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We investigate the behavior of three-dimensiof@D) exchange-correlation energy functional approxima-
tions of density-functional theory in anisotropic systems with two-dimensi¢2@) character. Using two
simple models, the quasi-2D electron gas and two-electron quantum dot, we $hodamental limitatiorof
the local density approximatiofLDA) and its semilocal extensions, generalized gradient approximation
(GGA) and meta-GGAMGGA), the most widely used forms of which are worse than the LDA in the strong
2D limit. The origin of these shortcomings is in the inability of the logzDA) and semilocal GGA/MGGA)
approximations to describe systems with 2D character in which the nature of the exchange-correlation hole is
very nonlocal. Nonlocal functionals provide an alternative approach, and explicitly the average density ap-
proximation is shown to be remarkably accurate for the quasi-2D electron gas system. Our study is not only
relevant for understanding of the functionals but also practical applications to semiconductor quantum struc-
tures and materials such as graphite and metal surfaces. We also comment on the implication of our findings
to the practical device simulations based on ¢emilocal density-functional method.

I. INTRODUCTION confining a 2D electron gas with patterned gates. Semicon-
ductor quantum devices in general involve large ranges of
In the Kohn-Sham(KS) density-functional theofy’  electron densities and density gradients, and the effect of
(DFT), significant efforts have been devoted to improve theelectron-electron interactions can be important, so they pro-
local density approximatiofLDA).2 One approach, the gen- vide ideal test cases of the approximate functionals com-
eralized gradient approximation’ (GGA) has been succes- monly used in DFT. However, although DFT has been al-
sively improved for the last two decades and now is apteady extensively applied to the study of these syst@rhs,
proaching chemical accuragptomization energy errors of the validity of conventional approximation schemes in these
order 1 kcal/mot0.0434 eV) with further refinements in systems has not been fully addressed. Hence, we investigate
the so-called meta-GGAMGGA).2 The (M)GGA is desir- the robustness of various density-based three-dimensional
able in that it leads to better physical quantities for varioug3D) local and semilocal exchange and correlation energy-
systems of interest, while it is still computationally cheapfunctional approximations, LDA, GGA, and MGGA, in the
due to its semilocal nature. It is clear, however, that any localD limit using the idealized quasi-2D electron gas and quan-
or semilocal approximation cannot fully reproduce the be-tum dot systems. We show that there are inherent limitations
havior of the exact nonlocal exchange-correlation energyesulting from the local or semilocal nature of the exchange-
functional, so one needs to be aware of the limitations otorrelation hole in these approximations. Especially, we
these approximation schemes and the situations where th@wint out that within the restricted form of the GGA it is very
can break down. difficult to incorporate the necessary requirement for the 2D
In this paper, we discuss one situation where the local antimit while at the same time maintaining desirable features of
semilocal approximations of the exchange-correlation energgresent functionals. We contrast the limitation of these local
functional inherently break down: systems with two- and semilocal approximations with the nonlocal average den-
dimensional(2D) characteristics, which is relevant to DFT sity approximatiofADA), and explicitly show the improve-
computations of semiconductor devices or other physicament by employing the ADA for the quasi-2D electron-gas
systems with 2D character. The original motivation of thesystem.
current work is recent developments in semiconductor nano- The organization of the paper is as follows. In Sec. Il, we
technology that have achieved quantum dots, which offereview the features of the LDA, GGA, MGGA, and ADA
enormous technological prospects and allow the study ofiecessary for our later discussions. In particular, we empha-
novel physical phenomena due to dimensionality and elecsize that the approximations in these functionals are essen-
tronic correlation effects. Quantum dots can be achieved by tially approximations to the exchange-correlation hole. In
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Sec. lll, we first establish the limitation of the local and

semilocal approximations by considering the nature of the Exc[{no}]:f drn(r) exc([{ns}1;r), (5
approximations to the exchange-correlation holes in the 2D

limit, and contrast them with the nonlocal approximation or exchange-corre|a’[ion energy density functional
(Sec. Il A). In Sec. Il B we explicitly show this in the 2D

homogeneous electron gas with finite thickness: compared

with the exact exchange energy which is finite in the 2D ec([{n, ;)=
limit, the 3D LDA, GGA, and MGGA exchange energies

incorrectly diverge to negative infinity. Especially, we point

out that the direction of the GGA and MGGA correction to in terms of a function of density and/or other density related
the LDA should be opposite to that of the current forms. Thisvariables. In the standard LDA, the exchange-correlation en-
is contrasted with the nonlocal ADA approximation that cor-€rgy density is replaced by that of the homogeneous electron
rectly has a finite 2D limit. In Sec. Il C, we investigate an gas at each point,

idealized quantum-dot system. By varying the confinement

strength along one direction, the system changes its character e ([{n,}];r)~e22({n (N} =€2"{n,(1)}), (7)

from 3D to 2D. We show that, while the LDA, GGA, and

MGGA give satisfactory descriptions of the isotropic limit, which can be interpreted as an approximation to the
they again fail in the 2D limit. Presefi)GGA’s are better exchange-correlation hdfe!*

than the LDA in the isotropic 3D limit, but they are again

worse than the LDA in the 2D limit. In addition, we com- 7 LDA e ) — —ho e\

ment on the validity of 2D and 3D DFT calculations of quan- Pxe (MO T) = (DG NGO} =r]) 1].(8)

tum dots at the experimentally realistic range of anisotropy.

In Sec. 1ll D, we discuss density-functional calculations of|t is important to notice that the local replacement of density
two physical systems with 2D characters, jellium surface angyrefactor n(r’) by n(r) in Eq. (8) leads to the LDA

the graphite. We conclude this paper by summarizing thexxchange-correlation hole being spherical and centered on

fd ,ch([{no}]ir!r ), (6)

[r—r’]

current work in Sec. IV. the electron, while the exact one is centered at another point
(such as at the nucleus position in an atom or a molécule
Il. EXCHANGE-CORRELATION ENERGY FUNCTIONALS and very asymmetric. Thus we might expect the LDA hole to

be a reasonable approximation when the exact exchange-
Torrelation hole is close to the electron. However, since only
the spherical average of the exchange-correlation hole

The exchange-correlation energy may be written as th
interaction energy between the electron densityr)
=2,-1,,N,(r) and the coupling-constant integrated
exchange-correlation  hdfe®®*  p.([{n,}];r.r")({n,}

1 _
={n,,n}): ;ff’(r,R)zﬂder’pxc(r,r’), Q:r=r'|=R (9

Ir—=r’] cally symmetric nature of the LDA hole does not necessarily
represent a poor approximation. In addition, it is known that

J— 1 . . . . .
Tory=n(r’ dr[g -1 the LDA is a surprisingly robust approximation scheme,
Pre[inaHirr')=n(r )fo [g" (ot r) =1 which may be undestood from the fact that its exchange-

Exd{n.}1=5 f fd ,n(r)pxc Linoy1ir.r') (1) influences the exchange-correlation enertyf,the spheri-

_ correlation hole satisfies the hole conditions, E@. and
=n(r")[g([{nst];r,r")—1], 2 (4.1
ey . ; ; In the following sections, we examine important features
whereg*([{n,}];r,r") is the pair-correlation function. We 9> . .
adopt atomic units throughout the paper with e=m,=1. of other approximations, including the GGA, MGGA, and

DA, which are relevant for our di ions in later -
The exact exchange and correlation holes have several mf‘ ch are relevant for our discussions ater sec

portant physical conditions that should be also observed b§} ns.
approximations such as the negativity of the exchange*fiole
A. Generalized gradient approximation

px([{ng}1ir,r) <0, 3 Although the idea of utilizing density gradient informa-
and sum rules of the exchange and correlation AtTéS tion as a way to improve the LDA was proposed in the origi-
nal papers of Hohenberg, Kohn, and Shifit, is only in the
— o last decade or so in which successful GGA functionals have
f dr'pu([{ng}Lir,r")=—1, appeared. This suggests that some of the correct physics of
(4)  the exchange-correlation effects, which were missing in the
— ) original naive gradient expansion approximatiéGEA),
f dr’pe([{n,}1;r,r")=0. have been incorporated in recent developments of the GGA.
Perhaps, the most important step was the recognition by Per-
Various approximation schemes based on density-derivedew and co-workers that the exchange-correlation hole in the
variables are attempts to approximate the exchangesEA does not correspond to a physical hole, nor does it
correlation energy functional satisfy the negativity condition of the exchange hpis.
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(3)] and normalization conditions of the exchange and cor- 3 . . 7T
relation holes[Eq. (4)].#%*° Following their argument, the o
GGA can be understood as an approximation of the B88 GGA .-~
exchange-correlation hole in which the spurious long-range /’
part of the second-order GEA exchange-correlation GEA ol /’
hole has been cut off in the real space to satisfy the condi- e PBE GaA |
tions of Egs.(3) and (4). One should note that the GGA is « ///' T T T
based on the modification of the LDA exchange-correlation g 7 PWO1 GGA
hole, so its hole is local and it tends to be an improvement L
over the LDA when the LDA is a good first-order 1
approximationt? LDA
Different GGA approaches can be compared by writing
the GGA exchange-correlation energy density in terms of the
reference LDA exchange energy density multiplied by the
enhancement factdfoo”: &7 % 2 4 6 8 10
s
exc([{Na}1in) =~ €5g AN (1), VN, (r)]}) 05 . . . .
= &,"A(N(N)F (N, (1), [Vng ()}, r, = 10.0 (LDA)
04 N~ TTTrToTTiT e
(10 \
\
where ePA(n(r))=—3[3#2n(r)]¥¥(4m). FSCA can be % S S — =50(DA)__________ |
naturally divided into two parts, exchang& ®” and corre- < A
lation FS*. For exchange, because of the spin-scaling rela- © WA
tion g o2 ;\,,l\,\.‘, ,,,,,,,,,,,, =20008 1
|.|_0 \\\ \\ ‘\
Blino]=2E2n ] +2E.02n,], (D 01 | \\ \\:\\ r,=0.5 (LDA) |
we only need to consider the spin-unpolarized case \\\\
FEA(n,|Vn|), which in terms of the dimensionless reduced o S e .
density gradient 0 2 4 S 6 8 10
|Vn| FIG. 1. The enhancement factor over the LDA exchange energy

(12 density for(a) B88 GGA, PW91 GGA, and PBE GGA exchange
FSC” and (b) PBE GGA correlationFEBE G4 in terms of the
dimensionless reduced density gradisat|Vn|/(2kgn).

S= 2( 3 77_2) l/3n4/3

can be expressed & *(s). Numerous gradient approxi-
mations for the exchange have been proposed, and in this In region (ii), different limiting behaviors o S¢*s re-
work we consider the three most successful and popular one&silt from choosing different physical conditions ¢ . In
by Becke(B88),> Perdew and WangP\W91),° and Perdew, the B88 GGA,FE% GCA(s) ~s/In(s) was chosen to give the
Burke, and EnzerhofPBE).” In Fig. 1, we compare the correct exchange energy density{> — 1/2r).% In the PW91
F2C™s of these three approximations. Most otfef®*s  GGA, choosing FFW! €CA(s)~s~12 satisfies the Lieb-
fall between the B88 GGA and PBE GGAgso the qualita- Oxford bound and the nonuniform scaling conditfoim the
tive results obtained by employing other functionals can be?BE GGA, the nonuniform scaling condition was dropped in
interpolated from the behaviors of the B88 GGA and PBEfavor of a simplified parametrization wittF?5E ©¢4(s)
GGA. ~const! The fact that different physical conditions lead to
As shown in Fig. 1, one can divide the GGA into two very different behaviors of S“*'s in region (i) not only
regions,(i) smalls(0ss=<3) and(ii) larges(s=3) regions. reflects the lack of knowledge of the large-density-gradient
In region (i), which is relevant for most physical applica- regions but also an inherent difficulty of the density-gradient
tions, differentFS®*s have nearly identical shapes, which €xpansion in this region: even if one GGA form somehow
explains why different GGA'’s give similar improvements for 9ives the correct result for a certain physical property while
many conventional systems with small density-gradienpthers fail, it is not guarantt_eed that the _form is superior for
contributionst® Most importantly, F)((BGAZ:L, so all the \c/)giller properties in which different physical conditions pre-
GGA's leads to exchange energy lower t_han thg LD.A' Typi- Correlation is more difficult to include, but its contribu-
cally there are more rapidly varying density regions in "’.‘tomlion to the total energy is typically much smaller than the
than condensed system, so this will lead to the lowering o

, I_@Echange, especially for systems with large density gradi-
the exchange energy in atoms more than molecules angys Hence, the main qualitative results of this work, which

Sonqs-lg This results in the reduction of binding energy, cor-js concerned with the strong anisotropic 2D limit, are deter-
recting the LDA overbinding and improving agreement with jined at the exchange level. For correlations, we employed
experiment, which is one of the most important characterisp\w91 GGA and PBE GGA, which are almost identical and

tics of present GGA's. designed to be turned off for large-density-gradient regions
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exchange-correlation energy functiorga) for the current
discussion is that itor PKZB MGGA exchange-correlation
hole) is still semilocal and=%**B MECAis always larger than

or equal to 1 since it is based on the PBE GGge Fig. 2
along thes axig). So the qualitative feature of the PKZB
MGGA is similar to that of the PBE GGA, and especially its
exchange energy is always lower than the LDA exchange
energy.

KZB MGGA
F

1.8

1.6

1.4

1.2

1.0

C. Average density approximation

Two decades ago, Gunnarssetnal. criticized the earlier
s 4 0 gradient expansion approaches for their failure to satisfy the
sum rule[Eq. (4)] and proposed two completely nonlocal
FIG. 2. The exchange part of the PKZB MGGA enhancementapproximation schemes, the average density approximation
factor over the LDA exchange energy dengiy<?® MS%Ainterms ~ (ADA) and the weighted density approximatiG/DA).** In
of the dimensionless reduced density gradentVn|/(2ken) and  the ADA, which has been utilized in this work, the
q defined in the text. exchange-correlation ho[&q. (2)] is approximated by

as shown in Fig. () for the PBE GGA correlation part  Pie (N (D}:ir.r)=n(n[g""{n,(r)}:r—r')—1],
enhancement factdt’BE ©CA The fact that correlation de- (16)
creases with increasing density gradients can be qualitativelgading to

understood by the fact that systems with large density gradi- . .

ents have strong confining potentials which increase level  e,([{n,}];r) = ea>2{n (N} =€"({n,(N}), (17
spacings and reduce the effect of correlations. where

B. Meta-generalized gradient approximation _ f e _
. . n(r)= r'w(n(r);r—=r’)n(r’), 18
One natural extension of the GGA is to employ the next ") (n(n) nir’) (18)

higher-or_derzgradient expansion variables, the Laplacian gf 4 nonlocal functional of the density. The important aspect
the densityV“n,(r) and the orbital kinetic energy density ¢ the ADA is the nonlocal nature of its exchange-correlation

ocep hole whose extent does not directly depend upon the density
- PN at or around the reference pointbut upon its weighted
7o(1) 2 igl IV #ai(I% (13 average. The weight functiow could be chosen in several

. . ) ) i ways. Gunnarssoet al. originally proposed a form based on

in addition to the density,(r) and density gradien,(r).  the information of the linear response limit of the homoge-
Several forms of this so-called meta-GAMGGA) have  neoys electron gas. We follow their suggestion and use the
been suggested, and here we only consider the recent WOWeight functionw tabulated in their papéf, with the Eq.

of Perdew Kurth, Zupan, and Blal@KZB) based on the (1g)" evaluated by the method based on fast Fourier
PBE GGA” They removed the dependence on the Laplaciagnsform<02L

of the density by introducing a new variable

, IIl. INHERENT LIMITATION OF THE LOCAL
37 9 s AND SEMILOCAL APPROXIMATIONS

T 2(37)%5R 20 12 (149 IN THE ANISOTROPIC 2D LIMIT

which reduces to the dimensionless Laplacian of the density A. Basic issues

q=V?n/[4(37%)%*n>"] in the slowly varying limit but re- We first outline the underlying physics by considering the
mains finite at a nucleus whergdiverges. Hence we can hehavior of the exchange-correlation hole of 3D electrons in
write the PKZB MGGA as the 2D limit. The 2D limit of a 3D density can be written as

exc[{N i)~ e SA4N (1), [Vn,(n)], 7,}) n(r)—n?°(r20)(z). (19

€PAM(N)FMCCAUN (1), |V, (n)],7,)) If we employ the exact exchange-correlation hidkg. (2)],

X xe s e the exchange-correlation energy dengiy. (6)] in the 2D
(19 limitis

IEKZB MGGAfOr

similar to Eq.(10). The enhancement factél

1
the exchange is shown in Fig. 2 as a functionsadnd q. 5xc([{no}];r)_’§f d?r'2P
Unlike the PBE GGA, the PKZB MGGA exchange energy .
functional satisfies both the correct gradient expansion and n22(r 29[ g([{n,}1;r?°,r'2P)—1]
the linear response limit for the exchange, and its correlation X 12D 72D)
energy functional is self-interaction-free for a single electron.
However, the relevant feature of the PKZB MGGA (20
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which is finite. Note that the Diraé function has been re- For GaAs,m* =0.06"n, and e=13.2, hence the effective
moved through the integration along thelirection. On the  ynit of energy is T hartree10.46 meV and length is &,
Other hand, When we employ the |Oca| LDA or the Semi|Oca|: 104.22 A However, in the fo”owing’ we drop the tilde
GGA or MGGA, density prefactom(r’) in the exact symbol for simplicity, unless explicitly stated otherwise.
exchange-correlation hole express|. (2)] is replaced by~ ~ A strict 2D electron gas can be characterized by one di-
n(r). In these cases the Dirafunction in Eq.(19) will not  mensjonless parameter,2®=1/\/mn, or k2°=2m/r2P,
be removed through the integration in the evaluation of th‘?NherenA is the areal electron number density, which ranges
exchange—corrglation energy density as in Ez), yvhich from 10" to 10° cm 2 for typical GaAs/AlGa,_ As het-
results in the divergence of the exchange-correlation energy;osryctures. However, since we are primarily interested in
density how various 3D DFT exchange-correlation energy approxi-
LDA,(M)GGA mations perform in the 2D limit, we incorporate the finite
€xe " (no(r})— === 21) thickness by including an envelope wave functigg(z),
In conclusion, we can expect the incorrect divergence of thevith the z direction taken to be perpendicular to the 2D ho-
(semijlocal approximations due to the approximation of themogeneous electron-gas layer. Here, we assume that only the
exchange-correlation hole as beitggmilocal. lowest single 2D subband is populated. Then, within the ef-
Now, we contrast this with nonlocal approximations. Spe-fective mass approximation, the layer electrons can be char-
cifically, we employ the ADA, which has been described inacterized, by wave functions of the form
Sec. Il C and will be used in the next subsection. In the

ADA, the prefactom(r’) is replaced byn(r) as in Eq.(18), 1 oD 2D

which is finite in the 2D limit; v = Rk I 4l2), (26)
— = 2D\ _ | 42¢12D\y (7 ¢2Dy. 12D 12Dypy(p 2D wherer?P is the 2D radius vector ank’® is the 2D wave
n(r)=n(r™) f T wn(rir N, vector. It is normalized to ared, and{y(z) is also assumed

(22 to be normalized. We take the quantum well potential along
So, we expect the exchange-correlation hole and especiallf)® confinement direction to be parabolic, with the enve-

the exchange-correlation energy density in the ADA will [ope wave functionfo(z) of the form
correctly have a finite 2D limiting value:

b2 1/4 55
Zo(Z)=( ) e P2, (27)

o

o F(rZD)
LA () 5 [ a0
In Eq. (27) 1/b characterizes the spatial extension of wave
[amm(ﬁ (r29);|r2P— 20— 1] functions along the direction, so we choose the dimension-
X z : ) less ratiob/kZ° as a measure of the finite thickness effect.

Defining the average thickness ks=\/2/b, which ranges
(23)  from 20 to 100 A in experiments, the physically relevant
range ofb/kZP=r2/1, will be approximately between 1 and
5.
) _ _ Assuming that the wave function has the form in E2y),

The 2D electron gas is experimentally realizable, for eX-Figs. 3a) and 3b) show the comparison of the ratios of the
amplg, in the silicon meta!-oxide_-semiconductor field-e_ffectexchange and exchange-correlation energy per electron ob-
transistor  (MOSFET)  inversion layer —and in tained from 3D exact exchangelartree-Fock method and
GaAs/AlGa ,As heterostructures. Although the LDA in  yvarious local/semilocal DFT approximation schemes over
the DFT formalism has been typically employed for thethe absolute value of the 2D exact exchange energy. The
study of many-body effect in these device systems since thgyatntity plotted is the ratio of the energy to the absolute

1970s% tzhzga3 limitations of the LDA has not been fully yajue of the exchange energy in the 2Rrge b) limit,

resolved?®?? In this section we investigate the accuracy of cexact?d_ _ (4./2)/(37r2P). The finite thickness of the
the LDA, GGA, and MGGA for the quasi-2D homogeneouswawe function gives the correctior(b/k2P)
electron gas, which is an idealized model of a quantum well. F

|r2D_r12D|

B. Quasi-2D electron gas

For carrier with an isotropic effective mas®', such as elec- 442 b
trons in GaAs/A|Ga, _,As, interacting with Coulomb inter- eixact3D: — _y<_> ] (28)
actions screened by a dielectric constanthe Hamiltonian 3mr2P | k2P
is the same as for electrons in free space if one adopts scaled . ) 2Dy -
units of length The finite thickness correctiori(b/kg") in Eq. (28) has been
calculated with the envelope-wavefunction EQ6) in a
~ m* similar manner to Ref. 24 where the Fang-Howard envelope-
r=ar, a=--, (249 wave function was used. Physically, this finite thickness
correction makes the effective interaction softer than the 1/
and energy Coulomb interaction for distances small compared to the ex-
5 tension in thez direction of the charge distribution, which
E=BE; B= € (25) leads to a significant correction to the 2D exchange energy

m* for b/k2P=<10.
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FIG. 3. The ratio of 3D exact, LDA, GGA's and MGG#) exchange energy arid) exchange-correlation energy per electron over the
absolute value of the 2D exact exchange energy for the quasi-2D jellium model \lmfléBs (c) The ratio of the 3D ADA exchange-

correlation energy per electron over the absolute value of the 2D exact exchange energy for the same system. This ratio is independent of

the areal electron number density at the exchange-only {eyeindr=1.7a, (n,=10'" cm ) case has been shown (o) and(c). The
experimentally realistic range bﬂk,Z:D is about 1-5. Fofc), the exact exchange, LDA and PBE-GGA exchange-correlation energies given
in (b) are reproduced for comparison. Note that the ADA reduces very closely to the exact 2D exchange-correlation limit.

The very weak confinement regim@/k§D< 1) in Fig.  parently worsen the performance of tfd)GGA for other
3(a) reveals that the LDA, GGA, and MGGA exchange en-systems such as spherical atoms. This shows that it is diffi-
ergies are very close to the exact values. However, as weult use the restricteM)GGA form to improve both 2D and
increase the confinement strength they all go to the wron§onventional systems. B
limit: the LDA, PBE GGA, B88 GGA, and PKZB MGGA The total exchange-correlation energy for1.7a5 (na
diverge to— . Although the PW91 GGA approaches a finite =10 cm™2) is shown in Fig. &), together with the quasi-
value at Iargeb/k,Z:D [due to the fact thaFfV"gl GGA(S) exact 2D—Iimit. vaLue obtaingd from the quantum Monte
~s Y2 for s—=], the magnitude of the converged value is €arlo calculation$® The contribution of correlation energy

much too large. Note that the LDA is better than the GGA or'S Smaller than the exchange energy in tpe physically rel-

MGGA for the physically relevant intermediate confinement‘i"""(r;lt3 glrleal _Zdensm:] r§g|mes (5|._2.5/° folr A

strength regime, and the direction of thd)GGA correction 0 —10~ cm ), so the above qualitative conclusions at

should be opposite to that of current forms, i.e., the factofn€ €xchange level will not be changed with the inclusion of

F(M)GGA chould be less than 1 to reduce the error in the LD the correlation energy. One noticeable difference between
X

he LDA and(M)GGA correlation energy functionals is that

exchange. This feature is closely related with the nonuniformye magnitude of the LDA correlation energy increases with
scaling relation, and the PW91 GGA has this property bu”tincreasing confinement strength, while that of t(M)GGA

i inn® ; ; . ) .
in, but only for larges region.” In order to describe quasi-2D decreases due the nature of their correlation form described
quantum nanostructures in strong confinement regimes, ong Sec. I A.

needsF(M)6CA<1 for the smalls region, but this will ap- Now, we explicitly show the different behavior of the
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nonlocal approximation that was expected in Sec. Ill A, by
performing the 3D ADA calculations on the quasi-2D elec-
tron gas model. The ratio of the ADA exchange-correlation
energy and the 2D exact exchange energy is shown in Fig
3(c) together with the 2D LDA, 3D exact exchange, LDA,
and PBE GGA results. The ADA not only correctly reduces
to a finite value but also the limit value itself is surprisingly
close to the exact 2D limit. This correct limiting behavior of
the ADA clearly differentiate it from local or semilocal ap-

-2

-6

o

>
()

S

proximations, and confirms our statements in Sec. Il A. Re-;§¢
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cently, the ADA has been also shown to give improved de-  -10 | : Eéj\((go) . 1
scriptions of the exchange-correlation energy density over —— LDA (3D) \\
the LDA for the conventional bulk silicon systethput its | = e S
applications are scarce in the literature due to the difficulty of  PKZB MGGA N
its implementation.
-14 ' !
10 100 1000
C. Quantum dot o,/ ®
The second physical system with 2D character we discus - .
is a GaAs quantum dot. Because the orthogonal dot-growtt
direction confinement is usually much stronger than the in-
plane confinement, the electron distribution in a quantum dot 0 e o
has a pancakelike spheroidal shape. For realistic potentie
shapes of actual quantum dots, we refer the reader to Figs.
and 5 of Ref. 10. . |
We take a simple model of quantum-dot systems with an=>
anisotropic harmonic oscillator potential as the external po-g
tential, s RN
m o EXX N .

Ve 1) =30 (x*+y?) + 3 077". (29 O oae S
as employed in our previous investigatitnHere z is the T PHet SoA AN
dot-growth direction, an@,= . We consider only two in- —-— PKZB MGGA N
teracting electrons in this potential. The exact exchange en
ergy for this two-electron system is equal to one half of the  -14 m o 1500

Hartree energy. In the isotropic potential limit=w,, this
model can be solved analytically for a discontinuous but in-
finite set of oscillator frequencié$,and a comparative study

®,/ o

FIG. 4. (a) Exchange energy an@) exchange-correlation en-

of the exact KS, LDA, and GGA schemes has been reportegrgy of two electrons confined in a quantum dot modeled by an

recently?” These results were used as a check of our calcuanisotropic harmonic oscillator potential as functionswgf . For

lation method described below. a fixed lateral-direction external potential=2 meV, the dot-
We performed self-consistent LDA, PBE GGA, and exactgrowth direction potentiab, has been varied from 2 to 2000 meV.

exchang%s (EXX) calculations forw,/w<20, and PW91 The realistic value ofw, is about 20-50 meV, ok,/w~10-25.

GGA and PKZB MGGA energies have been evaluated byrhe upward/downward arrows if@) indicate the direction of cor-

the PBE GGA density and wave functions. Technical detailgection to the LDA exchange energy. Note ths GGA correction

of our self-consistent EXX calculations based on the finite-s always downward, hence improves the LDA at the isotropic limit,

difference grid schenté?® have been presented in Ref. 30. but worsens at the anisotropic limit.

For w,/w>20, we used a simple variational EXX approach

to generate approximate solutioins: Taking the variationa|n addition to the 3D DFT calculations, we also performed
tria' wave function as 2D LDA Calculatlon§ with the 2D denSIty

w;

a

with two variational parameters’ and w, for a given ex- ~Which has been obtained through a 2D EXX variational
ternal potential characterized byandw,, we minimize the ~Minimization procedgre as |n.th.e large-confinement 3D case
EXX total energy of the system and use the variationally(®;/@>20) with a single variational parametef’.

optimal wave functions and the corresponding density to The exchange and exchange-correlation energieswfor
evaluate various 3D exchan¢end correlationenergies. The =2 meV=0.1912 hartreeare shown in Figs. @ and
self-consistent and variational EXX exchange energies ob4(b) respectively. The EXX exchange values in Figa)4
tained through this procedure show the agreement of 99.8%eveal that the system approach the 2D limit &}/w

and 99.4% with the exact KS value for the isotropic cdse. ~20-30, and also the 2D LDA exchange value is quite close

”

1/4 ®
nZD(rZD)=2(— e
a

e w;22/2

1\ 1/2
il IR CROY) —0"(P+y?)

(31)

l//(r)=( (30
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to the EXX value in that limit. Now we compare the 3D 5 .

LDA and (M)GGA exchange energies with the EXX ex-

change energy. First, at the isotropic limib{/w=1), we [~~~ "~~~ """~~~ ST T TR
can see that théV)GGA improves the 3D LDA, since the 4t L% 7
magnitude of the exact exchange energy is larger than that @ o< :

the 3D LDA exchange energy ab,/w=1. On the other ~ [~ OB -8-a 5o
hand, as we move to the anisotropic linfiarge w,/w re- > 3l oo <K®> |
gime), the 3D LDA and GGA exchange energies become £ 5 BP0 O<K'>

much larger in magnitude than the EXX values, and the > 7 i e S
GGA's worsen the agreement, as in the 2D electron gas con > O<V,,">
sidered in the previous subsection. The required directions o & 2 [ o
correction to the LDA value have been indicated by upward/"IJ o 6 00 “ <V°°u>
downward arrows, which show that we need corrections of 02 i
opposite signs at the isotropic and very anisotropic limits; T iy
however, thg M)GGA correction always has the same sign,

which clearly shows the inherent difficulty in constructing

(M)GGA's that satisfy both limits. 0 10 100

The qualitative results at the exchange level are not
changed with the inclusion of the correlation energy as
shown in Fig. 4b), except that, for smalb,/w, the differ- FIG. 5. The lateral components of 3D total kinetic enefy),
ences _between _the 3D LDA an@V)GGA exchange- o) external potential energ(y/ﬂx,), and Hartree+ exchange en-
correlation energies are smaller than the exchange Caggy (Vl), and the corresponding 2D valuék?®), (V22), and

. . . - - ee/1 4 exv
e.llone‘.Wh'Ch implies that the 3D LDA Is a good approxima- VZD) obtained from variational EXX calculations. For a fixed
tion with the exchange and correlation together rather tha| teral-direction confinement potential=2 meV, the dot-growth

separately. . . . . . direction potential has been varied from 2 to 200 meV.
Before closing this section, we comment on the implica-

tion of current findings to experimental situations. Using a
value of w,=20-50 meV, estimated by the vertical extent
of quantum dotgapproximately 100 A), one finds the real-

istic range ofw,/w is about 10—25, which is not the extreme
2D limit where we observed the breakdown of 3D local/
semilocal DFT approximations. Hence 3D LDA @1)GGA

o,/ ®

is jellium surfaces, which have recently drawn renewed in-
terest due to the discrepancies between different
schemes! =33 Although we believe quantum Monte Carlo
calculation result are the most accurate, it is not our inten-
tion here to address this question. Rather, the relevant point
: X ) we would like to emphasize is that the conclusion of the
quantum-dot simulation results should be reliable for suchy oqent study is consistent with that of Rasolt and Geldart on
experimentally realistic problgms. Furthermore Figb)4 the gradient corrections in the jellium surfat®eto support
suggests th_at 3D and 2D functionals are about equally Qpp“their gradient correction coefficient having a different sign
cable in this range although 3D functionals are deflnltelyfrom that found in atoms, they emphasized the difference
better for_“fZ/“’Slo' ) between the localized and extended system and argued that
In addition, by comparing our 3D and 2D EXX models, eir form is the proper one to use especially for jellium
we can study the effect of employing strictly-2D quantum-g, e85 Actually, they further brought caution on forcing
dot simulations as have been adopted in many theoretica) «jyersal” gradient approximation form where none ex-
studies? In Fig. 5, we compare the lateral components of SDists, which is a warning we feel has been largely ignored. We
t°t|‘|5‘| kinetic energy(K,), total externalu potential energy pgjieve our study supports the argument of Rasolt and Gel-
(Vexy» and Hartreet exchange energiVe), with the cor-  qart and especially our second model system, the quantum
responding 2D values. Physically, the electron-electron interdot, is a dramatic example showing the nonexistence of a
action makes the electrons more extended than the nonintgfiniversal GGA form.
acting counterparts, _which decreases the kinetic energy.a_nd The second system we examine is graphite. Graphite and
increases the potential energy. On the other hand, the finitgtercalated graphite constitute another large family of mate-
thickness of the 2D electron layer has the effect of softeningjas with quasi-2D electronic properties. Interestingly, in our
the COL_JIomb interaction as dlgcugsed in Sec. Il B, Wh'Chprevious invetigations, we observed that the LDA gives a
results in the increase of the kinetic energy and decrease @ftter description of the energy difference between the dia-
the potential energy than the 2D limiting values as shown ifnnond and hexagonal graphite structures of C than the PW91
Fig. 5. This effect is pronounced up t,/w~20, and we  GGA or PBE GGA both at the theoretical and experimental
expect this feature will be missing in the strictly 2D calcula- |attice constant&® Since the LDA and GGA descriptions of
tions. One more noticeable point is that the anisotropy of thehe diamond C are both satisfactory, we can conclude that
potential induces a bigger change from the isotropic Iim'it iNthe GGA descriptions of the graphite is the origin of the
the Hartreet exchange energy{1.20 meV) than those in  proplem. To trace the specific source of the error, we decom-
the kinetic energy {0.38 meV) and potential energy pose the self-consistent total energies at the experimental lat-
(+0.80 meV). tice constants from the LDA, PW91 GGA, and PBE GGA
calculations into kinetic, potential, and exchange-correlation
energies. The kinetig- potential energy differences between
In this subsection, we consider two physical systems witlthe diamond and graphite structures from the LDA/PBE-
2D character to which our study might have relevance. FirsGGA calculations are —820/~865 meV, while the

D. Other systems
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exchange-correlation energy differences between the tw@)GGA'’s significantly overestimate while the ADA repro-
structures are 231/386 meV. The fact that the magnitude auces the correct limiting behavior. The 2D limit can be
the kinetic+ potential energy is more than two times bigger considered as a constraint on approximate functionals. This
than that of the exchange-correlation energy, while the eneondition is not built in most of thdM)GGA'’s, and we
ergy difference in the exchange-correlation part is threeemphasized that their forms are inherently too restricted to
times bigger than that in the kinetie potential part, indi- incorporate this requirement while keeping the necessary
cates that the description of the graphite in the PBE GGAproperty to improve the LDA for other conventional systems.
functional is the main source of the deficiencies. We arguéur second example, an anisotropic quantum dot in which
that this can be understood by our findings in the presentve need different signs of theM)GGA corrections to the
work. In hexagonal graphite, there are eight electrons petDA at 3D and 2D limits, explicitly shows the danger of
unit cell, and two of them in ther-like state can be consid- expecting a universal gradient approximation form, as
ered as 2D electrons, which correspondsr §e3.5%, or  Pointed out by Rasolt and GelddftTwo other realistic sys-
kZP=0.41a,*. The valence-electron charge-density distribu-€MS: jellium surface and graphite, have been discussed as
tion is known experimentall§’ so one can estimate the relevant examples. For practical device simulations, how-

] ~ ever, we concluded that the LDA and)GGA results
thickness of the electron layég as ~2.33, or b=12/ly  ghould be qualitatively correct, as long as experimentally re-

=0.61a, . This correspond tb/k2°= 1.5 in Fig. 3, suggest- alistic situations are considered.

ing that the GGA’s worse description of the energy differ- Note addedRecently, we were informed that Pollack and
ence between the hexagonal graphite and diamond can Iferdew have also studied the quasi-2D electron gas results
explained by our findings in this work that the GGA gives using a different quantum well model, finding results in

poorer descriptions of 2D systems than the LDA. agreement with ours presented in Sec. Iff%They have
employed a scaling argument more extensively and also
IV. SUMMARY AND DISCUSSIONS made a connection to the liquid drop model.

The purpose of this work was to show the fundamental
limitation of the 3D local/semilocal exchange-correlation en-
ergy functional approximations of DFT by considering sys-
tems with 2D characteristics. We traced the source of the We thank Professor K. Burke for suggestion to refer to
failure of the LDA andM)GGA's in 2D systems to the local Ref. 19, Professor J. Perdew for valuable discussion and
and semilocal nature of their approximate exchangesharing his work prior to publications, and Dr. V. Rao and
correlation holes. These local/semilocal approximations hav®r. J. Shamaway for suggestions and performing some test
been contrasted with nonlocal approximations such as thealculations. This work was supported by the National Sci-
ADA, and the difference has been explicitly demonstrated irence Foundation under Grants Nos. DMR94-22496 and
our first model, quasi-2D electron gas, in which the LDA andDMR98-0273.
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