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Rigid vibrations of a photonic crystal and induced interband transitions
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We investigate the behavior of electromagnetic states associated with photonic crystals, which are under-
going rigid time-dependent translations in position space. It is shown, quite generally, that the Bloch wave
vectorq remains a conserved quantity and that an analogue of Bloch’s theorem for a time-dependent solution
of the states can be formulated. Special attention is focussed on time-dependent translations involving har-
monic rigid vibrations of the photonic crystal. Under these conditions it is shown how, and to what extent,
inter-band transitions can be induced between the various bands in a photonic crystal in a microwave regime.
In particular, a characteristic resonance transition time can be derived, which scales inversely with the ampli-
tude of vibration and interband frequency. Finally, it is argued that given all parameters other than Bloch wave
vector fixed, an interband transition time is minimized if the transition is made at a Bragg plane.
he
-
nt

p
d
,
lin
th
t

-
ti
a

o
or
ou
ry
ith

e
th
ro
n
cy
n
u

e
on
ni
d
e

na
p
n
an
em
n
. F

he
d

e-

ns
ith
e-

ur-

m

I. INTRODUCTION

The idea of using periodic dielectric materials to alter t
dispersion relation of photons1–5 has received widespread in
terest and consideration because of numerous pote
applications.6 It has been shown by several authors7–9 that
passive elements such as waveguide bends, channel dro
ters, mirror surfaces, etc. can be substantially improve
constructed on the basis of photonic crystals. Recently
strong interest has developed for the incorporation of non
ear materials into photonic crystals. Investigations in
framework of field dependent dielectric media have led
several suggestions10–12on the possibility of constructing ac
tive elements such as optical switches and on the realiza
of dynamical effects such as second harmonic generation
induced interband transitions in photonic crystals.

The idea of this paper is to demonstrate the possibility
inducing interband transitions in photonic crystals using
dinary, linear field-independent media. To introduce a c
pling between the electromagnetic states of a photonic c
tal we employ rigid mechanical vibrations of the crystal w
a driving frequencyV and an amplitudeD. It will be shown
that in this setting, tuning the driving frequency to the fr
quency of the interband transition leads to coupling of
modes and an interband transition time that is inversely p
portional to both the amplitude of vibration and the interba
frequency. Experimentally, since the driving frequen
should be comparable to the frequencies of the photo
modes, this method of inducing interband transitions sho
be most relevant to the microwave region.

The outline of the paper is as follows. In Sec. II, w
describe a general approach for solving Maxwell’s equati
for general rigid time-dependent translations of a photo
crystal. Section III, deals with setting up the correct boun
ary conditions for the fields on the moving interface betwe
two dielectrics. In Sec. IV, we address a computatio
scheme for obtaining the time-dependent population am
tudes of the electromagnetic modes. In Sec. V, harmo
vibrations of a photonic crystal are considered and reson
mode coupling and photonic interband transitions are d
onstrated. The interband transition time and its depende
upon various system parameters is discussed in Sec. VI
PRB 610163-1829/2000/61~8!/5293~10!/$15.00
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nally, in Sec. VII, we make some concluding remarks. In t
Appendix, we provide a detailed derivation of a modifie
Bloch theorem for a photonic crystal undergoing rigid tim
dependent vibrations.

II. RIGID TRANSLATIONS OF A PHOTONIC CRYSTAL
AND THE MASTER EQUATION

We begin by deriving the time-dependent field equatio
for the case of a translated photonic crystal. Starting w
Maxwell’s equations for a nonmagnetic material with a tim
and position-dependent dielectric constant we have:

¹H~x,t !5
]@e~x,t !E~x,t !#

]ct
,

~1!

¹E~x,t !52
]H~x,t !

]ct
.

The equation for the magnetic field can be analyzed f
ther by manipulating the right-hand side:

¹H~x,t !5
]e~x,t !

]ct
E~x,t !1e~x,t !

]E~x,t !

]ct
,

1

e~x,t !
¹H~x,t !5

]e~x,t !

]ct

e~x,t !
E~x,t !1

]E~x,t !

]ct
,

~2!

¹F 1

e~x,t !
¹H~x,t !G5¹F ]e~x,t !

]ct

e~x,t !
E~x,t !G

1¹
]E~x,t !

]ct
.

Substitution of the second of Maxwell’s equations fro
Eq. ~1! into the last equation of Eq.~2! gives a time depen-
dent version of the ordinary5 master equation:
5293 ©2000 The American Physical Society
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¹F 1

e~x,t !
¹H~x,t !G52

1

c2

]2H~x,t !

]t2

1¹F ]e~x,t !

]ct

e~x,t !
E~x,t !G . ~3!

Let us now consider a photonic crystal translated with
displacementD(t) as illustrated in Fig. 1, whereR is the
periodicity of the photonic crystal andR1 , R2 are the widths
of the slabs with dielectric constantse1 ande2 consequently.

For simplicity we focus on a one-dimensional~1D! pho-
tonic crystal but our analysis is valid in general. At a fix
point in space, the dielectric constant is typically a disco
tinuous function of time. We notice also that as soon ax
ÞD(t)1Rl, xÞD(t)1R11Rl ~boundaries between th
slabs of differente) wherel is any integer, the term

¹F ]e~x,t !

]ct

e~x,t !
E~x,t !G50. ~4!

Thus, the time dependent master equation reduces
stationary photonic crystal master equation~i.e., the master
equation for a photonic crystal at rest!

¹F 1

e@x2D~ t !#
¹H~x,t !G52

1

c2

]2H~x,t !

]t2
, ~5!

wherexÞD(t)1Rl, xÞD(t)1R11Rl. We must now con-
sider what happens with the fields on the moving bound
between two dielectrics.

III. RIGID TRANSLATIONS AND BOUNDARY
CONDITIONS ON THE INTERFACE OF TWO MOVING

DIELECTRICS

Let us consider a one dimensional interface between
dielectrics as shown in Fig. 2.

Maxwell’s equations for each dielectric become

2
]H~x,t !

]x
5

]e~x,t !

]ct
E~x,t !1e~x,t !

]E~x,t !

]ct
,

~6!
]E~x,t !

]x
52

]H~x,t !

]ct
.

FIG. 1. 1D photonic crystal with periodicityR rigidly translated
with a displacementD(t).
a

-

a

y

o

A dielectric medium which is a function of space and tim
can be conveniently expressed as

e~x,t !5e11~e22e1!u@x2D~ t !#, ~7!

whereu(x) is a standard step function. Thus, the time d
rivative of the dielectric media can be derived from this for
of e(x,t) and becomes

]e~x,t !

]ct
52~e22e1!d@x2D~ t !#

Ḋ~ t !

c
. ~8!

Maxwell’s equations with the discontinuous term atx
5D(t) can be satisfied if we assume discontinuous elec
and magnetic fields through the interface. Thus, choosin

E~x,t !5E11~E22E1!u@x2D~ t !#,
~9!

H~x,t !5H11~H22H1!u@x2D~ t !#

in the vicinity of the interface for the space and time deriv
tives of these fields we obtain

]E~x,t !

]ct
52~E22E1!d@x2D~ t !#

Ḋ~ t !

c
,

]E~x,t !

]x
5~E22E1!d@x2D~ t !#,

~10!

]H~x,t !

]ct
52~H22H1!d@x2D~ t !#

Ḋ~ t !

c
,

]H~x,t !

]x
5~H22H1!d@x2D~ t !#.

Substitution of these derivatives into Maxwell’s equatio
leads to the following equations for the boundary conditio

FIG. 2. 1D interface between two dielectrics displaced byD(t)
at time t.
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2~H22H1!d@x2D~ t !#52~E22E1!
Ḋ~ t !

c
d@x2D~ t !#$E11~E22E1!u@x2D~ t !#%

2H e11~e22e1!~E22E1!u@x2D~ t !#
Ḋ~ t !

c J , ~11!

~E22E1!d@x2D~ t !#5~H22H1!
Ḋ~ t !

c
d@x2D~ t !#.

Integration in the intervalxP@D(t)20;D(t)10# then gives

~H22H1!5~e22e1!
E11E2

2

Ḋ~ t !

c
1

e21e1

2
~E22E1!

Ḋ~ t !

c
,

~12!

~E22E1!5~H22H1!
Ḋ~ t !

c
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which can then be rewritten as

E2

E1
5

12S Ḋ~ t !

c
D 2

e1

12S Ḋ~ t !

c
D 2

e2

,

~13!

H22H15E1

~e22e1!
Ḋ~ t !

c

12S Ḋ~ t !

c
D 2

e2

.

We thus arrive at the conclusion that the solution of
time-dependent master equation for a translated phot
crystal is equivalent to solving the stationary photonic crys
master Eq.~5! with the time dependent boundary conditio
~13!.

IV. COMPUTATIONAL METHOD
AND APPROXIMATIONS

In practical applications, the characteristic velocity of
translated crystal is considerably smaller than the spee
light. Thus,Ḋ(t)/c is a small parameter in our system. W
can also reason that if one is interested in inducing tra
tions from one band of a photonic crystal to another by m
chanical vibration, the driving frequencyV inducing such a
transition should be comparable to the characteristic b
frequencyv, thus, Ḋ(t)/c;DV/lv;D/R, where R is a
spatial period of the crystal that is of the order of the ch
acteristic wavelength of an extended mode. This places u
a regime where the amplitude of vibrations is necessa
considerably smaller than a spatial period of a crystal
thus perturbation theory is clearly applicable. As the veloc
of vibration is much smaller than the velocity of a propag
ing mode it is intuitive to expect that an instantaneous s
of the system can be thought of as being composed o
superposition of modes for a stationary crystal but shifted
e
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an amount equal to the current displacementD(t). We can
put this assumption on a rigorous basis by employing
modified Bloch theorem appropriate for a rigidly translat
photonic crystal. We prove~see the Appendix! that for the
case of a rigidly translated photonic crystal, a time depend
solution of the electromagnetic fields still possesses a Bl
symmetry

S Hq~x1R,t !

Eq~x1R,t ! D 5exp~ iqR!S Hq~x,t !

Eq~x,t ! D . ~14!

Thus, we can expand the magnetic fieldH(x,t) in terms
of the shifted eigenmodesHq,vn

@x2D(t)# of the stationary
master equation and obtain

H~x,t !q5 (
vn(q)

Cq,vn
~ t !Hq,vn

@x2D~ t !#. ~15!

Here, theCq,vn
(t) are the time-dependent band populati

amplitudes~to be determined! and theHq,vn
(x) satisfy

¹F 1

e~x!
¹Hq,vn

~x!G5
vn

2~q!

c2
Hq,vn

~x!. ~16!

We note thatH(x,t)q satisfies the Bloch form of a solutio
and that the choice of the initial values ofCq,vn

(0) and

Ċq,vn
(0) is made based on the boundary conditions. Th

with a proper choice ofCq,vn
(t), H(x,t)q is an exact solu-

tion of the time-dependent problem for the rigid translatio
of a photonic crystal.

Let us now develop equations for the time depend
population amplitudesCq,vn

(t).
We note from Eq.~16! that
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¹H 1

e@x2D~ t !#
¹Hq,vn

@x2D~ t !#J
5

vn
2~q!

c2
Hq,vn

@x2D~ t !#. ~17!

In addition, the orthogonality of the modes gives

^Hq,vn
@x2D~ t !#uHq8,vn8

@x2D~ t !#&5dn,n8dq,q8 . ~18!

Substitution ofH(x,t)q into the stationary photonic crys
tal master Eq.~5! and use of Eqs.~15!, ~16!, and~17! leads to

(
q,vn(q)

Cq,vn
~ t !Hq,vn

@x2D~ t !#
vn

2~q!

c2

52
1

c2 H (
q,vn(q)

C̈q,vn
~ t !Hq,vn

@x2D~ t !#

12 (
q,vn(q)

Ċq,vn
~ t !

]Hq,vn
@x2D~ t !#

]t

1 (
q,vn(q)

Cq,vn
~ t !

]2Hq,vn
@x2D~ t !#

]t2 J . ~19!

Now, using the orthogonality of theHq,vn
@x2D(t)#

modes we can rewrite the above equation in the form

05C̈q,vn
1vn

2~q!Cq,vn
12 (

q8,vn8(q8)

Ċq8,vn8

3K Hq,vn
@x2D~ t !#U]Hq8,vn8

@x2D~ t !#

]t L
1 (

q8,vn8(q8)

Cq8,vn8K Hq,vn
@x2D~ t !#

3U]2Hq8,vn8
@x2D~ t !#

]2t
L . ~20!

Since theHq,n(x) are solutions of the stationary Mast
equation for a crystal, they are the Bloch waves of a stati
ary Hamiltonian and therefore

Hq,vn
@x2D~ t !#5exp$ iq@x2D~ t !#%Uq,n@x2D~ t !#,

~21!

whereUq,n@x2D(t)# is a periodic function with periodicity
R.

Given this particular form of theHq,vn
@x2D(t)#, we can

express the transition matrix elementŝ Hq,vn
@x

2D(t)#u$]Hq8,vn8
@x2D(t)#/]t%& and ^Hq,vn

@x

2D(t)#u$]2Hq8,vn8
@x2D(t)#/]t2%& in terms of integrals

over the derivatives ofUq,n@x2D(t)#. To first order inD(t)
one can derive
-

K Hq,vn
@x2D~ t !#U]Hq8,vn8

@x2D~ t !#

]t L
52@ iqdn,n81Mn,n8~q!#Ḋ~ t !dq,q8 ~22!

and

K Hq,vn
@x2D~ t !#U]2Hq8,n8@x2D~ t !#

]2t
L

52@ iqdn,n81Mn,n8~q!#D̈~ t !dq,q8 , ~23!

whereMn,n8(q) is an antihermitian transition matrix define
as

Mn,n8~q!5K Uq,nU]Uq,n8
]x L

v

~24!

and the integral is taken over the volume of a unit cellv.
Thus, from Eqs.~22! and ~23! intraband transitions are no
allowed in this formalism and only interband transitions a
possible.

Substitution of Eqs.~22! and~23! back into Eqs.~20! then
gives

C̈̄22Ḋ~ t !~ iq1M !Ċ̄1@D2D̈~ t !~ iq1M !#C̄50, ~25!

where C̄5@Cq,v0
(t),Cq,v1

(t), . . . # is a vector of mode
populations, andD is a diagonal matrix with squared natur
mode frequencies on the diagonal, i.e., diag(D)
5@v0

2(q),v1
2(q), . . . #. Finally, we note that Eq.~25! is not

time reversal invariant, which is consistent with the fact th
Eq. ~5! represents a driven system.

V. RESULTS FOR RIGID TRANSLATIONS
WITH A HARMONIC DISPLACEMENT

Let us now consider the special case of rigid vibratio
with a harmonic displacement

D~ t !5D sin~Vt !. ~26!

In this case, Eq.~25! for the time dependent population o
modesCq,vn

(t) can be easily analyzed. RewritingD(t) as

D~ t !5D
exp~ iVt !2exp~2 iVt !

2i
~27!

we notice that Eq.~25! allows a solution of the form

C̄5 (
l 52`

1`

Āv1 lVexp@ i ~v1 lV!t#1 (
l 52`

1`

Ā2v1 lV

3exp@ i ~2v1 lV!t#. ~28!

Here, the eigenvectorsĀv1 lV and Ā2v1 lV are to be de-
termined by substituting Eq.~28! into Eq.~25! and solving a
complicated matrix equation.13 Since we are dealing with
smallD @and we know thatv5vn(q) whenD50# the spec-
trum of the excited modes is not going to change much. T
the frequencies for the excited modes can all be appr
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mated byvexcited.6vn(q)1 lV wherel is any integer and
vn(q) are the normal frequencies of a stationary photo
crystal.

As an example, let us consider the case of a 1D photo
crystal with alternating dielectric slabs of width 0.8 and 0
and dielectric constantse151 ande2513, respectively. For
simplicity, we setR51 andc51 and concentrate on the mi
zone wavevectorq5p/2. The first three bands are easi
calculated and have frequenciesv0(p/2)50.8189,
v1(p/2)53.3047, v2(p/2)54.9659. For definiteness w
focus on exploring a possible interband transition from ba
0 to band 1, and thus setV res52.4857.

To investigate the time dependence of the excited st
of the system we perform the following simulation. Att
50 we initialize our state to be band 0 and calculate the t
dependence of the band populations as we vibrate the cr
with a frequencyV. We then analyze the Fourier spectra
the band populations.

Let us begin with the caseV!V res . A Fourier analysis
of the time dependence of the populations for band 0
band 1 gives the spectra shown in Figs. 3 and 4, respectiv

One can see in Fig. 3 that harmonics of the fo
6v0(p/2)1 lV are excited with6v0(p/2) having the
dominant amplitude, which is in accordance with Eq.~28!.
Moreover, the excitations6v0(p/2)1 lV for u l u.1 are so

FIG. 3. Frequency spectrum of the population of band 0 aq
5p/2 with D50.01 andV50.2. Note the dominating natural fre
quency harmonics with6v0(p/2) and excitations of the form
6v0(p/2)1 lV.

FIG. 4. Frequency spectrum of the population of band 1 aq
5p/2 with D50.01, andV50.2. Natural frequency harmonic
6v1(p/2) and their excitations6v1(p/2)1 lV are superimposed
on the excitations6v0(p/2)1 lV induced by the 0→1 transition.
c

ic

d

es

e
tal
f

d
ly.

small they are unresolvable in the figures. Excitatio
6v0(p/2)6V have Fourier components that are two orde
of magnitude smaller than the Fourier components of
natural harmonics6v0(p/2). As the driving frequency is
substantially smaller than the 0→1 resonant frequency, th
transition to band 1 is suppressed and the amplitudes of
cited modes in band 1 are at least three orders of magni
smaller than the amplitudes of the6v0(p/2) natural modes
in band 0. This is shown in Fig. 4. From the Fourier spe
trum associated with band 1 one can see that the main
monics are at6v1(p/2), 6v1(p/2)6V, and 6v0(p/2)
6V. The presence of the latter frequencies reflects
‘‘memory’’ of the band from which the transition originated

Let us now consider the caseV5V res . Tuning the fre-
quency of vibrationV to the interband frequencyV res leads
to a strong interband coupling. After a characteristic tran
tion time t transition the envelope of the amplitude of popula
tion of band 1 gradually approaches the same order of m
nitude as the original population of band 0. This is shown
Fig. 5.

The rapid oscillations correspond to the natural frequ
cies of each band. Note that there is complete transfe

intervals of about 60Rc . Fourier analysis of these spectra lea
to the results shown respectively in Figs. 6 and 7. As

FIG. 5. Plot of the time-dependent population amplitudes
bands 0 and 1 atq5p/2 as a function of timet for the 0→1
interband transition withD50.01, andV5V res . With these pa-
rameters the population of band 1 becomes comparable with

population of band 0 att transition;60R
c .

FIG. 6. Frequency spectrum of the population of band 0 aq
5p/2 with D50.01, V5V res . As in the case of the off-resonanc
transitions the excitations in the band 0 are of the fo
6v0(p/2)1 lV.
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the case of the off-resonance transitions, the general form
the excitations is6v0,1(p/2)1 lV where the amplitudes o
the excitations withu l u>1 are much smaller~at least one
order of magnitude! than the amplitudes of the modes wi
the natural frequencies of the bands. Specifically, for ban
~Fig. 6! it is clear that harmonics with the natural frequen
of the band6v0(p/2) dominate the Fourier spectrum b
two orders of magnitude. Similarly, for band 1~Fig. 7! the
harmonics6@v0(p/2)1V res# and6v1(p/2) coincide with
each other and dominate the Fourier spectrum by at least
order of magnitude.

A natural issue to consider at this point concerns the
terband transition time at resonance. This is addresse
detail in the next chapter.

VI. THE INTERBAND TRANSITION TIME

Since the amplitude of vibration plays the role of an
terband coupling constant, one would expect that the tra
tion time should be proportional to the inverse of this co
pling constant. Doing standard time dependent perturba
theory on Eq.~25!, with t transition defined to be the time
required for the population amplitude of band 1 to reach
maximum, one obtains

FIG. 8. Transition time versusp/DuM01uV for q5p/2 andV
5V res .

FIG. 7. Frequency spectrum of the population of band 1 aq
5p/2 with D50.01, V5V res . Harmonics with the natural fre
quency of the band6v1(p/2) dominate the Fourier spectrum. No
that in this case the amplitude of6v1(p/2) is comparable to tha
of 6v0(p/2) in Fig. 6.
of

0

ne

-
in

i-
-
n

s

t transition5
Av0v1

v01v1

2p

DuM01uV res
. ~29!

Here, uM01u is the absolute value of the transition-matr
element defined in Eq.~24!. Since Av0v1/(v01v1) will
typically always be about 0.5 for a fairly wide range
v1 /v0 we can approximatet transition for most practical pur-
poses as

t transition;
p

DuM01uV res
. ~30!

Note that this expression is also inversely proportional to
matrix element and resonant frequency. We shall return
examine this behavior shortly, but first we focus on t
D-dependence. Forq5p/2 and V5V res we determine
t transition independently by varying the coupling consta
and calculating the number of cycles needed for the am
tude of band 1 to reach its maximum. A comparison of the
results with those predicted by Eq.~30! is given in Fig. 8.

FIG. 9. Transition-matrix element for a set of Bloch wave ve
tors as a function ofe2. Each curve corresponds to one of the Blo
wave vectors in a setq5p/nR wheren51 to 10.

FIG. 10. Band 0→1 transition resonance frequencyV res(q) for
a set of Bloch wave vectors as a function ofe2. Each curve corre-
sponds to one of the Bloch wave vectors in a setq5p/nR where
n51 to 10.
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The results clearly show thatt transition is inversely propor-
tional to the amplitude of vibration and that Eq.~30! is a
reasonable approximation.

We now turn to the case whereD is fixed anduM01u and
V res are allowed to vary. Under these conditions the int
band transition time is given by

t transition~q,R1 ,R2 ,e1 ,e2!

;
p

DuM01~q,R1 ,R2 ,e1 ,e2!uV res~q,R1 ,R2 ,e1 ,e2!
.

~31!

For simplicity, we begin by focusing on calculatinguM01u
and V res in various limits. Earlier we considered a syste
with e151, e2513, R150.8R, andR250.2R. Now we al-
low e2 to vary and calculateuM01(q,e2)u for q in the interval
@0,p#. The results are shown in Fig. 9.
d
a

e

lo

th

al

f
-
a
l
-
ax
a
ta

on
th

al
-

One can see that for each value ofq, the transition-matrix
element is a monotonic function ofe2 bounded from above
by values independent ofe2. One can show that these boun
are reached whene2@e1(R1 /R2)2. In addition, it is rela-
tively straightforward to show that in the limits ofe2→e1

andR1.R2 , uM01(q,e2)u becomes a function of the crysta
structure andq alone. For example, at the band edgeq5p,
one can perform an analytical calculation ofuM01(q)u and
obtain

lim
e2→e1

M01~p,e2!5 i
p

R
~32!

and
lim
e2@e1~R1/R2!

2

M01~p,e2!5 i
4A2p

AR1S p224
R2

R1
D

sinS 2AR2

R1
D

12cosS 2AR2

R1
D

AR11 FR22
AR1R2

2
sinS 2AR2

R1
D G Y F12cosS 2AR2

R1
D G . ~33!
i-

e

Thus, the extrema ofuM01(p)u at a band edge can be tune
purely by geometric considerations. Finally, as it is cle
from the plot, for the same value ofe2, the maximum cou-
pling between resonance bands is achieved at the band
q5p as one might expect to occur at a Bragg plane.

As far as the resonance frequency is concerned, it is p
ted for each value ofq in Fig. 10 as a function ofe2. Note
that for values ofq*p/4R, theV res(q,e2) exhibit an extre-
mum at e2;18, which is close to the quarter-waveleng
condition e25e1(R1 /R2)2516. At e2@e1(R1 /R2)2 it is
easy to show that interband resonance frequencies atq
tend to collapse, approaching 0 according to;1/Ae2.

Using the results of Figs. 9 and 10,t transition can now be
calculated for each value ofq as a function ofe2, as shown
in Fig. 11. From the figure we see that for each value oq
there exists an optimal value ofe2 such that interband tran
sition time is minimal. Another important fact is that for
fixed value ofe2, the transition time will achieve its minima
value at the band edgeq5p. The latter is partially a conse
quence of the fact that the coupling between states is m
mal at the band edge. Thus, one would expect similar beh
ior at Bragg planes in general for other photonic crys
systems.

Finally, as a concrete example, let us consider transiti
in the microwave regime. Here, the frequencies can be of
order of V;109 Hz. For the case of the photonic cryst
r

dge

t-

l

i-
v-
l

s
e

considered in this paper withe151, e2513, R150.8R and
R250.2R the optimal transition time is given by

t transition;0.503
R2

cD
. ~34!

In the microwave regimeR;0.1 m and a reasonable ampl
tude for a displacement isD;1028 m, thus leading to an
interband transition time of the order of 102321022 s.

FIG. 11. Band 0→1 transition time for a set of Bloch wave
vectors as a function ofe2. Each curve corresponds to one of th
Bloch wave vectors in a setq5p/nR wheren51 to 10.
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VII. SUMMARY

In this paper, we studied the behavior of electromagn
states associated with photonic crystals, which are unde
ing rigid time-dependent translations in position space
was shown that the Bloch wave vector remains a conse
quantity and that an analogue of Bloch’s theorem for a ti
dependent solution of the states can be formulated. It
also shown that under translations involving harmonic ri
vibrations of the photonic crystal, tuning the driving fr
quency to the interband resonance frequency, induces r
nant transitions between the bands. In particular, a chara
istic resonance transition time was derived, which sca
inversely with the amplitude of vibrations, transition-matr
element and resonance frequency. Finally, it was establis
that given all the other parameters fixed an interband tra
tion time is minimized if the transition is made at a Bra
plane.
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APPENDIX

In the following, we provide a detailed derivation of
modified Bloch theorem for a photonic crystal undergoi
rigid time-dependent oscillations in position space. Consi
the case of a photonic crystal vibrating with an amplitu
D(t)5D sin(Vt). Maxwell’s equations take the form

¹H( r̄ ,t)5e[ r̄ 2D̄~ t !]
]E[ r̄ ,t)]

]ct
1

]e[ r̄ 2D̄~ t !]

]ct
E( r̄ ,t),

~A1!

¹E( r̄ ,t)52
]H( r̄ ,t)

]ct
,

where e( r̄ ,t) is now a spatially periodic time depende
function such that'R̄; r̄ :e@ r̄ 1R̄2D̄(t)#5e@ r̄ 2D̄(t)#. It is
ic
o-
It
ed
e
as

so-
er-
s

ed
i-

r

reasonable to conjecture that this translational symm
should still impose some restrictions on the fields even in
time-dependent case. In fact we will prove that Bloch’s the
rem still holds in the time-dependent case in the followi
form. For a time dependent solution of Eq.~A1! it is possible
to define ‘‘good quantum numbers’’q̄ andvn so that

S Hq̄,vn ,V~ r̄ 1R̄,t !

Eq̄,vn ,V~ r̄ 1R̄,t !
D 5exp~ i q̄R̄!S Hq̄,vn ,V~ r̄ ,t !

Eq̄,vn ,V~ r̄ ,t !
D .

~A2!

To demonstrate this, we look for a solution to a tim
dependent problem in a complete plain wave basis

S H~ r̄ ,t !

E~ r̄ ,t !
D 5E dq̄dvS H~ q̄,v!

E~ q̄,v!
D uq̄,v&, ~A3!

where

uq̄,v&[
1

~2p!2
exp~ i q̄ r̄ 2 ivt ! ~A4!

and

^q̄0 ,v0uq̄,v&5d~ q̄02q̄!d~v02v!. ~A5!

Since e( r̄ 1R̄)5e( r̄ ) we can decompose the dielectr
function in terms of the reciprocal space modes

e~ r̄ !5(
Ḡ

eḠ exp~ iḠ r̄ !. ~A6!

Substitution of Eqs.~A3! and~A6! into Maxwell’s Eqs.~A1!
gives
E dq̄dv i [H(q̄,v)q̄] uq̄,v&5E dq̄dv
]e[ r̄ 2D̄~ t !]

]ct
E~ q̄,v!uq̄,v&2E dq̄dv i e[ r̄ 2D̄~ t !]

v

c
E~ q̄,v!uq̄,v&,

~A7!

E dq̄dv i [E(q̄,v)q̄] uq̄,v&52E dq̄dv iH ~ q̄,v!
v

c
uq̄,v&.

Multiplying both sides of Maxwell’s equations bŷq̄0 ,v0u we get

05H~ q̄0 ,v0!q̄01E dq̄dv
v

c
E~ q̄,v!^q̄0 ,v0ue@ r̄ 2D̄~ t !#uq̄,v&1 i E dq̄dvE~ q̄,v!^q̄0 ,v0u

]e@ r̄ 2D̄~ t !#

]ct
uq̄,v&,

~A8!

05E~ q̄0 ,v0!q̄01
v0

c
H~ q̄0 ,v0!.
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1. Evaluation of *dq̄dvvÕcE„q̄,v…Šq̄0 ,v0ze† r̄ÀD̄„t…‡zq̄,v‹

First, let us investigate the form of the term

E dq̄dv
v

c
E~ q̄,v!^q̄0 ,v0ue@ r̄ 2D̄~ t !#uq̄,v& ~A9!

more closely. Since

e@ r̄ 2D̄~ t !#5(
Ḡ

eḠ exp@ iḠ r̄ 2 iḠD̄~ t !# ~A10!

we have

E dq̄dv
v

c
E~ q̄,v!^q̄0 ,v0ue@ r̄ 2D̄~ t !#uq̄,v& ~A11!

5E dq̄dv
v

c
E~ q̄,v!(

Ḡ

eḠ^q̄0 ,v0u

3exp@ iḠ r̄ 2 iḠD̄~ t !#uq̄,v&. ~A12!

But now

^q̄0 ,v0uexp@ iḠ r̄ 2 iḠD̄~ t !#uq̄,v&

5
1

~2p!4E dr̄ exp@ i ~ q̄1Ḡ2q̄0! r̄ #

3E dt exp@ i ~v02v!t2 iḠD̄~ t !# ~A13!

and the integral over space is trivial. Thus, we obtain

^q̄0 ,v0uexp@ iḠ r̄ 2 iḠD̄~ t !#uq̄,v&

5d~ q̄1Ḡ2q̄0!
1

2pE dt exp@ i ~v02v!t2 iḠD̄~ t !#.

~A14!

The time-dependent integral can be performed ana
cally in the following way:

1

2pE dt exp@ i ~v02v!t2 iḠD̄~ t !#

5
1

2pE dt exp@ i ~v02v!t#H (
l 50

1`
~2 i ! l

l !
@ḠD̄~ t !# lJ .

~A15!

Now assume that the crystal is shaken with a single
quency

D̄~ t !5D̄
exp~ iVt !2exp~2 iVt !

2i
. ~A16!

Substitution of Eq.~A16! into Eq. ~A15! leads to the fol-
lowing
i-

-

1

2pE dt exp@ i ~v02v!t2 iḠD̄~ t !# ~A17!

5
1

2pE dt exp@ i ~v02v!t#H (
n50

1`
~21! l

l !
S ḠD̄

2
D l

(
p50

l

3~21!p exp@ iVt~ l 2p!#exp~2 iVtp!
l !

p! ~ l 2p!! J .

~A18!

The integration over time can now be easily performed
give

1

2pE dt exp@ i ~v02v!t2 iḠD̄~ t !#

5 (
l 52`

1`

d~v02v1 lV!Dl~ḠD̄ !, ~A19!

where coefficientsDl(ḠD̄) can be easily calculated by co
lecting the powers of exp(iVt) to obtain

D2l5D22l5~21! l(
f 5 l

1`
~21! f

22 f

~ḠD̄ !2 f

~ f 2 l !! ~ f 1 l !!
~A20!

and

D2l 1152D22l 215~21! l 11(
f 5 l

1`
~21! f

22 f 11

~ḠD̄ !2 f 11

~ f 2 l !! ~ f 1 l 11!!
.

~A21!

Finally, we arrive at the following expression:

E dq̄dv
v

c
E~ q̄,v!(

Ḡ

eḠ^q̄0 ,v0uexp@ iḠ r̄ 2 iḠD̄~ t !#uq̄,v&

~A22!

5
1

c (
Ḡ

eḠF (
l 52`

1`

~v01 lV!

3E~ q̄02Ḡ,v01 lV!Dl~ḠD̄ !G . ~A23!

2. Evaluation of i *dq̄dvE„q̄,v…Šq̄0 ,v0zˆe† r̄
ÀD̄„t…‡Õct‰zq̄,v‹

Proceeding in exactly the same fashion as in the previ
section, one can easily derive the following expression:

i E dq̄dvE~ q̄,v!K q̄0 ,v0U ]e@ r̄ 2D̄~ t !#

]ct
Uq̄,vL

~A24!

5
1

c (
Ḡ

~ḠD̄ !

2
VeḠH (

l 52`

1`

E~ q̄02Ḡ,v01 lV!

3@Dl 11~ḠD̄ !2Dl 21~ḠD̄ !#J . ~A25!
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3. Solution of the time-dependent Maxwell’s equation for the rigid harmonic vibrations of a photonic crystal

Combining the results of the above sections we arrive at the following form of a solution for Maxwell’s equations:

05H~ q̄0 ,v0!q̄01
1

c (
Ḡ

eḠH (
l 52`

1`

E~ q̄02Ḡ,v01 lV!F ~ḠD̄ !

2
V~Dl 21„ḠD̄…2Dl 11„ḠD̄…!1~v01 lV!Dl~ḠD̄ !G J ,

~A26!

05E~ q̄0 ,v0!q̄01
v0

c
H~ q̄0 ,v0!.
of
n-
e
-

d

tio

e
A striking conclusion that can be drawn from this form
a solution is that it is still possible to define a ‘‘good’’ qua
tum numberq̄0 for a vibrating photonic crystal, since th
modes with differentq̄0 do not mix. Another immediate con
clusion is that along with a normal mode frequencyv0 and
amplitude

S H~ q̄0 ,v0!

E~ q̄0 ,v0!
D

the harmonics of the ‘‘driven’’ modes will be also excite
with frequenciesv01 lV and amplitudes

S H~ q̄0 ,v01 lV!

E~ q̄0 ,v01 lV!
D .

Thus a solution to a time-dependent Hamiltonian equa
can be written in the form

S Hq̄0 ,v0
~ r̄ ,t !

Eq̄,v0
~ r̄ ,t !

D 5(
Ḡ

(
l 52`

1` S H~ q̄02Ḡ,v01 lV!

E~ q̄02Ḡ,v01 lV!
D

3exp@ i ~ q̄02Ḡ! r̄ 2 i ~v01 lV!#.

~A27!
.

n

After a set of simple manipulations the final form of th
solution is

S Hq̄0 ,v0
~ r̄ ,t !

Eq̄0 ,v0
~ r̄ ,t !

D 5exp~ i q̄0r̄ !Ūq̄0 ,v0 ,V~ r̄ ,t !,

~A28!

Ūq̄0 ,v0 ,V~ r̄ 1R̄,t !5Ūq̄0 ,v0 ,V~ r̄ ,t !,

where

Ūq̄0 ,v0 ,V~ r̄ ,t !5 (
l 52`

1`

Ũq̄0 ,v0 ,V,l~ r̄ !exp@2 i ~v01 lV!t#,

Ũq̄0 ,v0 ,V,l~ r̄ 1R̄!5Ũq̄0 ,v0 ,V,l~ r̄ !,

Ũq̄0 ,v0 ,V,l~ r̄ !5(
Ḡ

S H~ q̄02Ḡ,v01 lV!

E~ q̄02Ḡ,v01 lV!
D exp~2 iḠ r̄ !.

~A29!
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