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Bosons in a lattice: Exciton-phonon condensate in GO
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We explore a nonlinear field model to describe the interplay between the ability of excitons to be Bose-
condensed and their interaction with other modes of a crystal. We apply our consideration to the long-living
paraexcitons in &®. Taking into account the exciton-phonon interaction and introducing a coherent phonon
part of the moving condensate, we derive the dynamic equations for the exciton-phonon condensate. These
equations can support localized solutions, and we discuss the conditions for the moving inhomogeneous
condensate to appear in the crystal. We calculate the condensate wave function and energy, and a collective
excitation spectrum in the semiclassical approximation; the inside excitations were found to follow the
asymptotic behavior of the macroscopic wave function exactly. The stability conditions of the moving con-
densate are analyzed by use of Landau arguments, and Landau critical parameters appear in the theory. Finally,
we apply our model to describe the recently observed interference and strong nonlinear interaction between
two coherent exciton-phonon packets in,Ou

INTRODUCTION of the “phonon wind” model®!® and the experimental
observatior$®® are the strong arguments in favor of this

Excitons in semiconductor crystaland nanostructurés  idea. To the authors’ knowledge, there are no realistic theo-
are a very interesting and challenging object to search for theetical models of the kinetic stage of paraexciton condensate
process of Bose Einstein condensati@EC). Nowadays formation where quantum degeneracy of the appearing exci-
there is a lot of experimental evidence that the optically in-ton state and possible coherence of nonequilibrium phonons
active paraexcitons in GO can form a highly correlated pushing the excitons would be taken into account. Indeed,
state, or the excitonic Bose Einstein conden$4f®A mov-  the condensate formation and many other processes involv-
ing condensate of paraexcitons in a three-dimensi@ia) ing it are essentially nonlinear ones. Therefore, the conden-
Cu,0 crystal turns out to be spatially inhomogeneous in thesate, or, better, the macroscopically occupied mode, can be
direction of motion, and the registered velocities of coherentlifferent fromn(k=0)>1, and the language of the states in
exciton packets turn out to be always less, but approximateli space and their occupation numbeilk) may be not rel-
equal to the longitudinal sound speed of the crystal. evant to the problem, see Ref. 17.

Analyzing recent experimenfdi’ and theoretic&r®® In this paper, we will not explore the stage of condensate
studies of BEC of excitons in GO@, we can conclude that formation. Instead, we investigate the second, quasiequilib-
there are essentially two different stages of this process. Théum stage, in which the condensate has already been formed
first stage is the kinetic one, with the characteristic time scal@nd it moves through a crystal with some constant velocity
of 10-20 ns. At this stage, a condensate of long-livingand characteristic shape of the density profile. In theory, the
paraexcitons begins to be formed from a quasiequilibriuntime scale of this “transport” stagat,, could be determined
degenerate state of excitofis#0, Te¢>T,y) When the con- by the paraexciton lifetimer(,=~ 13ush. In practice, it is
centration and the effective temperature of excitons in aletermined by the characteristic size of a high-quality
cloud meet the conditions of Bose-Einstein condensdtion.single crystal available for experiments
Note that we do not discuss here the behavior of orthoexci-
tons (with the lifetime 741,c=30n9 and their influence on
the paraexciton condensation process. For more details about
the orthoexcitons in GO, ortho-para-exciton conversion,
etc. see Refs. 4, 5, 14, and 15. wherec, is the longitudinal sound velocity.

The most intriguing feature of the kinetic stage is that We assume that at the “transport” stage, the temperature
formation of the paraexciton condensate and the process of the moving packe{condensed plus noncondensed par-
momentum transfer to the paraexciton cloud are happeninticles) is approximately equal to the lattice temperature,
simultaneously. If the diameter of an excitation spot on the
crystal surface is large enougBy,.7~ S, and the energy of
a laser beam satisfieg,n, Egap, Nonequilibrium acoustic
phonons may play the key role in the process of momentum
transfer. As a result, the mode with macroscopical occupancyhen, we can consider the simplest cas& ef0 and disre-
of the excitons appears to be witlk)#0, where#(k,) gard the influence of all sorts of nonequilibrium phonons
=m,v andv is the packet velocity. (which appear at the stages of exciton formation,

Indeed, the theoretical results obtained in the frameworkhermalization® on the formed moving condensate.

At,=/1c,=0.5-2us< Tparas

Terr= Thar<Te-
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Any theory of the exciton BEC in GO has to point out (For the 3D case, one has to take cesBd becausev,
some physical mechanigs) by means of which the key ex- =4m(%2/m)ag. and a,=(1~3)3dg; see the discussion in
perimental facts can be explaind&or example, the conden- Ref. 20)
sate moves without friction within a narrow interval of ve-  Moreover, in the Lagrangian of the displacement field, we
locities localized nearc,, and the shape of the stable include the first nonlinear term xs(du).® [The dimension-
macroscopic wave function of excitons resembles solitorless parametek, originates from Taylor's expansion of an
profiles’) Here, we explore a simple model of the ballistic interparticle potentiall (|r;—r;|) of the medium atom$As-
exciton-phonon condensate. In this case, the general strusuming that a dilute excitonic packet moves in a weakly
ture of the Hamiltonian of the moving exciton packet and thenonlinear medium, we will not take into account more higher

lattice phonons is the following: nonlinear terms in Eq(2).
For simplicity’s sake, we take all the interaction terms in
A=H eI/, — VPe(I/", ) + H (0, 7) — VPG, 7) L in the local form and disregard the interaction between the
excitons and transverse phonons of the crystal. Note that the
+Hin 1 ,0,0,). (1)  ballistic velocityv is one of the parameters of the theory, and

we will not take into account the excitonic normal compo-
Here, ¢ is the Bose-field operator describing the excitdns, nent and velocity, i.e.p=vs~Ve,, (T=0). This means
is the field operator of lattice displacements,is the mo- that we choose the spatial part of the coherent phase of the
mentum density operator canonically conjugatéitaandP  packet,¢.(x), to be in the simplest form,
is the momentum operator. Note that the Hamilton(anis
written in the reference frame moving with the exciton exfdiec(x)]=exdi(¢+kox)], @=const, #ky=muv.
packet, i.e.x—x—vt andv=const is the ballistic velocity of (€)
the packet.

The equations of motion can be easily derived by the

L 3D MODEL OF MOVING EXCITON-PHONON standard variational method from the following condition:

CONDENSATE

_ ot g N _
To derive the equations of motion of the field operators 65= 5J dtdxLl¢ (x.0),$(x.1),0(x,1)]=0.

(and generalize these equations to the cas&0D), it is A A
more convenient to start from the Lagrangian. In the prodindeed, after transforming the Bose fiel@ and s by
posed model, the Lagrangian density has the following form

in the comoving frame: J(x,t)—expl —iEgt/h)exp(imux/h) J(x,t),

if A N if S Ty, we can write these equations as follows:
L= (o= a9 +v o (b= 9 o) —Egd" v
(ihd,+mu2/2) gr(x,t)

h2 aion Voo 2 2
“om V¥ VY S (XD Te(x Y] h? - o t2na .
= T om AT ¥ XD+ v YD) [P
CZ
= 2O P T+ 5 (307~ S (3002 :
+ooVO(x,t) (x,t), 4
2
PO g 2 aaaa+aaaa+&2 9,0)2 2 c2A— 25210
3 <3(9j0s)° = 5 (90dx0+ 0x00,0) + ——(9,0) [ 92— CPA —v( 3,0y + dydy) +v202]0g(X,1)
— o (X, 1) (X, 1) VX, 1), 2 —c@ 2k307059;05(X,1) = p~ Loodd (X, 1)].
wherem is the exciton “bare” mas$m= mg+ m,=3m,, for (5)

1s excitons in Cyd0), v, is the exciton-exciton interaction
constani »,>0 corresponds to the repulsive interaction be-
tween paraexcitons in GO (Ref. 18], p is the crystal den-
sity, o is the exciton-longitudinal phonon coupling con-
stant, andv=(v,0,0). The energy of a free exciton ~I_'sg
+#2k?/2m. Although the validity of the conditioma3<1 _ N _ . _
(35 is the exciton Bohr radiysnakes it possible to disregard function, andsy is the fluctuational part ofs, which de-

all the multiple-particle interactions with more than two par- SCribes out-of-condensate particles. _
L . .~ 19 . One of the important objects in the theory of BEC is the
ticipating particles irH,,,™ we include the hard-core repul-

on t inated f the th ticle int oLl correlation functions of Bose fields. The standard way to
isg)n e;ngoar:]%lnae rom the three-particie Interactiontin - c5iculate them in  this modelthe excitonic function
L.,

(p(x, )T (x',t")), for examplg can be based on the effec-
6 3 tive action or the effective Hamiltonian approacfsn-
0<wv;/@g<vo/d@g=constRy. deed, one can, first, integrate over the phonon variables

We assume that the condensate of exciterists This
means that the following representation of the exciton Bose-

field holds: = o+ Sib. Here,y# 0 is the classical part of
the field operatog/ or, in other words, the condensate wave
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Il. EFFECTIVE 1D MODEL FOR THE CONDENSATE

et the expression f&, ") and, second, u orH
g p () Bt (OF Hegt WAVE FUNCTION

to derive the equations of motion fak,, Sy, correlation

functions, etc. Solving Egs.(8) and (9) in the 3D space seems to be a
In this paper, we do not follow that way; instead, we treatdifficult problem. However, these equations can be essen-

excitons and phonons equalfy?>**This means that the dis- tially simplified if we assume that the condensate is inhomo-

placement fieldi can have a nontrivial coherent part too, i.e., geneous along the axis only, that is

0=ugy+ 60 andugy# 0, and the actual moving condensate can

be an exciton-phonon one, i.aly(Xx,t)-Ug(x,t). Then the $o(X) = do(X) and do(X) =[do(X),0,0].

equation of motion for the classical parts of the fiefdand  Note that the cross-section area of an excitation Sgais to
0 can be derived by use of the variational method frém e basically constant across the sample cross section. In this
=L(4,¢*,u), in which all the fields can be considered ascase, the problem can be considered as an effectively one-

the classical ones. Eventually, we have dimensional one.
_ ) Such an effective reduction of dimensionality transforms
(iR 0+ mu=/2) o(X,t) difficult (nonlocal differential equations for the condensate
52 wave function into a rather simple differential ones, and ob-
=| - ﬁA"— vol tho|206,) + v tho| H(X,1) [ (X, 1) tained in this way the effective 1D model for the condensate

wave functiong, conserves all the important properties of
the “parent” 3D model.

+aoVUuo(X,t) o(X,1), (6) Indeed, ifv<c,, the following equations stand for the
condensat@y(x) = d,q,(X) ]:

Tco(X) = [ — (£212M) I5+ vod5(X) + 11 dg(X) 1 do(X)
_Clzzj: 2 K397 UgsdjUos(X,1) = p~ taodd | thol A(x,1)]. + ooy (X) do(X). (10

(92— CPA — 20 903+ 122 Ugs(X,1)

(7) = (cf=v?),y(X) — 267 kadxy Y(X) = p T oodx b (X).
Notice that deriving these equations we disregarded the in- i o iy
teraction between the classidabndensateand the fluctua- | N€ last equation can be easily integrated,
tional (noncondensajeparts of the fields. That is certainly a
good approximation fof =0 andT<T, cases”
In this paper a steady state of the condensate is the objeahd solved relative tg(x). Here,
of the main interest. In the co-moving frame of reference, the

y(X)+&3y?(x)=Pd(x)+ const, (12

condensate steady-state is just the stationary solution of Egs. ~ Cl2 o
(6) and(7) and it can be taken in the form Ka= 72 ke y(v)ks,
Po(x,1) =expl( —i ut)expli @) dho(X), 0 N Y
X)=— ———-ps(X)=— y(v) — P5(X).
p(cf—v?) Po0= TN ez o

Uo(X,t) = qO(X)l
. Note that the medium nonlinearity parameigrcan be en-
where¢, andd, are the real-number functions, ape-const  hanced by the factor of the order of 4—10 if the value é
is the coherent phase of the condensate wave function in thess, but close toc;. (For spatially localized solutions,
comoving frame, see E¢3). (This phase can be taken equal 5 q (x)~0 and$2(x)=0 at|x|>L,, so that const0.)
zero if only a single condensate is the subject of interest. If k3<0, we can always represent the solution of Egs.
Thzen, the following equations have to be solved<(iz  (11) and(12) in the following form:
—mv“/2):

, y(X)=D(X)+ R3] DA(X) + 2K2D3(x)+---. (13
nho(X)=| — %A-i- v0¢§(x)+ vl¢§(x) bo(X) (Indeed, the parameters of medium nonlinearity can be cho-
sen asc;<0 andk,>0.2% After substitution of Eq(13) into
+ oV do(X) do(X), 8  EQq.(10), Egs.(10) and(11) can be rewritten as follows:
Tbo(X)=[ — (h212M) 32+ DgdZ(X) + D1 b (X) + € X),
_{(C|2—l)2)(3)2(+C|2(9)2/+ C%ﬁg}qos(x) M¢0( [ ( X O¢o( 1¢o( 2] ¢0( (14)
—¢f 2 2K3070osdjGos(X) =P Lor0dshd(X). ,Go(X) =D (X) +[Ra| D(X) + €3, (15)
J=XY,Z

9 where the interparticle interaction constants are renormalized
©) as follows:

Note that in order to simplify Eqg.7) to (9), we assumed
only ug(x,t)=qy(x). In this model, it is enough to obtain Vo=V~ 00—,
localized solutions for the displacement field. p(ci—v?)

0o
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US and the same Rycan be taken as a characteristic energy of
=i+t oo—a—>3|K3l, (16)  collisions. The effective vertex;>0 is enhanced by the
[p(ci=v%)] medium nonlinearity, and the both terms in the r.h.s. of Eq.
and higher nonlinear terms are designatedeby A small  (20) can be equally important at(v)> vy, .
parameter in Eq(16) comes from the term Note that in the case dftrongly nonlinear latticesith
excitons, the effective interaction vertices in E@4) (v;,
ool p(c2—v?)=y(v)(go/Mc?)a?, 7,, etc) depend on the velocity and the parameters of

YR ) medium nonlinearity (x5, x4, etc). Then the effective
where y(v) =cj/(ci —v®) andM is the mass of the crystal gyciton-exciton interaction can be strongly renormalized at
elementary cell. o _ - sufficiently large gamma factorg(v) and the vertices may

The effective two-particle interaction constanj(v) can change their signs as it can happen Vo). In this paper,
be negativeif the velocity of the condensate lies inside the however, we consider the case of weakly nonlinear medium

intervalv,<v<c;, where with excitons(e.g., a crystal with long living excitonsMore
> > accurately, this means that at velocities-c, the effective
vo=\Ci —(0p/pro). (A7) vertex 7o(v) became<0, while the more higher vertices,

such asv;(v) and 7,(v), do not change their sign; they
remain >0 at y(v)>1yy. Finally, to describe the weakly
nonlinear case, it is enough to take into account the param-
etersv,>0 and«3;<0 and neglect more higher nonlineari-
ties[e, and e, in Egs.(14) and (15)].

Outside this intervalpy(v) >0 (Ref. 11) and the velocity,
can be called the first “critical” velocity in the model. The
meaning of this velocity can be clarified by rewriting Eq.
(16) in the dimensionless form,

70 Vo oo In this paper, we will consider the case wf<v<c in
g Rl Y(U)( Mcz)' (18 detail. Indeed, in the case @(v)<0 and7;(v)>0, some
0% 0% ! localized solutions of Eqg14) and (15) do exist. For ex-

If v>v,, ample, the so-called “bright soliton” solution of Eql4)
exists if the generalized chemical potential is negatje,

oo v  constRy &3 <0, and|z|<u*. Here,
Y)Y 2) 3= =3 (19
Ci) oo oo § ~2 ~ 3y2
N L (|vol/ooay) 01
where Ry anda3 are the characteristic energy and the cross BT aenn, Y (B lead) D

section of two-particle collisions in the exciton subsystem.

The following inequalities are true for excitons in a crystal FOr [«3|~1 andy(v)>y,=3~5, we can roughly estimate
the effective vertex;(v) as

=3 (s\43 <
ag>(>)a and constRy<(<)oy, ﬂ(v)/UOaF:(l~10)(1/0/0'0&]3).
and, usually, the value of the paramet@n'aoaf‘ is >1.

For paraexcitons in G0, however, we assume tleffec-
tive) value of Vola'oa|3 can be estimated as 0:8.6<1,
whereas the value ofro/Mc?=0.1~0.3. This makes the
inequality (19) valid at, say,v~(0.8~0.9)c,, or y(v)=5.

Then,u* (v)=(10"1~10"2)Ry*, and the more is the value
of | k4| the less is the value gi* (v).

The “bright soliton” solution of Eq.(14) can be repre-
sented in the following form:

Thus, within the effective 1D model, the critical factgg bo(X) =D [ B(P )X, 71(Py)],
=y(v,) is the following ratio
2m 1/2
_[ % / ( 7 ) B(Cbo):(?lﬁl(@o)) . (22
Yo= 3 A2
O'oa.| MC|

_ 5 _ _ Here,n(®,) is some dimensionless parameter, and the gen-
and, for the substances withy/ooa]<1, the regime with  eralized chemical potential<O0 is given by the formula
7o<0 can be obtained at velocities reasonably close but not
equal toc,, for example, beginning from someg,<10, 72| = || (Do) = | To| D2/2— TR DI/3. (23
[(0.95¢;)~10]. . . : . .

On the other hand, the effective three-particle interactior-ik€ the chemical potentigliz|, the amplitude of the bright
constant; (v) is always positive for crystals witks<0. It Soliton, @, satisfies
can be represented in the dimensionless form as follows ~
g D2 (BF)2= Tl (41357),

[ vo |3 AN and u* =| 75| 0*2/4
3,7 =const 3| =3+ ()| kal| ¥(v) T po Vol Fo 1 . o
oo(ay) o0dy ) @ Mc; For ||/ u* <1, the following approximation is valid:
m=i (|Bl/p*)+5 (|l w*)?<1, (24)

Here, we estimated the “bare” vertex of the three-particle

collisions as and this formula can be used up|f@|/u*=0.5. Then, we

6 3 can approximate the solution of E@L4) by the following
vi=constRyag=constrgay, const<1, formulas:
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X)~® {1— 5,(P,)cosh B(P,)X Ry* _ _
Po(X)~Dof 71(Po)cost B(P,)x] Lch(No,v)z4|§ (y : A~ 4(10,.  (3D)
1= V1= (@)1} (25 o
and, for the average concentration of condensed excitons in
bo(X)=2®,exd — B(P,)|x|1/V1— 7, the packetp,, we have
for [x|>28(®y) ", |ul<pu*. Nodg~(No/Sleyag=~1/ma<1.
(26)

. . Recall that the second part of the condensate, the dis-
The amplitudes of the exciton and phonon parts of the conplacement fieldy,(x), is of the same importance as the first
densate, the characteristic width of the condensate, and thgrt, the exciton wave functiog,(x). The displacement

value of the effective chemical potential depend on the fig|d d40,(X) can be represented as follows:
normalization of the exciton wave functiaf,(x). We nor-

malize it in 3D space assuming that the characteristic width o,
of the packet in they,2 plane is sufficiently large, i.e., the FxGo(X) = — Y(U)(M—Cz
cross-section area of the pack&t can be made equal to the !
cross-section are@ of a laser beam and

S, =S=Squrf-

Then, we can write this condition as follows:

[a] p5(x)]

(4]

Y(v) ==

2
3,2
MC|2 [a,¢o(x)]2. (32

+y(v)| ks

To estimate its amplitude,q, we have to estimate the pa-
rametera’®? first.

For ny>10 and |Eo(v)|=(10"1-1)Ry* [i.e., v(v)
f It/folz(XJ)dX=Sf B5(x)dx=No, (27)  =21y,], we obtain
whereN,, is the number of condensed excitons, and, gener- 342 a,3 [2o(v)| 1 a,3 1 ’
ally, Ng# Ny, a'q)ozé_B—x Ry* Tﬁ(iwa_gz_ﬁg“'\'”
Applying this normalization condition, we get the follow-
ing results: If this parameter is small enough, such a¥b2(N,,v)
- =10"3-105, we can neglect the nonlinear corrections to
P2~ V()] 28) the amplituded,q,<0 and to the shape @f.q,(x) as well,
° 2(NX/Ng)%x Ry* Ag+27;(v)"
0o Jo
Here, we used the following notationll =2S/a2, #2/m Ix8o= _V(U)W(aﬁ‘pg) 1_7(U)|K3|( 7(0)W>
=2x Ry*@3, where RY =%2/2p0, 83 andx= pue/m. The ! !
formula (28) is valid for ||/ u* <0.3~0.4. We assume that, 342
at N3 /N,=n,>10 (this is the important paramejemwe al- x(aj (bo)}
ways have
90 34,2
202X RY* 38> 77(0) = ksl 0)AE= (1~ 10 Ry* S, = 7(”>(M_c|2 (@7 y). 33
Then, the following inequalities are vali@5(N,,v)<®5?  Thus, due to the validity ohgad<1, there is almost no
and difference between the approximation
~ |o(v)[? . 17
[F(No v}~ 2[2niRy A+ 4v;(0)} T 5E(v)

(29

The characteristic length of the packet can be estimated
from Eq. (22) as follows[ 75(v) =%o(v)a3]:

1 1 1 [Eo(v)
Lo (No0) = 2 B(Po) = 4 X Ry* Bg)
1 l-inside-exc
X FIG. 1. Moving exciton-phonon condensate, as it appears in the
2 ~ * ’
‘/ﬁo"'[sl(v)/x Ry*] quasistationary modekp,(x—vt)-U,(Xx—vt)dy;, is presented by
1 |—§0(U)| bold lines on this figure. Here,@, is the amplitude of the coherent

at n,>10. phonon stateu,(x—vt), and ®, is the amplitude of the macro-
scopic wave function of excitons. Longitudinal exciton-phonon ex-
(30) citations k|/Ox) of the condensate are schematically depicted. Un-
der transformatioiN,— N,— N, the condensate wave function is
Therefore, aty(v)=27y,, we can roughly estimate changed as it is presented by dashed lines.

~ 8 X Ry* @gn,
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Do(X) - 950o(X) =P, cosh [ B(P)X]- (—|dxQo|) Note that the effective chemical potential is a rather small
parameter in this model,
x cosh [ B(P,)x], (34)
where - Vo(0)]? [Eo(v)] [[Eo(v)]
Fowl 1 FINe )™ xRy as ™ amg xRy |0

B(®o)=Lg '~ No=NG/My, Mo>1,
(35  Thatis why the characteristic lengthge< ||~ Y2, see Eq.
(30), can be estimated as (3010"3g within the validity of
and the exact solution of the weakly nonlinear case with  approximationg28) and(29). Moreover,|7i|/x* <10~2 and
>0 and k3<0. For S=(102-10 %) cn?, @5=(25~50) the parametery,(®,) in Eq. (22) can be estimated as
10 ®cn?, we estimateN? =10"-10". Although the ap- ~1072. In this case, one can neglect it in Eg5).
proximate solutions we used in this paper are valid Ngr Returning to the laboratory reference frame, we can write

<N3 , they can be used &,<N} for estimates. the condensate wave function in the foteee Fig. L

X Ry* 2n.,ag’

2

~ m
%(X*”'Uo<x,t>6ﬁexp[‘i(Eg+Tv—lm ¢

exdi(¢+mux)]®,cosh Ly (x—vt)]-{Qy— Qo tani Ly *(x—vt)]},
(37)

where we count the exciton energy from the bottom of the crystal valence tfégndE(ga,), and 2Q,(N,,v) is the amplitude
of the phonon part of condensate,

() a.|2 1
Qo%')’(v)(M_Clz) ’é_éﬁ_o Q<q.

To calculate the energy of the moving condensate within the Lagrangian apprseet5q.(2)], we have to integrate the
zeroth component of the energy-momentum tenﬁérover the spatial coordinates. Consequently, we have the following
formula:

2 2
pCi

= h Yo vy p pct
Tg(X,t)Zqub; ¢0+ ﬁvd’gvﬁbo'i' ?(¢3)2¢g+ §(¢3)3¢g+ E(&tQO)Z‘F 7(§xqo)2+ ?K3((?Xq0)3+0-0¢); d’oaxqo-

Here, we do not take into account a small correction to this energy due to the quantum depletion of the condensate
[( 34" (X)) 1-0#0 and{(dyxdu;)®)7_o#0]. Then the result reads

0 ~ mv? _ ) M(C|2+v2) 5 o 22 342
E(,(No,v)=fdeo=Ee)<JrEim+Eph~N0 E9+T —No(| 72|+ vo®E/3) + N, 5 v“(v) M2 §(a,d>o) .
|
(38)
We will disregard the terms- Novlfbﬁ in Ei<<0, and the corrections | 3| in Ey,. Then we can write
|Eint/No=~|75(v)| @212+ vo®2/3=(vo /33) (A3P2) <Ry* (39)
and
M(c+v?) )
Eph|/N0wTﬁ(No,v):McI F(Ng,v), (40
where
Op 2 2 3.2
Y(No,v)= v(v)M—Clz z(@iPo)<l. (41)

Note that the parametet(N,,v) is a rather small onej~a’®3=10"3-10°, so that the value oE /N, can be<Ry*,
and, roughly ®2xN2,
One can see that the exciton-phonon condensate carries a nonzeroth monigRtePg, ,+ Py :
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Pox= j AX(120)] 6 (X, ) drcbo( K1) — bt (X,t) (X, )]— pUio 1) dyio(X,t) = j dxmo $2(x)

2

+pvl| y(v) J—glza%i(x) ~Nymo +NMo §(Ng ,v) =Ngm{ 1+ (M/m) 9(Ng ,v)}v. 42)

Thus, we obtaimgg=m{1+(M/m)93(N,,v)} and es_timate the [(??_CIZA_U((?H;X"_ 5X5t)+,)23)2(]5gj(x,t)
parameter iM/m)9(N,,v)=1-5 aty(v)=2vy,, n,=10. A .

=p toodf{ b Se(x,t) + YT (x, 1)1},
I1l. LOW-LYING EXCITATIONS OF EXCITON-PHONON

CONDENSATE i=23=1), (47)
To consider the stability of the exciton-phonon conden- [ 92— C2A —v(3y0x+ dydy) +v202] 60,(X, 1)
sate moving in a lattice, one has to couple the excitons with 5 5 on
different sources of perturbation, such as impurities, thermal — C 2k3[ 050o(X) |95 00 (X,1)

lattice phonons, surfaces, etc.. In this work, however, we will

2 2 ~
not specify any source. Instead, we consider the stability C'2#c5 0x00(X) ]0xSUx(X,1)

conditions in relation to creatiofemission of the conden- =plgg Su(x. )+ sutix.t

sate excitations that can be found in the framework of inves- P 00dd S SYX D+ oY (x D]},

tigation of the low-energy excitations of the condensate it- j=1(=x). (49

self. '
Although the condensate wave functigg(x) - qo(x) was The same approximation can be performed within the

obtained in the framework of the effective 1D model, we Hamiltonian approach. Indeed, decomposition of the field
normalized it in 3D space. Therefore, we can use this solupperators near their nontrivial classical parts leads to the de-
tion as a classical part in the following decomposition of 3D composition of the Hamiltoniaft) itself, and as it was done

field operators in the comoving frame: with the Lagrangian only the classical partléf H,, and

- ) - the bilinear form in the fluctuating fieldsy,, are left for
P(x,t) =exp(—iut)[ do(X) + o(x,1)], (43 examination:

0;(X,t) = Qo(X) 8y + 80;(x, ), (44) A~Ho (45 10,0, Ug) +Ho( 83T, 80, 8%,80). (49

where =7 —muv?/2. Substituting the field operators of the  In the comoving frame7r;= pd,0;— pvd,0;, i.e.,
forms (43) and(44) into the Lagrangian densit{2), we can
write the later in the following form: oj(X) == pvdxQo(X) 61;#0 and

ﬁzﬁo[efi,utqso(x)'qo(x) 51]] 5771 =p(9t5uj —pv (9X5Uj )
~ N R and the standard commutation relatior],50;(x,t),
+ Lo[ Syt (x,1), Sp(x,t), 50(x,t) ]+, (45)

om(x’,1)], has the form

e st e sl 45 310 0.0 1= 0,
In the simplest(Bogoliuboy approximatiorf®?’ £~ £, o , ,

+ £, and, hence, the bilinear fori, defines the equations However, the Hamiltoniart49) can be diagonalized and re-

of motion for the fluctuating parts of the field operators. As aWritten in the form

result, these equations aiieear and can be written as fol-

lows: A=Hole " o(X),do(X)]+ 0Eo+ D) vy o] s
1s s
A h?
iﬁﬁt&ﬂ(xi):[—EA+|7L|+{V0+ vo(0)} pa(X) +{2v; + > hwysih s (51)
25 ’ ’ ’
+57 400 | so(x,t) + 20y Here, SE, is the quantum correction to the energy of the
v1(0)} 000 | S0xt) + [vodo(x) condensate and the indexeshnd 2,s label the elementary

4 ~ . excitations of the system. We assume the operaftﬁgs&j,s
+2v105() 169 (X, )+ 00¢o(X) V 80X, 1), are the Bose ones. These operators describe two different
(46) branches of the excitationg=1, 2, and they can be repre-
sented by the following linear combinations of the “delta
and operators”:
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&) 5= J dX[U; (%) 83(X) + Vj (%) 831 (X) + Y] (%) 80;(X) &) 5= J dxX[u* (%) S9(x) — v «(X) ST ()

+Z] 0 8%(0], (52 — (i/3)D} (%) 80,(x) + (I14) C (%) 87, ()],
(56)
&jﬁs:f dX[ U () 89T (%) + V(%) 8%(x) + Y1 (%) 50 (X)
. o= [ ox0u, 0080100 —0; 400 5700
+Zj ((x)8r(X)]. (53
i/h)D] 80, (x) = (i/%)C «(x) 87, ,
Note that by analogy with the exciton-polariton modes in +(7R) J’S(X) 0 )= (1/%) j.s() 07 (]
semiconductor§?® the excitations of the condensatg?) (57)

can be considered as a mixture of exciton- and phonon-typgnd one of the orthogonality relations has the fosws§')
modes. However, in this model, the phonons are fluctuations

of the [ mo(X,t),uq(x,t)]-part of the condensate. The com-
mutation relations betweemoperators are the Bose ones, so

that

~ ~ 1
[a'l,s ) a’lvsr] = sy

lead to the following orthogonality condition
| UL, 00-vivi 001
+(ih)r;23 f dX[ Y] Z0 o (%) —Z5 Y] o (0]=8ss -

Since thea operators[see Eq.(51)] evolve in time as
simply as

51]- ,s(t) = e_iwj’st&j X a'ir,s(t) = eiwj’st&JT,s )

these operator@nd the frequencieso; ) are the eigenvec-
tors (and, correspondingly, the eigenvalue$ the equations
of motion (46) and (47) obtained within the Lagrangian

method. Then, the time dependend ‘Operators” in Egs.

(46) and (47) can be represented by the following linear

combinations of ther operators:
SP(x.t)= % Ups(X) @y 8 tst+ T (x) ] elorst

3 Upalx) g1 vE(0) a8,

(54
B0,(%,1) =3 Cl ()8 1+ Ch(x)a] el 1s

+ 22 Cho(X) &p €™ @25+ Ch(X) &) 25!,
S

(59

For 87r.(x,t), one has to changgj 4(x) to D} ;=p(—iwjs
—vax)C}’S(x) in Eq. (55. Note that thisansatzis, in fact, a
generalization of thei-uv Bogoliubov transformation.

Then we can rewrite Eqg52) and (53) as follows
=1,2):

f dx(|Uz (007~ |0 15(0)[)

#ih) 3, | aHCEp(—i01,-00) Cha)
r=1.2,

+p((—iwystvd) CLYCE(¥)]=1. (58)

The question we want to clarify is whether coupling be-
tween excitonic excitations and phonon excitations is impor-
tant for understanding the condensate excitations. Substitut-
ing ansatz(54) and (55) into Eqgs.(46) and (47), we obtain
the following coupled eigenvalue equatiotts:

[L(8) =) s]uj o(x) + [ #odg(X) + 21 85(X) v} 5(X)

+00¢0(X),Cj {(X) =0, (59

[vodh2(X) +2v15(X)1U; () +[L(A) +Fiw; svj «(X)
+00¢0(X)3,Cj {(X) =0, (60)

- p_lO'O(?r[d)o(X)uj,s(X)] - P_la'O(yr[d)o(X)vj,s(X)]
+[(—iwj s—vdx)?—CcfA]C] (X)=0, r=23,
(61)

_Pilo'oax[ d’o(x)uj,s(x)] - pilUO&x[ d’o(x)vj,s(x)]
H(—iwj,s— 00— cf[1+] K3 F5(x) 15— cf?

— 7| k3|[ 9xF3(X) 15 Cl o(x) =0, (62)

Here we used the following notations:
L(A)=(=A22m) A +| 7| +{vo+To(v)} 5(X)
+{2v1+71(0)} h5(X),
F3()=2y(v)(ao/Mc)ale3(x).

To simplify investigation of the characteristic properties
of the different solutions of Eq$59)—(61), we subdivide the
excitations(54) and (55) into two major parts, thenside
excitations and theutsideones. Theinside excitations are
localized merely inside the packet area, il&|<2L, and
$2(x)~dZ, whereas theoutside excitations propagate
merely in the outside area, i.e|x>2L, and ¢3(x)
=4®2 exp(—2|X|/Lg)—0.
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A. Outside excitations ﬁwex(k)mliu +(ﬁ2/2m)k2’ [uk(x)%ukeikx, v(x)=0],

For the outside collective excitations, the asymptotics of (63)
the low-lying energy spectrum can be found easily. Indeed, if
we assume thatég(x)%o and d,9,(x)=0 in the outside
packet area, the Eq&l6) and(47) are(formally) uncoupled.
Then, Eq.(46) describes the excitonic branch of the outside-
excitations with the following dispertion low in the comov-
ing frame

andwp(k")=c|k’| in the laboratory frame of reference.

Then the exciton field operator, which describes the exci-
ton condensate with one long-wavelength outside excitation,
has the following form:

p(x,t)=exp —i(Eq+mv22—| | t]exdi (o +mux)]do(x—vt) +exf —i(Eq+mu?/2— |7 t]expi (¢ +mux)]
x{exd —i(|@|+7k?2m+k,w)t]u, explikx)}. (64)
It is easy to see that such a collective excitation,
fwe K) = |Tt| + A 2K22m+ kv,

can be interpreted as a free exciton with the energy andgiesjmomentum

ex(k)=Eg+71%k?/2m and fik;=1ik;+mo ;.

Note that the conditiort w.,>0 can be violated at the velocities closevtp, whereas:, is always positive. Then the question
is whetherf wo,<0 really means the condensate instability in relation to the creation of outside excitations. For example,
being unstable, the condensate could continuously emit outside excitations, which form a sort of “tail” behind the localized
packet.

Recall that the particle numbét is not conserved in quantum states with a condensate({ &K&=N,. However, for
N,=10" andT<T,, the following estimate is valid:

V(SN?)IN~1/\N,=<10"5.
Therefore, we can compare the condensate enkggiN,,v) and the energy of the condensate that emits excitons, or,
equivalently, the condensate with outside excitatigng)~+6N. For simplicity’s sake, we consideiN different wave

vectors,{Rj}, to be close to each other, so that the valuegkyf and (k,) are well defined(This is a model of how the
instability tail could be formed.We obtain[see Eqs(38)—(41)]

Eo(Ng— 8N,v) + Ey((K), 8N) + Ey((K'),8N)

vo®2 M(c?+0v?)

_ 72(k)2  mo?
Bl + =5 N=8—5——3(No,0) N+ -

2m 2

For the momentum of the moving condensate with the outside excitations, we have

%EO(N010)+3

SN+hc|(K')|oN.  (65)

Pox(No— N,v) + 7 (k) SN+ (kL) SN~P . (Ng,v) + (A (k) — mv) SN+[ (k) —3Mv 3(Ny,v) ] SN. (66)

Note that the energy and the momentum of the phonon The most interesting case is the backward emission of
part of the condensate change after exciton emission. Wexcitons, i.e.fikj=7kd;;<<0 in the comoving frame. Then
hypothesize that the transformatidh—N,— 6N (with the  we can rewrite Eq(65) as follows
emission of outside excitons, see Figs. 1 and@responds
to the case in which the outside exciton and the outside

acoustic phonon appear together. Indeed, inkthe0 limit Eo(No— 0N,v) +(fiwe(K)) SN+ (frwpn(K")) SN

(i.e., \=2m/k>L,), we approximately considered the con- ~ 5

densate collective excitations as being uncoupled. However, ~Eo(No,v)+ (2|Z|+ vo®g) 6N

the phonorik’ can be emitted with the energy compensat- h2<k>2

ing the changement of SEp,= —(3/2)M(c|2 +1 | @]+ —#A|(k)|v  SN. (67)

+0v2)9(N,,v) in the phonon part of the condensate energy. 2m

Moreover, the order of value dfsEy| is typical for the

low-energy acoustic phonons,1 meV. If 7ik; >0, the emit- The moving condensate can be considered as a stable one in
ted phonon can compensate the changementé®f,, relation to emission of the outside excitationsSN(
=—3Mvd(v) as well. > \J(6N?)) if such an emission gains energy,
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vy 9oVt andC;j y, C;‘k, come from the Bose commutation relations

between the operators; s and aJ-T’S, 2627 For example, Eq.
(54) is modified as follows:

STABILITY (?)

ug(x-vty)

uo(x—th)

Kx dk i o (X) a—i (Xt
— .. OY(X,1)= Wuk(x)e K™ @k
l-outside-exc tj <ty Vo<V + vikc (X)e_ i (pk(x)ei mk(x)t, (71)

FIG. 2. The ballistic condensatebo(x—vt) Us(X~v1)dy 4 the inside-excitation part of the elementary excitation
seems to be stable in relation to emission of the outside exciton:

phonon excitations(We consider the backward emission in the Lerm in Eq.(51), Xj,¢ =X soutt 2jssuft 2jsin--» CAN
long-wavelength limi). The outside excitations presented on this e written as
figure are labeled by the wave vectoks, k;<0 in the comoving dkdx
frame. To a first approximation, the outside excitations can be de- h At oA % )N (X 79
scribed in terms of free excitons and fr@eousti¢ phonons emit- 1%,1 @1s¥15%1s (27-r)3 @1k ) 1k(X)- (72)
ted from the condensate coherently.
Note that the semiclassical energjy; (x) of the inside-
T itati 3, k is supposed to be a smooth functionxof
Eo(Ng— 6N,0)+ Ey((K), N) + Egp((K'), 0N) > Eg(Ng,v).  SXcitation modg, a St
o(No 0) T B((K), ON) + Bpr( k'), ON)>Eo(No,v) as well[at least, as smooth @sj(x), which is taken constant
This means that the following inequality has to be valid  in the inside approximatign
Although the low-lying excitations cannot be properly de-

_ L HAK)? ~ 2 scribed within the semiclassical approximation, we apply it
[+ 2m ~Al{k)lo [ + (2%l + vo®g)>0. (68 here to calculate the low-energy asymptotics of the spectrum.
This condition can be rewritten in the dimensionless form adn fact, within the approximatio ~H,+H,, all the im-
follows: portant properties of such excitations can be understood by
use of the semiclassical approach.
Vo 2m\2l 27 v (4m/M)Mc|2/2 1/2 There are two different types of the inside-excitations, the
3+2ﬁ+(@) _@c_<|”‘|(T)> longitudinal excitations and the transverse ones. The later
Vo I M Ng,U

69) have the wave vectois perpendicular to th&(v) direction.

For the sake of simplicity, we choo&#Oy. Then, the vec-
We argue that, even for velocities closevtp[where|vg(v)| tor C}’k has one nonzero component for such transverse ex-
can be ~0.1y,, and the instability could appear as citations,ijyk# 0.
|7.|(Ng,v) +%2k2/2m— 1| k,|v < 0], inequality (68) seems to Substituting ansatz(70) with k,=k,8,;, and Cj
be always true in the long-wavelength approximation,=cCY,s,, into Egs.(59)—(61), we transform these differen-
k=(2m/z)Ly'<10"'Ly*. On Fig. 2, the stable ballistic tial equations into the algebraic onpsithin the inside ap-
condensate is shown with its long-wavelength outside exciproximationl (A)—L(—k?)]:

tations.

Note that the stability against largemodes cannot be L(—K2) =A@ Ui o(X)+T vad2(X)+ 2. b2 X
properly described within approximation®3) and (64). (L= 1y )+ 0B ) + 211 bo(x) ]
However, we can discuss this case within the inside approxi- Xvj (X) + ogdo(X)ik ijyk(x):O, (73
mation.

[v00b5(X) +2v1 (X)) k(X) +[L(—K}) +Froj ]
B. Inside excitations

XV, (x)+ x)ik, CY (x)=0 74
To simplify the calculation of inside-excitation spectrum k(%) + Todo(X)Tk, Cu(X) 749
[see Egs. (59—-(61)] we will use the semiclassical _1 . 1 .
approximatior?’ In this approximation, the excitations can P o0do(X)K Uj ((X)+ p~ “oo(X)iK, v K(X)
be labeled by the wave vecthrin the comoving frame, and +[w12,k—0|2kf]C}',k(X)=0- (75)

the following representation holds:
_ . After some straightforward algebra, we can write out the
Uj s()=Uj (X)X, p; () =vj k(X)€Y equation that defines the spectrum of transverse exciton-
. phonon excitations in the inside approximation:
C] () =Cj ((x)e' X, (70

2 _ 22 VI NI 4
where the phasep,(X)~¢o+kx, and ug(x), vi(x), and (@)= GTRO{ (0} )= [L(=KD) = vog(X) = 2v1h6(x) ]

Ck(x) are assumed to be smooth functionscof the inside X[L(—K?)+ vodp2(X) + 211 d3(x) ]}

condensate area. Notice that thendx representations are

mixed here. This means that the operator nature of the fluc-  =[L(—KZ) = vodh5(X) — 2v1¢5(X)]

tuating fields is actually dismissed within the semiclassical .

approximation. However, the orthogonality relations among xig B2(x)(cPK?). (76)
C

Ujs, Ujs» andCjs, C and hence, among; ., vj ,

*
era
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Taking into account the momentum cutddf, which is de-  ergies slightly, and the excitations can be approximately con-
fined as sidered as of the pure excitonit @, = hwexk, ) or the pure

phonon ¢ w, k= ﬁwph,ki) types.

h2I2m)ka~|m|=(h212m)Ly %, k>ko,
( ko~ [al=( Lo 0 It is also useful to investigate asymptotics of the trans-

we can rewrite Eq(76) as follows verse inside excitations. For definiteness sake, we investigate
) the left side asymptotics of these excitations here,
2 21,2 2 | 22 _
(o = Ci kﬂ((ﬁwj,k) (Zm[ki ko]+F(X)+f+) uj () =expl x/Lo)e*vu; .,

vj () =expl,x/Lo)e* Vv, x<O0, (78

ﬁz
X ﬁ[kf—kcz)]-i-F(X)—|—2yo¢,g(x)_,_er+
CY () =exp(IX/Lo)e Ty,

2
5 .
omlki—k ]+F(X)+e+} Cf () =explx/Lo)eYCK,,  x<O. (79

oo Here,u; i, vj ., CY, andC}, are smooth functions of at
X2 M—Cz(ffoa| )Da(ctk?),  |x[<Lo. (77) |x|>L0 Note that we introduced two components @©f ¢
! ey to make Egs.(59—-(62) self consistent. Let the
Here F(x)=|75(v)|[®2— ¢2(x)]>0, i.e., F(x)=0 inside equalltles
the condensate, and
— , , I,=1,=1 and 1+l ,=1.=2 (80
€+~ v1do(X),  €:~5v1¢0(X),  Ki>ko. be valid. Then the system of differential E4§9)—(62) can
Although Eq.(77) can be solved exactly for the transversebe reduced to a system of algebraic ones, which are analo-
excitation spectrurm® taking into account the coupling term gous to Eqs(73)—(75). Consequently, we can write out the
in the r.h.s. of Eq(77) changes the values of excitation en- equation forw; ,(x) valid at|x|>Lg,

2 2
{[ojx—iv(2Lo) I~ cf K - (2/Lo>2]}[<ﬁw, 02 (hm[ki—”ké]#(x))(f—m[ki—”lié]#(xwzv@[zcboexrxx/Louz)}

2
[k2 K31+ F(x)] 2 M—z(aoa, H2d jexp(x/Lo)12c k2 — (2/Lg)?], (81)

WhereAk0=\/i/L02 ko, kL > ko, and

F(x)=[T5(v) {5~ [2Dexpx/L) ]} — 2|t — € at [X|>Lo.

(We neglected the terms, suchﬁaﬁg‘(x)ujys(x) and v1¢§(x)v]-YS(x)~exp{(4+Iu)x/L0] in Egs.(59) and(60), and the terms
x kg in Eq. (62) as well)

Obviously, the structure of Eqé77) and(81) is the same. As the coupling between exciton and phonon branches is weak
for the transverse inside excitatiofsee the r.h. sides of Eq&’7) and(81)] and the effect of the finite width, can be taken
into account as the spatial dependence of the important parametkts.jn we use the following formula to estimate the
low-energy excitation spectrum:

2

2 h 2 2 ﬁ2 2 2 2 ’
(hwexk )= ﬁ(kl_ko)*'F(X)*'ﬁ m('&‘koﬂ‘F(X)+2Vo¢o(x)+€+

ﬁ2 2 2 2 2
0 0 + L 0-
Nﬁ(kl—ko)ZV O+ 2vydge, at k, —k (82

Here we take the inside-condensate-asymptotids(ad, cﬁf,(x), and 6+~'171(v)¢>3(x) to estimatefi w.,. Note that, for the
inside-condensate excitations, the the low-energy limit means

(i212m)(k? —kg)=(1~10)|7l.
Then, in the comoving frame, the low-energy excitation specﬂimngwl may develop a gap of the order gf| [see Eq(64)

for comparisom Thus, inside the condensate, we obtain a strong deviation of the collective excitation spectrum from both the
simple excitonic onejji|+ (%%/2m)k?, and the Bogoliubov-Landau spectrunfk, |.
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C. Longitudinal inside excitations

The case of the longitudinal excitatiors=Kkyd, C}'kchkén , is more difficult to analyze because the mode interac-
tion is non-negligible in the low-energy limitOn Fig. 1, a longitudinal inside excitation is shown with the two possible
directions of the wave vectdd Ox.) Recall that the “bare” phonon modes, which can be written in the laboratory frame as

Uy (X, ) =0o(Xx—vt) + Ci(x—vt)explikx— i wpit) +cC.C.

with pr= ¢ Ky| andCﬁ(x)~¢§(x), will be considered in the comoving frame;- vt—x. Then, within the inside-condensate
approximation, the following equation stands for the excitation spectrum:

[(o; k+vke)?—cPKZ]

2
(ﬁw,-,kﬁ—(f—m[ki—kéhF<x>+e+ (ﬁ (ki — k5] +F(x)+ 2voh5(x) + €,

ﬁ2
=(—[k2 k3]+F(x)+e, |2

Mo 2(00a )D2(cPK3), |X|<Lo. (83

It is important to note that, unlike the case of transversavhere Zg(v)$2(x)=—4|7%| within the inside approxima-

excitations, the values of tion, and, for the phonon-type branch, we obta.i:tégix
(02,72 2 2 > (@t o[k
(hwpy ) =h(c;—v)T(3=7)ko] To derive the formulas for the amplitudeg(x), v (),
and C)(x) of the excitonic branch, we use the following
and approximations:

pfl 2 2(X)k2
(w exk—U|k|)2_CI

(hol) )= (—(10 40K+ e,

Lo(—k)=L(—K3)+

h2
X ﬁ(10-40|<§+ 2vd2(X)+ €,

=LK £0:710) 7 (00 6500

are of the same order of value kf=(3-8)ko, and the  andB=1yp2(x)+2v;,4%(x) is modified as

inequality (: () )*> (fiwff) )? is valid in the low-energy

limit. Moreover, the two case§<x>0 (+-case and k,<0 oo 3 12
(—-cas®, are different as it can be seen from the I.h.s. of Eq. B+~ Vodo(X) +2v15(X) £ . ¥(v) w2 (90a) ¢o(X).
(83). In the low-energy limit, we can write the approximate :

solution of Eq.(83) as follows: Then, we can rewrite the formulas for the excitonic excita-
tion spectrum as follows

(hol k)2 [k2 K21+ F(x)+ e,

h?
2
( [~ ko) (holi) )?~L2(—k)—B2
+F<x>+2vO¢§<x> =[L(—k?)—BI[L.(~k)+B.].
Recall that the orthogonality relatiofb8) can be used to

normalize the amplitudes. Within the inside approximation,
Eq. (58) can be rewritten as follows&=1— S =1)

iZQ+7(U)MU_§|2(an|3)¢§(X)+6'+>,

whereq.~1 and 0<q_<1. Note thathol ) >%w®

ex,kx ex,k)< ’

whereas, for the phonon-type branal )} <(c;—v)k,. For f Ax(| U |2 = [ [2)
k,<0, we have the following inequaluty for the excitonic
branch:

+(1/h)f dx 2p(@exi +vk,)|Ck (x)|?=1,

h2
(ﬁ[ki—kg]—kF(x)ﬂLq) (89

5 and we have for the excitonic amplitudes

xﬁ—kz—k2+Fx+2~ 2(x)+ €’
2m[ X 0] ( ) VO(U)d)o( ) 6+

~
I+

Lo (kD) +houk
) 2h o™ '

exKy

|u<ﬁ>(x>|2~(v—eﬁ (86)

<(ﬁwexk )2 (ﬁwexk )2, (84)
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(=)

L.(—kK)—tw ~
|v<;><x>|2~(ﬁ) - [, 0%0* = CFRE]| ()2
Vet 2ﬁwe;,kx
h? ~
Y.| B. - %[Q—ké]ﬂz(x)
u(t)*v(i)(x)w— —

K K Vef‘f Zﬁwé;,ll ( 2

X T2 L2714 & 2
X\ =—=[ki—k§]+F(X)+2v[ 2P, exp(x/Ly) )]

Here, the effective condensate voluivigy=2SLy is used to Zm[ ol HR() ol 200 exp(x/Lo)]

normalize theu- andv-wave functions of the inside excita-
tions, andfdr(|uy?—|v]?) =Y - <1. =
Subsequently, we get for

2
~ (0]
ﬁ[ﬁz—kSHF(x)]zM—qz(ooa?)

P oba(X)iIK,[U(X) +,(X)] X[20, expx/Lo) TPeik, (90
(wex,kx+ v kx)z_ C|2k2 87

X
k(x) = — _
wherek,—k,=k,—i(2/Ly) in the phonon parts of this equa-

the following approximate formulas: tion and kX—IX:kX—i(l/LO) in the exciton parts of it X
<0). It is easy to see that Eq&33) and (90) are in the
continuity correspondence, i.e., they describe the same ob-

. o [ _ _ : )
Cﬁ(*)(x)wiqiy(v)M—gz aﬁq&f,(x)k—\/a—f’ ject. For example, thdleft side asymptotic behavior of
! X ﬁwgf')kx(x) can be obtained from the inside-condensate for-
XUl (x) + o (x)]. mulas by the substitute
To estimate the characteristic value 6f*)(x), we use ke—Ky, F(X)—F(x)—2|7
’ — s — — Iu|,
U(X) =0 (X) ~ VY = IV and obtain o
and
Y.aLo\* a
X(*£)| ﬂ 310 =40 | <
ICk ~[=a=y(v) Mc? Vai®o| 55— B < H2(X)—[ 2D, exp(x/Lo)]2—0.

- g 22
The parameterd . characterize the relative weight of AS @ result, we O?ta'mwékax__WHh ki/2m that corre-
excitonic degrees of freedom in the considered branch o$ponds to the outside excitation spectrum, &g).

excitations. As the parametehvkxlhwg;)kx<l at k, The excitonic input into{ 8¢"8¢(x))1-o, the quantum

~(4-8)k,, the paramete , (k,) can be estimated as 0.5— depletion of the moving condensate, can be calculated by
0.7. For k,<0, we obtain the following equation from >1sv15s(X)|*.>” To estimate this value, one can approximate

Eq. (85): lv(x)|2 as follows:
2
@03 , , [ 0g)? (£)(x)2 (Y+) -
v X P= o= .
| T 4 7) Mc? ok (0 Vert/ 4L2(—k})

However, the summatior®, implies [dkd?k, /(2m)3
~1. within the semiclassical approximation. Assuming that such
an integration makes the difference amarig’, v, and

vk, hot essentially important, we use the following estimate

holky | L(—k)—B
holy) | h2ki2m

ex,Ky

Within the stability aregsee the next subsection for an ex- N
tended discussion we estimate the ratidiv|k,|/hwl) for v ()%,

=1/2—1/3 at|k,|=(4—8)kg. Then,Y _(k,)>0 andY _ 1 B2
=0.6-0.8. o ] ) . |Uk(x)|22(\/_) 42 _kz) :

To go beyond the inside approximation, the effect of in- eff (
homogeneous behavior of the longitudinal excitations can b . . 2 3
considered. We use the following ansatz for the left-side as?higa S]ze ;ntegr:t;zrfdkxq ko /(27:) gan be re(f)ucedt'to
ymptotics(see Fig. 2 fko T, an e main inpuf~ ¢g(x)] can be esti-
mated from the following formula:
uj o(X) = exp(l X/Lo)e"uy , -
1 VOd)o(X) € [V0¢0(X)]

—T— T+ =
8m’Ly 2|zl 8m’Ly 2|ml*

v} «(X) = expll X/Lo) e, @9 (OO0

. 2 =2
CF () =expll X/Lo)€%CY,  x<0, (89) 1 wPgcosh (x/L)
grily [0

wherel ,=1,=1 andl.=2. Then, like the case of transversal
excitations[see Eq.(81)], we can write the equation for Using this density, we speculate that the localized depletion
wj k (x) valid at|x|>L,, of condensate—i.e., the number of particles that are out of
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the condensate but move with it coherently—seems to be a

small value. We obtain the following estimafe,= &5 Eot EinfexNEo(No)‘l'an(No)‘l'J dxfi[ w(X) + ko]

and|7g(v)| = [Fo(v)[a3]:
, X {|ugl?= vl ?+ (2/1) p[ wi(X) + vk, ]| Cy|%}

S 1 a
5NO=J dx<a¢*5¢(x)>T:on%E§No, =Eo(Ny) + SEo(No) + A wy+ ke ), (93

° where

where the factor befordl, can be estimated as

o B sl 1o (N = (217 + vo03) [ x 575
[21(No,v) L§(Ng,v) — 2x(Ry*)* 1, ° M (G4 07)
| ~ o~
[Here, we used Eq$35) and(36) within the approximation - 39N, ,v)f dxs¥ s,
ny>10.] Note that there is no smalinput to the estimate of
3., s because, first, such excitations belong to the outside ex- (94
citation branch in our model, and, second, we use the ap- o
proximationu (x)~0 for them. ST W (x)— |ul ?+ vy |?

[see Eqs(65) and(67) for comparisomh
In this papear, we discuss qualitatively the stability of the
To investigate the stability of the moving condensate incondensate in relation to the backward emission of inside
relation to the creation of inside excitations, we calculate theexcitations(i.e., k,<O0 in the comoving frame To begin
energy of the condensate with the one inside excitationwith, we consider the standard criterion,
<a1,sa1,s>:1: described by the following sek, w,, and
Ug,vk,Cy. In this paper, we analyze the stability inside the A(wgp—kJv)>0 at [ky=zLy", (95)

excitonic sector of our model. where z=3—10 corresponds to the low-lying excitations.

Although the excitations were defined in the comoving_l_h | £ ) i< tak ithin the insid .
frame, calculations should be done in the laboratory frame. ¢ V&lu€ o wexi(X) is ta er(17\;wt In the Inside approxima-

Returning to the lab frame, we represent the exciton andon. see Eq(84), so thathiwe,,=f(2)[7| andz/f(2)=0.1
phonon field functions as follows: —0.3. Then, it is easy to conclude that the following inequal-

ity

D. Stability of the moving condensate

bo(x—vt,t)— do(x—vt,t) +exd —i(Eg+mu2/2—|7))t]

hlkJv  z v ((4m/M)Mc|2/2) 12 . o6
_ - =~ - <
xexfi(@+mux)]8%(x,1), (92) hobg f(2 el [l(No,v) 99
where is valid in the low-energy limit if the effective chemical po-
~ . ot ke tential (36) is large enouglisee Eq.(69) for comparisoi
S(x,t) = U (x—vt)elvotkgTilothaltyy, (x—ypt) More precisely, the ballistic velocity and the number of
w @ 1(g0+k0) gl (@ ko)t particles in the condensatd,, have to be large enough, for
' example,|Z4(v)|=(10"1—1)Ry* andn,=10, in order to
and the inequality
Uo(X—vt) = Ug(X—vt) + Cr(x—vt)expi(¢o+kx)] (4m/M)Mc?2  (Am/IM)Mc?/2 10-20 (97
x exf] —i(wy+ko)t]+c.c., (92) [Zl(No,v)  [Bo(v)]?/4n3x Ry*

see Eq.(64) for comparison. In this analysis, the in- can be satisfied. Thus, for

side excitations are not considered as fluctuations, and

the (average number of particles in the condensate and its |7t|(Ng ,0)> pe= 10‘1(4m/M)Mc,2/2, (98
energy are changed a®,—fdxsy'sy and E (N,) 4 .
— (9nEy) fdxdy' sy, respectively. However, these changesWhere ue~10 "€V, one can expect condition®6) and
are not important if the number of excitation in a system is(97) to be valid. ,
less thanyoN?=N,. They could be important in the case _ D€SPite the condensate can be formed ngar) ~ v, in

of instability of the moving condensate. theory, for example, withivg(v)|=0.1v andn,> 10, such a

The zeroth component of the energy-momentum tensopallistic state seems to be unstable against the creation of

can be represented in the form inside excitations. Note that the criticdlanday velocity v .

can be found as a solution of E€8) and v,<v(N,)
TO=T %o ,Ug) + T2 (5W, 6%, 6u,5,8U| b ,Uy), <c¢,. In fact, the parametefi|/ ., controls the stability/
instability of the condensate, see E(9) and (96).
where the first part corresponds to the condensate et&ygy  Analyzing Eq.(95), we did not take into account E(R4).
and the second part gives the energy of inside-excitationsjowever, if the instability regime takes place, more than
E;,. After substitution of Egs.(91) and (92) into Ej, VN, inside excitations can appear. As the changes,jtx
=fdx78(2), we have for the total energy —uvt) because oN,—N,— 8N are nonlocalin spite of cre-
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Og(x-vtl) ¢§(x -vip)
INSTABILITY () o2xvt)
(x-vty) u(x—vty) Ve
Y, uy(x-viy) v
<_k'x ﬁo(x -V tl)
s A\ [TE— [ N
Jinsido—exc 1<y
Vo<V< Vo linsideexe ~ ___ N .

interference area

FIG. 3. The ballistic condensaté,(x—uvt) - us(x—vt) y;, can
be unstable in relation to emission of the inside excitations if the FIG. 4. Two ballistic condensates move with different veloci-
effective chemical potentidlit|(No,v) <. In terms of Landau  ties,v —v’=(0.1-0.3)c,, andt=t; before the “collision,” or, the
critical velocity, this means ,<v<uv(N,). If such an instability ~ Strong interaction process. If one can prescribe the coherent phase
takes place, the emission of inside excitations can be accompanidd each of the participating condensates, e.g.(X)~¢
by the emission of outside excitations of the condensate. The lon+ (Mv/%)X, the interference area appears between tH@ne in-
gitudinal inside-excitations are labeled by the wave vekjer0 on  terference area is marked by bold dashed lines on this figaee.
this figure, whereas the outside excitation is labeled by the wave #v', the fringes are nonstationary, and the outside excitations can
vectork,<0. actually be excited in this area.

ation of the localized excitations, see Figs. 1 anda3free tal observatioh that, atv>v,, the ballistic velocity of the
acoustic phonon can appear in the system lattiitons ~ condensate depends on the power of a laser beam irradiating
together with appearance of the localized excitation the crystal. If the exciton concentration in the first packet,
ﬁwg;yl)((x)_ Like the case of outside excitations, we assumdlo1, IS close to the value of the Bose condensation threshold

that (3/2M (cZ+v?) 9(No ,v) ~#C kyy, See Eq(94). Then, and the exciton concentration in the second padkegt
only the termoc2|ﬁ|+vod>§ is important. In fact, this term >ny, the velocity difference between condensates can

leads to some renormalization of the values of the criticaf?aﬁhh(o']}_ 0'3)|C" ThenI; in trrl‘e _rgferlencedfrgme movigg
parametersy,, andv..: with the first (slow) packet, the initial conditions can be

taken as the following:

IV. INTERFERENCE BETWEEN TWO MOVING Wo(X,t=0)Uo(X,t=0)
PACKETS

In the this section, we address the problem of interaction $o(X;No1)do(X;No1) +expli (5 +méovx) ]
between two moving condensates. This problem is essen- X po(X+ X0 No2)do(X+Xgo;Ng2), (107
tially nonstationary, especially if the initial ballistic veloci- , , , _ .
ties of packets are different. Within the quasi-1D conserving?Nérede=¢—¢’, dv=v—v’, Xo=v'7, andr is the ini-
model, the following equations govern the dynamics of thelidl) time delay. As the second packet moves in this frame of
two input packetswe choose the reference frame moving reference, the regime of strong nonlinear interaction between

with the slow packet the condensates igheoretically unavoidable. Note that,
even before collision, a time-dependent interference term in

_ )2 n? ) . | #o(x,1)]? begins to influence the packet dynamics, see Fig.

('Mﬁf 5 | Po(X O =| = 5ot vol thol >+ v4| ol 4. For example, the r.h.s. of EGLOO) contains
X (X, ) + TdeUo(X, 1) (X, 1), ~dx{2 cogMovX— Swt+ 5¢) Po(X;Ngy)
(99 X ¢po(X— Svt+Xg;Ngo)}, (102
[(d— v 32— C2a2Ug(X,t) — C22K3d2Uq(X,t) dylo(X,1) where
=p Loodx ol *(X,1). (100 fhidwo=mév(v+v")/2=[||(Noz,v) = [72|(Nozv")]

Then, the initial conditions can be written in the explicit 1D and |7|o (N, /N%)?Eo(v)|?. The ratio|7,|/|7,| can be of
form by using the exact solution of Eq4.0) and(11). Note  the order of 16, and the characteristic scale of fringd©2
that the amplitudes of the stationary ballistic stagg,(x is

—vt) - duy(x—ut), were defined from the normalization

condition and depend on the valuesvoéindN,. Hence, the m(himdv) |7|(Ngg,v) |2
amplitudes of the “input” condensates for Eq®9) and Lo =(10-39 (M/M)MCZ/2 =5-10,

(100 may not have the same values.

In this paper, we approach the problem of strong interacthat is they are of the long-wavelength nature.
tion between the condensates. Therefore, we choose the non-To answer the question which mod#he conserving one,
symmetric initial conditions, i.e., the amplitude and the ve-Egs. (99) and (100), or the kinetic modéP*? is more ad-
locity of the “input” packets are different, for example, equate to describe the packet collision, we have to compare
>p' andv||v’, see Fig. 4. Here, we reply on the experimen-the estimate of interaction time,
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™ =L oo/ 6v~10%5/0.2c,=10 °~10 05, driven by phonons or bx—x interaction. Note that some
thermal phonons have to be excited in the system to assist
such transitions, and the value ¢f is of the order of scat-
and characteristic time scales of the processes tering time of the exciton-LA-phonon interactigalthough
without any macroscopical occupancy
If processeg103) are driven by the lattice phonons, two
n_, + = ' phonons are necessary to satisfy the laws of conservation.
INo2(1):0)[Noa(t).0) =[Nz £) = ON.0) [N (1) 5 N,y For instance, we chooséN=+1 in Eq. (103) and obtain
(103  [see Eqgs(65) and(66)]

fikix=médv +3MvI3(Ng,v) —3Mv  F(Ngp,v") + 7Kz,

.G Kyl =Mav (v +v")/2= 3|7l (Ngz,v) = | 72| (Nog v ") + vo®2p/3— 1@ 2/3] + 312M (¢ +v?) H(Ngp,v)
—3I2M(c2+v'2)9(Nog 0" ) +7iCy[Kay .

Although the second packet moves fastesy >0, this state As we prescribed the value BF,, we have to estimate the
can be considered as a more stafaled, thus, more prefer- value ofg from Eq.(105), (generallys +v). Moreover, we
able one for the excitons of the slow packet. Indeed, thehave to assume that the total momentum of the condensates,
following inequality for the effective difference the general- P, (N,,,v")+ P, (N,,v), may not be conserved because of

ized chemical potentials seems to be valid lattice participation in such a condensate “merger.” How-
) _ - , ) ever, the challenging question of the results of coherent
mév(v+v')2=3[|&|(Ngz,v) — 1| (Noy,v") + vo®5,/3 packet collision needs further theoretical and experimental
— 1®2,/3<0, (104) efforts.
and the absolute value of the Lh.s. of E(LO4 is CONCLUSION

~|7|(Nez,v). Thus, within the quantum kinetic model, the |, yhis haper, we considered a model within which the

relevant transition probabilities have to be calculated at Iea%homogeneous excitonic condensate with a nonzero mo-
in the second order of perturbation theory, for example, L oniim can be investigated. The important physics we in-
phy clude in our model is the exciton-phonon interaction and the
INg2,0)Ng1,0" Y= |Ng2,0 )| No1 i ey 0" ) appearance of a coherent part of the crystal displacement
o field, which renormalizes the— x interaction vertices. Then,
ohy the condensate wave function and its energy can be calcu-
, lated exactly in the simplest quasi-1D model, and the solu-
—[Nopt20)INey = 20"). tion is a sort of Davydov's solito® We believe that the
As a result, the system of two quantum Boltzmann equationgransport and other unusual properties of the coherent para-
will describe the interaction process. exciton packets in GO can be described in the framework
Unlike the Boltzmann equations, Eq89) and(100 con-  of the proposed model properly generalized to meet more
tain information about the quantum coherence between tweealistic conditions.
condensates explicitly and, moreover, can describe the case We showed that there are two critical velocities in the
of strong interaction. Unlike the 1D nonlinear Sctimger  theory, namelyp, andv,. The first oney,, comes from
(NLS) equation that supports many-soliton solutions, Egsthe renormalization of two particle exciton-exciton interac-
(99) and (100 are, in fact, quasi-1D ones, ang>0 in Eq.  tion due to phonons, and the bright soliton state can be
(99). Therefore, it is an open question what happens witHormed ifv >v,. Then, the important parameter, which con-
two (excitonig solitons after they collide in the crystal. trols the shape and the characteristic width of the condensate
In this paper, we assume that the dominant prdesssf ~ wave function, is|z|/u*, see Eqs(29) and(36). The sec-
condensate interactions is that ¢seleading tod;N,,>0.  ond velocity,v.,, comes from use of Landau arguméfifer
Then, at the time scales 7*, one solitonic packet can ap- investigation of the dynamic stability/instability of the mov-
pear as a result of these processes. Such a resultant ballisiitg condensate. In fact, the important parameter, which con-
packet can be approximately described by the steady-stateols the emission of excitations, (§|/u., see Eq.(98).
one-soliton solution of Eqg8) and (9) with N,~Ng+N, ~ Then, Within_the semiclassical approximation for the conden-
and the low of energy conservation, sate excitations, we found more close is t0 ¢
<|m|(Ny,v)<u*] more stable the coherent packet is. It is
E(Ng1,v")+E(Ngp,0)~E(Ng=Ng+ Ny, 7). (105 interesting to discuss the possibility of observation of an in-
_ stability when the condensate can be formed in the inhomo-
If N,<<Nj , all the approximate solutions having been foundgeneous state with#0, but with v ,<v<v(N,), or |z
in this study are valid to describe the resultant packet. <pue- Such a coherent packet has to disappear during its
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move through a single pure crystal used for experiments. Athis case, the excitonic superfluidity can be examined by im-
the shape of the moving packet depends on time, the form gurity scattering of the ballistic condensate. Indeed, such im-
the registered signal may depend on the crystal length changurities could bound the noncondensed excitons, which al-
ing from the solitonic to the standard diffusion density pro-ways accompany the condensate, and could mediate, for

file.

instance, the emission of the outside excitations. The last

We found that the excited states of the moving excitonprocess may lead to depletion of the condensate and, per-
phonon condensate can be described by use of the langualyaps, some other observable effeétsuch as damping,

of elementary excitations. Although the possibility of their

bound exciton photoluminescence, etc.

direct observation is an unclear question itself, the stability

conditions of the moving condensate can be derived from the

low-energy asymptotics of the excitation spectralatT,.
However, the stability problem is not without difficulti&%33
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