractional radiated power a
function ofQ and the order 2p11 of the harmonics@contri-
butions from individual terms in the sum in Eq.~19!#. From
the figure, we see that aside from the fundamental respo
maximum dipole radiation occurs in the mode whose or
equals the field. In other words, by simply varying the fie
amplitude, one can cut off the radiation from most harmo
modes, and select out a preferential mode for radiation.

VII. DISCUSSIONS

We have simplified our model to the idealized case o
set of weakly interacting electrons in a single tight-bindi
superlattice miniband, responding to a THz plane wa
propagating monochromatically into the superlattice. For t
system, we have calculated the optical response, inclu
n
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the nonlinear transformation at the boundary. In this sect
we consider the effects of relaxing each assumption in
vidually. Our main observation is that the sharpness of
previous results allows the nonlinear effects to persist.

Feedback effects from higher harmonics. One of the
quantities that may be easier to monitor experimentally a
probe of dynamic localization is the third harmonic gene
tion. This is because the substrate does not contribute
higher harmonic generation; the third harmonic arises ex
sively out of the superlattice, which functions as a nonline
‘‘inductor’’ 32 in the weak collision limit. The higher harmon
ics generated propagate through the superlattice and
back on the fundamental response as well. The third h
monic generation for a series of superlattices in a quasio
cal setup also reveals a nonmonotonic dependence on
incident power. The oscillations are related by a nonlin
transformation at the boundary to the roots of the zeroth
third-order Bessel functions. Analogous to the reflection
efficient, the third harmonic power transmitted through t
substrate becomes a multivalued function of the incident
ser power for high-doping densities.32 Recent experiments33

on THz third harmonic generation by a quasioptical arr
reveal a nonmonotonic field dependence of the gener
power. The results are consistent with ac Bloch oscillatio
followed by Zener tunneling. However, due to significa
collisions (vt&2), there is no bistability, and the sharpne
of the oscillations is severly compromised.

Collisions. In all our previous calculations, we have ig
nored the effects of collisions; the only role of the collisio
was to get rid of the transient response. We can introd
collisions through a relaxation-time approximation and ret
corrections to O(1/v2t2). The effective dielectric function
obtained from the dipole moment is then of the form

eeff~Q!5e0S 12
2vP

2

v2

J0~Q!J1~Q!

Q F12
1

v2t2G D ~20!

to leading order in 1/v2t2 ~actually, there is also a shift in
phase introduced by collisions, so the fundamental respo
of the dipole moment has both a sine and a cosine term in
response!. The principal effects of such corrections are
diminish the strengths of the oscillations in the reflecti

FIG. 4. Dipole radiated power~a.u.! plotted as a fraction of the
incident power, versusQ5eE1d/\v and the order 2p11 of the
radiating harmonic forvP /v51.2. The power radiated at a fixe
field increases with harmonics upto a certain order (2p11;Q),
and then falls off exponentially.
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coefficient as the field increases, as well as in diminish
the regime of validity of linear response and plasm
screening.24

Non tight-binding miniband. Deviations from a tight-
binding dispersion require a simple extension of our calcu
tions. Let us generalize the tight-binding structure by inclu
ing couplings over next-nearest-neighboring quantum w
and so on:

ek52 (
p51

`
Dp

2
cos~pkd!. ~21!

The corresponding steady-state dipole moment then has
form

m~ t !52 (
p51

`
e dpDp

\v
J0~Qp! (

m5odd

` FJm~Qp!

m Gcosmvt,

~22!

whereQp5pQ. Using the above equation in our effectiv
dielectric function as before, we recalculate our reflect
coefficient in the presence of non-tight-binding correctio
For definiteness’ sake, we make the second nearest neig
overlap term half as strong as the first (D250.5D1), and do
not include any longer ranged couplings. The result of
calculation24 indicates that the appearance of Bessel fu
tions with different arguments in the sum above preclu
dynamic localization in its strictest form~vanishing of the
dipole moment! from occurring for a non-tight-binding
system.9 In addition to the oscillations described earlier20

there are additional oscillations arising out of the Bes
functions with different arguments. However, some of t
sharp features such as plasmon screening, oscillations,
odic vanishing of the THz reflection, and multistability in th
optical response still survive this band-structure general
tion.

Multiple minibands. Considerably more serious is the in
fluence of Zener tunneling. As discussed in Refs. 11, 34,
ay
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35, Zener tunneling transports a substantial fraction of
electrons across the minigap at the end of each ac B
oscillation. The transfer is large when the separation of
minibands is comparable to the ac Bloch frequency~in the
quasienergy picture of Holthaus,23 this corresponds to
avoided crossings of two quasienergy minibands of differ
indices!. This will undoubtedly affect the electronic curren
which now has contributions from multiple minibands. How
ever, the interminiband separation is typically around
meV, so Zener tunneling is avoidable as long as the incid
frequency or the field energy are smaller and significantly
resonance.

VIII. CONCLUSIONS

In the presence of time-dependent optical fields on a
riodic system with a nonparabolic band dispersion and w
collisions, a particle is expected to exhibit a host of optic
properties that are nonlinear functions of the input fields.
addition, if we take into account the way the field penetra
into the system from outside, the nonlinear response ma
the optical properties multivalued functions of the incide
powers. We have demonstrated a variety of effects that b
distinct signatures of such nonlinear response and multi
bility. In particular, we show that dynamic localization o
electrons in a superlattice in the presence of a THz incid
field leads to dramatic optical features, which should be
servable experimentally.
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