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The dynamics of an electron in a one-dimensional superlattice is investigated under the action of a THz
electric field. The density matrix equations of motion within a single miniband are solved using a relaxation-
time approximation for scattering. The electronic response to THz radiation is obtained by calculating the
dipole moment, whence we compute the power dissipated, the THz reflection coefficient and dipole radiation.
Collisions are essential in eliminating transients and bringing the electron in phase with the field at dynamic
localization. The optical properties of the superlattice bear strong signatures of dynamic electron localization
such as oscillations with varying field strengths. In addition, the response is multivalued in the incident field
owing to the nonlinear relation between the incident and internal fields of the superlattice. The optical prop-
erties are robust with respect to the inclusion of higher harmonics, weak collisions, and deviations from a
tight-binding miniband dispersion.

. INTRODUCTION eter@=eE,d/hw= wh"/w, wherews" is the ac Bloch os-
cillation frequency. When this parametér is a root of the
Recently, there has been considerable theoretical and exeroth order Bessel function, the electron is predicted to ex-
perimental progress in studying the dynamics of charges in acute bounded ac Bloch oscillations, else it drifts off. This
semiconductor superlattice in response to intense ultrafaglehavior is easily understood in terms of a simple semiclas-
external fields. Following the suggestions of Esaki and ‘Tsu,sical picture'® the electron continues to execute ac Bloch
fabrication of semiconductor superlattices with atomic leveloscillations in phase with the incident field if it manages to
precision is now routinely achieved. In a superlattice, thecomplete an integer number of oscillations in half an ac pe-
large periodicity ¢-100 A) of the multiple quantum well riod (i.e., before the field switches sigrif the incident and
potential makes the minibandwidth much smallerl( meV)  ac Bloch frequencies are not synchronized however, the mis-
than the bulk semiconductor bandwidth~{ eV). This  match causes the electron to drift off. The dynamic localiza-
means that a modest electric field of around 10 KV/cm canion is expected to persist, albeit modified, in the presence of
accelerate electrons to the band edge faster than the average@iltibands:* scattering}? and other nonlinearitie’s.
electronic collision time {1 p9. The driven electrons in the Theory has so far failed to identify a direct experimental
superlattice can then respond to the nonparabolic minibangkalization of dynamic localization in superlattices. In trans-
dispersion at the band edge by exhibiting a host of nonlineaport measurements with photon-assisted tunneling, the ap-
optical properties, which would otherwise be masked bypearance of absolute negative conductance has been attrib-
collision-induced drifts in bulk semiconductors. In this pa-uted to dynamic localizatiotf. In addition, dynamic
per, we analyze some consequences of the nonlinear réscalization is expected to suppress the dc component of an
sponse, in particular Bloch oscillations and dynamic local-incident dc-ac field, which has also been experimentally

ization. observed® However, the experience with Bloch oscillations
Central to Bloch oscillation phenoméiais a DC exter-  argues for a more direct measurement of dynamic localiza-
nal field E, on a particle in a periodic potentigberiodd),  tion. One reason why such a measurement has been elusive

with a relaxation rate that is slower than the Bloch oscillationso far is the high frequency and power requirements that the
frequencywg=eEqyd/%. The electron is then localized by incident field has to satisfy if the dynamic localization is to
the driving field and Bloch oscillates aig. Bloch oscilla-  dominate over collision effects. The collision time restriction
tions of electrons in superlattices and their energy domaimequires the incident frequency to be in the THz regime. At
counterpart—Wannier-Stark ladders, have been observed egtich high frequencies the generation, propagation, and detec-
perimentally using a host of nonlinear optical techniquestion of coherent radiation can only be done optically. With
The existence of Bloch oscillations has even been confirmethe recent availability of free electron lasers as THz sources,
up to room temperaturkln addition, Bloch oscillations have the ability to spatially combine inputs to and outputs from
been demonstrated in other periodic systems such as feuperlattices in a quasioptical settfmnd ultrafast detectors,
quasicharges in Josephson junctioasd dilute gas atoms in one should anticipate the direct observation of dynamic lo-
optical potential§ and their existence predicted in the mo- calization. With this in mind, we analyze the nonlinear opti-
tion of magnetic solitons in anisotropic spin-half chains.  cal response of a superlattice in an intense THz field.
Considerably more dramatic is the prediction that an al- The organization of the paper is as follows. In Sec. I, we
ternating field that otherwise causes an electron to drift willwrite down the density matrix equations of motion for an
localize it at a discrete set of field values—a phenomenorlectron in a superlattice under the action of a THz field. The
known as “dynamic localization®® For an ac fieldE(t) electronic dipole moment of an electron exhibits Bloch os-
=E, coswt, the electron dynamics is governed by the param<illations in a dc field, and dynamic localization in an ac
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field. In Sec. Ill, we discuss the importance of collisions,density matrix. In terms of the “center of mass” coordinate
both in eliminating the transient response and in enablin&K=(k+k')/2 and “relative” coordinateq=k—k’, this
power dissipation. The reflection coefficient is calculated inreads

Sec. IV, which demonstrates oscillations as a function of the

electric field, associated with dynamic localization. Multista- NKq=<c;2+q,ch,q,2> . (4)
bility effects arising from nonlinear penetration of the inci-

dent field into the superlattice are dealt with in Sec. V. Sec-The Hamiltonian(3) allows us to compute the time evolution
tion VI deals with dipole radiation, which can be channelizedof the density matrix’

into a few frequency modes by simply tuning the field am-

plitudes. Finally, in Sec. VIl we discuss the corrections to INkq _i (€k+gn—€k—qpr) ,  €E(t) INkq
our model due to higher harmonic feedback, collisions and ot h Kq h K T
nontight-binding miniband dispersion.

®)

The equation for the diagonal component=0) above is
Il. DIPOLE MOMENT identical in form to the semiclassical Boltzmann transport
equation for the electron distribution function, except for a
Focussing on the dipole moment leads to both an efficiengollision integral on the right-hand side. We include the col-
derivation and a straightforward interpretation of the nonlin-lision through a relaxation-time approximation. As we shall
ear optical properties. For a one-dimensional, one minibandee, the collisions are important in dropping the transient
superlattice with growth direction (also the direction of the electromagnetic response of the superlattice electrons.

incident THz electric fielt) the dipole matrix elementy,: is An important corollary to the density matrix equation is
defined in terms of electron wave functions in the superlatthe acceleration theorem for a single miniband in absence of
tice ¥(2): collisions,AdK/dt=eE(t). This equation turns out to be the
equation for the characteristic curéésf Eq. (5) along
[karzef” dz‘If[f,(z)z\Ifk(z). (1) which the density matriX\!Kq(t) is stqtionayy. Note thgt in'
—w our analyses we are using a semiclassical approximation,

i i , ) which is justified for a superlattice since the wavelength of
The superlattice wave functioW(z) can be written in an 6 fie|q (~0.1 mm for a THz pulsgis much larger than the
envelope-function approximation as a superposition of wave il length of a superlattice<(1zm).
fulnct|ons Iocahhzed at thfe quantum wetl)ls modulated bdy ba In terms of the time-dependent density matrix describing
plane wave. The wave functions may be approximated by,q gistribution of electrons in the quasimomentkrspace,

sinusoids in the wells and decaying exponentials in the bary,e engemple-averaged electronic dipole moment is then
riers. Assuming overlap between nearest-neighboring We”@iven by

only, the dipole matrix element then simplifies to
INkq(t)

e ®)

; A ie
- ie ¢ - -
This form is the same as in a bulk semiconductor. The dedsing Egs.(5) and(6), we verify that the above form of the
rivatives of the Kronecker delta will appear only in conjunc- dipole moment satisfies the following equati%9n:

tion with a sum over the quasimomentum.

The dipolar interaction of the electron with the electric om
field in the superlattice is described by the Hamiltonian i e; viNko(t), (7)
A=> €kCle— E(t)Y, [ka'CiCk' , (3)  wherevg=dex/d(#iK) is the band velocity of the electrons.
K Kk’ Note that the dipole moment depends only on the diagonal

wherec' andc are the electron creation and destruction op-(d=0) components of the density matrix, i.e., on the elec-
erators, respectively. For a one-dimensional superlattice dfonic distribution function. . _
periodd, the conduction miniband energy approximately The various experimentally realizable nonlinear responses
follows a tight-binding dispersioe, = — (A/2)coskd),’” the ~ €&n now be illustrated for simple models of dipole dynamics:
miniband widthA depending on the coupling between neigh-free electron and tight-binding dispersions in dc and ac elec-
boring quantum wells. The typical interminiband separationmc fields. The initial distribution of the electron is assumed
80 meV, substantially larger than laser energied( me\), to be Gaussian I, cente_red arounkly _Wlth a widtho. We
justifies a one miniband assumption. Electrons can be intro20/ve the (_jg\sny matrix Eq(5) using the method of
duced into the conduction miniband either by photoexcitacharacteristics and then use Eqy) to get the dipole mo-
tion, or by doping(in the case of doping, additional compli- ment. The following simple cases summarize the variety of
cations could arise due to domain formati§nAt THz  nonlinear responses to different time-dependent fields in the
frequencies, however, the electrons are driven faster than tfPSence of collisionsr=<): _
typical domain formation rate, so we ignore domains hereaf- () E=0, free electron The electron simply moves at a
ter). constant velocity fixed by the initial quasimomentum of the
The nonlinear optical properties associated with electron§enter of the wave-packef(t) =evyt.
in the conduction miniband subjected to a high frequency (i) E=0, tight-binding minibandHere too, the electron
electric field are effectively described by the time-dependenshows a steady drift',u(t)=evk0t exd —o?d¥2]. For an
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electron with a narrow initial distribution function, the initial 20

guasimomentunk, is well defined, and the drift is linear in

time. 15 b
(iii) dc field E=E,, free electron The electron acceler- L

ates under the influence of the electric field, so the dipole. 1ol afda

moment increases quadratically with time: '

2
Ko+ eTEOt> — kg} (8)

0.5 [

Dipole Momen

2
M(t)=4—EO[

(iv) dc field E=E,, tight binding An initially localized
electron exhibits Bloch oscillations in a dc field at a fre-
quencywg=eEyd/#:

Dipole Moment

Time (ps) Time (ps)

A 242
M(t)zfe 7747 cog kod) — cogkod+ wgt)].  (9) FIG. 1. Effect of ac electric field on the electronic dipole mo-
0 ment w(t) plotted versus time for varying values 06

One can also see that the amplitude of the Bloch oscillations:eE,d/% »w. We setw=1 THz, =10 ps, with an initial Gaussian
is inversely proportional to the field. A stronger field thus distribution centered arourid= 7/2d. The solid lines describe dy-
tends to localize the electron, while at the same time causingamic localization while the dotted lines correspond to motion
it to oscillate faster. Moreover, if we excited an initial distri- away from dynamic localization. At small times<7) the dipole
bution of carriers around the miniband centeky+ moment grows linearly in time except at dynamic localization
+ ar/2d), the net dipole moment of the system vanishes bewhere an integer number of ac Bloch oscillatiqose in the left
cause the individual contributions aroundk, oscillate at ~ 9raph, two on the rightare completed in half an AC period, and the
wg out of phase with each other. The electronic center ofnotion is oscillatory{Eq. (10)]. For large times ) the steady-
mass does not Bloch oscillate under these circumstances, bRigte dipole moment is oscillatory in general, but vanishes at dy-
the envelope expends and contracts at the Bloch frequend@Mic localizatior{Eq. (12)]
generating a “breathing mode>” _ _ o

(v) ac field E=E, cost), tight binding The electron N9 an integer number of _Blloch oscillations in half an ac
now exhibits dynamic localizatichThe dipole moment has Period (~3.14 ps, and exhibits bounded ac Bloch oscilla-
a term linear in time corresponding to a uniform drift, and antions.
additional bounded oscillating term arising from ac Bloch
oscillations. The linearly growing term bears a Bessel pre- IIl. ROLE OF COLLISIONS

factor, which controls the localization properties of the elec- o . S )
tron. If ®=eE,d/% o is a root of the Bessel function, then ~ Collisions are crucial both in eliminating the transient re-

we are left with the oscillating part of the dipole moment, SPonse and in enabling power dissipation. Equatid for
and the electron is dynamically localized the dipole moment in an ac field was derived in the collision-

less limit (r=<). The corresponding dipole moment con-

Aed _ 202, forms to the heuristic description of dynamic localization in

m(t)=—-e [sin(kod) (tJo(®) +Ay(1)) the Introduction. Introducing collisions through a relaxation-
time approximation leads to a transient and a steady-state

—A,(t)cogkyd)], (100 response in the solution to the density matrix equation.

While dc Bloch oscillation is d@ransientphenomenon ob-

whereA,(t) andA,(t) are given by a superposition of har- served only within the relaxation-time, dynamic localiza-

monics tion is a steady-stataesponse, observed beyond the relax-
* 3,,(0) ation time, as energy is pumped into the system. For the
A, (1)=2 P sin(2pwt) steady-state ac response therefore, we must first drop the

p=1 2pw transient respons€l0), which persists for about a picosec-

ond, and then take a weak collision limib ¢— =) over the
pulse length €1 us). This yields the steady-state dipole
moment

oo

Jopi1(O
AU(t)EZpZO(ZZEH—l(l)Z)coi(Zp+1)wt]. (12)

In presence of collisions, the dipole momex{t) corre- Aed o222 _
sponds, as we shall see, to a transient term. The time evolu- #s{t) = %;—€ Jo(O){sin(kod)[ 73o(®) +Ay(t)]
tion of u(t) is seen in the graphs in Fig. 1 at small times
(t< 7). We set the incident angular frequensy= 1 THz and —A,(t)cogkqd)}. (12
the collision timer=10 ps and van® by varying the field
amplitudeE;. For the dashed curves, the electron is in the In contrast to expressiofi0), the steady-state expression
middle of a Bloch oscillation when the field switches sign, soabove has an overall Bessel renormalization factor, which
the response is a drift. At dynamic localizati@olid curve$  causes the dipole moment to vanish completely at dynamic
however,0 is a root of the zeroth order Bessel function. Forlocalization(solid lines in Fig. 1 at time$> 7). The time-
the corresponding field values the electron is now completdependent dipole moment at arbitrary times is given by a
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mixture of the transient respong&0) and the steady-state eE,dho
responsd12) (plotted in Fig. 2 - ) 5 10 15 20
—t/r —t/r \/\/v ~
m(t)=p(t)e T+ ust)(1—e "7 s
Aed 60 -
~ 55 35(@)sin(ked)te e ocd2(13) _ o

For small times {<7), the transient respongd0) domi-
nates, while at large times$$ =27/ w), we get the steady- o
state response(12). In the following, we assume a %'4 i
momentum-independent initial electronic distribution be- 2r -
tween = kg . This corresponds to settirkp,=0 above, and
replacing exp—o?d?/2] by sinkgd)/k=d. We will absorb this o al
factor in the overall electron density The steady-state di- 0 5 10 15 20
pole moment then assumes the form described in Ref. 20. eE,dhe

The steady-state current density can be obtained in the FIG. 2. Power dissipated in a superlattice, plotted versus the

weak-collision limit by differentiating the dipole moment ,oameter® =eE,d/fiw. At low-field values, the dissipation is
with respect to time and multiplying by the electron density q,adratic in the field, as predicted by the Drude model. At higher

P (mW/cm®)
N
o
N

n fields, the nonlinear response of the electron causes the dissipation
@ to oscillate as it approaches saturation. The dissipation is maximum
. . : t dynamic localization, which occurs wheh is a root of the
t)= Jo(0®)sin(B® sinwt). 14 a » L
I 2h o(®)sin( wt) (14) zeroth order Bessel function. At these values the current is in phase

) ) ) 92 with the incident fieldlnset The decay length of the signal, plotted
This form is the same as obtained by Ignatval™ and  yersus®. This is often the physically measured quantiycept for
Holthaus’® namely, proportional to the electron density an overall minus sign While the dissipated power saturates with
and the instantaneous band velocity, but with the overalhigh field, the incident poweP, grows quadratically with the inci-
Bessel renormalization term. The Bessel factor arises excluent field. Thus, the decay length drops drastically with increasing
sively out of the act of dropping the transient respoftsems  field, and the oscillations due to the Bessel functions form small
«exd —t/7]). Note that the above current densitydat of  ripples on it.
phasewith the incident field in the weak-collision approxi-
mation. term, and is zero in the collisionless limit. At dynamic local-

The power dissipated in the superlattice, however, deization, the larger out-of-phase component diminishes, lead-
pends on the component of the current denisitphasewith ing to an overall reduction in the current. However, the in-
the external field. In other words, we need to retain the leadphase component actually increases, since the electron now
ing collisional corrections to the current density in Et}4)  comes into phase with the electric figldcall the heuristic
instead of taking the collisionless limit. In terms of the ef- description of dynamic localization in the Introductjorhn
fective massn* =242/Ad? of the electrons at the bottom of

the conduction miniband, the dissipated power turns out to 1.0
be22,24
w 277/(4)_ nﬁz 2 :0_305
EEJO J(t)Elcoiwt)Zm*—%_[l_Jo((a)]- E
(15 s
0.0

At low-field values @<1), the above power dissipation

approximates to the Drude limite’E3/2m* »?7, which cor-

responds to a quadratic rise with the field. At large field

values, the power dissipation saturates to a field independent -0.5

value nz2/m*d?7=nA/2r determined by the average en-

ergy absorbed between two successive collisions by the elec-

trons from the field. 1.0
The power dissipation varies with the electric field in a 0 S 10

manner shown in Fig. 2. The initial quadratic rise as pre- ot

‘{"Cted .by the' Dr.ude mode! IS shortly replaced by a satura- FIG. 3. Current density plotted versus time for different values

tlor_1, with oscillations rea_chlng maximum at the_ Besse! roc_Jtsof ®=eE,d/fiw, along with time-dependence of theosing THz

This may seem counterintuitive, since dynamic localizationieq, for wr=10. Notice that over one period, the average current

implies a small current, and in particular, zero currenttfor gensity is in general zero. However at dynamic localizatiéh (

> 7. The explanation lies in the relative behaviors of current=2 4048), the current density drops in amplitude but comes in

components in-phase and out of phase with the electric fielghase with the incident field, so the average current density is no

(Fig. 3). The component of the current density in phase withlonger zero. Thus, dynamic localization decreases the overall cur-

the field is typically 1& 7 times weaker than the out-of-phase rent density while increasing the dissipation.
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other words,dynamic localization causes the electrons to V. OPTICAL BISTABILITY
localize, and at the same time to come into phase with the

incident field.This diminishes the current while at the same . . .
L : o field penetrates into the superlattice, and turns out to be the
time increasing the dissipation. . . A

gause for optical bistability in the system. Moreover, the re-

In most experiments however, the physically MeasUree honse does not compartmentalize naturally into exclusivel
qguantity is the decay length, defined as the distance over P y y

which the incident poweP, decays by a factor & The propagating or decaying waves in the medium. For a .h'gh
I . o . o electron density(large wp) the nonlinear penetration in-
incident power is quadratic i®, while the dissipated power : R

. ; . volves a transformation that makes the figéld inside the
approaches saturation at high fiells Hence the decay . . : LS ;

: : . . superlattice a multivalued function of the incident fig.

length ~In(P/P,) decreases drastically with the figidset in The electron responds directly to the local field inside the
Fig. 2. This washes out the Bessel oscillations, which only P y

aopear as rioples on the sharoly decreasing backaround superlattice. In order to make contact with experiments, we
bp bp Py 9 9 " will first need to make a variable transformation frdgg to

E,. This transformation is nonlinear, and makes the local
IV. REFLECTION COEFFICIENT field a multivalued function of the incident field.

In contrast to the decay length, the THz reflection coeffi- The variablesEs andE, are connected via boundary con-

cient of the superlattice turns out to be a more sensitivéIltlons at the surface=0, wherexis the propagation d|reg—
tion of the THz wave. The boundary conditions are obtained

probe of dynamic localization. We analyze the reflection ofb hi . ¢ electri d .
the superlattice in terms of an effective dielectric function®Y matching tangential components of electric and magnetic
fields at the superlattice surface. Thedependence of

) obtained from the coefficient of the first harmoni
€e(®) obtained from the coefficient of the first harmonic o 3 = e 2" M ohtained by writing down the wave

term in Eq. (12) for ko=0. This corresponds to a linear equation inside the superlattice, ignoring higher harmonics
response analysis in the time dependenceaddsiot in the i . ’
p ysIS | : b histot | as befor¢® The prominent field-dependences are

field ®. Taking into account the background dielectric con- (a) propagating e.(® ) =0. Here, the amplitude is con
~ ef\~0/) — VY- ' -
stantey~12.9 of the GaAs substrate, we haVe stant with respect ta, $0|0<(x)| = © (0)| = O, The wave

The nonlinear response also affects the way the incident

2 g 3.(0 equation then gives us the familiar propagation condition
€eri(©) = €0 1_2w_; M} (16) €s(@() >0, Whe£)9®o=®s(0);
w ® (b) decaying [, sWye.«(y)dy<0. For a decaying wave,

The electronic response appears through the part involvin
the plasma frequencyp=\4mne?/m* e,. For <1, the
“linear response” regime, the above dielectric function re- ) 5
duces to that for three-dimension(8D) plasmons. We com- d“0s(x) — “’_6 [04x)]
pute the reflection coefficient derived from the above nonlin- dx? 2 “efl™s
ear dielectric functiod®

The reflection coefficient as a function 6f has been The equation can be integrated betweeand infinity, as-
computed in Ref. 20 fowp/w=8 (for a superlattice with SUming the field decays to zero far into the superlattice, to
period 100 A, miniband width 18 meV, and an incident an-Yield
gular frequency zZrX 1 THz, this corresponds to an electron
density~7.5x 10* cm™2 per wel). At low fields, plasmons 1
screen the field in the superlattice leading to total reflection, 2

while at high fields the reflection reaches the background dc o )
value as the plasmon screening becomes ineffective. Strik.he derivatived®g(x)/dx should be a real function of for

ingly the reflection coefficient exhibits prominent oscilla- & decg;qlgg wave, which leads to the self-consistency condi-
tions around the background, matching the background valuéon f ;Y eei(y)dy<0.?’
at dynamic localization, dictated by the roots of the two The conditions for propagating and decaying wave&ijn
Bessel functions in Eq(16). In fact, the first root is in the and(b) are neither mutually exclusive, nor exhaustiVéis
total reflection regime, so there is a window of low reflectionmeans that there are certain fiedls inside the superlattice
in the otherwise high reflectivity zone. So strong is the nonwhich support both kinds of waves, and certain other field
linear response due to dynamic localization that it com-values which cannot be propagated within the superlattice.
pletely overwhelms the plasmon screening. In the special case whereq O g(x)]=constant, however,

In computing the above reflection coefficient, we haveconditions(a) and(b) correspond to the two familiar disjoint
restricted ourselves to one miniband and deliberatelysectors, viz.gs;>0 in (a) and e.<0 in (b).28
dropped the higher harmonics. One way of incorporating the The solutions to the wave equation in regigasand(b),
contributions of the higher harmonics is to use a methodn conjunction with the boundary conditions at the surface,
suggested by Broer for an arbitrary nonlineafftythe result  give us the nonlinear transformatiéhs vs ), .%° For a given
exhibits high frequency wiggles on top of the reflectionincident laser power there are multiple solutions for the local
graph calculated in Ref. 20, as well as a shift in the zeros ofield inside the superlattice. Each such local field uniquely
the reflection from the roots of the higher order Besseldetermines the electronic response. So the behavior of the
functions®* The overall field dependence of the reflection electron to a given incident power depends on the branch of
coefficient is thus hardly affected by the inclusion of higherthe transformation curve that we are sitting on. Incorporating
harmonics. the nonlinear transformation into the reflection coefficient

Elps(x)| =04(x) as far as position-dependence is concerned.
he wave equation then assumes the form

Og(x). (17)

dOg(x)
dx

2 (1)2

O5(x)
— [ yeutnay. a8
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leads to multistable loops and oscillations in the reflection
coefficient as a function of the incident laser powfer.

VI. DIPOLE RADIATION

In calculating the optical properties so far, we ignored the
higher harmonics in comparison to the fundamental re-
sponse. If we look at dipole radiation, however, the situation
changes completely. Higher harmonics tend to radiate more,
since dipole radiated power varies as the fourth power of the
dipole oscillation frequency. However, there is a natural cut
off for the highest harmonic allowed in the system. This is
controlled by the paramete@zw@clw, which fixes the
maximum number of ac Bloch oscillations in half the period ~ FIG. 4. Dipole radiated powe.u) plotted as a fraction of the
of the incident field. incident power, versu® =eE;d/hw and the order @+ 1 of the

Operationally, we use Larmor's formula for dipole radiating harmonic fowp/w=1.2. The power radiated at a fixed

radiation! This gives us the dipole radiated power as a frac-1€/d increases with harmonics upto a certain ordep {4~ 0),
tion of the incident power and then falls off exponentially.

10 @

10 15

2p+1 20 20

P 8 062 232(@) - the nonlinear transformation at the boundary. In this section,
rad_ ST . 0 > (2p+ 1)232 . .(9), we consider the effects of relaxing each assumption indi-
P 3Aspo|f m*c?| ©2 p-o P vidually. Our main observation is that the sharpness of our

(199  previous results allows the nonlinear effects to persist.
Feedback effects from higher harmonid®ne of the

sl ot o e st Mt e Tt may s ceir o ot oy s
AN 'alNG " probe of dynamic localization is the third harmonic genera-
electrons. The above sum is finite; in fact, when the index ofjo,  This is because the substrate does not contribute to

a Bessel function is greater than the argument, the Bessg gher harmonic generation; the third harmonic arises exclu-
terms decrease exponentially with the index, so harmonicgjyely out of the superlattice, which functions as a nonlinear
beyond (p+1)~® do not contribute much to the radiation. «jnq(ctor” 22in the weak collision limit. The higher harmon-
This gIves us the CUt.'Oﬁ _h_armon?é. , . ics generated propagate through the superlattice and feed
Critical in the applicability of Larmor’s formula above is a0k on the fundamental response as well. The third har-
the fact that we are using the form for a point dipole. Thisyqnic generation for a series of superlattices in a quasiopti-

makes it essential to put the detector at a distance mucly| setup also reveals a nonmonotonic dependence on the
larger than the wavelength-0.1 mm of the THz radiation. i cident power. The oscillations are related by a nonlinear
The effect of several electrons is included simply by multi-yansformation at the boundary to the roots of the zeroth and
plying the individual dipole moment biX. This is true as  hjrg-order Bessel functions. Analogous to the reflection co-
long as all the electrons are moving coherently in the samggficient, the third harmonic power transmitted through the
direction. However, if the extent of the superlattice along thegpstrate becomes a multivalued function of the incident la-
X direction is larger than half a_THz waveleng_th for a par-ger power for high-doping densiti#&&Recent experimerits
ticular mode, then the electrons in the superlattice will divideg, THz third harmonic generation by a quasioptical array
into segments moving in opposite directions, and their radizeyeal a nonmonotonic field dependence of the generated
ated fields would tend to cancel out. One way to avoid thispoyer, The results are consistent with ac Bloch oscillations
while at the same time keepirig, reasonably large, would fo|lowed by Zener tunneling. However, due to significant
be to inactivate odd half wavelengths of the superlattice by.qjisions (@7=2), there is no bistability, and the sharpness

ion-implantation. , , of the oscillations is severly compromised.
Figure 4 shows a plot of the fractional radiated power as a cgjiisions In all our previous calculations, we have ig-

function of ® and the order @+ 1 of the harmonicgcontri-  qreq the effects of collisions; the only role of the collisions

butions from individual terms in the sum in EQ9)]. From \ya5 10 get rid of the transient response. We can introduce
the figure, we see that aside from the fundamental responsgy|jisions through a relaxation-time approximation and retain
maximum dipole radiation occurs in the mode whose ordegorections to O(16272). The effective dielectric function

equals the field. In other words, by simply varying the field yptzined from the dipole moment is then of the form
amplitude, one can cut off the radiation from most harmonic

modes, and select out a preferential mode for radiation. 5
2wp \]0(@)\]1()[ 1
€eri(0)= €| 1— w2 o) [1_ w272

(20

VII. DISCUSSIONS

We have simplified our model to the idealized case of ao leading order in 1272 (actually, there is also a shift in
set of weakly interacting electrons in a single tight-bindingphase introduced by collisions, so the fundamental response
superlattice miniband, responding to a THz plane waveof the dipole moment has both a sine and a cosine term in its
propagating monochromatically into the superlattice. For thisesponsg The principal effects of such corrections are to
system, we have calculated the optical response, includindiminish the strengths of the oscillations in the reflection
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coefficient as the field increases, as well as in diminishing35, Zener tunneling transports a substantial fraction of the
the regime of validity of linear response and plasmaelectrons across the minigap at the end of each ac Bloch
screening” oscillation. The transfer is large when the separation of the
Non tight-binding miniband Deviations from a tight- minibands is comparable to the ac Bloch frequefiaythe
binding dispersion require a simple extension of our calculaguasienergy picture of Holthad$, this corresponds to
tions. Let us generalize the tight-binding structure by includ-avoided crossings of two quasienergy minibands of different
ing couplings over next-nearest-neighboring quantum wellsndices. This will undoubtedly affect the electronic current,
and so on: which now has contributions from multiple minibands. How-
ever, the interminiband separation is typically around 80

©

A meV, so Zener tunneling is avoidable as long as the incident
_ P )
&= pzl 2 cogpkd). (22) frequency or the field energy are smaller and significantly off
) _ resonance.
The corresponding steady-state dipole moment then has the
form
VIIl. CONCLUSIONS
edpd, Im(®p) . . ' i
wt)y=—> ——30(0)) > | |cosmat, In the presence of time-dependent optical fields on a pe
p-1 ho m=odd m riodic system with a nonparabolic band dispersion and weak

(22) collisions, a particle is expected to exhibit a host of optical
where ® ,=p®. Using the above equation in our effective propgrtie; that are nonlinear functions of the Iinput fields. In
dielectric function as before, we recalculate our reflectior@ddition, if we take into account the way the field penetrates
coefficient in the presence of non-tight-binding correctionsinto the system from outside, the nonlinear response makes
For definiteness’ sake, we make the second nearest neith&e optical properties multivalued fun_ctlons of the incident
overlap term half as strong as the fir&t,=0.5A,), and do  POWers. We have demonstrated_ a variety of effects that _bear
not include any longer ranged couplings. The result of théj!s_tlnct S|gna_tures of such nonlinear response a_nd multlsta-
calculatiod* indicates that the appearance of Bessel funcPility. In particular, we show that dynamic localization of
tions with different arguments in the sum above pre(:|LJ(]|eé=TIectrons in a superlgttlce.m the presence_of a THz incident
dynamic localization in its strictest forrtvanishing of the field leads to dramatlc optical features, which should be ob-
dipole moment from occurring for a non-tight-binding Servable experimentally.
systen? In addition to the oscillations described earfiér,
there are additional oscillations arising out of the Bessel
functions with different arguments. However, some of the
sharp features such as plasmon screening, oscillations, peri- This work has been supported by the Office of Naval
odic vanishing of the THz reflection, and multistability in the Research, the Department of Energy, and the Ohio State Uni-
optical response still survive this band-structure generalizaversity Presidential Fellowship. We wish to thank A. V.
tion. Kuznetsov, C. J. Stanton, C. Jayaprakash, S. J. Allen, M. C.

Multiple minibands Considerably more serious is the in- Wanke, D. D. Awschalom, D. W. Hone, D. S. Citrin, and J.
fluence of Zener tunneling. As discussed in Refs. 11, 34, anti. Davies for suggestions and helpful discussions.
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