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Bosons in a lattice: Exciton-phonon condensate in Cu2O
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We explore a nonlinear field model to describe the interplay between the ability of excitons to be Bose-
condensed and their interaction with other modes of a crystal. We apply our consideration to the long-living
paraexcitons in Cu2O. Taking into account the exciton-phonon interaction and introducing a coherent phonon
part of the moving condensate, we derive the dynamic equations for the exciton-phonon condensate. These
equations can support localized solutions, and we discuss the conditions for the moving inhomogeneous
condensate to appear in the crystal. We calculate the condensate wave function and energy, and a collective
excitation spectrum in the semiclassical approximation; the inside excitations were found to follow the
asymptotic behavior of the macroscopic wave function exactly. The stability conditions of the moving con-
densate are analyzed by use of Landau arguments, and Landau critical parameters appear in the theory. Finally,
we apply our model to describe the recently observed interference and strong nonlinear interaction between
two coherent exciton-phonon packets in Cu2O.
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INTRODUCTION

Excitons in semiconductor crystals1 and nanostructures2,3

are a very interesting and challenging object to search for
process of Bose Einstein condensation~BEC!. Nowadays
there is a lot of experimental evidence that the optically
active paraexcitons in Cu2O can form a highly correlated
state, or the excitonic Bose Einstein condensate.1,4,5 A mov-
ing condensate of paraexcitons in a three-dimensional~3D!
Cu2O crystal turns out to be spatially inhomogeneous in
direction of motion, and the registered velocities of coher
exciton packets turn out to be always less, but approxima
equal to the longitudinal sound speed of the crystal.6

Analyzing recent experimental4,6,7 and theoretical8–13

studies of BEC of excitons in Cu2O, we can conclude tha
there are essentially two different stages of this process.
first stage is the kinetic one, with the characteristic time sc
of 10–20 ns. At this stage, a condensate of long-liv
paraexcitons begins to be formed from a quasiequilibri
degenerate state of excitons~mÞ0, Teff.Tlatt! when the con-
centration and the effective temperature of excitons in
cloud meet the conditions of Bose-Einstein condensatio1

Note that we do not discuss here the behavior of orthoe
tons ~with the lifetime tortho.30 ns! and their influence on
the paraexciton condensation process. For more details a
the orthoexcitons in Cu2O, ortho-para-exciton conversion
etc. see Refs. 4, 5, 14, and 15.

The most intriguing feature of the kinetic stage is th
formation of the paraexciton condensate and the proces
momentum transfer to the paraexciton cloud are happe
simultaneously. If the diameter of an excitation spot on
crystal surface is large enough,Sspot.Ssurf and the energy of
a laser beam satisfiesephot@Egap, nonequilibrium acoustic
phonons may play the key role in the process of momen
transfer. As a result, the mode with macroscopical occupa
of the excitons appears to be witĥk&Þ0, where \^kx&
5mxv andv is the packet velocity.

Indeed, the theoretical results obtained in the framew
PRB 610163-1829/2000/61~8!/5237~17!/$15.00
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of the ‘‘phonon wind’’ model10,16 and the experimenta
observations4,5,6 are the strong arguments in favor of th
idea. To the authors’ knowledge, there are no realistic th
retical models of the kinetic stage of paraexciton condens
formation where quantum degeneracy of the appearing e
ton state and possible coherence of nonequilibrium phon
pushing the excitons would be taken into account. Inde
the condensate formation and many other processes inv
ing it are essentially nonlinear ones. Therefore, the cond
sate, or, better, the macroscopically occupied mode, can
different fromn„k50)@1, and the language of the states
k space and their occupation numbersn(k) may be not rel-
evant to the problem, see Ref. 17.

In this paper, we will not explore the stage of condens
formation. Instead, we investigate the second, quasiequ
rium stage, in which the condensate has already been for
and it moves through a crystal with some constant veloc
and characteristic shape of the density profile. In theory,
time scale of this ‘‘transport’’ stageDt tr could be determined
by the paraexciton lifetime (tpara.13ms1). In practice, it is
determined by the characteristic sizel of a high-quality
single crystal available for experiments

Dt tr.l /cl.0.522ms!tpara,

wherecl is the longitudinal sound velocity.
We assume that at the ‘‘transport’’ stage, the temperat

of the moving packet~condensed plus noncondensed p
ticles! is approximately equal to the lattice temperature,

Teff5Tlatt,Tc .

Then, we can consider the simplest case ofT50 and disre-
gard the influence of all sorts of nonequilibrium phono
~which appear at the stages of exciton formatio
thermalization10! on the formed moving condensate.
5237 ©2000 The American Physical Society
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5238 PRB 61D. ROUBTSOV AND Y. LÉPINE
Any theory of the exciton BEC in Cu2O has to point out
some physical mechanism~s! by means of which the key ex
perimental facts can be explained.~For example, the conden
sate moves without friction within a narrow interval of v
locities localized nearcl , and the shape of the stab
macroscopic wave function of excitons resembles soli
profiles.7! Here, we explore a simple model of the ballist
exciton-phonon condensate. In this case, the general s
ture of the Hamiltonian of the moving exciton packet and
lattice phonons is the following:

Ĥ5Hex~ ĉ†,ĉ !2vPex~ ĉ†,ĉ !1Hph~ û,p̂ !2vPph~ û,p̂ !

1H int~ ĉ†ĉ,] j ûk!. ~1!

Here,ĉ is the Bose-field operator describing the excitonsû
is the field operator of lattice displacements,p̂ is the mo-
mentum density operator canonically conjugate toû, andP
is the momentum operator. Note that the Hamiltonian~1! is
written in the reference frame moving with the excito
packet, i.e.,x→x2vt andv5const is the ballistic velocity of
the packet.

I. 3D MODEL OF MOVING EXCITON-PHONON
CONDENSATE

To derive the equations of motion of the field operato
~and generalize these equations to the case ofTÞ0!, it is
more convenient to start from the Lagrangian. In the p
posed model, the Lagrangian density has the following fo
in the comoving frame:

L5
i\

2
~ ĉ†] tĉ2] tĉ

†ĉ !1v
i\

2
~]xĉ

†ĉ2ĉ†]xĉ !2Ẽgĉ†ĉ

2
\2

2m
¹ĉ†¹ĉ2

n0

2
@c†~x,t !#2@c~x,t !#2

2
n1

3
@c†~x,t !#3@c~x,t !#31

r

2
„] tû…

22
rcl

2

2
~] j ûs!

2

2
rcl

2

3
k3~] j ûs!

32
rv
2

~] tû]xû1]xû] tû!1
rv2

2
~]xû!2

2s0ĉ†~x,t !ĉ~x,t !¹û~x,t !, ~2!

wherem is the exciton ‘‘bare’’ mass~m5me1mh.3me for
1s excitons in Cu2O!, n0 is the exciton-exciton interaction
constant@n0.0 corresponds to the repulsive interaction b
tween paraexcitons in Cu2O ~Ref. 18!#, r is the crystal den-
sity, s0 is the exciton-longitudinal phonon coupling co
stant, andv5(v,0,0). The energy of a free exciton isẼg

1\2k2/2m. Although the validity of the conditionnãB
3!1

~ãB is the exciton Bohr radius! makes it possible to disregar
all the multiple-particle interactions with more than two pa
ticipating particles inĤex,19 we include the hard-core repu
sion term originated from the three-particle interaction inL,
i.e., n1Þ0 and

0,n1 /ãB
6!n0 /ãB

3.const Ry* .
n

c-
e

s

-

-

~For the 3D case, one has to take const.10 becausen0
54p(\2/m)asc and asc.(1;3)ãB ; see the discussion in
Ref. 20.!

Moreover, in the Lagrangian of the displacement field,
include the first nonlinear term}k3(]u).3 @The dimension-
less parameterk3 originates from Taylor’s expansion of a
interparticle potentialU(ur i2r j u) of the medium atoms.# As-
suming that a dilute excitonic packet moves in a wea
nonlinear medium, we will not take into account more high
nonlinear terms in Eq.~2!.

For simplicity’s sake, we take all the interaction terms
L in the local form and disregard the interaction between
excitons and transverse phonons of the crystal. Note tha
ballistic velocityv is one of the parameters of the theory, a
we will not take into account the excitonic normal comp
nent and velocity, i.e.,v5vs;¹wc , (T50). This means
that we choose the spatial part of the coherent phase of
packet,wc(x), to be in the simplest form,

exp@ iwc~x!#5exp@ i ~w1k0x!#, w5const, \k05mv.
~3!

The equations of motion can be easily derived by
standard variational method from the following condition:

dS5dE dt dxL@ĉ†~x,t !,ĉ~x,t !,û~x,t !#50.

Indeed, after transforming the Bose fieldsĉ† and ĉ by

ĉ~x,t !→exp~2 iẼgt/\!exp~ imvx/\!ĉ~x,t !,

we can write these equations as follows:

~ i\] t1mv2/2!ĉ~x,t !

5S 2
\2

2m
D1n0ĉ†ĉ~x,t !1n1ĉ†2ĉ2~x,t ! D ĉ„x,t)

1s0¹û~x,t!ĉ~x,t !, ~4!

@] t
22cl

2D2v~] t]x1]x] t!1v2]x
2#ûs~x,t !

2cl
2(

j
2k3] j

2ûs] j ûs~x,t !5r21s0]s@ĉ†ĉ~x,t !#.

~5!

We assume that the condensate of excitonsexists. This
means that the following representation of the exciton Bo
field holds:ĉ5c01dĉ. Here,c0Þ0 is the classical part o
the field operatorĉ or, in other words, the condensate wa
function, anddĉ is the fluctuational part ofĉ, which de-
scribes out-of-condensate particles.

One of the important objects in the theory of BEC is t
correlation functions of Bose fields. The standard way
calculate them in this model@the excitonic function
^c(x,t)c†(x8,t8)&, for example# can be based on the effec
tive action or the effective Hamiltonian approaches.21 In-
deed, one can, first, integrate over the phonon variableu,
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get the expression forSeff(c,c†) and, second, useSeff ~or Ĥeff

to derive the equations of motion forc0 , dĉ, correlation
functions, etc.

In this paper, we do not follow that way; instead, we tre
excitons and phonons equally.11,22,23This means that the dis
placement fieldû can have a nontrivial coherent part too, i.
û5u01dû andu0Þ0, and the actual moving condensate c
be an exciton-phonon one, i.e.,c0(x,t)•u0(x,t). Then the
equation of motion for the classical parts of the fieldsĉ and
û can be derived by use of the variational method fromL
5L(c,c* ,u), in which all the fields can be considered
the classical ones. Eventually, we have

~ i\] t1mv2/2!c0~x,t !

5F2
\2

2m
D1n0uc0u2~x,t !1n1uc0u4~x,t !Gc0~x,t !

1s0¹u0~x,t !c0~x,t !, ~6!

~] t
22cl

2D22v] t]x1v2]x
2!u0s~x,t !

2cl
2(

j
2k3] j

2u0s] ju0s~x,t !5r21s0]s@ uc0u2~x,t !#.

~7!

Notice that deriving these equations we disregarded the
teraction between the classical~condensate! and the fluctua-
tional ~noncondensate! parts of the fields. That is certainly
good approximation forT50 andT!Tc cases.24

In this paper a steady state of the condensate is the o
of the main interest. In the co-moving frame of reference,
condensate steady-state is just the stationary solution of
~6! and ~7! and it can be taken in the form

c0~x,t !5exp~2 imt !exp~ iw!fo~x!,

u0~x,t !5qo~x!,

wherefo andqo are the real-number functions, andw5const
is the coherent phase of the condensate wave function in
comoving frame, see Eq.~3!. ~This phase can be taken equ
zero if only a single condensate is the subject of interest!

Then, the following equations have to be solved (m5m̃
2mv2/2):

m̃fo~x!5F2
\2

2m
D1n0fo

2~x!1n1fo
4~x!Gfo~x!

1s0¹qo~x!fo~x!, ~8!

2$~cl
22v2!]x

21cl
2]y

21cl
2]z

2%qos~x!

2cl
2 (

j 5x,y,z
2k3] j

2qos] jqos~x!5r21s0]sfo
2~x!.

~9!

Note that in order to simplify Eqs.~7! to ~9!, we assumed
only u0(x,t)5qo(x). In this model, it is enough to obtai
localized solutions for the displacement field.
t

,
n

n-

ct
e
qs.

he

II. EFFECTIVE 1D MODEL FOR THE CONDENSATE
WAVE FUNCTION

Solving Eqs.~8! and ~9! in the 3D space seems to be
difficult problem. However, these equations can be ess
tially simplified if we assume that the condensate is inhom
geneous along thex axis only, that is

fo~x!5fo~x! and qo~x!5@qo~x!,0,0#.

Note that the cross-section area of an excitation spotShas to
be basically constant across the sample cross section. In
case, the problem can be considered as an effectively
dimensional one.

Such an effective reduction of dimensionality transform
difficult ~nonlocal differential! equations for the condensa
wave function into a rather simple differential ones, and o
tained in this way the effective 1D model for the condens
wave functionfo conserves all the important properties
the ‘‘parent’’ 3D model.

Indeed, if v,cl , the following equations stand for th
condensate@y(x)5]xqo(x)#:

m̃fo~x!5@2~\2/2m!]x
21n0fo

2~x!1n1fo
4~x!#fo~x!

1s0y~x!fo~x!. ~10!

2~cl
22v2!]xy~x!22cl

2k3]xyy~x!5r21s0]xfo
2~x!.

~11!

The last equation can be easily integrated,

y~x!1k̃3y2~x!5F~x!1const, ~12!

and solved relative toy(x). Here,

k̃35
cl

2

cl
22v2 k3[g~v !k3 ,

F~x!52
s0

r~cl
22v2!

fo
2~x![2g~v !

s0

rcl
2 fo

2~x!.

Note that the medium nonlinearity parameterk3 can be en-
hanced by the factor of the order of 4–10 if the value ofv is
less, but close tocl . ~For spatially localized solutions
]xqo(x).0 andfo

2(x).0 at uxu@Lch, so that const50.!
If k3,0, we can always represent the solution of E

~11! and ~12! in the following form:

y~x!5F~x!1uk̃3uF2~x!12k̃3
2F3~x!1¯ . ~13!

~Indeed, the parameters of medium nonlinearity can be c
sen ask3,0 andk4.0.25! After substitution of Eq.~13! into
Eq. ~10!, Eqs.~10! and ~11! can be rewritten as follows:

m̃fo~x!5@2~\2/2m!]x
21n 0̃fo

2~x!1n 1̃fo
4~x!1e2#fo~x!,

~14!

]xqo~x!5F~x!1uk̃3uF2~x!1e28 , ~15!

where the interparticle interaction constants are renormal
as follows:

n 0̃5n02s0

s0

r~cl
22v2!

,
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n 1̃5n11s0

s0
2

@r~cl
22v2!#2 uk̃3u, ~16!

and higher nonlinear terms are designated bye2 . A small
parameter in Eq.~16! comes from the term

s0 /r~cl
22v2!5g~v !~s0 /Mcl

2!al
3,

whereg(v)5cl
2/(cl

22v2) and M is the mass of the crysta
elementary cell.

The effective two-particle interaction constantn 0̃(v) can
be negativeif the velocity of the condensate lies inside th
interval vo,v,cl , where

vo5Acl
22~s0

2/rn0!. ~17!

Outside this interval,n 0̃(v).0 ~Ref. 11! and the velocityvo
can be called the first ‘‘critical’’ velocity in the model. Th
meaning of this velocity can be clarified by rewriting E
~16! in the dimensionless form,

n 0̃

s0al
3 5

n0

s0al
32g~v !S s0

Mcl
2D . ~18!

If v.vo ,

g~v !S s0

Mcl
2D .

n0

s0al
3 .

const Ry*

s0

ãB
3

al
3 , ~19!

where Ry* andãB
2 are the characteristic energy and the cro

section of two-particle collisions in the exciton subsyste
The following inequalities are true for excitons in a crysta

ãB
3.~@ !al

3 and const Ry* ,~! !s0 ,

and, usually, the value of the parametern0 /s0al
3 is .1.

For paraexcitons in Cu20, however, we assume the~effec-
tive! value of n0 /s0al

3 can be estimated as 0.3;0.6,1,
whereas the value ofs0 /Mcl

2.0.1;0.3. This makes the
inequality ~19! valid at, say,v'(0.8;0.9)cl , or g(v).5.
Thus, within the effective 1D model, the critical factorgo
5g(vo) is the following ratio

go5S n0

s0al
3D Y S s0

Mcl
2D ,

and, for the substances withn0 /s0al
3,1, the regime with

n 0̃,0 can be obtained at velocities reasonably close but
equal to cl , for example, beginning from somego,10,
@g(0.95cl)'10#.

On the other hand, the effective three-particle interact
constantn 1̃(v) is always positive for crystals withk3,0. It
can be represented in the dimensionless form as follows

n 1̃

s0~al
3!2 .const8S n0

s0al
3D ãB

3

al
3 1g~v !uk3uS g~v !

s0

Mcl
2D 2

.

~20!

Here, we estimated the ‘‘bare’’ vertex of the three-partic
collisions as

n1.const Ry* ãB
6.const8n0ãB

3, const8<1,
s
.

ot

n

and the same Ry* can be taken as a characteristic energy
collisions. The effective vertexn 1̃.0 is enhanced by the
medium nonlinearity, and the both terms in the r.h.s. of E
~20! can be equally important atg(v).go .

Note that in the case ofstrongly nonlinear latticeswith
excitons, the effective interaction vertices in Eq.~14! ~n 1̃ ,
n 2̃ , etc.! depend on the velocityv and the parameters o
medium nonlinearity~k3 , k4 , etc.!. Then the effective
exciton-exciton interaction can be strongly renormalized
sufficiently large gamma factorsg(v) and the vertices may
change their signs as it can happen withn 0̃(v). In this paper,
however, we consider the case of weakly nonlinear med
with excitons~e.g., a crystal with long living excitons!. More
accurately, this means that at velocitiesv→cl the effective
vertex n 0̃(v) became,0, while the more higher vertices
such asn 1̃(v) and n 2̃(v), do not change their sign; the
remain .0 at g(v).g0 . Finally, to describe the weakly
nonlinear case, it is enough to take into account the par
etersn1.0 andk3,0 and neglect more higher nonlinear
ties @e2 ande28 in Eqs.~14! and ~15!#.

In this paper, we will consider the case ofvo,v,cl in
detail. Indeed, in the case ofn 0̃(v),0 andn 1̃(v).0, some
localized solutions of Eqs.~14! and ~15! do exist. For ex-
ample, the so-called ‘‘bright soliton’’ solution of Eq.~14!
exists if the generalized chemical potential is negative,m̃
,0, andum̃u,m* . Here,

m* 5
un 0̃u2

~16/3!n 1̃
'0.2s0

~ un 0̃u/s0al
3!2

~n 1̃ /s0al
6!

. ~21!

For uk3u;1 andg(v).go.3;5, we can roughly estimate
the effective vertexn 1̃(v) as

n 1̃~v !/s0al
6.~1;10!~n0 /s0al

3!.

Then,m* (v).(1021;1022)Ry* , and the more is the value
of uk3u the less is the value ofm* (v).

The ‘‘bright soliton’’ solution of Eq.~14! can be repre-
sented in the following form:

fo~x!5Fof @b~Fo!x,h1~Fo!#,

b~Fo!5S 2m

\2 um̃u~Fo! D 1/2

. ~22!

Here,h1(Fo) is some dimensionless parameter, and the g
eralized chemical potentialm̃,0 is given by the formula

um̃u5um̃u~Fo!5un 0̃uFo
2/22n 1̃Fo

4/3. ~23!

Like the chemical potentialum̃u, the amplitude of the bright
soliton,Fo , satisfies

Fo
2,~Fo* !25un 0̃u/~4/3n 1̃!,

andm* 5un 0̃uFo*
2/4.

For um̃u/m* !1, the following approximation is valid:

h1' 1
4 ~ um̃u/m* !1 1

8 ~ um̃u/m* !2!1, ~24!

and this formula can be used up toum̃u/m* .0.5. Then, we
can approximate the solution of Eq.~14! by the following
formulas:
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fo~x!'Fo$A12h1~Fo!cosh@b~Fo!x#

1@12A12h1~Fo!#%21, ~25!

fo~x!.2Fo exp@2b~Fo!uxu#/A12h1

for uxu.2b~Fo!21, umu!m* .
~26!

The amplitudes of the exciton and phonon parts of the c
densate, the characteristic width of the condensate, and
value of the effective chemical potentialm̃ depend on the
normalization of the exciton wave functionfo(x). We nor-
malize it in 3D space assuming that the characteristic w
of the packet in the~y,z! plane is sufficiently large, i.e., th
cross-section area of the packetS' can be made equal to th
cross-section areaS of a laser beam and

S'.S.Ssurf.

Then, we can write this condition as follows:

E uc0u2~x,t !dx5SE fo
2~x!dx5No , ~27!

whereNo , is the number of condensed excitons, and, gen
ally, NoÞNtot .

Applying this normalization condition, we get the follow
ing results:

Fo
2'

un 0̃~v !u
2~No* /No!2x Ry* ãB

612n 1̃~v !
. ~28!

Here, we used the following notations,No* 52S/ãB
2, \2/m

52x Ry* ãB
2, where Ry* 5\2/2mexcãB

2 andx5mexc/m. The
formula ~28! is valid for um̃u/m* ,0.3;0.4. We assume that
at No* /No5n̄o.10 ~this is the important parameter!, we al-
ways have

2n̄o
2x Ry* ãB

6@n 1̃~v !5 ẽ1~ uk3u,v !ãB
6.~1;10!Ry* ãB

6.

Then, the following inequalities are valid:Fo
2(No ,v)!Fo*

2

and

um̃u~No ,v !'
un 0̃~v !u2

2$2n̄o
2xRy* ãB

614n 1̃~v !%
!m* 5

un 0̃~v !u2

5.3n 1̃~v !
.

~29!

The characteristic length of the packet can be estima
from Eq. ~22! as follows@n 0̃(v)5 «̃0(v)ãB

3 #:

Lch
21~No ,v !.

1

4
b~Fo!'

1

4

u«̃0~v !u
~2x Ry* ãB!

3
1

An̄o
21@ «̃1~v !/x Ry* #

.
1

8

u«̃0~v !u
x Ry*

1

ãBn̄o
at n̄o.10.

~30!

Therefore, atg(v).2go , we can roughly estimate
-
he

h

r-

d

Lch~No ,v !.4
Ry*

u«̃0~v !u
n̄oãB;4~101n̄o!ãB , ~31!

and, for the average concentration of condensed exciton
the packet,no , we have

noãB
3'~No /SLch!ãB

3.1/n̄o
2!1.

Recall that the second part of the condensate, the
placement fieldqo(x), is of the same importance as the fir
part, the exciton wave functionfo(x). The displacement
field ]xqo(x) can be represented as follows:

]xqo~x!52g~v !S so

Mcl
2D @al

3fo
2~x!#

1g~v !uk3uFg~v !
s0

Mcl
2G2

@al
3fo

2~x!#2. ~32!

To estimate its amplitude]xqo we have to estimate the pa
rameteral

3Fo
2 first.

For n̄o.10 and u«̃0(v)u.(1021– 1)Ry* @i.e., g(v)
>2go#, we obtain

al
3Fo

2.
al

3

ãB
3

u«̃0~v !u
x Ry*

1

2n̄o
2 ;

al
3

ãB
3

1

2n̄o
2 }No

2.

If this parameter is small enough, such asal
3Fo

2(No ,v)
.1023– 1025, we can neglect the nonlinear corrections
the amplitude]xqo,0 and to the shape of]xqo(x) as well,

]xqo52g~v !
s0

Mcl
2 ~al

3Fo
2!F12g~v !uk3uS g~v !

s0

Mcl
2D

3~al
3Fo

2!G
'2g~v !S s0

Mcl
2D ~al

3Fo
2!. ~33!

Thus, due to the validity ofnoãB
3!1, there is almost no

difference between the approximation

FIG. 1. Moving exciton-phonon condensate, as it appears in
quasistationary model,fo(x2vt)•uo(x2vt)d1 j , is presented by
bold lines on this figure. Here, 2Qo is the amplitude of the coheren
phonon stateuo(x2vt), and Fo is the amplitude of the macro
scopic wave function of excitons. Longitudinal exciton-phonon e
citations (kiOx) of the condensate are schematically depicted. U
der transformationNo→No2dN, the condensate wave function
changed as it is presented by dashed lines.
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fo~x!•]xqo~x!'Fo cosh21@b~Fo!x#•~2u]xqou!

3cosh22@b~Fo!x#, ~34!

where

b~Fo![L0
21'

u«̃0~v !u
x Ry*

1

2n̄oãB
, No5No* /n̄o , n̄o@1,

~35!

and the exact solution of the weakly nonlinear case withn1

.0 and k3,0. For S.(1022– 1023) cm2, ãB
2.(25;50)

10216cm2, we estimateNo* .1013– 1014. Although the ap-
proximate solutions we used in this paper are valid forNo

!No* , they can be used atNo,No* for estimates.
Note that the effective chemical potential is a rather sm
parameter in this model,

um̃u~No ,v !'
un 0̃~v !u2

4n̄o
2x Ry* ãB

6 '
u«̃0~v !u

4n̄o
2 F u«̃0~v !u

x Ry* G . ~36!

That is why the characteristic length,Lch}um̃u21/2, see Eq.
~30!, can be estimated as (102– 104)ãB within the validity of
approximations~28! and~29!. Moreover,um̃u/m* <1022 and
the parameterh1(Fo) in Eq. ~22! can be estimated a
;1022. In this case, one can neglect it in Eq.~25!.

Returning to the laboratory reference frame, we can w
the condensate wave function in the form~see Fig. 1!:
ing

densate
c0~x,t !•u0~x,t !d1 j'expF2 i S Ẽg1
mv2

2
2um̃u D t Gexp@ i ~w1mvx!#Fo cosh21@L0

21~x2vt !#•$Qo2Qo tanh@L0
21~x2vt !#%,

~37!

where we count the exciton energy from the bottom of the crystal valence band, (Ẽg,Egap), and 2Qo(No ,v) is the amplitude
of the phonon part of condensate,

Qo'g~v !S s0

Mcl
2D S al

2

ãB
2

1

n̄o
D al!al .

To calculate the energy of the moving condensate within the Lagrangian approach,@see Eq.~2!#, we have to integrate the
zeroth component of the energy-momentum tensorT 0

0 over the spatial coordinates. Consequently, we have the follow
formula:

T 0
0~x,t !5Ẽgfo* fo1

\2

2m
¹fo* ¹fo1

n0

2
~fo* !2fo

21
n1

3
~fo* !3fo

31
r

2
~] tqo!21

rcl
2

2
~]xqo!21

rcl
2

3
k3~]xqo!31s0fo* fo]xqo .

Here, we do not take into account a small correction to this energy due to the quantum depletion of the con
@^dc†dc(x)&T50Þ0 and^(]xduj )

2&T50Þ0#. Then the result reads

Eo~No ,v !5E dxT 0
05Eex1Eint1Eph'NoS Ẽg1

mv2

2 D2No~ um̃u1n0Fo
2/3!1NoH M ~cl

21v2!

2
g2~v !S s0

Mcl
2D 2 2

3
~al

3Fo
2!J .

~38!

We will disregard the terms;Non1Fo
4 in Eint,0, and the corrections}uk3u in Eph. Then we can write

uEint /No'un 0̃~v !uFo
2/21n0Fo

2/3.~n0 /ãB
3 !~ ãB

3Fo
2!,Ry* ~39!

and

Ephu/No'
M ~cl

21v2!

2
q~No ,v !.Mcl

2q~No ,v !, ~40!

where

q~No ,v !5Fg~v !
s0

Mcl
2G2 2

3
~al

3Fo
2!!1. ~41!

Note that the parameterq(No ,v) is a rather small one,q;al
3Fo

2.1023– 1025, so that the value ofEph/No can be,Ry* ,
and, roughly,Fo

2}No
2.

One can see that the exciton-phonon condensate carries a nonzeroth momentum,Pox5Pex,x1Pph,x :
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Pox5E dx~\/2i !@f0* ~x,t !]xf0~x,t !2]xf0* ~x,t !f0~x,t !#2r] tu0~x,t !]xu0~x,t !5E dx mvfo
2~x!

1rvFg~v !
s0

Mcl
2 al

3fo
2~x!G2

'Nomv1NoMvq~No ,v ![Nom$11~M /m!q~No ,v !%v. ~42!
n
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Thus, we obtainmeff5m$11(M/m)q(No ,v)% and estimate the
parameter (M /m)q(No ,v).1 – 5 atg(v)>2go , n̄o>10.

III. LOW-LYING EXCITATIONS OF EXCITON-PHONON
CONDENSATE

To consider the stability of the exciton-phonon conde
sate moving in a lattice, one has to couple the excitons w
different sources of perturbation, such as impurities, ther
lattice phonons, surfaces, etc.. In this work, however, we
not specify any source. Instead, we consider the stab
conditions in relation to creation~emission! of the conden-
sate excitations that can be found in the framework of inv
tigation of the low-energy excitations of the condensate
self.

Although the condensate wave functionfo(x)•qo(x) was
obtained in the framework of the effective 1D model, w
normalized it in 3D space. Therefore, we can use this s
tion as a classical part in the following decomposition of 3
field operators in the comoving frame:

ĉ~x,t !5exp~2 imt !@fo~x!1dĉ~x,t !#, ~43!

û j~x,t !5qo~x!d1 j1dû j~x,t !, ~44!

wherem5m̃2mv2/2. Substituting the field operators of th
forms ~43! and ~44! into the Lagrangian density~2!, we can
write the later in the following form:

L5Lo@e2 imtfo~x!,qo~x!d1 j #

1L2@dĉ†~x,t !,dĉ~x,t !,dû~x,t !#1¯ , ~45!

whereLo stands for the classical part ofL, and L2 is the
bilinear form in the ‘‘d operators.’’

In the simplest~Bogoliubov! approximation,26,27 L'Lo
1L2 and, hence, the bilinear formL2 defines the equation
of motion for the fluctuating parts of the field operators. As
result, these equations arelinear and can be written as fol
lows:

i\] tdĉ~x,t !5F2
\2

2m
D1um̃u1$n01n 0̃~v !%fo

2~x!1$2n1

1n 1̃~v !%fo
4~x!Gdĉ~x,t !1@n0fo

2~x!

12n1fo
4~x!#dĉ†~x,t !1s0fo~x!¹dû~x,t !,

~46!

and
-
th
al
ll
ty

-
-

-

@] t
22cl

2D2v~] t]x1]x] t!1v2]x
2#dû j~x,t !

5r21s0] j$fo~x!@dĉ~x,t !1dĉ†~x,t !#%,

j 52,3~[' !, ~47!

@] t
22cl

2D2v~] t]x1]x] t!1v2]x
2#dûx~x,t !

2cl
22k3@]xqo~x!#]x

2dûx~x,t !

2cl
22k3@]x

2qo~x!#]xdûx~x,t !

5r21s0]x$fo~x!@dĉ~x,t !1dĉ†~x,t !#%,

j 51~[x!. ~48!

The same approximation can be performed within
Hamiltonian approach. Indeed, decomposition of the fi
operators near their nontrivial classical parts leads to the
composition of the Hamiltonian~1! itself, and as it was done
with the Lagrangian only the classical part ofĤ, Ho , and
the bilinear form in the fluctuating fields,Ĥ2 , are left for
examination:

Ĥ'Ho~c0* ,c0 ,p0 ,u0!1H2~dĉ†,dĉ,dp̂,dû!. ~49!

In the comoving frame,p̂ j5r] tû j2rv]xûj , i.e.,

po j~x!52rv]xqo~x!d1 jÞ0 and

dp̂ j5r] tdû j2rv]xdû j ,

and the standard commutation relation,@dû j (x,t),
dp̂s(x8,t)#, has the form

@dû j~x,t !,r] tdûs~x8,t !2rv]xdûs~x8,t !#5 i\d~x2x8!d js .
~50!

However, the Hamiltonian~49! can be diagonalized and re
written in the form

Ĥ5Ho@e2 imtfo~x!,qo~x!#1dEo1(
1,s

\v1,sâ1,s
† â1,s

1(
2,s

\v2,sâ2,s
† â2,s . ~51!

Here, dEo is the quantum correction to the energy of t
condensate and the indexes 1,s and 2,s label the elementary
excitations of the system. We assume the operatorsâ j ,s

† ,â j ,s

are the Bose ones. These operators describe two diffe
branches of the excitations,j 51, 2, and they can be repre
sented by the following linear combinations of the ‘‘del
operators’’:
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â j ,s5E dx@U j ,s~x!dĉ~x!1Vj ,s~x!dĉ†~x!1Yj ,s
i ~x!dûi~x!

1Zj ,s
i ~x!dp̂ i~x!#, ~52!

â j ,s
† 5E dx@U j ,s* ~x!dĉ†~x!1Vj ,s* ~x!dĉ~x!1Yj ,s

i* ~x!dûi~x!

1Zj ,s
i* ~x!dp̂ i~x!#. ~53!

Note that by analogy with the exciton-polariton modes
semiconductors28,29 the excitations of the condensate~37!
can be considered as a mixture of exciton- and phonon-
modes. However, in this model, the phonons are fluctuati
of the @p0(x,t),u0(x,t)#-part of the condensate. The com
mutation relations betweena operators are the Bose ones,
that

@â1,s ,â1,s8
†

#5dss8

lead to the following orthogonality condition

E dx@U1,sU1,s8
* ~x!2V1,sV1,s8

* ~x!#

1~ i\! (
r 51,2,3

E dx@Y1,s
r Z1,s8

r* ~x!2Z1,s
r Y1,s8

r* ~x!#5dss8 .

Since thea operators@see Eq.~51!# evolve in time as
simply as

â j ,s~ t !5e2 iv j ,stâ j ,s , â j ,s
† ~ t !5eiv j ,stâ j ,s

† ,

these operators~and the frequencies$v j ,s%! are the eigenvec
tors ~and, correspondingly, the eigenvalues! of the equations
of motion ~46! and ~47! obtained within the Lagrangian
method. Then, the time dependent ‘‘d operators’’ in Eqs.
~46! and ~47! can be represented by the following line
combinations of thea operators:

dĉ~x,t !5(
1,s

u1,s~x!â1,se
2 iv1,st1v1,s* ~x!â1,s

† eiv1,st

1(
2,s

u2,s~x!â2,se
2 iv2,st1v2,s* ~x!â2,s

† eiv2,st,

~54!

dûr~x,t !5(
1,s

C1,s
r ~x!â1,se

2 iv1,st1C1,s
r* ~x!â1,s

† eiv1,st

1(
2,s

C2,s
r ~x!â2,se

2 iv2,st1C2,s
r* ~x!â2,s

† eiv2,st.

~55!

For dp̂ r(x,t), one has to changeCj ,s
r (x) to D j ,s

r 5r(2 iv j ,s

2v]x)Cj ,s
r (x) in Eq. ~55!. Note that thisansatzis, in fact, a

generalization of theu-v Bogoliubov transformation.
Then we can rewrite Eqs.~52! and ~53! as follows (j

51,2):
e
s

â j ,s5E dx@uj ,s* ~x!dĉ~x!2v j ,s* ~x!dĉ†~x!

2~ i /\!D j ,s
r* ~x!dûr~x!1~ i /\!Cj ,s

r* ~x!dp̂ r~x!#,

~56!

â j ,s
† 5E dx@uj ,s~x!dĉ†~x!2v j ,s~x!dĉ~x!

1~ i /\!D j ,s
r ~x!dûr~x!2~ i /\!Cj ,s

r ~x!dp̂ r~x!#,

~57!

and one of the orthogonality relations has the form (s5s8)

E dx~ uu1,s~x!u22uv1,s~x!u2!

1~ i /\! (
r 51,2,3

E dx@C1,s
r* r~2 iv1,s2v]x!C1,s

r ~x!

1r„~2 iv1,s1v]x!C1,s
r*
…C1,s

r ~x!#51. ~58!

The question we want to clarify is whether coupling b
tween excitonic excitations and phonon excitations is imp
tant for understanding the condensate excitations. Subst
ing ansatz~54! and ~55! into Eqs.~46! and ~47!, we obtain
the following coupled eigenvalue equations:11

@ L̂~D!2\v j ,s#uj ,s~x!1@n0fo
2~x!12n1fo

4~x!#v j ,s~x!

1s0fo~x!] rCj ,s
r ~x!50, ~59!

@n0fo
2~x!12n1fo

4~x!#uj ,s~x!1@ L̂~D!1\v j ,s#v j ,s~x!

1s0fo~x!] rCj ,s
r ~x!50, ~60!

2r21s0] r@fo~x!uj ,s~x!#2r21s0] r@fo~x!v j ,s~x!#

1@~2 iv j ,s2v]x!
22cl

2D#Cj ,s
r ~x!50, r52,3,

~61!

2r21s0]x@fo~x!uj ,s~x!#2r21s0]x@fo~x!v j ,s~x!#

1$~2 iv j ,s2v]x!
22cl

2@11uk3uF3~x!#]x
22cl

2]'
2

2cl
2uk3u@]xF3~x!#]x%Cj ,s

x ~x!50. ~62!

Here we used the following notations:

L̂~D!5~2\2/2m!D1um̃u1$n01n 0̃~v !%fo
2~x!

1$2n11n 1̃~v !%fo
4~x!,

F3~x!52g~v !~s0 /Mcl
2!al

3fo
2~x!.

To simplify investigation of the characteristic properti
of the different solutions of Eqs.~59!–~61!, we subdivide the
excitations~54! and ~55! into two major parts, theinside
excitations and theoutsideones. Theinside excitations are
localized merely inside the packet area, i.e.,uxu,2L0 and
fo

2(x)'Fo
2, whereas theoutside excitations propagate

merely in the outside area, i.e.,uxu.2L0 and fo
2(x)

.4Fo
2 exp(22uxu/L0)→0.
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A. Outside excitations

For the outside collective excitations, the asymptotics
the low-lying energy spectrum can be found easily. Indeed
we assume thatfo

2(x)'0 and ]xqo(x)'0 in the outside
packet area, the Eqs.~46! and~47! are~formally! uncoupled.
Then, Eq.~46! describes the excitonic branch of the outsid
excitations with the following dispertion low in the comov
ing frame
no
W

id

n-
ve
at

gy
f
if

-

\vex~k!'um̃u1~\2/2m!k2, @uk~x!'uke
ikx, vk~x!'0#,

~63!

andvph(k8)5cl uk8u in the laboratory frame of reference.
Then the exciton field operator, which describes the ex

ton condensate with one long-wavelength outside excitat
has the following form:
n
ample,
calized

or,
c~x,t !.exp@2 i ~Ẽg1mv2/22um̃u!t#exp@ i ~w1mvx!#fo~x2vt !1exp@2 i ~Ẽg1mv2/22um̃u!t#exp@ i ~w1mvx!#

3$exp@2 i ~ um̃u1\k2/2m1kxv !t#uk exp~ ikx!%. ~64!

It is easy to see that such a collective excitation,

\vex~k!5um̃u1\2k2/2m1\kxv,

can be interpreted as a free exciton with the energy and the~quasi!momentum

«x~ k̃!5Ẽg1\2k̃2/2m and \ k̃ j5\kj1mvd1 j .

Note that the condition\vex.0 can be violated at the velocities close tovo , whereas«x is always positive. Then the questio
is whether\vex,0 really means the condensate instability in relation to the creation of outside excitations. For ex
being unstable, the condensate could continuously emit outside excitations, which form a sort of ‘‘tail’’ behind the lo
packet.

Recall that the particle numberN̂ is not conserved in quantum states with a condensate, and^dN2&.No . However, for
No>1010 andT!Tc , the following estimate is valid:

A^dN2&/N'1/ANo<1025.

Therefore, we can compare the condensate energyEo(No ,v) and the energy of the condensate that emits excitons,
equivalently, the condensate with outside excitations,^uk&;AdN. For simplicity’s sake, we considerdN different wave
vectors,$k̃ j%, to be close to each other, so that the values of^k̃&2 and ^k̃x& are well defined.~This is a model of how the
instability tail could be formed.! We obtain@see Eqs.~38!–~41!#

Eo~No2dN,v !1Ex~^ k̃&,dN!1Eph~^k8&,dN!

'Eo~No ,v !13S um̃u1
n0Fo

2

3 D dN23
M ~cl

21v2!

2
q~No ,v !dN1S \2^k̃&2

2m
2

mv2

2
D dN1\cl u^k8&udN. ~65!

For the momentum of the moving condensate with the outside excitations, we have

Pox~No2dN,v !1\^k̃x&dN1\^kx8&dN'Pox~No ,v !1~\^k̃x&2mv !dN1@\^kx8&23Mvq~No ,v !#dN. ~66!
of

ne in
Note that the energy and the momentum of the pho
part of the condensate change after exciton emission.
hypothesize that the transformationNo→No2dN ~with the
emission of outside excitons, see Figs. 1 and 2! corresponds
to the case in which the outside exciton and the outs
acoustic phonon appear together. Indeed, in thek→0 limit
~i.e., l52p/k@L0!, we approximately considered the co
densate collective excitations as being uncoupled. Howe
the phonon\k8 can be emitted with the energy compens
ing the changement of dEph52(3/2)M (cl

2

1v2)q(No ,v) in the phonon part of the condensate ener
Moreover, the order of value ofudEphu is typical for the
low-energy acoustic phonons,;1 meV. If \kx8.0, the emit-
ted phonon can compensate the changement ofdPph,x
523Mvq(v) as well.
n
e

e

r,
-

.

The most interesting case is the backward emission
excitons, i.e.,\kj5\kd1 j,0 in the comoving frame. Then
we can rewrite Eq.~65! as follows

Eo~No2dN,v !1^\vex~ k̃!&dN1^\vph~k8!&dN

'Eo~No ,v !1~2um̃u1n0Fo
2!dN

1H um̃u1
\2^k&2

2m
2\u^k&uvJ dN. ~67!

The moving condensate can be considered as a stable o
relation to emission of the outside excitations (dN
.A^dN2&) if such an emission gains energy,
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Eo~No2dN,v !1Ex~^k̃&,dN!1Eph~^k8&,dN!.Eo~No ,v !.

This means that the following inequality has to be valid

H um̃u1
\2^k&2

2m
2\u^k&uvJ 1~2um̃u1n0Fo

2!.0. ~68!

This condition can be rewritten in the dimensionless form
follows:

F312
n0

un 0̃u
1S 2p

^z& D
2G2

2p

^z&

v
cl

S ~4m/M !Mcl
2/2

um̃u~No ,v !
D 1/2

.0.

~69!

We argue that, even for velocities close tov0 @whereun 0̃(v)u
can be ;0.1n0 , and the instability could appear a
um̃u(No ,v)1\2kx

2/2m2\ukxuv,0#, inequality~68! seems to
be always true in the long-wavelength approximatio
k5(2p/z)L0

21<1021L0
21. On Fig. 2, the stable ballistic

condensate is shown with its long-wavelength outside e
tations.

Note that the stability against large-k modes cannot be
properly described within approximations~63! and ~64!.
However, we can discuss this case within the inside appr
mation.

B. Inside excitations

To simplify the calculation of inside-excitation spectru
@see Eqs. ~59!–~61!# we will use the semiclassica
approximation.27 In this approximation, the excitations ca
be labeled by the wave vectork in the comoving frame, and
the following representation holds:

uj ,s~x!5uj ,k~x!eiwk„x…, v j ,s~x!5v j ,k~x!eiwk~x!,

Cj ,s
r ~x!5Cj ,k

r ~x!eiwk~x!, ~70!

where the phasewk(x)'w01kx, and uk(x), vk(x), and
Ck(x) are assumed to be smooth functions ofx in the inside
condensate area. Notice that thek andx representations ar
mixed here. This means that the operator nature of the fl
tuating fields is actually dismissed within the semiclassi
approximation. However, the orthogonality relations amo
uj ,s , v j ,s8 , andCj ,s , Cj ,s8

* , and hence, amonguj ,k , v j ,k8 ,

FIG. 2. The ballistic condensatefo(x2vt)•uo(x2vt)d1 j

seems to be stable in relation to emission of the outside exci
phonon excitations.~We consider the backward emission in th
long-wavelength limit.! The outside excitations presented on th
figure are labeled by the wave vectors,kx , kx8,0 in the comoving
frame. To a first approximation, the outside excitations can be
scribed in terms of free excitons and free~acoustic! phonons emit-
ted from the condensate coherently.
s

,

i-

i-

c-
l

g

and Cj ,k , Cj ,k8
* come from the Bose commutation relation

between the operatorsa j ,s and a j ,s8
† .26,27 For example, Eq.

~54! is modified as follows:

dc~x,t !.E dk

~2p!3 uk~x!eiwk~x!e2 ivk~x!t

1vk* ~x!e2 iwk~x!eivk~x!t, ~71!

and the inside-excitation part of the elementary excitat
term in Eq. ~51!, S j ,s¯'S j ,s,out1S j ,s,surf1S j ,s, in ..., can
be written as

(
1,s, in

\v1,sâ1,s
† â1,s.E dkdx

~2p!3 \v1,k~x!n1,k~x!. ~72!

Note that the semiclassical energy\v j ,k(x) of the inside-
excitation modej, k is supposed to be a smooth function ofx
as well@at least, as smooth asf0

2(x), which is taken constan
in the inside approximation#.

Although the low-lying excitations cannot be properly d
scribed within the semiclassical approximation, we apply
here to calculate the low-energy asymptotics of the spectr

In fact, within the approximationĤ'Ho1Ĥ2 , all the im-
portant properties of such excitations can be understood
use of the semiclassical approach.

There are two different types of the inside-excitations,
longitudinal excitations and the transverse ones. The l
have the wave vectorsk perpendicular to thex(v) direction.
For the sake of simplicity, we choosekiOy . Then, the vec-
tor Cj ,k

r has one nonzero component for such transverse
citations,Cj ,k

y Þ0.
Substituting ansatz~70! with kr5k'd2,r and Cj ,k

r

5Cj ,k
y d2,r into Eqs.~59!–~61!, we transform these differen

tial equations into the algebraic ones@within the inside ap-
proximationL̂(D)→L(2k2)#:

@L~2k'
2 !2\v j ,k#uj ,k~x!1@n0fo

2~x!12n1fo
4~x!#

3v j ,k~x!1s0fo~x!ik'Cj ,k
y ~x!50, ~73!

@n0fo
2~x!12n1fo

4~x!#uj ,k~x!1@L~2k'
2 !1\v j ,k#

3Vj ,k~x!1s0fo~x!ik'Cj ,k
y ~x!50 ~74!

r21s0fo~x!ik'uj ,k~x!1r21s0fo~x!ik'v j ,k~x!

1@v j ,k
2 2cl

2k'
2 #Cj ,k

y ~x!50. ~75!

After some straightforward algebra, we can write out t
equation that defines the spectrum of transverse exci
phonon excitations in the inside approximation:

~v j ,k
2 2cl

2k'
2 !$~\v j ,k!

22@L~2k'
2 !2n0fo

2~x!22n1fo
4~x!#

3@L~2k'
2 !1n0fo

2~x!12n1fo
4~x!#%

5@L~2k'
2 !2n0fo

2~x!22n1fo
4~x!#

3
2s0

2

rcl
2 fo

2~x!~cl
2k'

2 !. ~76!

n-

e-
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Taking into account the momentum cutoffk0 , which is de-
fined as

~\2/2m!k0
2'um̃u5~\2/2m!L0

22, k.k0 ,

we can rewrite Eq.~76! as follows

~v j ,k
2 2cl

2k'
2 !H ~\v j ,k!

22X \2

2m
@k'

2 2k0
2#1F~x!1e1C

3X \2

2m
@k'

2 2k0
2#1F~x!12n0fo

2~x!1e18 CJ
5H \2

2m
@k'

2 2k0
2#1F~x!1e1J

32
s0

Mcl
2 ~s0al

3!Fo
2~cl

2k'
2 !, uxu,L0 . ~77!

Here F(x)5un 0̃(v)u@Fo
22fo

2(x)#.0, i.e., F(x).0 inside
the condensate, and

e1'n 1̃fo
4~x!, e18 '5n1fo

4~x!, k'.k0 .

Although Eq.~77! can be solved exactly for the transver
excitation spectrum,30 taking into account the coupling term
in the r.h.s. of Eq.~77! changes the values of excitation e
ergies slightly, and the excitations can be approximately c
sidered as of the pure excitonic (\v1,k5\vex,k'

) or the pure

phonon (\v2,k5\vph,k'
) types.

It is also useful to investigate asymptotics of the tran
verse inside excitations. For definiteness sake, we investi
the left side asymptotics of these excitations here,

uj ,s~x!5exp~ l ux/L0!eik'yuj ,k ,

v j ,s~x!5exp~ l vx/L0!eik'yv j ,k , x,0, ~78!

Cj ,s
y ~x!5exp~ l cx/L0!eik'yCj ,k

y ,

Cj ,s
x ~x!5exp~ l cx/L0!eik'yCj ,k

x , x,0. ~79!

Here,uj ,k , v j ,k , Cj ,k
y , andCj ,k

x are smooth functions ofx at
uxu.L0 . Note that we introduced two components ofCj ,s

r

;eik'y to make Eqs.~59!–~62! self consistent. Let the
equalities

l u5 l v51 and 11 l u5 l c52 ~80!

be valid. Then the system of differential Eqs.~59!–~62! can
be reduced to a system of algebraic ones, which are an
gous to Eqs.~73!–~75!. Consequently, we can write out th
equation forv j ,k(x) valid at uxu.L0 ,
weak

e

oth the
$@v j ,k2 iv~2/L0!#22cl
2@k'

2 2~2/L0!2#%H ~\v j ,k!
22S \2

2m
@k'

2 2 k̃0
2#1F̃~x! D S \2

2m
@k'

2 2 k̃0
2#1F̃~x!12n0@2Fo exp~x/L0!#2D J

5H \2

2m
@k'

2 2 k̃0
2#1F̃~x!J 2

s0

Mcl
2 ~s0al

3!@2Foexp~x/L0!#2cl
2@k'

2 2~2/L0!2#, ~81!

wherek̃05&/L0.k0 , k'. k̃0 , and

F̃~x!5un 0̃~v !u$Fo
22@2Foexp~x/L0!#2%→2um̃u2e at uxu@L0 .

„We neglected the terms, such asn 1̃fo
4(x)uj ,s(x) andn1fo

4(x)v j ,s(x);exp@(41lu)x/L0# in Eqs.~59! and ~60!, and the terms
}k3 in Eq. ~62! as well.…

Obviously, the structure of Eqs.~77! and~81! is the same. As the coupling between exciton and phonon branches is
for the transverse inside excitations@see the r.h. sides of Eqs.~77! and~81!# and the effect of the finite widthL0 can be taken
into account as the spatial dependence of the important parameters in\vex, we use the following formula to estimate th
low-energy excitation spectrum:

~\vex,k'
!2.S \2

2m
~k'

2 2k0
2!1F~x!1e1D S \2

2m
~k'

2 2k0
2!1F~x!12n0fo

2~x!1e18 D
;

\2

2m
~k'

2 2k0
2!2n0Fo

212n0Fo
2e1 at k'→k0 . ~82!

Here we take the inside-condensate-asymptotics ofF(x), fo
2(x), ande1'n 1̃(v)fo

4(x) to estimate\vex. Note that, for the
inside-condensate excitations, the the low-energy limit means

~\2/2m!~k'
2 2k0

2!.~1;10!um̃u.

Then, in the comoving frame, the low-energy excitation spectrum\vex,k'
may develop a gap of the order ofum̃u @see Eq.~64!

for comparison#. Thus, inside the condensate, we obtain a strong deviation of the collective excitation spectrum from b
simple excitonic one,um̃u1(\2/2m)k'

2 , and the Bogoliubov-Landau spectrum}uk'u.
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C. Longitudinal inside excitations

The case of the longitudinal excitations,kr5kxd1,r , Cj ,k
r 5Cj ,k

x d1,r , is more difficult to analyze because the mode inter
tion is non-negligible in the low-energy limit.~On Fig. 1, a longitudinal inside excitation is shown with the two possi
directions of the wave vectorkiOx.! Recall that the ‘‘bare’’ phonon modes, which can be written in the laboratory fram

ux~x,t !.q0~x2vt !1Ck
x~x2vt !exp~ ikxx2 ivpht !1c.c.

with vph5cl ukxu andCk
x(x);fo

2(x), will be considered in the comoving frame,x2vt→x. Then, within the inside-condensa
approximation, the following equation stands for the excitation spectrum:

@~v j ,k1vkx!
22cl

2kx
2#F ~\v j ,k!

22S \2

2m
@kx

22k0
2#1F~x!1e1D S \2

2m
@kx

22k0
2#1F~x!12n0f0

2~x!1e18 D G
5S \2

2m
@kx

22k0
2#1F~x!1e1D2

s0

Mcl
2 ~s0al

3!Fo
2~cl

2kx
2!, uxu,L0 . ~83!
rs

q
te

ic

g

ta-

n,
It is important to note that, unlike the case of transve
excitations, the values of

~\vph
~0!!2.\2~cl2v !2@~3 – 7!k0#2

and

~\vex,kx

~0! !2.S \2

2m
~10– 40!k0

21e1D
3S \2

2m
~10– 40!k0

212n0fo
2~x!1e18 D

are of the same order of value atkx.(3 – 8)k0 , and the
inequality (\vex,kx

(0) )2.(\vph,kx

(0) )2 is valid in the low-energy

limit. Moreover, the two cases,kx.0 ~1-case! and kx,0
~2-case!, are different as it can be seen from the l.h.s. of E
~83!. In the low-energy limit, we can write the approxima
solution of Eq.~83! as follows:

~\vex,kx

~6 ! !2'S \2

2m
@kx

22k0
2#1F~x!1e1D S \2

2m
@kx

22k0
2#

1F~x!12n0fo
2~x!

62q6g~v !
s0

Mcl
2 ~s0al

3!fo
2~x!1e18 D ,

where q1;1 and 0,q2,1. Note that\vex,kx

(1) .\vex,kx

(0) ,

whereas, for the phonon-type branch,vph,kx

(1) ,(cl2v)kx . For

kx,0, we have the following inequaluty for the exciton
branch:

S \2

2m
@kx

22k0
2#1F~x!1e1D

3S \2

2m
@kx

22k0
2#1F~x!12n 0̃~v !fo

2~x!1e18 D
,~\vex,kx

~2 ! !2,~\vex,kx

~0! !2, ~84!
e

.

where 2n 0̃(v)fo
2(x).24um̃u within the inside approxima-

tion, and, for the phonon-type branch, we obtainvph,kx

(2)

.(cl1v)ukxu.
To derive the formulas for the amplitudesuk(x), vk(x),

and Ck
x(x) of the excitonic branch, we use the followin

approximations:

L6~2kx
2!5L~2kx

2!1
r21s0

2fo
2~x!kx

2

~vex,kx
6vukxu!22cl

2kx
2

'L~2kx
2!6q6g~v !

s0

Mcl
2 ~s0al

3!fo
2~x!,

andB5n0fo
2(x)12n1fo

4(x) is modified as

B6'n0f0
2~x!12n1f0

4~x!6q6g~v !
s0

Mcl
2 ~s0al

3!fo
2~x!.

Then, we can rewrite the formulas for the excitonic exci
tion spectrum as follows

~\vex,kx

~6 ! !2'L6
2 ~2kx

2!2B6
2

5@L~2kx
2!2B#@L6~2kx

2!1B6#.

Recall that the orthogonality relation~58! can be used to
normalize the amplitudes. Within the inside approximatio
Eq. ~58! can be rewritten as follows (dss51→dkk51)

E dx~ uuk~x!u22uvk~x!u2!

1~1/\!E dx 2r~vex,kx
1vkx!uCk

x~x!u251,

~85!

and we have for the excitonic amplitudes

uuk
~6 !~x!u2'S Y6

Veff
D L6~2kx

2!1\vex,kx

~6 !

2\vex,kx

~m! , ~86!
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uvk
~6 !~x!u2'S Y6

Veff
D L6~2kx

2!2\vex,kx

~6 !

2\vex,kx

~6 ! ,

uk
~6 !* vk

~6 !~x!'2S Y6

Veff
D B6

2\vex,kx

~6 ! .

Here, the effective condensate volumeVeff.2SL0 is used to
normalize theu- andv-wave functions of the inside excita
tions, and*dr (uuku22uvku2)5Y6,1.

Subsequently, we get for

Ck
x~x!52

r21s0fo~x!ikx@uk~x!1vk~x!#

~vex,kx
1vkx!

22cl
2k2 ~87!

the following approximate formulas:

Ck
x~6 !~x!'7q6g~v !

s0

Mcl
2 Aal

3fo
2~x!

i

kx
Aal

3

3@uk
~6 !~x!1vk

~6 !~x!#.

To estimate the characteristic value ofCk
x(6)(x), we use

uk(x).vk(x);AY6 /Veff and obtain

uCk
x~6 !u.q6g~v !

s0

Mcl
2 Aal

3Fo
2S Y6alL0

2S D 1/2 al

~327!
!al .

The parametersY6 characterize the relative weight o
excitonic degrees of freedom in the considered branch
excitations. As the parameter\vkx /\vex,kx

(1) ,1 at kx

.(4 – 8)k0 , the parameterY1(kx) can be estimated as 0.5
0.7. For kx,0, we obtain the following equation from
Eq. ~85!:

Y2F11
~al

3Fo
2!

m/M
q2

2 g2~v !S s0

Mcl
2D 2

3S 12
\vukxu
\vex,kx

~2 ! D L~2kx
2!2B

\2kx
2/2m G'1.

Within the stability area~see the next subsection for an e
tended discussion!, we estimate the ratio\vukxu/\vex,kx

(2)

.1/221/3 at ukxu.(428)k0 . Then, Y2(kx).0 and Y2

.0.620.8.
To go beyond the inside approximation, the effect of

homogeneous behavior of the longitudinal excitations can
considered. We use the following ansatz for the left-side
ymptotics~see Fig. 2!

uj ,s~x!5exp~ l ux/L0!eikxxuk ,

v j ,s~x!5exp~ l vx/L0!eikxxvk , ~88!

Cj ,s
x ~x!5exp~ l cx/L0!eikxxCk

x , x,0, ~89!

wherel u5 l v51 andl c52. Then, like the case of transvers
excitations @see Eq.~81!#, we can write the equation fo
v j ,kx

(x) valid at uxu.L0 ,
of

-
e

s-

@~v j ,kx
1v k̃x!

22cl
2k̃x

2#H ~\v j ,kx
!2

2X \2

2m
@ k̄x

22k0
2#1F̃~x!C

3X \2

2m
@ k̄x

22k0
2#1F̃~x!12n0@2Fo exp~x/L0!#2CJ

5H \2

2m
@ k̄x

22k0
2#1F̃~x!J 2

s0

Mcl
2 ~s0al

3!

3@2Fo exp~x/L0!#2cl
2k̃x

2, ~90!

wherekx→ k̃x5kx2 i (2/L0) in the phonon parts of this equa
tion and kx→ k̄x5kx2 i (1/L0) in the exciton parts of it (x
,0). It is easy to see that Eqs.~83! and ~90! are in the
continuity correspondence, i.e., they describe the same
ject. For example, the~left side! asymptotic behavior of
\vex,kx

(6) (x) can be obtained from the inside-condensate f

mulas by the substitute

kx→ k̄x , F~x!→F̃~x!→2um̃u,

and

fo
2~x!→@2Fo exp~x/L0!#2→0.

As a result, we obtain\vex,kx
.um̃u1\2k̄x

2/2m that corre-
sponds to the outside excitation spectrum, Eq.~63!.

The excitonic input intô dĉ†dĉ(x)&T50 , the quantum
depletion of the moving condensate, can be calculated
S1,suv1,s(x)u2.27 To estimate this value, one can approxima
uvk(x)u2 as follows:

uvkx

~6 !~x!u2.S Y6

Veff
D B6

2

4L6
2 ~2kx

2!
.

However, the summationS1,s implies *dkxd
2k' /(2p)3

within the semiclassical approximation. Assuming that su
an integration makes the difference amongvkx

(2) , vkx

(1) , and

vk'
not essentially important, we use the following estima

for uvk(x)u2,

uvk~x!u2.S 1

Veff
D B2

4L2~2k2!
.

Then, the integration*dkxd
2k' /(2p)3 can be reduced to

*k0
k2dk/2p2, and the main input@;fo

2(x)# can be esti-
mated from the following formula:

^dĉ†dĈ~x!&T50.
1

8p2L0
3

n0fo
2~x!

2um̃u
1

e

8p2L0
3

@n0fo
2~x!#2

2um̃u2

;
1

8p2L0
3

n0Fo
2 cosh22~x/L0!

un 0̃uFo
2 .

Using this density, we speculate that the localized deple
of condensate—i.e., the number of particles that are ou
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the condensate but move with it coherently—seems to b
small value. We obtain the following estimate@n05«0ãB

3

and un 0̃(v)u5u«̃0(v)uãB
3#:

dN05E dx^dĉ†dĉ~x!&T50.
1

16p2

«0

um̃u
ãB

3

L0
3 No ,

where the factor beforeNo can be estimated as

«0

um̃u~No ,v !

ãB
3

L0
3~No ,v !

.
«0u«̃0~v !u
2x~Ry* !2

1

n̄o
;~1021– 1022!n̄o

-1.

@Here, we used Eqs.~35! and ~36! within the approximation
n̄o@10.# Note that there is no smallk input to the estimate o
S1,s because, first, such excitations belong to the outside
citation branch in our model, and, second, we use the
proximationvk(x)'0 for them.

D. Stability of the moving condensate

To investigate the stability of the moving condensate
relation to the creation of inside excitations, we calculate
energy of the condensate with the one inside excitat
^a1,s

† a1,s&51, described by the following set:k, vk , and
uk ,vk ,Ck . In this paper, we analyze the stability inside t
excitonic sector of our model.

Although the excitations were defined in the comovi
frame, calculations should be done in the laboratory fra
Returning to the lab frame, we represent the exciton
phonon field functions as follows:

fo~x2vt,t !→fo~x2vt,t !1exp@2 i ~Ẽg1mv2/22um̃u!t#

3exp@ i ~w1mvx!#dc̃~x,t !, ~91!

where

dc̃~x,t !5uk~x2vt !ei ~w01kx!e2 i ~vk1kxv !t1vk~x2vt !

3e2 i ~w01kx!ei ~vk1kxv !t,

and

uo~x2vt !→uo~x2vt !1Ck~x2vt !exp@ i ~w01kx!#

3exp@2 i ~vk1kxv !t#1c.c., ~92!

see Eq. ~64! for comparison. In this analysis, the in
side excitations are not considered as fluctuations,
the ~average! number of particles in the condensate and
energy are changed asNo2*dxdc†dc and Eo(No)
2(]NEo)*dxdc†dc, respectively. However, these chang
are not important if the number of excitation in a system
less thanAdN2.ANo. They could be important in the cas
of instability of the moving condensate.

The zeroth component of the energy-momentum ten
can be represented in the form

T 0
05T 0

0~fo ,uo!1T 0
0~2!~dC†,dC,du,] tduufo ,uo!,

where the first part corresponds to the condensate energEo
and the second part gives the energy of inside-excitatio
Ein . After substitution of Eqs.~91! and ~92! into Ein

5*dxT 0
0(2) , we have for the total energy
a

x-
p-

e
n,

e.
d

d
s

s

or

s,

Eo1Ein2ex'Eo~No!1dEo~No!1E dx\@vk~x!1kxv#

3$uuku22uvku21~2/\!r@vk~x!1vkx#uCku2%

5Eo~No!1dEo~No!1\^vk1kxv&, ~93!

where

dEo~No!5~2um̃u1n0Fo
2!E dx dC̃†dC̃

2
M ~cl

21v2!

2
3q~No ,v !E dxdC̃†dC̃,

~94!

dC̃†dC̃~x!→uuku21uvku2

@see Eqs.~65! and ~67! for comparison#.
In this papear, we discuss qualitatively the stability of t

condensate in relation to the backward emission of ins
excitations~i.e., kx,0 in the comoving frame!. To begin
with, we consider the standard criterion,

\~vex,k
~2 !2ukxuv !.0 at ukxu.zL0

21, ~95!

where z.3210 corresponds to the low-lying excitation
The value ofvex,k

(2) (x) is taken within the inside approxima
tion, see Eq.~84!, so that\vex,k

(2). f (z)um̃u and z/ f (z).0.1
20.3. Then, it is easy to conclude that the following inequ
ity

\ukxuv
\vex,k

~2 ! .
z

f ~z!

v
cl

S ~4m/M !Mcl
2/2

um̃u~No ,v !
D 1/2

,1 ~96!

is valid in the low-energy limit if the effective chemical po
tential ~36! is large enough@see Eq.~69! for comparison#.

More precisely, the ballistic velocityv and the number of
particles in the condensate,No , have to be large enough, fo
example,u«̃o(v)u.(102121)Ry* and n̄o.10, in order to
the inequality

~4m/M !Mcl
2/2

um̃u~No ,v !
.

~4m/M !Mcl
2/2

u«̃o~v !u2/4n̄o
2x Ry*

,10– 20 ~97!

can be satisfied. Thus, for

um̃u~No ,v !.mcr.1021~4m/M !Mcl
2/2, ~98!

where mcr;1024 eV, one can expect conditions~96! and
~97! to be valid.

Despite the condensate can be formed nearg(v)'go in
theory, for example, withun 0̃(v)u.0.1n0 andn̄o@10, such a
ballistic state seems to be unstable against the creatio
inside excitations. Note that the critical~Landau! velocity vcr
can be found as a solution of Eq.~98! and vo,vcr(No)
,cl . In fact, the parameterum̃u/mcr controls the stability/
instability of the condensate, see Eqs.~69! and ~96!.

Analyzing Eq.~95!, we did not take into account Eq.~94!.
However, if the instability regime takes place, more th
ANo inside excitations can appear. As the changes inuo(x
2vt) because ofNo→No2dN are nonlocal~in spite of cre-
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ation of the localized excitations, see Figs. 1 and 3!, a free
acoustic phonon can appear in the system lattice1excitons
together with appearance of the localized excitatio
\vex,k

(2) (x). Like the case of outside excitations, we assu
that (3/2)M (cl

21v2)q(No ,v);\clkph, see Eq.~94!. Then,
only the term}2um̃u1n0Fo

2 is important. In fact, this term
leads to some renormalization of the values of the criti
parameters,mcr andvcr .

31

IV. INTERFERENCE BETWEEN TWO MOVING
PACKETS

In the this section, we address the problem of interact
between two moving condensates. This problem is es
tially nonstationary, especially if the initial ballistic veloc
ties of packets are different. Within the quasi-1D conserv
model, the following equations govern the dynamics of
two input packets~we choose the reference frame movi
with the slow packet!:

S i\] t1
m~v8!2

2 Dc0~x,t !5S 2
\2

2m
]x

21n0uc0u21n1uc0u4D
3c0~x,t !1s0]xu0~x,t !c0~x,t !,

~99!

@~] t2v8]x!
22cl

2]x
2#u0~x,t !2cl

22k3]x
2u0~x,t !]xu0~x,t !

5r21s0]xuc0u2~x,t !. ~100!

Then, the initial conditions can be written in the explicit 1
form by using the exact solution of Eqs.~10! and~11!. Note
that the amplitudes of the stationary ballistic state,fo(x
2vt)•]xuo(x2vt), were defined from the normalizatio
condition and depend on the values ofv andNo . Hence, the
amplitudes of the ‘‘input’’ condensates for Eqs.~99! and
~100! may not have the same values.

In this paper, we approach the problem of strong inter
tion between the condensates. Therefore, we choose the
symmetric initial conditions, i.e., the amplitude and the v
locity of the ‘‘input’’ packets are different, for example,v
.v8 andviv8, see Fig. 4. Here, we reply on the experime

FIG. 3. The ballistic condensate,fo(x2vt)•uo(x2vt)d1 j , can
be unstable in relation to emission of the inside excitations if
effective chemical potentialum̃u(No ,v),mcr . In terms of Landau
critical velocity, this meansvo,v,vcr(No). If such an instability
takes place, the emission of inside excitations can be accompa
by the emission of outside excitations of the condensate. The
gitudinal inside-excitations are labeled by the wave vectorkx,0 on
this figure, whereas the outside excitation is labeled by the w
vectorkx8,0.
e

l

n
n-

g
e

-
on-
-

-

tal observation6 that, atv.v0 , the ballistic velocity of the
condensate depends on the power of a laser beam irradi
the crystal. If the exciton concentration in the first pack
no1 , is close to the value of the Bose condensation thresh
and the exciton concentration in the second packetno2
.no1 , the velocity difference between condensates c
reach (0.120.3)cl . Then, in the reference frame movin
with the first ~slow! packet, the initial conditions can b
taken as the following:

c0~x,t50!u0~x,t50!

5fo~x;No1!qo~x;No1!1exp@ i ~dw1mdvx!#

3fo~x1x0 ;No2!qo~x1x0 ;No2!, ~101!

wheredw5w2w8, dv5v2v8, x05v8t, andt is the ~ini-
tial! time delay. As the second packet moves in this frame
reference, the regime of strong nonlinear interaction betw
the condensates is~theoretically! unavoidable. Note that
even before collision, a time-dependent interference term
uc0(x,t)u2 begins to influence the packet dynamics, see F
4. For example, the r.h.s. of Eq.~100! contains

;]x$2 cos~mdvx2dvt1dw!fo~x;No1!

3fo~x2dvt1x0 ;No2!%, ~102!

where

\dv5mdv~v1v8!/22@ um̃u~No2 ,v !2um̃u~No1,v8!#

and um̃u}(No /No* )2u«̃0(v)u2. The ratioum̃2u/um̃1u can be of
the order of 101, and the characteristic scale of fringes~102!
is

p~\/mdv !

L0
.~10– 30!S um̃u~No1 ,v !

~m/M !Mcl
2/2D 1/2

.5 – 10,

that is they are of the long-wavelength nature.
To answer the question which model@the conserving one

Eqs. ~99! and ~100!, or the kinetic model19,32# is more ad-
equate to describe the packet collision, we have to comp
the estimate of interaction time,

e

ied
n-

e

FIG. 4. Two ballistic condensates move with different velo
ties,v2v8.(0.120.3)cl , andt5t1 before the ‘‘collision,’’ or, the
strong interaction process. If one can prescribe the coherent p
to each of the participating condensates, e.g.,wc(x)'w
1(mv/\)x, the interference area appears between them.~The in-
terference area is marked by bold dashed lines on this figure.! As
vÞv8, the fringes are nonstationary, and the outside excitations
actually be excited in this area.
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t* .Lch2 /dv;103ãB/0.2cl.1029– 10210 s,

and characteristic time scales of the processes

uNo2~ t !,v&uNo1~ t !,v8&→uNo2~ t !6dN,v&uNo1~ t !7dN,v8&

~103!
-
th
l-

e
a

on

tw
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qs

it

-
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ta

nd
driven by phonons or byx2x interaction. Note that some
thermal phonons have to be excited in the system to as
such transitions, and the value oft* is of the order of scat-
tering time of the exciton-LA-phonon interaction~although
without any macroscopical occupancy!.17

If processes~103! are driven by the lattice phonons, tw
phonons are necessary to satisfy the laws of conserva
For instance, we choosedN511 in Eq. ~103! and obtain
@see Eqs.~65! and ~66!#
\k1,x5mdv13Mvq~No2 ,v !23Mv8q~No1 ,v8!1\k2,x ,

\cl uk1,xu5mdv~v1v8!/223@ um̃u~No2 ,v !2um̃u~No1 ,v8!1n0Fo2
2 /32n0Fo1

2 /3#13/2M ~cl
21v2!q~No2 ,v !

23/2M ~cl
21v82!q~No1 ,v8!1\c1uk2,xu.
ates,
of
-

ent
ntal

he
mo-
in-

the
ent

,
lcu-
lu-
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rk
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he
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n-
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-
on-

en-
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o-

its
Although the second packet moves faster,mdv.0, this state
can be considered as a more stable~and, thus, more prefer
able! one for the excitons of the slow packet. Indeed,
following inequality for the effective difference the genera
ized chemical potentials seems to be valid

mdv~v1v8!/223@ um̃u~No2 ,v !2um̃u~No1 ,v8!1n0Fo2
2 /3

2n0Fo1
2 /3,0, ~104!

and the absolute value of the l.h.s. of Eq.~104! is
;um̃u(No2,v). Thus, within the quantum kinetic model, th
relevant transition probabilities have to be calculated at le
in the second order of perturbation theory, for example,

uNo2 ,v&uNo1 ,v8&→
ph1

uNo2 ,v&uNo1 ,\vex,kj
,v8&

→
ph2

uNo212,v&uNo122,v8&.

As a result, the system of two quantum Boltzmann equati
will describe the interaction process.

Unlike the Boltzmann equations, Eqs.~99! and~100! con-
tain information about the quantum coherence between
condensates explicitly and, moreover, can describe the
of strong interaction. Unlike the 1D nonlinear Schro¨dinger
~NLS! equation that supports many-soliton solutions, E
~99! and~100! are, in fact, quasi-1D ones, andn0.0 in Eq.
~99!. Therefore, it is an open question what happens w
two ~excitonic! solitons after they collide in the crystal.

In this paper, we assume that the dominant process~es! of
condensate interactions is that one~s! leading to] tNo2.0.
Then, at the time scales@t* , one solitonic packet can ap
pear as a result of these processes. Such a resultant ba
packet can be approximately described by the steady-s
one-soliton solution of Eqs.~8! and ~9! with Ño'No21No1
and the low of energy conservation,

E~No1 ,v8!1E~No2 ,v !'E~Ño5No21No1 ,ṽ !. ~105!

If Ño,No* , all the approximate solutions having been fou
in this study are valid to describe the resultant packet.
e

st
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.
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te

As we prescribed the value ofÑo , we have to estimate the
value of ṽ from Eq. ~105!, ~generally,ṽÞv!. Moreover, we
have to assume that the total momentum of the condens
Px(No1 ,v8)1Px(No2 ,v), may not be conserved because
lattice participation in such a condensate ‘‘merger.’’ How
ever, the challenging question of the results of coher
packet collision needs further theoretical and experime
efforts.

CONCLUSION

In this paper, we considered a model within which t
inhomogeneous excitonic condensate with a nonzero
mentum can be investigated. The important physics we
clude in our model is the exciton-phonon interaction and
appearance of a coherent part of the crystal displacem
field, which renormalizes thex2x interaction vertices. Then
the condensate wave function and its energy can be ca
lated exactly in the simplest quasi-1D model, and the so
tion is a sort of Davydov’s soliton.23 We believe that the
transport and other unusual properties of the coherent p
exciton packets in Cu2O can be described in the framewo
of the proposed model properly generalized to meet m
realistic conditions.

We showed that there are two critical velocities in t
theory, namely,vo and vcr . The first one,vo , comes from
the renormalization of two particle exciton-exciton intera
tion due to phonons, and the bright soliton state can
formed if v.vo . Then, the important parameter, which co
trols the shape and the characteristic width of the conden
wave function, isum̃u/m* , see Eqs.~29! and ~36!. The sec-
ond velocity,vcr , comes from use of Landau arguments26 for
investigation of the dynamic stability/instability of the mov
ing condensate. In fact, the important parameter, which c
trols the emission of excitations, isum̃u/mcr , see Eq.~98!.
Then, within the semiclassical approximation for the cond
sate excitations, we found more closev is to cl [mcr
,um̃u(No ,v),m* ] more stable the coherent packet is. It
interesting to discuss the possibility of observation of an
stability when the condensate can be formed in the inhom
geneous state withvÞ0, but with vo,v,vcr(No), or um̃u
,mcr . Such a coherent packet has to disappear during
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move through a single pure crystal used for experiments
the shape of the moving packet depends on time, the form
the registered signal may depend on the crystal length ch
ing from the solitonic to the standard diffusion density pr
file.

We found that the excited states of the moving excito
phonon condensate can be described by use of the lang
of elementary excitations. Although the possibility of the
direct observation is an unclear question itself, the stab
conditions of the moving condensate can be derived from
low-energy asymptotics of the excitation spectra atT!Tc .
However, the stability problem is not without difficulties.30,33

One can easily imagine the situation when the conden
moves in a very high-quality crystal, but with some impur
region prepared, for example, in the middle of the sample
n

e,
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tt
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n

this case, the excitonic superfluidity can be examined by
purity scattering of the ballistic condensate. Indeed, such
purities could bound the noncondensed excitons, which
ways accompany the condensate, and could mediate,
instance, the emission of the outside excitations. The
process may lead to depletion of the condensate and,
haps, some other observable effects,34 such as damping
bound exciton photoluminescence, etc.
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