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The thermoelectric power nontrivial temperature behavior observed in metals and other structures can be due
either to electron-electron or electron-phonon scattering as long as approximations do not drastically hide the
behavior. The case of electron-electron scattering was treated by Hildestrahd Phys. Rev. B56, R4317
(1997]. The case of the electron-phonon scattering is reconsidered here in the framework of the variational
method, but also in the relaxation-time approximation. Physical approximations, e.g., on the degeneracy of the
the charge carriers, on elastic or inelastic scattering contributions, and on standard cutoffs, are discussed.
Dimensionality effects of the phonon and/or electron spectrum are stressed in view of comparing systems for
which the electrical resistivity is known. Asymptotic expressions are compared. It is also shown that a direct
correspondence between final formulas within different formalisms is hardly available.

I. INTRODUCTION which this discussion is usually based, one is in fact limited
to elastic scattering, though an effort has been made to gen-
In a recent paper, Hildebraret al took into account the eralize it*>*®The energy transfer between a conduction elec-
effect of electronic correlations in their numerical studies oftron and a quasiparticléike a phonon can be considered
the thermoelectric powdiTEP) of weakly correlated Fermi- only as a correctioff to the result obtained on the grounds of
liquid metallic systems. Readers of that paper may have ththe Mot{(-Jone$ formula.
impression that the characteristic smooth but nonlinear shape Surely, for electron-phonon scattering the TEP tempera-
of the temperature dependence of the Seebeck coeffi@ent ture dependence becomes linear as predicted in the approxi-
as a function of temperature is simply or mainly due to themate Mott(-Joneg formula; however, it only occurs well
effect of electronic correlations. Indeed, some emphasis igbove the Debye temperature, where the effects of the energy
placed on such statements, as if the authors discovered the@nsfer between the electrons and phonons are not effective.
reason for a nonconventional nonlinear temperature behavidrhis change in behavior and its simple origin have not
of TEP originating from correlation effects. seemed so obvious since they were discussed only
In this paper we would like to point out that the nonlinear recently’® One may ask whether the results of Refs. 2 and 3
temperature dependence 8fis also expected even for a can be simply applied to a description of alkali and noble
free-electron gas subjected to conventional scattering, e.gnetals. This task is, however, still beyond the reach of purely
by phonons at low and intermediate temp- analytical theories like in Refs. 2 and 3. As indicated by
erature$? mdependently of the existence or of the phononconsiderations® in the 1960s and 1970s, the magnitudes of
drag hypothesfs® or the “mass enhancement” mech- the Fourier components of the pseudopotential in the cases of
anism’~° Therefore, we propose considering as strong argualkali metals and noble metals, as well as details of Fermi
ments that the effect found in Ref. 1 may have its origin notsurface topology and the Fermi surface contacts with the
in electron correlations only but may result from the fact thatBrillouin-zone boundaries, play the most essential role in
TEP was precisely computed, and basic feature(ir) are  reaching an agreement between the sigrb@nd the Hall
independent of assumed models about the electron scatteroefficient at high temperatures. Purely numerical methods
ing. have to be used to describe these effects. The overall behav-
Our research was stimulated by the fact that recent papefer of S(T) resulting from measuremenf$ of alkali metals
claimed that the nontrivial behavior of the high-temperature(except L) is in agreement with the numerical analysis of
superconductor thermoelectric power, or rather the Seebedinal formulas of Refs. 2 and 3, though there is a disagree-
coeficientS, as a function of temperatuig cannot be inter- ment on the temperature at which the maximum occurs.
preted in terms of Fermi-liquid theory with a conventional In Refs. 2 and 3 it was found that standard approxima-
electron-phonon interaction; in particular, see e.g., Ref. 10tions obscure the overall behavior and the simple phonon
Much discussion is due to the fact that different formalismsscattering’s drastic influence. This is why TEP calculations
are used, e.g., kinetid;**?13 linear-response theofy;*®  have to be made with special caution. In Ref. 1 precise nu-
and the variational methdd:*?33put in our opinion the merical calculations of TEP were made. However, the calcu-
disagreements arise from a different level of approximationgations showed that the basic feature of TEP in a correlated
when performing the theoretical calculation rather than fromelectron gas, i.e., the maximum at a temperature of the order
formalisms. While using the Mdttlones formulat* on  of 100 K, is the same as that of the free-electron Zgha.
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common feature of the results presented in Ref. 1 and Refs.therefore, a correspondence should be expected between our
and 3 is the existence of a maximums3(iT) at temperatures final results and those of numerical considerations based on
of the same order of magnitude, even with no phonon dragmore sophisticated models.

like effect taken into account. The differences are in the TEP We confine ourselves to considering the diffusion thermo-
saturation behavior. The results of Ref. 1 clearly indicate thatlectric power. This means that we neglect the phonon drag;
S(T) saturates to a constant value at high temperature. Thithus the phonon system will be assumed to be in thermal
is attributed to the finite bandwidth, as in Heikes equilibrium. This means we shall assume that the “in-plane”
formulal®=2° and does not result from a free-electron gastemperature gradient will not affect the phonon system
model as in Refs. 2, 3, and 13. One could argue that thevhich will be described by the distribution

similarity in behavior need not be discussed, because one

compares the results for a two-dimensiof@D) correlated N.= 1 3)
electron gaksto those for a 3D free-electron g4s. 9" exfd fhiwg] -1’

Thus in the present paper we give results for the in-plang here B=1/kgT. The transition rate for the scattering of

S(T) of the 2D electron gas and also the scattered 2 | ilb din th imole f ) ¢
honons. According to the investigations reported in Ref. pp&ectrons will be assumed in the same simple form as in Ref.
b 3. Details can be found in Ref. 22 and Appendix A. Thus we

the dispersion of the phonon spectra along ¢hexis of the

high-temperature superconductors considered in Ref. fssume

namely, YBaCu;O;_ 5 (YBCO) and Lg_,Sr,CuQ, (LSCO), 20

is very small and can be omitted. We neglect this dispersionC(k, k") = —|D(q)|2ﬁf(s)[1 f(e")INgo(e—¢&' +hhwg),

and calculate the TEP of 2D electron gas scattered by 2D )
phonons. In Sec. Ill we compare the numerical results to

those of 3D electron gas scattered by 3D phortaars] those wheree andk are the electron energy and wave vector be-
of 2D weakly correlated gasin Sec. IV the correspondence fore scattering, and’ and k’ those after scattering. The
between the Ziman variational method used in Sec. Il andtandardg-independent scatteringmaginary potential

the relaxation time approximation is made in order to show:

(i) that at high temperatures both methods yield the same D(q)=—i
results; andii) how inelastic phonon scattering is accounted 2Maoyq

gognl?é tt?eetv?//:gr?ttlggarlersnu?g%cfj,b%?r? r\rl]vg%g dg'gﬁn%?rgzs% ?Jr:] ill be used in the following considerationk; stands for
ie interaction constant anel for the phonon polarization

vector, andM is the mass of the unit cell. The function

1/2

Ei(e-q) ®

Il. MODEL

We consider electrons in a single 2D band in a 3D space f(e)= ,
with the spectrum 1+ exd f(e=0)]
with the chemical potential, describes the equilibrium elec-

) e tron energy distribution.
e(k)= ﬁk o k=(keoky),  k=vkit+ky @ The 6 function in Eq.(4) is responsible for the energy
conservation. As concerns the momentum conservation, we
which are scattered by 2D acoustic phonons in a 3D spacghall assume that andk’ are in the same Brillouin zone,
with the energy which means that we shall neglect the umklapp processes.
While calculating the elements of the scattering matrix in

hog=hvsd, q=(0x,0y), d= /q)2(+q§, 2) Sec. lll, we shall also assume that

whereuvg is the sound velocity. The maximum phonon fre- (e-q)*=0” ()
quency is the Debye frequenéywp=7%vqp, which is re-  which is a consequence of an averaging procedure within the
lated to the Debye temperature through the relatiany, phonon systeff (see Appendix A
=hvkgT. The phonon system will be considered in the In view of these assumptions, the model can be applied as
continuum medium approximatidsee, e.g., Ref. 22which  a first approach to the phonon-limited transport in materials
is consistent with treating the electron-phonon interaction ircomposed of conducting layers. Let us mention first the in-
the deformation potential approximatigsee, e.g., Ref. 23  plane transport in high-temperature superconductors, in par-
Such a model will be adequate in a first approximation toticular materials such as ka,Sr,CuQ,, in which there is no
describe the phonon-limited electron transport in highly ancontribution from the CuO chains but only from the CuO
isotropic tetragonal and hexagonal systems composed ddiyers. Our model can also be applied to describe electronic
conducting layers, when the electric field or temperature gratransport in quasi-two-dimensional electronic systems such
dient is applied in the plane of the layers. The model is tocas heterostructures or metal-oxide-semiconductor structures.
simple to describe quantitatively and in detail the behavior ofin this case the electron motion is separable in the plane of
S(T) in the systems which will be mentioned below. Real, free motion of the electrons and the direction perpendicular
relevant electron bands and phonon modes have to be finaltp this plane due to the action of an external potential pro-
considered by numerical methods. In most cases, howeveduced in these layered systems. Our model corresponds to
considerations of such bands and modes can be reduced éonsidering only the lowest electron subb&n@he thermo-
the first approximation to the assumptiofis and (2) and, electric power of heterostructures was recently measured on

(6)

ﬁZ
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a wide temperature sc_a?@,an.d the results of the present 1 PypdiUy— Py dyUpt JU ) + PrdoUsy
paper may be useful in their interpretation. On the other Sz? 5 5 , (1)
hand, the theoretical ideas used in theories of the electron P22J1—2P12J1d,+ Pyyd;

transport in quasi-two-dimensional electronic systems were .
P d y Where the symmetry,,= P,; was taken into account. For

szje(ejrc:; duifjr%lbzfn dthtﬁe t;i?ﬁggt C|;i?meh(;gi]r}§m§§£ﬁtuﬁhe two-dimensional parabolic bardq. (1)], the trial cur-
P ' rrents are expressed in terms of Fermi-Dirac integrals

theory, including at least two subbands, may account fo
their behavior “atypical of a conventional Fermi liquid.”

o n
For similar physical reasons a motfebuch as that above Fn(z):f dx X . Z= ¢ (12)
was used to describe intercalation compounds of graihite o ltexgx—z] keT
before the high-temperature superconductors were found arlg/ the combinations
guasi-two-dimensional electronic systems were widely
manufactured. Lo(2) =Fy(2),
The first theory of the electronic transport in two-
dimensional systems should probably be attributed to the au- L,(2)=2F,(2) - zFy(2) (13)
thors of Ref. 30, who studied the influence of the Fermi- '
surface geometry on the electrical conductivity of metals. In _ _ 2
order to examine neck parts of the Fermi surface, they as- L2(2)=3F,(2)~42F1(2) + 2°Fo(2),
sumed the surface to be of cylindrical symmetry withoutand read
excluding the electron momentum change along the cylindri-
cal axis. J1=—Jo(kgT)Lo(2), Jo=—Jo(kgT)?L4(2),
(14)
Ill. THEORETICAL METHOD Ui=—Jz/e, Up=Ug(ksT)’Ly(2),

To calculate the TEP we shall use the variational ZimanwhereJ, andUg are interrelatedJo=eU,) constants.
formalism33%23 within the Boltzmann equation approach,  To calculate the scattering matrix elements for our model,
which enables to account well for the momentum and energwe represent the functions;(k,k") under integralg9) in
transfer between a conduction electron and a phonon durinipe following way
the scattering. The notion of relaxation time is not introduced

within the variational Ziman formalisitt The scattering is u=(q-a)?,

described by means of a matrix whose order depends on the

number of trial functions. The minimum set consists of two Upp=Uxn=[(e—)+(e'—€)](q-a)? (15)

functions>3! describing, respectively, the microscopic elec-

tric and thermal currents Up=[(e—0)?+2(e'—¢)(e—{)](q-a)?
Qi(k)=(v-a)(e—¢)' L, ® +(s'—&)?[(q-a)%+(k-a)%].

wherei=1 and 2, anda denotes the direction of the tem-  While writing the above expressions, we neglected terms
perature gradient applied “in plane” and=Ve/# is the linear ink andk’, which do not contribute to the integrals.

in-plane electron velocity. _ _ After performing integration with respect to the angles of the
In this approximation the thermoelectric power is ex-scattering and taking exactly into account the energy conser-
pressed by means of the scattering matrix elements vation constraintsee Appendix Bthe elements of the scat-

tering matrix can be expressed in terms of the integrals

* —-z) max
(9) HkI(Z,T):J’o dx (X Z) fp dp

iy (k, k) =04 (K) = Qi (k) T4 ()~ Q;(k)], 1+e 2y

pij:fko dk’C(k,k"ujj(k,k"),

K
and the trial currents P

X — (n 2(aP_ —(x—z+p)’
\/4:885)( (p—Beg)(eP—1)(1+e )
df
Ji=—eJ dk(—g)ﬂi(k), (16)

(100 wherek and| are integersgs=2mv2, and the(reduced
minimal and maximal electron momentupy namely, Pmin
Ui:f dk( - £>(8_§)Qi(k)’ and phax, depend in general on thgeduced electron en-
ergy x. This dependence is exactly the same as in the 3D
where —e (e>0) is the electron charge. The integration case, and is presented in Appendix B.
over the electron wave vectors is three dimensional, with a The final expessions for the scattering matrix elements are
trivial integration in thez direction (see Appendix Bunder
the constraintg=k’ —k, i.e., the transferred wave vector P11=Pot®Hay(z,1),
during the scattering is the phonon wave vector.
The relevant expression for the thermoelectric power is P1o=Py=Pot3(kgT){Hz(z,t) +Hao(z, )},  (17)
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FIG. 1. Temperature dependenceSaesulting from formulas in
the text for the 2D system for typical values of paramefEgs
=200 K andeg=1.5 eV, and valueg, (in K) as indicatedsee
Table ).

P22: Potg(kBT)z{ H32(Zat) + 2H41(Z,t) + H50(Z’t)
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TABLE I. The values of the parameters relevant to Figs. 1 and
2 for the free-electron effective mass and the Fermi energy
=1.5 eV. The ratios of the Debye phonon wave-vector cutoff to the
caliper of the Fermi surface are presented in the last column.

No. gs (K) a b Op/2ke

(i) 1.50 1.62 0.0075 0.619
(i) 3.00 2.84 0.0150 0.427
(iii ) 6.00 3.23 0.0300 0.309
(iv) 12.0 4.57 0.0600 0.219
(v) 24.0 6.46 0.1200 0.154
(vi) 48.0 9.14 0.0240 0.109

They have to satisfy the conditiorms>b anda+b>1 for
the positiveness of the expression under the square root in
integral (20) in the whole interval 82x<<1/k. If these condi-
tions are not satisfied, one cannot assume the Debye cutoff
and the degenerate limisee Appendix B

By applying these expressions and the asymptotic ones
for the trial currents with

2 2

w v
L@~75 L@=~3z

3 (22)

&€
+ |(B_f|-[H31(Z,t)+ZH30(Zyt)]]y Lo(2)~z,
wheret=T/Tp, andP, is a constant. They are counterparts
of formula(3.12 of Ref. 3; their complicated form is caused
by the fact that the energy transfer between the electron and _
phonon system is taken into account. S=SOFU)S(D),
As a first approximation we consider that the electron gasyherec= ¢ /kgTp and
is sufficiently degenerate such thal(T)=ex and z
= B{(T)—x can be taken in the end. Then the model sys-
tem is one that describes a typical metal to which the stan-
dard Sommerfeld expansion or the degener@etallic
limit is applied.(see, e.g., Refs. 12 and )13 he final results
of Ref. 1 were also obtained in this approximation.
If the Fermi energy is sufficiently large, a Debye momen-

tum cutoff can be assumed, i.€9y,,=1t=Tp/T and
Pmax > One can show thaB,(t—»)=0 andS;(t—x)=—2m?/3.

in=0. Then the asymptopic analysis of the integrals
ﬂ::EZ,T) can be made gxaf:)tlypin the szme way as in AI?penj'herefore, the high-temperature-describing approximation of

dix B of Ref. 3 for the integralsG,.(z,T). The final Ed-(23is
asymptotic(at z—o) expressions for the scattering matrix
elements are

we obtain

(23

7% kg Pit)

So(t) 3 e Pyll)’
(24)

2 Kg
Sl(t)Z—?g|1+

77_37)11(0]
3 Pyt))”

2
S=-—__ 22 (25)

Pij(%,T)=Po(kgT)' 17 2t4P; (1), t=T/Tp, (18

The temperature dependence $fresulting from the
above formulas for the 2D system is shown in Fig. 1 for the
values ofe¢ of Table | and for typical values aofg and Ty, .

The temperature interval in which the TEP is positive is
wider for 2D systems. Notice that the carriers are assumed to
be electrons not holes for both 3D and 2D systems. The
positiveness ofS(T) in certain temperature intervals is a
consequence of the fact that the first term in &), Sy(T),

is positive and overwhelms the negative contribution of the
second term. The terr8y(T), being expressed in terms of

where
Pra(t) = Fy(a,b;t),
Part)=(112) Fs(a,b;t), (19

Poot, T)=(72I3) Fy+ (1/3) Fs— (bI2t) Fs+ (al2t)?Fy,
with the integrals?,(a,b:t) defined

1 dx x" the matrix element$;,(t) ="P,(t), describes the corrrela-
Fn(a,bit)= 0 m x_1)(1—e %) ' (200 tions of the electric and thermal currents, just as in the linear-
a"=( (e (1-e response theor¥f It is effective only if an inelastic contri-
The parameters are bution to the scattering is taken into accotidts seen from
the figures, the influence of this term is more pronounced in
a=2(eres)Y¥kgTp, b=ge4/kgTp. (21)  the 2D case than in the 3D ca@®mpare Figs. 1 and) 2The



PRB 61 NONTRIVIAL BEHAVIOR OF THE THERMOELECTRL . .. 5307

Slkglel S [kglel € n
02 1 143 091
0.2 2 126 080
01k 3 1.00 064
4L 075 0.48
| . | ' Tk 01 5 050 0.32
OS<=—m0_ 200 300 500~_600
\\\\\\\\ 2D O ) ) — |T[K]
011 ~ T 100 200 300 400 ]
~o 2D 3
-02f -~ -01F
~_ 3D
~ . 4
-03l 30 02l 5
FIG. 2. Temperature dependence $for 2D systemscurve FIG. 3. Temperature dependenceSdor 2D systems, with dif-

corresponding tw =6 K. (iii) of Table I] of Fig. 1 and for 3D
systems with the same values of the paramelys6 K, e
=1.5 eV, andT;=200 K.

ferent values of the electron concentratiofor ¢ in eV) as indi-
cated;es=6 K andTp=200 K. The uppermost two curves corre-
spond to those of Fig. 3 in Ref. 1.

agreement between our calculation and the asymptotic valugssratures decrease with an increasesofor n in our case

[Eq. (7)] wil occur only at very high temperatqre.. while the opposite trend is seen in Fig. 1 of Ref. 1. Further-
The behavior ofS(T) as illustrated is qualitatively the more, the maximum valueS of Fig. 3 decrease with an
same as that for the underdoped LSCO system of Fig. in.rease of contrary to Ref. 1. These discrepancies can be
examined in Ref. 1, and thus for systems with a sufficientlya iy ted to the fact that a finite band is considered in Ref. 1
large number of carriers as well. In both cases the maximurggnirary to our free electron approximation. The only quali-

in S(T) is a consequence of the fact that the TEP is Veryaiiye difference is the slope &(T) at high temperatures,

sensitive to the excitation of electronic states close to th"?he absolute value of which decreases with increasecof
Fermi surface, as well known from the TEP definition, and t?ﬁ F

. . . andn), while the opposite trend is seen in Fig. 1 of Ref. 1.
the fact that there is an asymmetry in the scattering rate fro is known that for a band of finite width the magnitudeSf
unoccupied stateéhples) and occ_:upled state@lectrons at g high temperatures approaches a finite vafu& Such a
and near the Fermi surface_. Itis weII.known that thg h_'gh'slope saturation is observed in high-temperature supercon-
temperature behavior & as in Eq.(25), is the characteristic

. o . ductors, in which the conduction-band-width can be nar-
one for systems with a positive charge-carrier mass. On thﬁ)wer thanksT. The opposite tendency—an increase of the

other hand, a pos_itive slope in the agymptotic be_havior 'Jibsolute magnitude of the slope with increasespf—is a
obtained form<0 in the above case with a parabolic spec-| o\ teatire of the free-electron-gas approximation.
trum. Less obvious is the fact th&(t) is positive both for

m>0 andm<0. Consequent\5(T) is strictly positive for
all Twhenm<0, both in two and three dimensions, and thus IV. CORRESPONDENCE TO RELAXATION-TIME
the behavior ofS(T) in two dimensions fom<0 (not con- APPROXIMATION

sidered in this papgresembles the behavior for hole con-  The question arises if and how the above results corre-
duction in the 3D caséFig. 1 in Ref. 2. In the case attrib-  spond to those obtained in the relaxation-time approximation
uted to LSCO in Ref. 1, the behavior &findicates that the gnd those resulting from the MottJone$ formula, i.e., in
free-electron mass is positive. This can be checked by apzse of a degenerate electron §jas {(T)/kgT—]. For

expansion of the tight-binding electron spectrum considereghis purpose we have to recall the standard textbook
by Hildebrand et al! Furthermore a relationship can be formulgth1312

found between the electron concentratioper unit-cell vol-

ume, the Fermi energyr, and the tight-binding energy K,

bandwidthA . S=- eTK,' (26)
For a tetragonal latticesr=27nA. For comparison to

Ref. 1, let the parameter=1—x, wherex s like the number  where

of holes per site. The dependence{T) is given in Fig. 3

for various values ofn (between 0.32 and 0.91and Tp df

=200 K ande;=6 K. These correspond to free-electron szf ds( _£>(8_§)m7(8)w(8): (27)

Fermi energies ranging between 0.50 and 1.43 eV. It is in-

teresting to compare the dependences shown in Fig. 3 witlvith m=0, 1, and 2; the relaxation time ife), and

those shown in Fig. 1 of Ref. 1 for different valuesxofThe

temperature dependence Sffor all values ofex (n) are S,

qualitatively the same as that for the highest value ¢br W(S):WOI (W

the lowest value ok=1—n) in Fig. 1 of Ref. 1. Also the

magnitude ofSis of the same order as that of Ref. 1. How- whereW,=1/2 or 1/3 for 2D or 3D cases, respectively, and

ever, the absolute values of the slopeS¢T) at high tem-  with v,=0 in the first case.

[vi+vi+vl], (28)
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In the degenerate limitwith {=¢f) the above expression It is worth mentioning here that by applying the varia-
for Syields the Mott(-Jone$ formula tional Ziman formalism, resuli33) cannot be obtained. This
seems obvious from forr{l7) of the expression for the scat-

__ T 1 (do(e) tering matrices. In the elastic approximation only the first
5=~ 3 BTU_F de | 29 terms of Eq.(15) contribute toP;,,P,,, and Eq.(9). The
ETFF counterparts of integral&l6) describing this contribution in
where this case are
o(e)=e1(e)W(e) (30) = (X—2)'€7 [Pax
, , o Hﬁl'aSI(z,T)=J dx—J dp
is the electrical conductivity of energy. 0 (1+e*%2Jo
In this standard formulation of the theory only elastic

scattering can be accounted for, and the relaxation time is » pk @5
simply given by m(ep— 1) '

_ ﬂ) (1— cosby ), (31)  Wherepy,= 2(xe B)Y?is the case of the Sondheimer cutoff
de ' (corresponding to the energy conservation without the Debye

constrainf, and py,ax= 1/t in the case of the Debye cutoff.

The form of the above integral follows from neglecting the

phonon energy term in thé function of Eq.(4).
m(e)=1o(T)(elkgT)" 2, (32) Expression(33) is expected to be obtained from consid-

ering a scattering matrix of infinite order in the elastic ap-

with the exponent describing the type of the scattering. The proximation and an infinite sequence of the trial functit)s

values ofr are not negative, and do not exceed the value 4n the expression

for known scattering processes. As seen from @§), the

function 7o(T) is not essential for TEP considerations. The

1
) :f dk'C(k,k")

T

whereé, \ is the scattering angle, from which, for the para-
bolic (electronm>0) band, we obtain

electron energy dependence of the functibife) is also a 1 iJEZI JiQijY;
power lawW=W,e® with s=1 in the 3D case ans=1/2 in S= S — (36)
the 2D case. The temperature dependenc®(®j, resulting E 3iQijJ;
from Eqgs.(26) and(32), is ij=1
_ ke[(r+s+DF 1 (2) Gy

e | (r+s)Fris-1(2) Q=P Y. (37)
with the temperature dependencel¢T) in z=¢(T)/kgT to
be found for a particular model. This is the standard expres- V. CONCLUDING REMARKS
sion used in the physics of degenerate semiconduttors,
semimetal$? metals of low Fermi energy and quasi-two- The behavior of the TEP as a function of temperature for

dimensional electronic systen®>®?®In the latter systems metallic systems seems to have certain general features inde-
other scattering source than the phononic source are usualpgndent of the nature of the scattering. These main features
dominant. The exponent describing the acoustic scatteringonsist of (i) some maximum at intermediate temperature,
mentioned in Ref. 26equal tor =0 in our notationis usu- ~ and (i) a quasilinear dependence at high temperafirre

ally used to interpret experimental data in systems in whicfluding nearly constant values for systems of narrow bands
the Fermi energy is so low that Scattering angﬂﬁs(, as Moreover the minimum seen at very low temperatures, and
large asw are allowed. In the language used in Appendix Afound mainly - for - simple electron-phonon scattering
of Ref. 37, this means that the “Sondheimer energy imersystem§; Sarises as a manifestation of the fact that the elec-
val” instead of the “Debye energy interval” is effective in trons(not holes are the current carriers.

this case. In the Ziman variational formalism, this corre- A comparison of TEP for 2Din-plane TER and 3D sys-
sponds to calculating integrél6) with pya=2(xeg8)Y? (see  tems indicates that these general features of TEP are the

Appendix B. same for dimensionally different systems. Details of the band
In the degenerate limit the above formula is simply structure, the Brillouin-zone fillingdoping, the source, and
the type of scattering as well as the spectrum of the scatterers
72 Kg kgT should, of course, introduce corrections to the “exact” tem-
S=- 3 g(r +s) e (34 perature dependence of TEP. They should still be studied by

reliable theoretical methods without any drastic approxima-
Since the exponemttakes on the valugs=3/2 (the 2D casg  tion. Studies of truly 20metallic) systems seem particularly
andr=2 (the 3D casgfor acoustic-phonon scattering, the useful for this purpose. As concerns their application to par-
asymptotic high-temperature dependenc& odsulting from  ticular materials, it is worth mentioning here that the descrip-
the Ziman variational formalisni25) corresponds to the lin- tion of a cuprate superconductor in terms of a parabolic band
ear dependence following from the relaxation-time approxi-dispersion and accoustic phonons is known to be inadequate,
mation. The same concerns the 3D case considered in Refsald the theory presented here should rather be applied to
and 3. more conventional metals. Indeed the nonlinear temperature
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dependence o8B is also expected even for the free-electronwhere

gas. Nevertheless the behavior $(fT) in high-temperature

superconductors has a simple character. There seems to be

no need for complicating the situation with many bafftls, B(p,e)=(efP—1)"}(1+e A=)~ (B2
polaron contributiond® and the like, when there are still the-
oretical questions as to their proper accounting. The investi-
gation of Ref. 1 and that of the present paper indicate ho
terms describing the scattering contribute to TEP at interme )
diate and low temperatures. For their description a bette f<>2:§' W'tlh qD_fthﬁ Delbye curtoff .phonon Wa]}’e num%er
theory than the relaxation-time approximation is required, —t 2e caiper o t. e electron equienergy sur ace, ad
since the latter is capable of properly describing only elec— 2Mvs/%. In the limit of the degenerate gasetallic limib),

tronic properties of a material. which we applied in _Ref. 3, one can assugax=dp gnd _
change the order of integration. This was the approximation

of the final formulas of Ref. 3. The same appproximation is
ACKNOWLEDGMENTS used in the final formulas of the present paper.
. ) . , The considerations leading B;; were performed in Ref.
This work is part of an Actions de recherche concste 3 nqer strict energy and momentum conservation. For this
(ARC 94-99/174 contract between the Communaute o, nose we rotated the coordination frame in the inverse
francaise de Belgique, DG Enseignement non obligatoire €lyace \which enabled us to integrate analytically appropriate

Recherche scientifique, Ministery of Higher Education andgypressions with respect to the angles in spherical coordi-
the University of Lige. K.D. and M.A. thank CGRI and

KBN for financial aid during part of this work.

he wavelength limits in integral(Bl) are Qmax
=min(dp,2k+0s), Amin=0 if qs=2k, andqy,=0s— 2K if

For the systems of the layered structure discussed in the
present paper the meaning of the integrals in E§s.and

APPENDIX A (10) is

The transition rate describing the scattering of electrons
by acoustic phonons in tetragonal and hexagonal crystals can 2 be
be expresse(see, e.g., Ref. 24y mean spectra and polar- f = 5 3f
izations with respect to directions in crystals. A Fermi (2m)
golden rule expression such as E¢g) for tetragonal and 4b, f ( dSE>

—b

dsz dkdk,- - -

hexagonal crystals in this approximation reads =——| | = (B3)
(2m)3) Vel
q2
Iy — ’ L !
Clk,k')=Copf(e)[1-f(s )][w_qui S(e—&'+hwq) where the maximum wave number in tbéor z) direction is
) b.=w/d;, andd. is the unit-cell length in that direction.

q; , Similar considerations to those in the 3D case with spherical
Jr@'\'q,za(s_8 thogy) |, (A1) electron equienergy surfaces can be repeated, but for the in-

tegration in spherical coordinates. We only mention that to
this end we first change the variables frerandk’ to k and
where the phonon wave vectar=k’—k is equal to the g=k’—k, and we rotate the coordination frame about zhe
transferred electron wave vector in the scattering; the correaxis through the angle = arctank, /k,), such that the com-
sponding electron energies before and after the scattering af@nent ofk vanishes in the coordinatds= (K,,0K,). In the
e(k)=¢ ande(k’)=g’, respectively. same way we obtain the components of the transferred wave
Cois a constant,qLZ\/qxzﬂquz, wq. and g, are the  vector Q,=qycose+aysing, Qy=0a,cose+a,sing, and
mean phonon spectra with the polarization perpendicular an@,= g, and introduce the cylindrical coordinates to integrate
parallel to thec axis (the z axis of the coordinatation frame  analytically with respect to the scattering angle égg
andNg, andN, are the corresponding Bose distributions. It =kq/(kg). In so doing we obtain
is seen that the second term in the above mean transition rate
does not contribute if the electrons are confined to move in
layers perpendicular to the axis. Thus we obtain Eq4)

i = = = *® max 3B y
with g, =0, @g =, andNg, =N. P11=P2Df d(Be)f(e)fq 4 q°B(q.e)
0

Amin \/4k2—(q—qs)2’

(B4)

APPENDIX B

While considering thermoelectric power in the 3D case bywhere q,=(2m/%)v,, and v, is the sound velocity. After
the variatonal methotiwe showed that the contribution to adding the factorsg—¢)' and transforming the above inte-

P1; is determined by the double integral gral to dimensionless variables, one obtains the integrals
Hy, [Eg. (16)], in which pya,=min(2yeBx+e¢B,11),

P1=Psp f “dige)i(e) | daq'B(a,e), (BD) - aNdPmin=Bes—2VesBX if fos>2\esBX, andpuin=0 in
0 Umin the opposite case.
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