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Nontrivial behavior of the thermoelectric power: Electron-electron
versus electron-phonon scattering
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The thermoelectric power nontrivial temperature behavior observed in metals and other structures can be due
either to electron-electron or electron-phonon scattering as long as approximations do not drastically hide the
behavior. The case of electron-electron scattering was treated by Hildebrandet al. @Phys. Rev. B56, R4317
~1997!#. The case of the electron-phonon scattering is reconsidered here in the framework of the variational
method, but also in the relaxation-time approximation. Physical approximations, e.g., on the degeneracy of the
the charge carriers, on elastic or inelastic scattering contributions, and on standard cutoffs, are discussed.
Dimensionality effects of the phonon and/or electron spectrum are stressed in view of comparing systems for
which the electrical resistivity is known. Asymptotic expressions are compared. It is also shown that a direct
correspondence between final formulas within different formalisms is hardly available.
o

th
a
t

th
s

v

ar
a
e.
p-
on
-
gu
o
a

tt

pe
ur
e

a
1
m

on
om

ed
en-

ec-

of

ra-
roxi-
l
ergy
tive.
ot
nly

d 3
le
ely
by
of
s of

rmi
the
in

ods
hav-

of
ee-

a-
non
ns
nu-
cu-
ted
rder
I. INTRODUCTION

In a recent paper, Hildebrandet al.1 took into account the
effect of electronic correlations in their numerical studies
the thermoelectric power~TEP! of weakly correlated Fermi-
liquid metallic systems. Readers of that paper may have
impression that the characteristic smooth but nonlinear sh
of the temperature dependence of the Seebeck coefficien~S!
as a function of temperature is simply or mainly due to
effect of electronic correlations. Indeed, some emphasi
placed on such statements, as if the authors discovered
reason for a nonconventional nonlinear temperature beha
of TEP originating from correlation effects.

In this paper we would like to point out that the nonline
temperature dependence ofS is also expected even for
free-electron gas subjected to conventional scattering,
by phonons at low and intermediate tem
eratures2,3—independently of the existence or of the phon
drag hypothesis4–6 or the ‘‘mass enhancement’’ mech
anism.7–9 Therefore, we propose considering as strong ar
ments that the effect found in Ref. 1 may have its origin n
in electron correlations only but may result from the fact th
TEP was precisely computed, and basic features inS(T) are
independent of assumed models about the electron sca
ing.

Our research was stimulated by the fact that recent pa
claimed that the nontrivial behavior of the high-temperat
superconductor thermoelectric power, or rather the Seeb
coeficientS, as a function of temperatureT, cannot be inter-
preted in terms of Fermi-liquid theory with a convention
electron-phonon interaction; in particular, see e.g., Ref.
Much discussion is due to the fact that different formalis
are used, e.g., kinetic,11,4,12,13 linear-response theory,14–16

and the variational method,13,4,2,3,13but in our opinion the
disagreements arise from a different level of approximati
when performing the theoretical calculation rather than fr
formalisms. While using the Mott~-Jones! formula11 on
PRB 610163-1829/2000/61~8!/5303~8!/$15.00
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which this discussion is usually based, one is in fact limit
to elastic scattering, though an effort has been made to g
eralize it.15,16The energy transfer between a conduction el
tron and a quasiparticle~like a phonon! can be considered
only as a correction16 to the result obtained on the grounds
the Mott~-Jones! formula.

Surely, for electron-phonon scattering the TEP tempe
ture dependence becomes linear as predicted in the app
mate Mott ~-Jones! formula; however, it only occurs wel
above the Debye temperature, where the effects of the en
transfer between the electrons and phonons are not effec
This change in behavior and its simple origin have n
seemed so obvious since they were discussed o
recently.2,3 One may ask whether the results of Refs. 2 an
can be simply applied to a description of alkali and nob
metals. This task is, however, still beyond the reach of pur
analytical theories like in Refs. 2 and 3. As indicated
considerations5,6 in the 1960s and 1970s, the magnitudes
the Fourier components of the pseudopotential in the case
alkali metals and noble metals, as well as details of Fe
surface topology and the Fermi surface contacts with
Brillouin-zone boundaries, play the most essential role
reaching an agreement between the sign ofS and the Hall
coefficient at high temperatures. Purely numerical meth
have to be used to describe these effects. The overall be
ior of S(T) resulting from measurements17,6 of alkali metals
~except Li! is in agreement with the numerical analysis
final formulas of Refs. 2 and 3, though there is a disagr
ment on the temperature at which the maximum occurs.

In Refs. 2 and 3 it was found that standard approxim
tions obscure the overall behavior and the simple pho
scattering’s drastic influence. This is why TEP calculatio
have to be made with special caution. In Ref. 1 precise
merical calculations of TEP were made. However, the cal
lations showed that the basic feature of TEP in a correla
electron gas, i.e., the maximum at a temperature of the o
of 100 K, is the same as that of the free-electron gas.2,3 A
5303 ©2000 The American Physical Society
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5304 PRB 61K. DURCZEWSKI AND M. AUSLOOS
common feature of the results presented in Ref. 1 and Re
and 3 is the existence of a maximum inS(T) at temperatures
of the same order of magnitude, even with no phonon dr
like effect taken into account. The differences are in the T
saturation behavior. The results of Ref. 1 clearly indicate t
S(T) saturates to a constant value at high temperature.
is attributed to the finite bandwidth, as in Heike
formula,18–20 and does not result from a free-electron g
model as in Refs. 2, 3, and 13. One could argue that
similarity in behavior need not be discussed, because
compares the results for a two-dimensional~2D! correlated
electron gas1 to those for a 3D free-electron gas.2,3

Thus in the present paper we give results for the in-pl
S(T) of the 2D electron gas and also the scattered
phonons. According to the investigations reported in Ref.
the dispersion of the phonon spectra along thec axis of the
high-temperature superconductors considered in Ref
namely, YBa2Cu3O72d ~YBCO! and La22xSrxCuO4 ~LSCO!,
is very small and can be omitted. We neglect this dispers
and calculate the TEP of 2D electron gas scattered by
phonons. In Sec. III we compare the numerical results
those of 3D electron gas scattered by 3D phonons,3 and those
of 2D weakly correlated gas.1 In Sec. IV the correspondenc
between the Ziman variational method used in Sec. III a
the relaxation time approximation is made in order to sho
~i! that at high temperatures both methods yield the sa
results; and~ii ! how inelastic phonon scattering is account
for by the variational method, and why a direct correspo
dence between the results of both methods cannot be fo

II. MODEL

We consider electrons in a single 2D band in a 3D sp
with the spectrum

«~k!5
\2

2m
k2, k5~kx ,ky!, k5Akx

21ky
2 ~1!

which are scattered by 2D acoustic phonons in a 3D sp
with the energy

\vq5\vsq, q5~qx ,qy!, q5Aqx
21qy

2, ~2!

wherevs is the sound velocity. The maximum phonon fr
quency is the Debye frequency\vD5\vsqD , which is re-
lated to the Debye temperature through the relation\vD
5\vskBT. The phonon system will be considered in t
continuum medium approximation~see, e.g., Ref. 22!, which
is consistent with treating the electron-phonon interaction
the deformation potential approximation~see, e.g., Ref. 23!.

Such a model will be adequate in a first approximation
describe the phonon-limited electron transport in highly
isotropic tetragonal and hexagonal systems composed
conducting layers, when the electric field or temperature g
dient is applied in the plane of the layers. The model is
simple to describe quantitatively and in detail the behavio
S(T) in the systems which will be mentioned below. Re
relevant electron bands and phonon modes have to be fin
considered by numerical methods. In most cases, howe
considerations of such bands and modes can be reduc
the first approximation to the assumptions~1! and ~2! and,
. 2
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therefore, a correspondence should be expected betwee
final results and those of numerical considerations based
more sophisticated models.

We confine ourselves to considering the diffusion therm
electric power. This means that we neglect the phonon d
thus the phonon system will be assumed to be in ther
equilibrium. This means we shall assume that the ‘‘in-plan
temperature gradient will not affect the phonon syst
which will be described by the distribution

Nq5
1

exp@b\vq#21
, ~3!

where b51/kBT. The transition rate for the scattering o
electrons will be assumed in the same simple form as in R
3. Details can be found in Ref. 22 and Appendix A. Thus
assume

C~k,k8!5
2p

\
uD~q!u2b f ~«!@12 f ~«8!#Nqd~«2«81\vq!,

~4!

where« andk are the electron energy and wave vector b
fore scattering, and«8 and k8 those after scattering. Th
standardq-independent scattering~imaginary! potential

D~q!52 iF \

2Mvq
G1/2

E1~e•q! ~5!

will be used in the following considerations.E1 stands for
the interaction constant ande for the phonon polarization
vector, andM is the mass of the unit cell. The function

f ~«!5
1

11 exp@b~«2z!#
, ~6!

with the chemical potentialz, describes the equilibrium elec
tron energy distribution.

The d function in Eq. ~4! is responsible for the energ
conservation. As concerns the momentum conservation,
shall assume thatk and k8 are in the same Brillouin zone
which means that we shall neglect the umklapp processe

While calculating the elements of the scattering matrix
Sec. III, we shall also assume that

~e•q!25q2. ~7!

which is a consequence of an averaging procedure within
phonon system24 ~see Appendix A!.

In view of these assumptions, the model can be applied
a first approach to the phonon-limited transport in mater
composed of conducting layers. Let us mention first the
plane transport in high-temperature superconductors, in
ticular materials such as La12xSrxCuO4, in which there is no
contribution from the CuO chains but only from the CuO2
layers. Our model can also be applied to describe electro
transport in quasi-two-dimensional electronic systems s
as heterostructures or metal-oxide-semiconductor structu
In this case the electron motion is separable in the plane
free motion of the electrons and the direction perpendicu
to this plane due to the action of an external potential p
duced in these layered systems. Our model correspond
considering only the lowest electron subband.25 The thermo-
electric power of heterostructures was recently measured



nt
he
tr
e
ur
a
fo

’’

ite
a

el

o-
a
i

. I
a
u
dr

a
h,
rg
ri
e

t
o

c

-

x-

n
h

r

is

r

el,

ms
.
he
ser-
-

3D

are

PRB 61 5305NONTRIVIAL BEHAVIOR OF THE THERMOELECTRIC . . .
a wide temperature scale,26 and the results of the prese
paper may be useful in their interpretation. On the ot
hand, the theoretical ideas used in theories of the elec
transport in quasi-two-dimensional electronic systems w
used to describe the transport in high-temperat
superconductors,27 and the authors claimed that such
theory, including at least two subbands, may account
their behavior ‘‘atypical of a conventional Fermi liquid.
For similar physical reasons a model28 such as that above
was used to describe intercalation compounds of graph29

before the high-temperature superconductors were found
quasi-two-dimensional electronic systems were wid
manufactured.

The first theory of the electronic transport in tw
dimensional systems should probably be attributed to the
thors of Ref. 30, who studied the influence of the Ferm
surface geometry on the electrical conductivity of metals
order to examine neck parts of the Fermi surface, they
sumed the surface to be of cylindrical symmetry witho
excluding the electron momentum change along the cylin
cal axis.

III. THEORETICAL METHOD

To calculate the TEP we shall use the variational Zim
formalism13,31,2,3 within the Boltzmann equation approac
which enables to account well for the momentum and ene
transfer between a conduction electron and a phonon du
the scattering. The notion of relaxation time is not introduc
within the variational Ziman formalism.13 The scattering is
described by means of a matrix whose order depends on
number of trial functions. The minimum set consists of tw
functions13,31 describing, respectively, the microscopic ele
tric and thermal currents

V i~k!5~v•a!~«2z! i 21, ~8!

where i 51 and 2, anda denotes the direction of the tem
perature gradient applied ‘‘in plane’’ andv5¹«/\ is the
in-plane electron velocity.

In this approximation the thermoelectric power is e
pressed by means of the scattering matrix elements

Pi j 5E dkE dk8C~k,k8!ui j ~k,k8!,

~9!
ui j ~k,k8!5@V i~k!2V i~k8!#@V j~k!2V j~k8!#,

and the trial currents

Ji52eE dkS 2
d f

d« DV i~k!,

~10!

Ui5E dkS 2
d f

d« D ~«2z!V i~k!,

where 2e (e.0) is the electron charge. The integratio
over the electron wave vectors is three dimensional, wit
trivial integration in thez direction ~see Appendix B! under
the constraintq5k82k, i.e., the transferred wave vecto
during the scattering is the phonon wave vector.

The relevant expression for the thermoelectric power
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T

P22J1U12P12~J1U21J2U1!1P11J2U2

P22J1
222P12J1J21P11J2

2
, ~11!

where the symmetryP125P21 was taken into account. Fo
the two-dimensional parabolic band,@Eq. ~1!#, the trial cur-
rents are expressed in terms of Fermi-Dirac integrals

Fn~z!5E
0

`

dx
xn

11exp@x2z#
, z5

z~T!

kBT
~12!

by the combinations

L0~z!5F0~z!,

L1~z!52F1~z!2zF0~z!, ~13!

L2~z!53F2~z!24zF1~z!1z2F0~z!,

and read

J152J0~kBT!L0~z!, J252J0~kBT!2L1~z!,
~14!

U152J2 /e, U25U0~kBT!3L2~z!,

whereJ0 andU0 are interrelated (J05eU0) constants.
To calculate the scattering matrix elements for our mod

we represent the functionsui j (k,k8) under integrals~9! in
the following way

u115~q•a!2,

u125u215@~«2z!1~«82«!#~q•a!2, ~15!

u225@~«2z!212~«82«!~«2z!#~q•a!2

1~«82«!2@~q•a!21~k•a!2#.

While writing the above expressions, we neglected ter
linear in k andk8, which do not contribute to the integrals
After performing integration with respect to the angles of t
scattering and taking exactly into account the energy con
vation constraint~see Appendix B! the elements of the scat
tering matrix can be expressed in terms of the integrals

Hkl~z,T!5E
0

`

dx
~x2z! l

11ex2zEpmin

pmax
dp

3
pk

A4b«sx2~p2b«s!
2~ep21!~11e2(x2z1p)!

,

~16!

where k and l are integers,«s52mvs
2 , and the~reduced!

minimal and maximal electron momentump, namely,pmin
and pmax, depend in general on the~reduced! electron en-
ergy x. This dependence is exactly the same as in the
case, and is presented in Appendix B.

The final expessions for the scattering matrix elements

P115P0t3H30~z,t !,

P125P215P0t3~kBT!$H31~z,t !1H40~z,T!%, ~17!
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P225P0t3~kBT!2H H32~z,t !12H41~z,t !1H50~z,t !

1
«s

kBT
@H31~z,t !1zH30~z,t !#J ,

wheret5T/TD , andP0 is a constant. They are counterpa
of formula ~3.12! of Ref. 3; their complicated form is cause
by the fact that the energy transfer between the electron
phonon system is taken into account.

As a first approximation we consider that the electron
is sufficiently degenerate such thatz(T)5«F and z
5bz(T)→` can be taken in the end. Then the model s
tem is one that describes a typical metal to which the s
dard Sommerfeld expansion or the degenerate~metallic!
limit is applied.~see, e.g., Refs. 12 and 13!. The final results
of Ref. 1 were also obtained in this approximation.

If the Fermi energy is sufficiently large, a Debye mome
tum cutoff can be assumed, i.e.,pmax51/t5TD /T and
pmin50. Then the asymptopic analysis of the integr
Hkl(z,T) can be made exactly in the same way as in App
dix B of Ref. 3 for the integralsGkm(z,T). The final
asymptotic~at z→`) expressions for the scattering matr
elements are

Pi j ~`,T!5P0~kBT! i 1 j 22t4Pi j ~ t !, t5T/TD , ~18!

where

P11~ t !5F4~a,b;t !,

P12~ t !5~1/2!F5~a,b;t !, ~19!

P22~ t,T!5~p2/3!F41~1/3!F62~b/2t !F51~a/2t !2F4 ,

with the integralsFn(a,b:t) defined

Fn~a,b;t !5E
0

1/t dx

Aa22~xt2b!2

xn

~ex21!~12e2x!
, ~20!

The parameters are

a52~«F«s!
1/2/kBTD , b5«s /kBTD . ~21!

FIG. 1. Temperature dependence ofSresulting from formulas in
the text for the 2D system for typical values of parametersTD

5200 K and«F51.5 eV, and values«s ~in K! as indicated~see
Table I!.
nd

s

-
n-

-

s
-

They have to satisfy the conditionsa.b and a1b.1 for
the positiveness of the expression under the square roo
integral~20! in the whole interval 0,x,1/t. If these condi-
tions are not satisfied, one cannot assume the Debye c
and the degenerate limit~see Appendix B!.

By applying these expressions and the asymptotic o
for the trial currents with

L0~z!'z, L1~z!'
p2

3
, L2~z!'

p2

3
z, ~22!

we obtain

S5S0~ t !1~ t/c!S1~ t !, ~23!

wherec5«F /kBTD and

S0~ t !5
p2

3

kB

e

P12~ t !

P22~ t !
,

~24!

S1~ t !52
p2

3

kB

e H 11
p3

3

P11~ t !

P22~ t !J .

One can show thatS0(t→`)50 andS1(t→`)522p2/3.
Therefore, the high-temperature-describing approximation
Eq. ~23! is

S>2
2p2

3

kB

e

kBT

«F
. ~25!

The temperature dependence ofS resulting from the
above formulas for the 2D system is shown in Fig. 1 for t
values of«s of Table I and for typical values of«F andTD .
The temperature interval in which the TEP is positive
wider for 2D systems. Notice that the carriers are assume
be electrons not holes for both 3D and 2D systems. T
positiveness ofS(T) in certain temperature intervals is
consequence of the fact that the first term in Eq.~23!, S0(T),
is positive and overwhelms the negative contribution of
second term. The termS0(T), being expressed in terms o
the matrix elementsP12(t)5P21(t), describes the corrrela
tions of the electric and thermal currents, just as in the line
response theory.14 It is effective only if an inelastic contri-
bution to the scattering is taken into account.3 As seen from
the figures, the influence of this term is more pronounced
the 2D case than in the 3D case~compare Figs. 1 and 2!. The

TABLE I. The values of the parameters relevant to Figs. 1 a
2 for the free-electron effective mass and the Fermi energy«F

51.5 eV. The ratios of the Debye phonon wave-vector cutoff to
caliper of the Fermi surface are presented in the last column.

No. «s ~K! a b qD/2kF

~i! 1.50 1.62 0.0075 0.619
~ii ! 3.00 2.84 0.0150 0.427
~iii ! 6.00 3.23 0.0300 0.309
~iv! 12.0 4.57 0.0600 0.219
~v! 24.0 6.46 0.1200 0.154
~vi! 48.0 9.14 0.0240 0.109
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agreement between our calculation and the asymptotic va
@Eq. ~7!# will occur only at very high temperature.

The behavior ofS(T) as illustrated is qualitatively the
same as that for the underdoped LSCO system of Fig
examined in Ref. 1, and thus for systems with a sufficien
large number of carriers as well. In both cases the maxim
in S(T) is a consequence of the fact that the TEP is v
sensitive to the excitation of electronic states close to
Fermi surface, as well known from the TEP definition, and
the fact that there is an asymmetry in the scattering rate f
unoccupied states~holes! and occupied states~electrons! at
and near the Fermi surface. It is well known that the hig
temperature behavior ofS, as in Eq.~25!, is the characteristic
one for systems with a positive charge-carrier mass. On
other hand, a positive slope in the asymptotic behavio
obtained form,0 in the above case with a parabolic spe
trum. Less obvious is the fact thatS0(t) is positive both for
m.0 andm,0. ConsequentlyS(T) is strictly positive for
all T whenm,0, both in two and three dimensions, and th
the behavior ofS(T) in two dimensions form,0 ~not con-
sidered in this paper! resembles the behavior for hole co
duction in the 3D case~Fig. 1 in Ref. 2!. In the case attrib-
uted to LSCO in Ref. 1, the behavior ofS indicates that the
free-electron mass is positive. This can be checked by
expansion of the tight-binding electron spectrum conside
by Hildebrand et al.1 Furthermore a relationship can b
found between the electron concentrationn per unit-cell vol-
ume, the Fermi energy«F , and the tight-binding energy
bandwidthD.

For a tetragonal lattice,«F52pnD. For comparison to
Ref. 1, let the parametern'12x, wherex is like the number
of holes per site. The dependence ofS(T) is given in Fig. 3
for various values ofn ~between 0.32 and 0.91! and TD
5200 K and «s56 K. These correspond to free-electro
Fermi energies ranging between 0.50 and 1.43 eV. It is
teresting to compare the dependences shown in Fig. 3
those shown in Fig. 1 of Ref. 1 for different values ofx. The
temperature dependence ofS for all values of eF ~n! are
qualitatively the same as that for the highest value ofn ~or
the lowest value ofx512n! in Fig. 1 of Ref. 1. Also the
magnitude ofS is of the same order as that of Ref. 1. How
ever, the absolute values of the slope ofS(T) at high tem-

FIG. 2. Temperature dependence ofS for 2D systems@curve
corresponding tovs56 K. ~iii ! of Table I# of Fig. 1 and for 3D
systems with the same values of the parametersVs56 K, eF

51.5 eV, andTD5200 K.
es

1
y
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y
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e
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peratures decrease with an increase ofeF or n in our case
while the opposite trend is seen in Fig. 1 of Ref. 1. Furth
more, the maximum valuesS of Fig. 3 decrease with an
increase ofn contrary to Ref. 1. These discrepancies can
attributed to the fact that a finite band is considered in Re
contrary to our free electron approximation. The only qua
tative difference is the slope ofS(T) at high temperatures
the absolute value of which decreases with increase of«F
~andn), while the opposite trend is seen in Fig. 1 of Ref.
It is known that for a band of finite width the magnitude ofS
at high temperatures approaches a finite value.18–20 Such a
slope saturation is observed in high-temperature super
ductors, in which the conduction-band-width can be n
rower thankBT. The opposite tendency—an increase of t
absolute magnitude of the slope with increase of«F—is a
known feature of the free-electron-gas approximation.11

IV. CORRESPONDENCE TO RELAXATION-TIME
APPROXIMATION

The question arises if and how the above results co
spond to those obtained in the relaxation-time approxima
and those resulting from the Mott~-Jones! formula, i.e., in
case of a degenerate electron gas@z5z(T)/kBT→`#. For
this purpose we have to recall the standard textbo
formula11,13,12

S52
K1

eTK0
, ~26!

where

Km5E d«S 2
d f

d« D ~«2z!mt~«!W~«!, ~27!

with m50, 1, and 2; the relaxation time ist(«), and

W~«!5W0E S dS«

u¹«u D @vx
21vy

21vz
2#, ~28!

whereW051/2 or 1/3 for 2D or 3D cases, respectively, a
with vz50 in the first case.

FIG. 3. Temperature dependence ofS for 2D systems, with dif-
ferent values of the electron concentrationn ~or «F in eV! as indi-
cated;«s56 K andTD5200 K. The uppermost two curves corre
spond to those of Fig. 3 in Ref. 1.
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In the degenerate limit~with z5«F) the above expressio
for S yields the Mott~-Jones! formula

S52
p

3e
kB

2T
1

sF
S ds~«!

d« D
«5«F

, ~29!

where

s~«!5e2t~«!W~«! ~30!

is the electrical conductivity of energy«.
In this standard formulation of the theory only elas

scattering can be accounted for, and the relaxation tim
simply given by

1

t~«!
5E dk8C~k,k8!S 2

d f

d« D ~12 cosuk,k8!, ~31!

whereuk,k8 is the scattering angle, from which, for the par
bolic ~electronm.0) band, we obtain

t~«!5t0~T!~«/kBT!r 21/2, ~32!

with the exponentr describing the type of the scattering. Th
values ofr are not negative, and do not exceed the valu
for known scattering processes. As seen from Eq.~29!, the
function t0(T) is not essential for TEP considerations. T
electron energy dependence of the functionW(«) is also a
power lawW5W0«s with s51 in the 3D case ands51/2 in
the 2D case. The temperature dependence ofS(T), resulting
from Eqs.~26! and ~32!, is

S52
kB

e F ~r 1s11!Fr 1s~z!

~r 1s!Fr 1s21~z!
2zG , ~33!

with the temperature dependence ofz(T) in z5z(T)/kBT to
be found for a particular model. This is the standard expr
sion used in the physics of degenerate semiconducto32

semimetals,33 metals of low Fermi energy,34 and quasi-two-
dimensional electronic systems.35,36,26 In the latter systems
other scattering source than the phononic source are us
dominant. The exponent describing the acoustic scatte
mentioned in Ref. 26~equal tor 50 in our notation! is usu-
ally used to interpret experimental data in systems in wh
the Fermi energy is so low that scattering anglesuk,k8 as
large asp are allowed. In the language used in Appendix
of Ref. 37, this means that the ‘‘Sondheimer energy int
val’’ instead of the ‘‘Debye energy interval’’ is effective in
this case. In the Ziman variational formalism, this cor
sponds to calculating integral~16! with pmax52(x«sb)1/2 ~see
Appendix B!.

In the degenerate limit the above formula is simply

S52
p2

3

kB

e
~r 1s!

kBT

«F
. ~34!

Since the exponentr takes on the valuesr 53/2 ~the 2D case!
and r 52 ~the 3D case! for acoustic-phonon scattering, th
asymptotic high-temperature dependence ofS resulting from
the Ziman variational formalism~25! corresponds to the lin
ear dependence following from the relaxation-time appro
mation. The same concerns the 3D case considered in Re
and 3.
is

4

s-
,

lly
g

h

-

-

i-
. 2

It is worth mentioning here that by applying the vari
tional Ziman formalism, result~33! cannot be obtained. This
seems obvious from form~17! of the expression for the sca
tering matrices. In the elastic approximation only the fi
terms of Eq.~15! contribute toP12,P22, and Eq.~9!. The
counterparts of integrals~16! describing this contribution in
this case are

Hkl
elast~z,T!5E

0

`

dx
~x2z! lex2z

~11ex2z!2
E

0

pmax
dp

3
pk

A4b«sx2p2~ep21!
, ~35!

wherepmax52(x«b)1/2 is the case of the Sondheimer cuto
~corresponding to the energy conservation without the De
constraint!, and pmax51/t in the case of the Debye cutoff
The form of the above integral follows from neglecting th
phonon energy term in thed function of Eq.~4!.

Expression~33! is expected to be obtained from consi
ering a scattering matrix of infinite order in the elastic a
proximation and an infinite sequence of the trial functions~8!
in the expression

S5
1

T

(
i , j 51

JiQi j U j

(
i , j 51

JiQi j Jj

, ~36!

where

Qi j 5~P21! i j . ~37!

V. CONCLUDING REMARKS

The behavior of the TEP as a function of temperature
metallic systems seems to have certain general features
pendent of the nature of the scattering. These main feat
consist of ~i! some maximum at intermediate temperatu
and ~ii ! a quasilinear dependence at high temperature~in-
cluding nearly constant values for systems of narrow ban!.
Moreover the minimum seen at very low temperatures, a
found mainly for simple electron-phonon scatterin
systems,6,2,3arises as a manifestation of the fact that the el
trons ~not holes! are the current carriers.

A comparison of TEP for 2D~in-plane TEP! and 3D sys-
tems indicates that these general features of TEP are
same for dimensionally different systems. Details of the ba
structure, the Brillouin-zone filling~doping!, the source, and
the type of scattering as well as the spectrum of the scatte
should, of course, introduce corrections to the ‘‘exact’’ te
perature dependence of TEP. They should still be studied
reliable theoretical methods without any drastic approxim
tion. Studies of truly 2D~metallic! systems seem particularl
useful for this purpose. As concerns their application to p
ticular materials, it is worth mentioning here that the descr
tion of a cuprate superconductor in terms of a parabolic b
dispersion and accoustic phonons is known to be inadequ
and the theory presented here should rather be applie
more conventional metals. Indeed the nonlinear tempera
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dependence ofS is also expected even for the free-electr
gas. Nevertheless the behavior ofS(T) in high-temperature
superconductors has a simple character. There seems
no need for complicating the situation with many bands38

polaron contributions,10 and the like, when there are still the
oretical questions as to their proper accounting. The inve
gation of Ref. 1 and that of the present paper indicate h
terms describing the scattering contribute to TEP at inter
diate and low temperatures. For their description a be
theory than the relaxation-time approximation is requir
since the latter is capable of properly describing only el
tronic properties of a material.
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APPENDIX A

The transition rate describing the scattering of electr
by acoustic phonons in tetragonal and hexagonal crystals
be expressed~see, e.g., Ref. 24! by mean spectra and pola
izations with respect to directions in crystals. A Fer
golden rule expression such as Eq.~4! for tetragonal and
hexagonal crystals in this approximation reads

C~k,k8!5C0b f ~«!@12 f ~«8!#F q'
2

vq'

Nq'd~«2«81\vq'!

1
qz

2

vq,z
Nq,zd~«2«81\vqz!G , ~A1!

where the phonon wave vectorq5k82k is equal to the
transferred electron wave vector in the scattering; the co
sponding electron energies before and after the scattering
«(k)5« and«(k8)5«8, respectively.

C0 is a constant,q'5Aqx
21qy

2, vq' and vqz are the
mean phonon spectra with the polarization perpendicular
parallel to thec axis ~thez axis of the coordinatation frame!,
andNq' andNqz are the corresponding Bose distributions.
is seen that the second term in the above mean transition
does not contribute if the electrons are confined to move
layers perpendicular to thez axis. Thus we obtain Eq.~4!
with q'[q, vq'[v, andNq'[Nq .

APPENDIX B

While considering thermoelectric power in the 3D case
the variatonal method,3 we showed that the contribution t
P11 is determined by the double integral

P115P3DE
0

`

d~b«! f ~«!E
qmin

qmax
dq q4B~q,«!, ~B1!
be

ti-
w
e-
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e-
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where

B~p,«!5~ebp21!21~11e2b(«2z1p)!21. ~B2!

The wavelength limits in integral ~B1! are qmax
5min(qD,2k1qs), qmin50 if qs<2k, andqmin5qs22k if
qs.2k, with qD—the Debye cutoff phonon wave numbe
2k—the caliper of the electron equienergy surface, andqs

52mvs
2/\. In the limit of the degenerate gas~metallic limit!,

which we applied in Ref. 3, one can assumeqmax5qD and
change the order of integration. This was the approximat
of the final formulas of Ref. 3. The same appproximation
used in the final formulas of the present paper.

The considerations leading toP11 were performed in Ref.
3 under strict energy and momentum conservation. For
purpose we rotated the coordination frame in the inve
space, which enabled us to integrate analytically appropr
expressions with respect to the angles in spherical coo
nates.

For the systems of the layered structure discussed in
present paper the meaning of the integrals in Eqs.~9! and
~10! is

E dk•••5
2

~2p!3E2bc

bc
dkzE dkxdky•••

[
4bc

~2p!3E S dS«

u¹«u D •••, ~B3!

where the maximum wave number in thec ~or z) direction is
bc5p/dc , and dc is the unit-cell length in that direction
Similar considerations to those in the 3D case with spher
electron equienergy surfaces can be repeated, but for th
tegration in spherical coordinates. We only mention that
this end we first change the variables fromk andk8 to k and
q5k82k, and we rotate the coordination frame about thz
axis through the anglew5arctan(ky /kx), such that they com-
ponent ofk vanishes in the coordinates:k5(Kx,0,Kz). In the
same way we obtain the components of the transferred w
vector Qx5qx cosw1qy sinw, Qy5qx cosw1qy sinw, and
Qz5qz and introduce the cylindrical coordinates to integra
analytically with respect to the scattering angle cosuk,k8
5kq/(kq). In so doing we obtain

P115P2DE
0

`

d~b«! f ~«!E
qmin

qmax
dq

q3B~q,«!

A4k22~q2qs!
2

, ~B4!

where qs5(2m/\)vs , and vs is the sound velocity. After
adding the factors («2z) l and transforming the above inte
gral to dimensionless variables, one obtains the integ
Hkl , @Eq. ~16!#, in which pmax5min(2A«sbx1«sb,1/t),
and pmin5b«s22A«sbx if b«s.2A«sbx, andpmin50 in
the opposite case.
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