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We investigate the behavior of three-dimensional~3D! exchange-correlation energy functional approxima-
tions of density-functional theory in anisotropic systems with two-dimensional~2D! character. Using two
simple models, the quasi-2D electron gas and two-electron quantum dot, we show afundamental limitationof
the local density approximation~LDA ! and its semilocal extensions, generalized gradient approximation
~GGA! and meta-GGA~MGGA!, the most widely used forms of which are worse than the LDA in the strong
2D limit. The origin of these shortcomings is in the inability of the local~LDA ! and semilocal~GGA/MGGA!
approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is
very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density ap-
proximation is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only
relevant for understanding of the functionals but also practical applications to semiconductor quantum struc-
tures and materials such as graphite and metal surfaces. We also comment on the implication of our findings
to the practical device simulations based on the~semi!local density-functional method.
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I. INTRODUCTION

In the Kohn-Sham ~KS! density-functional theory1,2

~DFT!, significant efforts have been devoted to improve
local density approximation~LDA !.2 One approach, the gen
eralized gradient approximation,3–7 ~GGA! has been succes
sively improved for the last two decades and now is
proaching chemical accuracy~atomization energy errors o
order 1 kcal/mol50.0434 eV) with further refinements i
the so-called meta-GGA~MGGA!.8 The ~M!GGA is desir-
able in that it leads to better physical quantities for vario
systems of interest, while it is still computationally che
due to its semilocal nature. It is clear, however, that any lo
or semilocal approximation cannot fully reproduce the b
havior of the exact nonlocal exchange-correlation ene
functional, so one needs to be aware of the limitations
these approximation schemes and the situations where
can break down.

In this paper, we discuss one situation where the local
semilocal approximations of the exchange-correlation ene
functional inherently break down: systems with tw
dimensional~2D! characteristics, which is relevant to DF
computations of semiconductor devices or other phys
systems with 2D character. The original motivation of t
current work is recent developments in semiconductor na
technology that have achieved quantum dots, which o
enormous technological prospects and allow the study
novel physical phenomena due to dimensionality and e
tronic correlation effects.9 Quantum dots can be achieved b
PRB 610163-1829/2000/61~8!/5202~10!/$15.00
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confining a 2D electron gas with patterned gates. Semic
ductor quantum devices in general involve large ranges
electron densities and density gradients, and the effec
electron-electron interactions can be important, so they p
vide ideal test cases of the approximate functionals co
monly used in DFT. However, although DFT has been
ready extensively applied to the study of these systems,10,11

the validity of conventional approximation schemes in the
systems has not been fully addressed. Hence, we invest
the robustness of various density-based three-dimensi
~3D! local and semilocal exchange and correlation ener
functional approximations, LDA, GGA, and MGGA, in th
2D limit using the idealized quasi-2D electron gas and qu
tum dot systems. We show that there are inherent limitati
resulting from the local or semilocal nature of the exchan
correlation hole in these approximations. Especially,
point out that within the restricted form of the GGA it is ver
difficult to incorporate the necessary requirement for the
limit while at the same time maintaining desirable features
present functionals. We contrast the limitation of these lo
and semilocal approximations with the nonlocal average d
sity approximation~ADA !, and explicitly show the improve-
ment by employing the ADA for the quasi-2D electron-g
system.

The organization of the paper is as follows. In Sec. II, w
review the features of the LDA, GGA, MGGA, and ADA
necessary for our later discussions. In particular, we emp
size that the approximations in these functionals are es
tially approximations to the exchange-correlation hole.
5202 ©2000 The American Physical Society
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Sec. III, we first establish the limitation of the local an
semilocal approximations by considering the nature of
approximations to the exchange-correlation holes in the
limit, and contrast them with the nonlocal approximati
~Sec. III A!. In Sec. III B we explicitly show this in the 2D
homogeneous electron gas with finite thickness: compa
with the exact exchange energy which is finite in the
limit, the 3D LDA, GGA, and MGGA exchange energie
incorrectly diverge to negative infinity. Especially, we poi
out that the direction of the GGA and MGGA correction
the LDA should be opposite to that of the current forms. T
is contrasted with the nonlocal ADA approximation that co
rectly has a finite 2D limit. In Sec. III C, we investigate a
idealized quantum-dot system. By varying the confinem
strength along one direction, the system changes its char
from 3D to 2D. We show that, while the LDA, GGA, an
MGGA give satisfactory descriptions of the isotropic lim
they again fail in the 2D limit. Present~M!GGA’s are better
than the LDA in the isotropic 3D limit, but they are aga
worse than the LDA in the 2D limit. In addition, we com
ment on the validity of 2D and 3D DFT calculations of qua
tum dots at the experimentally realistic range of anisotro
In Sec. III D, we discuss density-functional calculations
two physical systems with 2D characters, jellium surface a
the graphite. We conclude this paper by summarizing
current work in Sec. IV.

II. EXCHANGE-CORRELATION ENERGY FUNCTIONALS

The exchange-correlation energy may be written as
interaction energy between the electron densityn(r )
5(s5↑,↓ns(r ) and the coupling-constant integrate
exchange-correlation hole12,13 r̄xc(@$ns%#;r ,r 8)($ns%
[$n↑,n↓%):

Exc@$ns%#5
1

2E drE dr 8
n~r !r̄xc~@$ns%#;r ,r 8!

ur2r 8u
, ~1!

r̄xc~@$ns%#;r ,r 8!5n~r 8!E
0

1

dl@gl~@$ns%#;r ,r 8!21#

[n~r 8!@ ḡ~@$ns%#;r ,r 8!21#, ~2!

wheregl(@$ns%#;r ,r 8) is the pair-correlation function. We
adopt atomic units throughout the paper with\5e5me51.
The exact exchange and correlation holes have severa
portant physical conditions that should be also observed
approximations such as the negativity of the exchange ho4,6

r̄x~@$ns%#;r ,r 8!,0, ~3!

and sum rules of the exchange and correlation holes12–14

E dr 8r̄x~@$ns%#;r ,r 8!521,

~4!

E dr 8r̄c~@$ns%#;r ,r 8!50.

Various approximation schemes based on density-der
variables are attempts to approximate the exchan
correlation energy functional
e
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Exc@$ns%#5E drn~r !exc~@$ns%#;r !, ~5!

or exchange-correlation energy density functional

exc~@$ns%#;r !5
1

2E dr 8
r̄xc~@$ns%#;r ,r 8!

ur2r 8u
, ~6!

in terms of a function of density and/or other density rela
variables. In the standard LDA, the exchange-correlation
ergy density is replaced by that of the homogeneous elec
gas at each pointr ,

exc~@$ns%#;r !'exc
LDA~$ns~r !%!5exc

hom~$ns~r !%!, ~7!

which can be interpreted as an approximation to
exchange-correlation hole13,14

r̄xc
LDA~$ns~r !%;r ,r 8!5n~r !@ ḡhom~$ns~r !%;ur2r 8u!21#.

~8!

It is important to notice that the local replacement of dens
prefactor n(r 8) by n(r ) in Eq. ~8! leads to the LDA
exchange-correlation hole being spherical and centered
the electron, while the exact one is centered at another p
~such as at the nucleus position in an atom or a molec!
and very asymmetric. Thus we might expect the LDA hole
be a reasonable approximation when the exact excha
correlation hole is close to the electron. However, since o
the spherical average of the exchange-correlation hole

r̄xc
SA~r ,R!5

1

4pEV
dr 8r̄xc~r ,r 8!, V:ur2r 8u5R ~9!

influences the exchange-correlation energy,13,14 the spheri-
cally symmetric nature of the LDA hole does not necessa
represent a poor approximation. In addition, it is known th
the LDA is a surprisingly robust approximation schem
which may be undestood from the fact that its exchan
correlation hole satisfies the hole conditions, Eqs.~3! and
~4!.13,14

In the following sections, we examine important featur
of other approximations, including the GGA, MGGA, an
ADA, which are relevant for our discussions in later se
tions.

A. Generalized gradient approximation

Although the idea of utilizing density gradient informa
tion as a way to improve the LDA was proposed in the ori
nal papers of Hohenberg, Kohn, and Sham,1,2 it is only in the
last decade or so in which successful GGA functionals h
appeared. This suggests that some of the correct physic
the exchange-correlation effects, which were missing in
original naive gradient expansion approximation~GEA!,
have been incorporated in recent developments of the G
Perhaps, the most important step was the recognition by
dew and co-workers that the exchange-correlation hole in
GEA does not correspond to a physical hole, nor doe
satisfy the negativity condition of the exchange hole@Eq.



o

th
ng
E
nd
s
io
en
r

ing
th
th

la

as
ed

-
th
n

b
BE

o

-
h

or
en

pi
m
o

a
r-

ith
ris

in

to

ent
nt
w
ile
for
e-

-
he
di-

ich
er-
yed
nd
ns

rgy
e
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~3!# and normalization conditions of the exchange and c
relation holes@Eq. ~4!#.4,6,15 Following their argument, the
GGA can be understood as an approximation of
exchange-correlation hole in which the spurious long-ra
part of the second-order GEA exchange-correlation G
hole has been cut off in the real space to satisfy the co
tions of Eqs.~3! and ~4!. One should note that the GGA i
based on the modification of the LDA exchange-correlat
hole, so its hole is local and it tends to be an improvem
over the LDA when the LDA is a good first-orde
approximation.16

Different GGA approaches can be compared by writ
the GGA exchange-correlation energy density in terms of
reference LDA exchange energy density multiplied by
enhancement factorFxc

GGA :6,7

exc~@$ns%#;r !'exc
GGA

„$ns~r !,u¹ns~r !u%…

[ex
LDA

„n~r !…Fxc
GGA

„$ns~r !,u¹ns~r !u%…,

~10!

where ex
LDA

„n(r )…523@3p2n(r )#1/3/(4p). Fxc
GGA can be

naturally divided into two parts, exchangeFx
GGA and corre-

lation Fc
GGA . For exchange, because of the spin-scaling re

tion

Ex@$ns%#5 1
2 Ex@2n↑#1 1

2 Ex@2n↓#, ~11!

we only need to consider the spin-unpolarized c
Fx

GGA(n,u¹nu), which in terms of the dimensionless reduc
density gradient

s5
u¹nu

2~3p2!1/3n4/3
~12!

can be expressed asFx
GGA(s). Numerous gradient approxi

mations for the exchange have been proposed, and in
work we consider the three most successful and popular o
by Becke~B88!,5 Perdew and Wang~PW91!,6 and Perdew,
Burke, and Enzerhof~PBE!.7 In Fig. 1, we compare the
Fx

GGA’s of these three approximations. Most otherFx
GGA’s

fall between the B88 GGA and PBE GGA,17 so the qualita-
tive results obtained by employing other functionals can
interpolated from the behaviors of the B88 GGA and P
GGA.

As shown in Fig. 1, one can divide the GGA into tw
regions,~i! smalls(0&s&3) and~ii ! larges(s*3) regions.
In region ~i!, which is relevant for most physical applica
tions, differentFx

GGA’s have nearly identical shapes, whic
explains why different GGA’s give similar improvements f
many conventional systems with small density-gradi
contributions.18 Most importantly, Fx

GGA>1, so all the
GGA’s leads to exchange energy lower than the LDA. Ty
cally there are more rapidly varying density regions in ato
than condensed system, so this will lead to the lowering
the exchange energy in atoms more than molecules
solids.19 This results in the reduction of binding energy, co
recting the LDA overbinding and improving agreement w
experiment, which is one of the most important characte
tics of present GGA’s.
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In region ~ii !, different limiting behaviors ofFx
GGA’s re-

sult from choosing different physical conditions fors→`. In
the B88 GGA,Fx

B88 GGA(s);s/ ln(s) was chosen to give the
correct exchange energy density (ex→21/2r ).5 In the PW91
GGA, choosing Fx

PW91 GGA(s);s21/2 satisfies the Lieb-
Oxford bound and the nonuniform scaling condition.6 In the
PBE GGA, the nonuniform scaling condition was dropped
favor of a simplified parametrization withFx

PBE GGA(s)
;const.7 The fact that different physical conditions lead
very different behaviors ofFx

GGA’s in region ~ii ! not only
reflects the lack of knowledge of the large-density-gradi
regions but also an inherent difficulty of the density-gradie
expansion in this region: even if one GGA form someho
gives the correct result for a certain physical property wh
others fail, it is not guaranteed that the form is superior
other properties in which different physical conditions pr
vail.

Correlation is more difficult to include, but its contribu
tion to the total energy is typically much smaller than t
exchange, especially for systems with large density gra
ents. Hence, the main qualitative results of this work, wh
is concerned with the strong anisotropic 2D limit, are det
mined at the exchange level. For correlations, we emplo
PW91 GGA and PBE GGA, which are almost identical a
designed to be turned off for large-density-gradient regio

FIG. 1. The enhancement factor over the LDA exchange ene
density for ~a! B88 GGA, PW91 GGA, and PBE GGA exchang
Fx

GGA and ~b! PBE GGA correlationFc
PBE GGA in terms of the

dimensionless reduced density gradients5u¹nu/(2kFn).
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as shown in Fig. 1~b! for the PBE GGA correlation par
enhancement factorFc

PBE GGA. The fact that correlation de
creases with increasing density gradients can be qualitati
understood by the fact that systems with large density gr
ents have strong confining potentials which increase le
spacings and reduce the effect of correlations.

B. Meta-generalized gradient approximation

One natural extension of the GGA is to employ the n
higher-order gradient expansion variables, the Laplacian
the density¹2ns(r ) and the orbital kinetic energy density

ts~r !5
1

2 (
i 51

occp.

u¹cs i~r !u2, ~13!

in addition to the densityns(r ) and density gradient¹ns(r ).
Several forms of this so-called meta-GGA~MGGA! have
been suggested, and here we only consider the recent
of Perdew Kurth, Zupan, and Blaha~PKZB! based on the
PBE GGA.8 They removed the dependence on the Laplac
of the density by introducing a new variable

q̄5
3t

2~3p2!2/3n5/3
2

9

20
2

s2

12
, ~14!

which reduces to the dimensionless Laplacian of the den
q5¹2n/@4(3p2)2/3n5/3# in the slowly varying limit but re-
mains finite at a nucleus whereq diverges. Hence we ca
write the PKZB MGGA as

exc~@$ns%#;r !'exc
MGGA

„$ns~r !,u¹ns~r !u,ts%…

[ex
LDA

„n~r !…Fxc
MGGA

„$ns~r !,u¹ns~r !u,ts%…,

~15!

similar to Eq.~10!. The enhancement factorFx
PKZB MGGA for

the exchange is shown in Fig. 2 as a function ofs and q̄.
Unlike the PBE GGA, the PKZB MGGA exchange ener
functional satisfies both the correct gradient expansion
the linear response limit for the exchange, and its correla
energy functional is self-interaction-free for a single electr
However, the relevant feature of the PKZB MGG

FIG. 2. The exchange part of the PKZB MGGA enhancem
factor over the LDA exchange energy densityFx

PKZB MGGA in terms
of the dimensionless reduced density gradients5u¹nu/(2kFn) and

q̄ defined in the text.
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exchange-correlation energy functionalFx for the current
discussion is that it~or PKZB MGGA exchange-correlation
hole! is still semilocal andFx

PKZB MGGA is always larger than
or equal to 1 since it is based on the PBE GGA~see Fig. 2
along thes axis!. So the qualitative feature of the PKZB
MGGA is similar to that of the PBE GGA, and especially i
exchange energy is always lower than the LDA exchan
energy.

C. Average density approximation

Two decades ago, Gunnarssonet al. criticized the earlier
gradient expansion approaches for their failure to satisfy
sum rule @Eq. ~4!# and proposed two completely nonloc
approximation schemes, the average density approxima
~ADA ! and the weighted density approximation~WDA!.14 In
the ADA, which has been utilized in this work, th
exchange-correlation hole@Eq. ~2!# is approximated by

r̄xc
ADA

„$n̄s~r !%;r ,r 8…5n̄~r !@ ḡhom
„$n̄s~r !%;ur2r 8u…21#,

~16!

leading to

exc~@$ns%#;r !'exc
ADA

„$n̄s~r !%…5exc
hom

„$n̄s~r !%…, ~17!

where

n̄~r !5E d3r 8w„n̄~r !;r2r 8…n~r 8!, ~18!

is a nonlocal functional of the density. The important asp
of the ADA is the nonlocal nature of its exchange-correlati
hole whose extent does not directly depend upon the den
at or around the reference pointr but upon its weighted
average. The weight functionw could be chosen in severa
ways. Gunnarssonet al. originally proposed a form based o
the information of the linear response limit of the homog
neous electron gas. We follow their suggestion and use
weight functionw tabulated in their paper,14 with the Eq.
~18! evaluated by the method based on fast Fou
transforms.20,21

III. INHERENT LIMITATION OF THE LOCAL
AND SEMILOCAL APPROXIMATIONS

IN THE ANISOTROPIC 2D LIMIT

A. Basic issues

We first outline the underlying physics by considering t
behavior of the exchange-correlation hole of 3D electrons
the 2D limit. The 2D limit of a 3D density can be written a

n~r !→n2D~r2D!d~z!. ~19!

If we employ the exact exchange-correlation hole@Eq. ~2!#,
the exchange-correlation energy density@Eq. ~6!# in the 2D
limit is

exc~@$ns%#;r !→ 1

2E d2r 82D

3
n2D~r 82D!@ ḡ~@$ns%#;r2D,r 82D!21#

ur2D2r 82Du

~20!

t
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which is finite. Note that the Diracd function has been re
moved through the integration along thez direction. On the
other hand, when we employ the local LDA or the semilo
GGA or MGGA, density prefactorn(r 8) in the exact
exchange-correlation hole expression@Eq. ~2!# is replaced by
n(r ). In these cases the Diracd function in Eq.~19! will not
be removed through the integration in the evaluation of
exchange-correlation energy density as in Eq.~20!, which
results in the divergence of the exchange-correlation ene
density

exc
LDA,(M )GGA

„$ns~r !%…→2`. ~21!

In conclusion, we can expect the incorrect divergence of
~semi!local approximations due to the approximation of t
exchange-correlation hole as being~semi!local.

Now, we contrast this with nonlocal approximations. Sp
cifically, we employ the ADA, which has been described
Sec. II C and will be used in the next subsection. In
ADA, the prefactorn(r 8) is replaced byn̄(r ) as in Eq.~18!,
which is finite in the 2D limit:

n̄~r !→n̄~r2D!5E d2r 82Dw„n̄~r2D!;r2D2r 82D
…n~r 82D!.

~22!

So, we expect the exchange-correlation hole and espec
the exchange-correlation energy density in the ADA w
correctly have a finite 2D limiting value:

exc
ADA

„$n̄s~r !%…→ n̄~r2D!

2 E d2r 82D

3
@ ḡhom

„n̄s~r2D!;ur2D2r 82Du…21#

ur2D2r 82Du
.

~23!

B. Quasi-2D electron gas

The 2D electron gas is experimentally realizable, for e
ample, in the silicon metal-oxide-semiconductor field-effe
transistor ~MOSFET! inversion layer and in
GaAs/AlxGa12xAs heterostructures.22 Although the LDA in
the DFT formalism has been typically employed for t
study of many-body effect in these device systems since
1970s,22 the limitations of the LDA has not been full
resolved.22,23 In this section we investigate the accuracy
the LDA, GGA, and MGGA for the quasi-2D homogeneo
electron gas, which is an idealized model of a quantum w
For carrier with an isotropic effective massm* , such as elec-
trons in GaAs/AlxGa12xAs, interacting with Coulomb inter-
actions screened by a dielectric constante, the Hamiltonian
is the same as for electrons in free space if one adopts sc
units of length

r̃5ar ; a5
m*

e
, ~24!

and energy

Ẽ5bE; b5
e2

m*
. ~25!
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For GaAs,m* 50.067me and e513.2, hence the effective
unit of energy is 1 hartree˜510.46 meV and length is 1ã0
5104.22 Å. However, in the following, we drop the tild
symbol for simplicity, unless explicitly stated otherwise.

A strict 2D electron gas can be characterized by one
mensionless parameter,r s

2D51/ApnA or kF
2D52p/r s

2D ,
wherenA is the areal electron number density, which rang
from 1011 to 1013 cm22 for typical GaAs/AlxGa12xAs het-
erostructures. However, since we are primarily interested
how various 3D DFT exchange-correlation energy appro
mations perform in the 2D limit, we incorporate the fini
thickness by including an envelope wave functionz0(z),
with the z direction taken to be perpendicular to the 2D h
mogeneous electron-gas layer. Here, we assume that onl
lowest single 2D subband is populated. Then, within the
fective mass approximation, the layer electrons can be c
acterized, by wave functions of the form

c~r !5
1

AA
exp~ ik2D

•r2D!z0~z!, ~26!

where r2D is the 2D radius vector andk2D is the 2D wave
vector. It is normalized to areaA, andz0(z) is also assumed
to be normalized. We take the quantum well potential alo
the confinementz direction to be parabolic, with the enve
lope wave functionz0(z) of the form

z0~z!5S b2

p D 1/4

e2b2z2/2. ~27!

In Eq. ~27! 1/b characterizes the spatial extension of wa
functions along thez direction, so we choose the dimensio
less ratiob/kF

2D as a measure of the finite thickness effe
Defining the average thickness asl 05A2/b, which ranges
from 20 to 100 Å in experiments, the physically releva
range ofb/kF

2D5r s
2D/ l 0 will be approximately between 1 an

5.
Assuming that the wave function has the form in Eq.~27!,

Figs. 3~a! and 3~b! show the comparison of the ratios of th
exchange and exchange-correlation energy per electron
tained from 3D exact exchange~Hartree-Fock! method and
various local/semilocal DFT approximation schemes o
the absolute value of the 2D exact exchange energy.
quatntity plotted is the ratio of the energy to the absol
value of the exchange energy in the 2D~large b! limit,
ex

exact,2D52(4A2)/(3pr s
2D). The finite thickness of the

wave function gives the correctionY(b/kF
2D)

ex
exact,3D52

4A2

3pr s
2D

YS b

kF
2DD . ~28!

The finite thickness correctionY(b/kF
2D) in Eq. ~28! has been

calculated with the envelope-wavefunction Eq.~26! in a
similar manner to Ref. 24 where the Fang-Howard envelo
wave function was used.22 Physically, this finite thickness
correction makes the effective interaction softer than ther
Coulomb interaction for distances small compared to the
tension in thez direction of the charge distribution, whic
leads to a significant correction to the 2D exchange ene
for b/kF

2D&10.
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FIG. 3. The ratio of 3D exact, LDA, GGA’s and MGGA~a! exchange energy and~b! exchange-correlation energy per electron over
absolute value of the 2D exact exchange energy for the quasi-2D jellium model versusb/kF

2D . ~c! The ratio of the 3D ADA exchange
correlation energy per electron over the absolute value of the 2D exact exchange energy for the same system. This ratio is inde

the areal electron number density at the exchange-only level~a!, andr s51.7ã0 (nA51011 cm22) case has been shown in~b! and~c!. The
experimentally realistic range ofb/kF

2D is about 1–5. For~c!, the exact exchange, LDA and PBE-GGA exchange-correlation energies g
in ~b! are reproduced for comparison. Note that the ADA reduces very closely to the exact 2D exchange-correlation limit.
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The very weak confinement regime (b/kF
2D,1) in Fig.

3~a! reveals that the LDA, GGA, and MGGA exchange e
ergies are very close to the exact values. However, as
increase the confinement strength they all go to the wr
limit: the LDA, PBE GGA, B88 GGA, and PKZB MGGA
diverge to2`. Although the PW91 GGA approaches a fini
value at largeb/kF

2D @due to the fact thatFx
PW91 GGA(s)

;s21/2 for s→`#, the magnitude of the converged value
much too large. Note that the LDA is better than the GGA
MGGA for the physically relevant intermediate confineme
strength regime, and the direction of the~M!GGA correction
should be opposite to that of current forms, i.e., the fac
Fx

(M )GGA should be less than 1 to reduce the error in the LD
exchange. This feature is closely related with the nonunifo
scaling relation, and the PW91 GGA has this property b
in, but only for large-s region.6 In order to describe quasi-2D
quantum nanostructures in strong confinement regimes,
needsFx

(M )GGA<1 for the smalls region, but this will ap-
-
e
g

r
t

r

lt

ne

parently worsen the performance of the~M!GGA for other
systems such as spherical atoms. This shows that it is d
cult use the restricted~M!GGA form to improve both 2D and
conventional systems.

The total exchange-correlation energy forr s51.7ã0 (nA
51011 cm22) is shown in Fig. 3~b!, together with the quasi-
exact 2D-limit value obtained from the quantum Mon
Carlo calculations.25 The contribution of correlation energ
is smaller than the exchange energy in the physically
evant areal density regimes ~5–25% for nA
51013–1011 cm22), so the above qualitative conclusions
the exchange level will not be changed with the inclusion
the correlation energy. One noticeable difference betw
the LDA and~M!GGA correlation energy functionals is tha
the magnitude of the LDA correlation energy increases w
increasing confinement strength, while that of the~M!GGA
decreases due the nature of their correlation form descr
in Sec. II A.

Now, we explicitly show the different behavior of th
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nonlocal approximation that was expected in Sec. III A,
performing the 3D ADA calculations on the quasi-2D ele
tron gas model. The ratio of the ADA exchange-correlat
energy and the 2D exact exchange energy is shown in
3~c! together with the 2D LDA, 3D exact exchange, LDA
and PBE GGA results. The ADA not only correctly reduc
to a finite value but also the limit value itself is surprising
close to the exact 2D limit. This correct limiting behavior
the ADA clearly differentiate it from local or semilocal ap
proximations, and confirms our statements in Sec. III A. R
cently, the ADA has been also shown to give improved
scriptions of the exchange-correlation energy density o
the LDA for the conventional bulk silicon system,21 but its
applications are scarce in the literature due to the difficulty
its implementation.

C. Quantum dot

The second physical system with 2D character we disc
is a GaAs quantum dot. Because the orthogonal dot-gro
direction confinement is usually much stronger than the
plane confinement, the electron distribution in a quantum
has a pancakelike spheroidal shape. For realistic pote
shapes of actual quantum dots, we refer the reader to Fig
and 5 of Ref. 10.

We take a simple model of quantum-dot systems with
anisotropic harmonic oscillator potential as the external
tential,

Vext~r !5 1
2 v2~x21y2!1 1

2 vz
2z2. ~29!

as employed in our previous investigation.11 Here z is the
dot-growth direction, andvz>v. We consider only two in-
teracting electrons in this potential. The exact exchange
ergy for this two-electron system is equal to one half of
Hartree energy. In the isotropic potential limitv5vz , this
model can be solved analytically for a discontinuous but
finite set of oscillator frequencies,26 and a comparative stud
of the exact KS, LDA, and GGA schemes has been repo
recently.27 These results were used as a check of our ca
lation method described below.

We performed self-consistent LDA, PBE GGA, and exa
exchange28 ~EXX! calculations forvz /v<20, and PW91
GGA and PKZB MGGA energies have been evaluated
the PBE GGA density and wave functions. Technical det
of our self-consistent EXX calculations based on the fin
difference grid scheme11,29 have been presented in Ref. 3
For vz /v.20, we used a simple variational EXX approa
to generate approximate solutioins: Taking the variatio
trial wave function as

c~r !5S v8

p D 1/2

e2v8(x21y2)/2S vz8

p D 1/4

e2vz8z2/2 ~30!

with two variational parametersv8 and vz8 for a given ex-
ternal potential characterized byv andvz , we minimize the
EXX total energy of the system and use the variationa
optimal wave functions and the corresponding density
evaluate various 3D exchange~and correlation! energies. The
self-consistent and variational EXX exchange energies
tained through this procedure show the agreement of 99
and 99.4% with the exact KS value for the isotropic case27
-
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In addition to the 3D DFT calculations, we also perform
2D LDA calculations25 with the 2D density

n2D~r2D!52S v9

p De2v9(x21y2), ~31!

which has been obtained through a 2D EXX variation
minimization procedure as in the large-confinement 3D c
(vz /v.20) with a single variational parameterv9.

The exchange and exchange-correlation energies fov

52 meV50.1912 hartree˜ are shown in Figs. 4~a! and
4~b! respectively. The EXX exchange values in Fig. 4~a!
reveal that the system approach the 2D limit atvz /v
;20–30, and also the 2D LDA exchange value is quite clo

FIG. 4. ~a! Exchange energy and~b! exchange-correlation en
ergy of two electrons confined in a quantum dot modeled by
anisotropic harmonic oscillator potential as functions ofvz /v. For
a fixed lateral-direction external potentialv52 meV, the dot-
growth direction potentialvz has been varied from 2 to 2000 meV
The realistic value ofvz is about 20–50 meV, orvz /v'10–25.
The upward/downward arrows in~a! indicate the direction of cor-
rection to the LDA exchange energy. Note that~M!GGA correction
is always downward, hence improves the LDA at the isotropic lim
but worsens at the anisotropic limit.
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to the EXX value in that limit. Now we compare the 3
LDA and ~M!GGA exchange energies with the EXX e
change energy. First, at the isotropic limit (vz /v51), we
can see that the~M!GGA improves the 3D LDA, since the
magnitude of the exact exchange energy is larger than th
the 3D LDA exchange energy atvz /v51. On the other
hand, as we move to the anisotropic limit~large vz /v re-
gime!, the 3D LDA and GGA exchange energies beco
much larger in magnitude than the EXX values, and
GGA’s worsen the agreement, as in the 2D electron gas c
sidered in the previous subsection. The required direction
correction to the LDA value have been indicated by upwa
downward arrows, which show that we need corrections
opposite signs at the isotropic and very anisotropic lim
however, the~M!GGA correction always has the same sig
which clearly shows the inherent difficulty in constructin
~M!GGA’s that satisfy both limits.

The qualitative results at the exchange level are
changed with the inclusion of the correlation energy
shown in Fig. 4~b!, except that, for smallvz /v, the differ-
ences between the 3D LDA and~M!GGA exchange-
correlation energies are smaller than the exchange
alone, which implies that the 3D LDA is a good approxim
tion with the exchange and correlation together rather t
separately.

Before closing this section, we comment on the implic
tion of current findings to experimental situations. Using
value of vz520–50 meV, estimated by the vertical exte
of quantum dots~approximately 100 Å), one finds the rea
istic range ofvz /v is about 10–25, which is not the extrem
2D limit where we observed the breakdown of 3D loc
semilocal DFT approximations. Hence 3D LDA or~M!GGA
quantum-dot simulation results should be reliable for su
experimentally realistic problems. Furthermore Fig. 4~b!
suggests that 3D and 2D functionals are about equally ap
cable in this range although 3D functionals are definit
better forvz /v&10.

In addition, by comparing our 3D and 2D EXX model
we can study the effect of employing strictly-2D quantu
dot simulations as have been adopted in many theore
studies.9 In Fig. 5, we compare the lateral components of
total kinetic energy^K↑&, total external potential energ
^Vext

i &, and Hartree1 exchange energŷVee
i &, with the cor-

responding 2D values. Physically, the electron-electron in
action makes the electrons more extended than the noni
acting counterparts, which decreases the kinetic energy
increases the potential energy. On the other hand, the fi
thickness of the 2D electron layer has the effect of soften
the Coulomb interaction as discussed in Sec. III B, wh
results in the increase of the kinetic energy and decreas
the potential energy than the 2D limiting values as shown
Fig. 5. This effect is pronounced up tovz /v;20, and we
expect this feature will be missing in the strictly 2D calcu
tions. One more noticeable point is that the anisotropy of
potential induces a bigger change from the isotropic limit
the Hartree1 exchange energy (11.20 meV) than those in
the kinetic energy (20.38 meV) and potential energ
(10.80 meV).

D. Other systems

In this subsection, we consider two physical systems w
2D character to which our study might have relevance. F
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is jellium surfaces, which have recently drawn renewed
terest due to the discrepancies between differ
schemes.31–33 Although we believe quantum Monte Carl
calculation results32 are the most accurate, it is not our inte
tion here to address this question. Rather, the relevant p
we would like to emphasize is that the conclusion of t
present study is consistent with that of Rasolt and Geldar
the gradient corrections in the jellium surface:34 to support
their gradient correction coefficient having a different si
from that found in atoms, they emphasized the differen
between the localized and extended system and argued
their form is the proper one to use especially for jelliu
surfaces.35 Actually, they further brought caution on forcin
a ‘‘universal’’ gradient approximation form where none e
ists, which is a warning we feel has been largely ignored.
believe our study supports the argument of Rasolt and G
dart, and especially our second model system, the quan
dot, is a dramatic example showing the nonexistence o
universal GGA form.

The second system we examine is graphite. Graphite
intercalated graphite constitute another large family of ma
rials with quasi-2D electronic properties. Interestingly, in o
previous invetigations, we observed that the LDA gives
better description of the energy difference between the
mond and hexagonal graphite structures of C than the PW
GGA or PBE GGA both at the theoretical and experimen
lattice constants.36 Since the LDA and GGA descriptions o
the diamond C are both satisfactory, we can conclude
the GGA descriptions of the graphite is the origin of t
problem. To trace the specific source of the error, we dec
pose the self-consistent total energies at the experimenta
tice constants from the LDA, PW91 GGA, and PBE GG
calculations into kinetic, potential, and exchange-correlat
energies. The kinetic1 potential energy differences betwee
the diamond and graphite structures from the LDA/PB
GGA calculations are 2820/2865 meV, while the

FIG. 5. The lateral components of 3D total kinetic energy^K↑&,
total external potential energŷVext

i &, and Hartree1 exchange en-
ergy ^Vee

i &, and the corresponding 2D values^K2D&, ^Vext
2D&, and

^Vee
2D& obtained from variational EXX calculations. For a fixe

lateral-direction confinement potentialv52 meV, the dot-growth
direction potential has been varied from 2 to 200 meV.
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exchange-correlation energy differences between the
structures are 231/386 meV. The fact that the magnitud
the kinetic1 potential energy is more than two times bigg
than that of the exchange-correlation energy, while the
ergy difference in the exchange-correlation part is th
times bigger than that in the kinetic1 potential part, indi-
cates that the description of the graphite in the PBE G
functional is the main source of the deficiencies. We arg
that this can be understood by our findings in the pres
work. In hexagonal graphite, there are eight electrons
unit cell, and two of them in thep-like state can be consid
ered as 2D electrons, which corresponds tor s53.54ã0 or
kF

2D50.41ã0
21 . The valence-electron charge-density distrib

tion is known experimentally,37 so one can estimate th
thickness of the electron layerl 0 as '2.33ã0 or b5A2/l 0

50.61ã0
21. This correspond tob/kF

2D51.5 in Fig. 3, suggest-
ing that the GGA’s worse description of the energy diffe
ence between the hexagonal graphite and diamond ca
explained by our findings in this work that the GGA giv
poorer descriptions of 2D systems than the LDA.

IV. SUMMARY AND DISCUSSIONS

The purpose of this work was to show the fundamen
limitation of the 3D local/semilocal exchange-correlation e
ergy functional approximations of DFT by considering sy
tems with 2D characteristics. We traced the source of
failure of the LDA and~M!GGA’s in 2D systems to the loca
and semilocal nature of their approximate exchan
correlation holes. These local/semilocal approximations h
been contrasted with nonlocal approximations such as
ADA, and the difference has been explicitly demonstrated
our first model, quasi-2D electron gas, in which the LDA a
c
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~M!GGA’s significantly overestimate while the ADA repro
duces the correct limiting behavior. The 2D limit can b
considered as a constraint on approximate functionals. T
condition is not built in most of the~M!GGA’s, and we
emphasized that their forms are inherently too restricted
incorporate this requirement while keeping the necess
property to improve the LDA for other conventional system
Our second example, an anisotropic quantum dot in wh
we need different signs of the~M!GGA corrections to the
LDA at 3D and 2D limits, explicitly shows the danger o
expecting a universal gradient approximation form,
pointed out by Rasolt and Geldart.34 Two other realistic sys-
tems, jellium surface and graphite, have been discusse
relevant examples. For practical device simulations, ho
ever, we concluded that the LDA and~M!GGA results
should be qualitatively correct, as long as experimentally
alistic situations are considered.

Note added.Recently, we were informed that Pollack an
Perdew have also studied the quasi-2D electron gas re
using a different quantum well model, finding results
agreement with ours presented in Sec. III B.38 They have
employed a scaling argument more extensively and a
made a connection to the liquid drop model.
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