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Spatial correlations in dynamical mean-field theory
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Department of Physics, Rice University, Houston, Texas 77251-1892

~Received 4 March 1999!

We further develop an extended dynamical mean-field approach introduced earlier. It goes beyond the
standardD5` dynamical mean field theory by incorporating quantum fluctuations associated with intersite
~Ruderman-Kittel-Kasuya-Yosida like! interactions. This is achieved by scaling the intersite interactions to the
same power in 1/D as that for the kinetic terms. In this approach, a correlated lattice problem is reduced to a
single-impurity Anderson model with additional self-consistent bosonic baths. Here, we formulate the ap-
proach in terms of standard perturbation expansions. We show that the two-particle vertex functions are
momentum-dependent, while the single-particle self-energy remains local. In spite of this, the approach is
conserving. Finally, we also determine the form of a momentum-dependent dynamical susceptibility; the
resulting expression relates it to the corresponding Weiss field, local correlation function and~momentum-
dependent! intersite coupling.
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I. INTRODUCTION

In strongly correlated electron systems, both local a
nonlocal interactions are important in determining the nat
of the ground state and low-lying excitations. One exam
illustrating this point comes from Kondo systems, such
heavy fermions. Here, the competition between the lo
Kondo interactions and nonlocal Ruderman-Kittel-Kasu
Yosida ~RKKY ! interactions was recognized to play an e
sential role from very early on.1,2 The Kondo effect tends to
quench local moments altogether, while the RKKY intera
tions promote magnetic ordering. What happens when
two processes are about ‘‘equally’’ important is an intrigui
question that remains poorly understood. This question
once again become centrally important, due to the emerge
of a host of heavy fermion metals lying in the vicinity of
quantum phase transition.3

The interplay between local and nonlocal interactions
also essential in Mott-Hubbard systems.4 When on-site inter-
actions are strong, their effects can be thought of as de
mining the atomic configurations that lie at low energie
The precise form of the ground state and low-lying exci
tions, on the other hand, have to be determined by the
sidual intersite couplings between these low-energy confi
rations.

In general, a separation of electron-electron interacti
into local and nonlocal ones is not necessarily well defin
Local interactions, when combined with kinetic terms, c
lead to effective nonlocal interactions. After all, both RKK
and super-exchange interactions arise in this fashion.

In theoretical approaches, however, such a separation
often be sharply defined. In this paper, we are concer
with the dynamical mean field theory5 ~DMFT!, which is
formally exact in the limit of infinite dimensions (D5`).6

The DMFT reduces a correlated lattice problem to a s
consistent Anderson impurity model, namely a quantum
purity coupled to a self-consistent fermionic bath. The int
actions between the impurity degrees of freedom reflect
on-site interactions of the lattice problem; in this way loc
quantum fluctuations are retained. The self-consistent fe
PRB 610163-1829/2000/61~8!/5184~10!/$15.00
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onic bath of the impurity problem reflects the influence,
the one-particle level, of the rest of the lattice on the selec
~i.e., impurity! site. All the intersite correlations of the lattic
problem, on the other hand, are neglected. In this sense,
local quantum fluctuations are completely lost.

In earlier works, we7,8 and independently Kajueter an
Kotliar9 have extended the DMFT such that intersite qua
tum fluctuations are treated on an equal footing with lo
ones. This extended DMFT reduces a correlated lattice p
lem into a novel effective impurity problem, which corre
sponds to an Anderson impurity model with additional se
consistent bosonic baths. These bosonic baths reflect
influence, at the two-particle level, of the rest of the latti
on the impurity site. In the magnetic case, for instance, th
represent the fluctuating magnetic fields induced by the
tersite spin-exchange interactions. Through self-consiste
they keep track of the intersite quantum fluctuations. In th
earlier works, the mean-field equations were derived us
the so-called ‘‘cavity’’ method.

The purpose of this paper is to give an alternative form
lation of this extended DMFT using diagrammatic perturb
tion methods. Using the new formulation, we are able
establish the conserving nature of this approach and also
rive the expressions for momentum-dependent correla
functions. These expressions specify how to calculate
correlation functions from the corresponding Weiss fiel
local correlation functions and~momentum-dependent! inter-
site interactions.

To be specific, we focus on a one band model,

H5(
i

Uni↑ni↓1 (
^ i j &,s

t i j cis
† cj s

2
1

2 (̂
i j &

v i j ~ni2^n&!~nj2^n&!2
1

2 (̂
i j &

Ji j SW i•SW j .

~1!

The first two terms alone would correspond to the stand
Hubbard model for a spin 1/2 band. The third and forth ter
are the intersite density-density (v i j ) and spin-exchange
5184 ©2000 The American Physical Society
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(Ji j ) interactions. Hereni and SW i are the density and spi
operators for thec electrons.̂ i j & labels a pair of nearest
neighbor sites. For simplicity, we limit both the hopping a
intersite-interaction terms to nearest-neighbor only. Gene
izing to the case with longer-range hopping and interact
terms is straightforward.

In the standard largeD approach, the single-electron ho
ping term is taken to be of order 1/AD:

t ^ i j &5t/AD. ~2!

The largeD limit leads to an effective single-site problem
which describes an impurity coupled to a self-consist
Weiss field. There is one Weiss field for each frequency,
to the quantum-mechanical nature of the hopping term.
coupling of the impurity to this frequency-dependent We
field can be equivalently described in terms of a coupl
between the impurity and an effective noninteracting ferm
onic bath. The bath is fermionic, since the Weiss field
scribes the influence of the rest of sites to the selected im
rity site at the one-particle level. On the other hand,
intersite interaction terms~both v ^ i j & and J^ i j &) are taken to
be of order 1/D. With such scaling, only the static Hartre
contributions survive the largeD limit.10 All the quantum
fluctuations associated with these interactions are then
glected.

In the extended DMFT, these intersite interaction ter
are also scaled to the order 1/AD. The largeD limit then
leads to a different effective impurity problem: the impuri
is now also coupled to the frequency-dependent Weiss fi
induced by these intersite interactions. The two-particle
ture of the intersite interactions dictate the bosonic nature
the corresponding effective baths in the impurity proble
As a result, the effective single-site problem can be thou
of as an impurity coupled not only to a self-consistent ferm
onic bath but also to self-consistent bosonic baths.

The rest of the paper is organized as follows. In Sec.
we introduce the extended largeD limit and derive the mean
field equations using perturbation methods. We then de
the expressions for the momentum-dependent correla
functions in Sec. III. The proof that the approach is conse
ing is given in Sec. IV. In Sec. V, we~a! generalize the
approach to multiband systems as well as to the case o
ordered state;~b! specify an approximate procedure to de
with incommensurate spatial fluctuations; and finally~c!
compare our approach with others within the general DM
framework.

II. THE EXTENDED DYNAMICAL MEAN-FIELD
APPROACH

In this section, we introduce the extended largeD limit
and derive the mean-field equations.

The intersite hopping term,t ^ i j & , remains of order 1/AD
as given in Eq.~2!. The nearest-neighbor interactions a
now scaled to the same order,

v ^ i j &5v/AD
~3!

J^ i j &5J/AD.
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In order for the largeD limit to be well defined, we need to
subtract the Hartree contribution as has already been don
Eq. ~1!. ~The normal-ordering notation :h: will be used to
denoteh2^h&.)

We now establish that the self-energy is still local. Co
sider first the self-energyS^ i j & . The Hartree contributions
from both v ^ i j & and J^ i j & vanish. The Fock and high-orde
contributions to the self-energy can be written in a skele
expansion. As illustrated in Fig. 1, any skeleton expans
diagram for the self-energy contains at least an intersite
teraction path and a fermion propagator from sitei to site j.
Both are at least of order 1/AD. Therefore,S^ i j &;O(1/D).
More generally,S i j ;O(1/D) uu i 2 j uu, where uu i 2 j uu is the
least number of steps from sitei to sitej. This implies that in
the largeD limit the self-energy is momentum-independen
S(q,v)5S i i (v).

Consider now the on-site self energyS i i (v). The only
real-space self-energy diagrams that survive the largeD limit
have the form illustrated in Fig. 2~a!, as explained in detail in
Appendix B. Here a solid line represents the fermion pro
gator, Gii . A dashed line denotes the intersite interacti
~either v i j or Ji j ). The loop formed by two dashed line
enclosing a solid square is denoted as eitherxch,0

21 (v) or
xs,0

21(v), which, as explained in Appendix B, has the follow
ing form,

xch,0
21 5(

i j
v i0v0 j~xch,i j 2xch,i0xch,0j /xch,loc!

~4!

xs,0
215(

i j
Ji0J0 j~xs,i j 2xs,i0xs,0j /xs,loc!,

where xch and xs are the charge and spin susceptibilitie
respectively. More specifically, they are the Fourier tra

forms of ^Tt:h i :(t):hg:(0)& and ^TtSW i(t)•SW j (0)&, respec-
tively.

FIG. 1. A typical intersite self-energy diagram. A full line rep
resents a single-particle Green’s function, and a dashed line co
sponds to an intersite interaction. This diagram is subleading.

FIG. 2. ~a! An on-site self-energy diagram of the lattice pro
lem. ~b! The corresponding local self-energy diagram of the eff
tive impurity problem. A shaded line corresponds to a Weiss fie
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The above implies thatS i i can be equivalently calculate
in terms of a local problem with an action of the followin
form,

SMF5E
0

b

dtUn↑~t!n↓~t!2E
0

b

dtE
0

b

dt8

3F(
s

cs
†~t!G0

21~t2t8!cs~t8!1:n~t!:xch,0
21

3~t2t8!:n~t8!:1SW ~t!•xs,0
21~t2t8!SW ~t8!G , ~5!

where :n:[n2^n&. The skeleton expansion for the se
energy of this local problem,S loc , has the form given in
Fig. 2~b! where a solid line representsGloc and a shaded line
represents eitherxch,0

21 or xs,0
21 . Since there exists a one-to

one correspondence between the diagrams in Figs. 2~a! and
2~b!, we have

S loc5S i i ~6!

if G0 is chosen such that

Gloc5Gii . ~7!

In standard fashion,5 it can be seen from the Dyson equatio
for both the local problem and the lattice problem that, E
~6! and ~7! are satisfied if the Weiss field is chosen as

G0
21~ ivn!5 ivn1m2(

i j
t i0t0 j@Gi j ~ ivn!

2Gi0~ ivn!G0 j~ ivn!/Gloc~ ivn!#. ~8!

Consider now the higher-order correlation functions. In
skeleton expansion for any on-site correlation function of
lattice problem, every diagram also has the form of Fig. 2~a!
@with even~odd! number of fermion loops for any even~odd!-
number-particle correlation functions#. Likewise, the skel-
eton expansion diagrams for the corresponding local corr
tion function of the impurity problem have the structure
Fig. 2~b!. As a result Eqs.~4! and ~7!, or equivalently, Eqs.
~4! and ~8!, also guarantee that all the on-site higher-ord
correlation functions of the lattice problem can be calcula
from the effective impurity problem. In particular,xch,loc
5xch,i i andxs,loc5xs,i i .

Equations~5!, ~8!, and~4! form the self-consistency equa
tions. The effective impurity problem, defined by the acti
given in Eq.~5!, can be equivalently written in terms of a
impurity Hamiltonian of the following form,

Himp5Hkin1Ed(
s

cs
†cs1Unc↑nc↓1t(

ks
~cs

†hks1H.c.!

1F(
q

:nc :~rq1r2q
† !1g(

q
SW c•~fW q1fW 2q

† !

~9!

Hkin5(
ks

Ekhks
† hks1(

q
Wqrq

†rq1(
q

wqfW q
†
•fW q,

whereEd52m and the parametersEk ,Wq ,wq ,V, F, andg
are given by
.

a
e

a-

r
d

ivn1m2t2(
k

1/~ ivn2Ek!5G0
21~ ivn!

F2(
q

Wq /@~ inn!22Wq
2#5xch,0

21 ~ inn! ~10!

g2(
q

wq /@~ inn!22wq
2#5xs,0

21~ inn!,

where ivn and inn are Matsubara frequencies for fermion
and bosons, respectively.

Equation~9! describes a single-impurity Anderson mod
coupled to two additional bosonic bands. The impurity c
responds to thec orbital. hks is the usual fermionic bath o
the Anderson model, with a dispersion ofEk . rq is a scalar-

bosonic bath.fW q corresponds to a vector-bosonic bath. No
that the different components of the vector boson comm
with each other:@fq

a ,fq8
b,†

#5dabdqq8 where a,b5x,y,z.
The dispersions of the bosonic baths areWq andwq .

As in the usual largeD limit, having solved the local
problem we can then calculate the lattice Green’s functio

G~k,v!5
1

v1m2ek2S~v!
. ~11!

In the following, we establish that a parallel procedure c
be carried out for the lattice correlation functions.

III. MOMENTUM-DEPENDENT CORRELATION
FUNCTIONS

We now specify the procedure to calculate t
momentum-dependent correlation functions. For simplic
we focus on the spin-spin correlation function only. T
density-density correlation function has a similar form.

A. Two-particle vertex functions

We first establish the form of two-particle vertex fun
tions. Consider the spin susceptibility,xs(q,v), which can
be written as

xs~q,v!5E de1de2xs~e1 ,e2 ;q,v!, ~12!

wheree1 , e2 are illustrated in Fig. 3, which also specifies th
Bethe-Salpeter equation,

xs,i j ~e1 ,e2 ;v!5x i j
ph~e1 ;v!de1 ,e2

1E de8 (
l 1 ,m1 ,l 2 ,m2

x i l 1im1

ph ~e1;v!

3I l 1l 2m1m2
~e1e8;v!xs,l 2 jm2 j~e8,e2 ;v!.

~13!

Here xph represents the particle-hole bubble, with full fe
mion propagators.I l 1m1l 2m2

is the irreducible vertex function
in the triplet particle-hole channel. It follows from the coun
ing rules of Appendix A that only a limited number of con
tributions on the right-hand side are of leading order. For
first term on the right-hand side, only thei 5 j contribution is
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FIG. 3. The Bethe-Salpeter equation. Here a bubble with a shaded insertion represents the susceptibility. The solid square de
irreducible vertex function.
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leading. For the second term, only terms withl 15m15 i and
l 25m2 contribute. Eq.~13! then leads to

xs~q,v!e1 ,e2

21 5xph~e1 ;v!21de1 ,e2
2I ~e1 ,e2 ;q,v!,

~14!

whereI (e1 ,e2 ;q,v)[( je
iq•Ri j I i j i j (e1 ,e2 ;v). Note that Eq.

~14! is a matrix equation, withe1 ,e2 specifying matrix ele-
ments.

We now need to calculate the irreducible vertex funct
I (e1 ,e2 ;q,v) in terms of the effective impurity problem. T
do that, we first carry out a cumulant expansion for the s
susceptibility of the lattice model. A cumulant is introduc
in a perturbative expansion in terms oft i j , v i j and Ji j . It
represents the corresponding local single-particle or t
particle Green’s function calculated entirely in terms of t
on-site ~‘‘atomic’’ ! part of the lattice Hamiltonian. For ou
purpose, it is more convenient to introduce an effective s
cumulant in analogy to the one-particle effective cumul
introduced by Metzner.11 The effective spin cumulant is de
fined as all the diagrams for the on-site spin susceptib
which are irreducible in terms of cutting anyJlm line ~where
l and m are arbitrary!. Loosely speaking, it is the bare sp
cumulant plus all the local decorations. Denoting the eff
tive spin cumulant asCs(e1 ,e2 ;v), the leading order spin
susceptibility has the structure illustrated in Fig. 4 and can
written as

xs,i j ~e1 ,e2 ;v!5Cs~e1 ,e2 ;v!d i j

1(
l
E de8E de9Cs~e1 ,e8;v!

3Jil xs,l j ~e9,e2 ;v!, ~15!

which is equivalent to

xs~q,v!e1 ,e2

21 5Cs~v!e1 ,e2

21 2J~q!. ~16!

The leading in 1/D contributions to the effective spin cu
mulant contain diagrams of the form illustrated for the o
n

-

in
t

y

-

e

-

site self-energy in Fig. 2. This again follows from the pow
counting rules of Appendix A and can be derived followin
a procedure parallel to that of Appendix B. As a result,
the loops involving intersite interactions are equal to the c
responding Weiss fieldsxs,0

21 andxch,0
21 .

The above, in turn, implies that the quantityCs we have
just defined for the lattice model is also equal to the sum
all the diagrams for the local spin susceptibility of the effe
tive impurity problem, Eq.~5!, which are not reducible by
cutting a singlexs,0

21 line. The local spin susceptibility then
satisfies the following equation,

xs,loc~e1 ,e2 ;v!5Cs~e1 ,e2 ;v!

1E de8E de9Cs~e1 ,e8;v!xs,0
21~v!

3xs~e9,e2 ;v! ~17!

as illustrated in Fig. 5. Equation~17! leads to

Cs~v!e1 ,e2

21 5xs,loc~v!e1 ,e2

21 1xs,0
21~v!, ~18!

which specifies how to calculate the effective spin cumul
from the Weiss field and the local spin susceptibility.

Combining Eqs.~16!, ~14!, and ~18!, we derive the fol-
lowing form for the momentum-dependent irreducible vert
function,

I ~e1 ,e2 ;q,v!5xph~e1 ;v!21de1 ,e2
2xs,loc~v!e1 ,e2

21

2xs,0
21~v!1J~q! ~19!

as well as the local irreducible vertex functio
I loc(e1e2;v)[(qI (e1,e2;q,v),

I loc~e1 ,e2 ;v!5xph~e1 ;v!21de1 ,e2
2xs,loc~v!e1 ,e2

21

2xs,0
21~v!. ~20!
e bubble
FIG. 4. Susceptibility expansion in terms of cumulants. The bubble with a shaded insertion represents the susceptibility, while th
with a solid insertion corresponds to an effective two-particle cumulant.
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FIG. 5. Local susceptibility expansion in terms of cumulants and the Weiss field.
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B. Correlation functions

We now proceed to determine the momentum-depend
correlation function. Again, we focus on the spin suscepti
ity.

Integrating both sides of Eq.~15! over bothe1 and e2
leads to the following,

xs,i j ~v!5Ms~v!d i j 1(
l

Ms~v!Jil xs,l j ~v!, ~21!

where the integrated spin cumulant Ms(v)
[*de1*de2Cs(e1 ,e2 ;v). Equation~21! yields,

xs~q,v!5
Ms~v!

12J~q!Ms~v!
. ~22!

The integrated spin cumulantMs(v) can be determined
from integrating both sides of Eq.~17! over bothe1 ande2,

xs,loc~v!5Ms~v!1Ms~v!xs,0
21~v!xs,loc~v!, ~23!

which yields,

Ms~v!5
xs,loc~v!

11xs,0
21~v!xs,loc~v!

. ~24!

Inserting Eq.~24! into Eq. ~22! leads to the final form for
the momentum-dependent correlation function,

xs~q,v!5
1

1/xs,loc~v!1xs,0
21~v!2J~q!

. ~25!

Equation~25! is one of the most important conclusions
this paper. It specifies how to calculate the momentu
dependent spin susceptibility from the local spin suscepti
ity, the Weiss field@xs,0

21 , see Eq.~4!#, and the exchange
interaction. As a check for the validity of this expressio
one may rewrite it in the following form,

xs~q,v!5xs,loc~v!1xs,loc~v!@J~q!2xs,0
21~v!#xs~q,v!.

~26!

By using the expression for the Weiss fieldxs,0
21 , Eq.~4!, it is

straightforward to see that summing both sides of Eq.~26!
over q leads toxs,loc5xs,loc . An alternative derivation of
Eq. ~25! is given in Appendix C.

IV. CONSERVING CRITERIA

We see from the above that the single-particle self-ene
is local, but the two-particle vertex function is momentu
dependent. We show in this section that, in spite of this,
approach is conserving.

An approach is conserving if both the single-particle s
nt
-

-
l-

,

y

e

f

energy and two-particle irreducible vertex functions a
functional derivatives of the Luttinger-WardF-potential
with respect to the single-particle Green’s functions.12 The
latter is defined as the sum of all closed skeleton diagra
and is a functional of the single-particle Green’s function a
interaction parameters. Applying this criterion to our case
somewhat subtle. The momentum-dependent part of the
tex function comes from diagrams for the Luttinger-Wa
potential that are subleading in 1/D. These include the Har
tree and Fock contributions. In fact, due to the usage
normal-ordered operators in the Hamiltonian the Hart
contributions to Luttinger-Ward potential and to the se
energy, given in Figs. 6~a! and 6~b! respectively, are identi-
cally zero. The corresponding Fock contributions, also giv
in Figs. 6~a! and 6~b!, respectively, are subleading in 1/D. At
the same time, both the Hartree and Fock contributions to
two-particle vertex functions, given in Fig. 6~c!, are of lead-
ing order: Their contributions toI ^ i j & are of order 1/AD.

Because of this subtlety, we use an alternate set of c
serving criteria introduced in Ref. 13. Two conditions a
sufficient for an approach to be conserving. The first sta
G2(1,3,11,31)5G2(3,1,31,11), whereG2 is the standard
two-particle Green’s function.@In this section we follow the
short-hand notation of Ref. 13. For instance, 1 lab
(x1 ,t1), and 11 labels (x1 ,t1101).# This condition is sat-
isfied in our case.

The second condition relates the single-particle s
energy and the reducible two-particle vertex function. T
condition contains two equations, one derived from the eq
tion of motion,]t1

G(1,18)5@G(1,18),H#, and the other its

FIG. 6. Hartree and Fock contributions to~a! the Luttinger-
Ward potential;~b! the self-energy; and~c! the vertex function.
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adjoint. In what follows, we show that the first equation
satisfied; similar arguments establish the validity of the s
ond equation. In addition, for notational simplicity, we co
sider the case when only the intersite density-density in
actionv i j is finite ~the conclusion is unchanged ifJi j is also
present!. In this case, the condition for the Hamiltonian give
by Eq. ~1! has the following form,

S~1,18!52E d3̄d5̄d6̄d8̄vx1 ,x3̄
@G~1,3̄!d~ 3̄218!

1G~1,5̄!G~ 3̄,6̄!G~ 5̄,6̄,18,8̄!G~ 8̄,3̄!#

2E d5̄d6̄d8̄U@d~1218!n2s~1!

1G~1,5̄!G~1,6̄!G~ 5̄,6̄,18,8̄!G~ 8̄,1!#, ~27!

whereG is the reducible two-particle vertex function.14

Consider first the case whenx1 is nearest neighbor tox18 .
A contribution is of leading order if it is of order 1/AD. The
left-hand side is of order 1/D and hence subleading. Th
right-hand side contains the nonlocal component of the v
tex function; one might then worry about whether it is s
subleading. That it is so can be seen by enumerating
possible spatial locations of the integration variables and
ing the rules of Appendix A. In fact, the dominant contrib
tions are all of order 1/D and, hence, the right-hand side
also subleading. We illustrate this with two examples. C
sider first the casex3̄5x6̄5x8̄5x1, andx5̄5x18 , which con-
tribute to the second term on the right-hand side of Eq.~27!.
The nonlocal vertex functionG(18,1,18,1), which is of order
1/AD, is accompanied by another nonlocal Green’s functi
G(1,18), which is also of order 1/AD. Consider next the
contribution from the first term on the right-hand side of E
~27!, with x5̄5x18 andx3̄5x6̄5x8̄5xl , wherexl is nearest-
neighbor to x1. Again, the non-local vertex function
G(18,l ,18,l ), which is now of order 1/D, is accompanied by
G(1,18) and vx1 ,xl

, both of which are of order 1/AD; sum-

ming overl gives rise to a factorD, leading to an overall 1/D
contribution. We conclude that to leading order, Eq.~27! is
indeed satisfied. Analogous arguments apply to arbitraryx1
Þx18 .

Consider nextx15x18 . The leading-order here corre
sponds to O~1!. To this leading order Eq.~27! becomes,

S~1,1!52E d3̄vx1 ,x3̄
G~1,1!G~ 3̄,3̄!G~1,3̄,1,3̄!G~ 3̄,3̄!

2U@n2s~1!1G~1,1!G~1,1!G~1,1,1,1!G~1,1!#.

~28!

@For notational simplicity, we have suppressed the time in
ces.# Here, the right-hand side also contains the nonlo
components of the vertex functionG. We can expand the
right-hand side in terms of the bare intersite interaction
expressingG in terms of the irreducible vertex functionI and
using Eqs.~19! and ~20!. This leads to diagrams that are
one to one correspondence with those for the on-site
energy. Equation~28! is then satisfied as well.

To summarize, in order to correctly derive the leadin
order irreducible vertex function by differentiating th
-

r-
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he
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Luttinger-Ward potential, it is necessary to keep not only
leading in 1/D contributions to the Luttinger-Ward potentia
but also the Hartree-Fock-type terms, which are forma
subleading. TheD→` limit has to be taken after differenti
ating the Luttinger-Ward potential with respect to th
Green’s functions. The process of taking a functional deri
tive of a diagram with respect to the single-particle Gree
function can change the order in 1/D. In spite of these com-
plications, we established that the approach still satisfies
criteria of Ref. 13 and, hence, is conserving.

V. DISCUSSIONS

A. Multiband models and ordered states

The generalization of our approach to multiband case
straightforward. For a two-band extended Hubbard mod
the corresponding mean field equations have already b
written down in Refs. 7 and 8.

Another important two-band model is the Kondo latti
model,

H5 (
^ i j &,s

t i j cis
† cj s1(

i
JKSW i•sWci

2(̂
i j &

Ji j SW i•SW j , ~29!

whereSW i denotes an impurity spin at sitei, andsWci
represents

the spin of conduction (c2) electrons at sitei. Taking the
large D limit, again witht i j 5t0 /AD andJi j 5J0 /AD, results
in the following effective impurity action,

SMF5Stop1E
0

b

dtJKSW •sWc2E
0

b

dtE
0

b

dt8

3F(
s

cs
†~t!G0

21~t2t8!cs~t8!

1SW ~t!•xs,0
21~t2t8!SW ~t8!G , ~30!

whereStop describes the Berry-phase of the impurity sp
The Weiss fieldsG0

21 and xs,0
21 are determined by the self

consistency equations as given in Eqs.~8! and ~4!. The ef-
fective action can equivalently be written in terms of t
following impurity problem,

Himp5(
ks

Ekhks
† hks1(

q
wqfW q

†
•fW q2m(

s
cs

†cs

1t(
ks

~cs
†hks1H.c.!1JKSW •sWc

1g(
q

SW •~fW q1fW 2q
† !, ~31!

whereEk , t, wq and g may be determined from the Weis
fields G0

21 andxs,0
21 as specified by Eq.~10!.

Finally, we can also extend the approach to a state w
long-range commensurate spatial ordering. This requires
ing the normal ordering, as specified in Eq.~1!, with a site-
dependent average charge or spin appropriate for the ord
state. The dynamical mean field equations, Eqs.~5!, ~8!, and
~4! still apply.
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B. Incommensurate susceptibilities

The form of the momentum-dependent correlation fu
tion given by Eq.~25! applies to genericq. The momentum
dependence is entirely given by that of the correspond
intersite interaction. It does not depend on the single-part
dispersion.

The situation is different from the standard largeD limit,
where the momentum dependence of the correlation fu
tions is given entirely by the single-particle dispersion. T
latter is possible for lattices with unbounded bare density
states — such as hypercubic lattice—which contains spe
q such thateq5( i j e

iq•Ri j t i j is of orderAD.
Formally, the extended DMFT described here can only

defined for lattices with a bounded bare density of states
becomes ill defined for lattices with unbounded density
states: Wheneq is of orderAD, so isJ(q); through the form
of the susceptibility, Eq.~25!, the system would then becom
unstable@whenJ(q) is positive#.

One way to approximately incorporate the incommen
rate fluctuations induced by Fermi-surface features
through the~exact! Bethe-Salpeter equation

xs~q,v!e1 ,e2

21 5xph~e1 ;q,v!21de1 ,e2
2I ~e1 ,e2 ;q,v!,

~32!

wherexph(e1 ;q,v) is the usual particle-hole susceptibilit
bubble calculated in terms of the full single-particle prop
gators. One still uses the extended DMFT to calculate
self-energy and the irreducible vertex function, Eq.~19!. At
the same time, one adopts the momentum-dependence oxph

and the intersite interactions in a given system at finite
mensions. This procedure is of course no longer exact.

C. Comparison with other approaches

A direct 1/D expansion has been introduced by Schil
and Ingersent.15 The expansion is carried out for th
Luttinger-Ward F-potential,16 i.e., all the closed skeleton
diagrams. The leading (1/D0) order contributions involve, as
usual, only a single site. The next-to-leading order (1/D)
contributions come from diagrams involving two sites.
dynamical mean field description to this level requires t
effective actions describing a single impurity and a tw
impurity cluster, each coupled to its respective se
consistent medium. Similarly, expanding to order 1/Dn re-
quires solving simultaneously effective problems involvi
one-site, two-site, and up ton11 site clusters, each embed
ded in its own self-consistent medium.

The extended DMFT described here can be thought o
a conserving resummation of contributions to all orders
1/D. This is illustrated in Fig. 7. A detailed comparison b
tween the two approaches should in principle be meanin
when spatial correlations are short ranged.

An alternative approach has recently been introduced
Hettleret al.17 In this approach, the Brillouin zone is divide
into Nc regions. For each frequency, one introduces o
Weiss field for each momentum region. The resulting s
consistent problem describes anNc-site cluster embedded i
theseNc self-consistent Weiss fields. ForNc51, it reduces
-

g
le

c-
e
f

ial

e
It
f

-
is

-
e

i-

r

-
-

s
n

ul

y

e
f-

to the standard largeD DMFT. The precise relationship be
tween their approach and the extended DMFT described
is unclear.

Finally, our approach also has some similarities with t
dynamical mean field theory of random spin systems. B
and Moore18 considered the quantum Sherringto
Kirkpatrick model, in which the exchange coupling is infini
ranged and has a Gaussian distribution of mean zero
variance scaled toJ2/N whereN is the size of the system
Carrying out disorder averaging using replicas, as us
leads to a problem with four-spin interactions; each spin n
carries a replica index. Since the exchange couplings ass
ated with different bonds are uncorrelated, the four spin
teraction has the form of two spins at different timest and
t8, from any site, interact with two other spins, also att and
t8, at every other site. Introducing a Hubbard-Stratonov
decomposition and taking theN→` limit then leads to a
single-site problem with retarded spin-spin interactions.
the paramagnetic phase, the effective impurity problem ha
similar form as the spin part of Eq.~5!, with a self-
consistency equation which is also similar—though n
identical—to Eq.~4!. Generalizing19,20 to the case when con
duction electrons are also present gives rise to mean
equations similar to those described here. The form of c
relation functions is of course very different.

VI. CONCLUSIONS

To summarize, we have presented a perturbative der
tion of the extended dynamical mean-field theory. This a
proach goes beyond the standardD5` DMFT by incorpo-
rating the quantum fluctuations associated with inters
interactions.

The self-consistent impurity problem has the form of
Anderson impurity model with additional bosonic bath

FIG. 7. ~a! Single-site, two-site, and three-site diagrams for t
Luttinger-Ward potential in a direct expansion in 1/D; ~b! The cor-
responding diagrams in the extended DMFT.
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This is a novel kind of impurity problem, and is of interest
its own right. The role of a scalar boson bath is to introdu
additional screening, thereby enhancing orthogonality. T
precise consequences of the enhanced screening depen
the form of the spectral function of the bosons. Referenc
analyzed an impurity problem containing both a scalar bo
bath with a spectral function ofvg and a conduction electro
band with a regular density of states at its Fermi energy.
correlation functions have mean-field exponents. The ef
of an anisotropic vector-boson bath is similar to the sca
case. The effect of an isotropic vector-boson bath is m
complex. We and, independently, Sengupta have car
out8,21 a renormalization group analysis of spins coup
both to a regular conduction electron band (JK) and to a
vector-boson bath~g! with a spectral function ofvg. In the
subohmic case (g,1), there exists a critical point separatin
a phase characterized by the fixed point atJK* 5`,g* 50 and
another byJK* 50,g* ;A12g. The critical exponents are
anomalous.21 In the absence of conduction electrons, the i
purity problem corresponds to a spin coupled to vec
bosons alone. Sachdev and Ye~Ref. 22! solved such a mode
in the large N limit~see also Ref. 23!. Finally, we note that
quantum Monte Carlo methods have recently been develo
for this type of impurity problems.24

The momentum-dependent correlation functions in the
tended DMFT have the general form given by Eq.~25!.
While different in details, it is similar to the phenomenolog
cal expression recently introduced in Refs. 25 and 26 in
context of the dynamical spin susceptibility in a heavy f
mion metal (CeCu62xAux) close to a zero-temperature pha
transition. The experiments25,27 at the critical concentration
are suggestive of a dynamical spin susceptibility@J(q)
1 f (v,T)#21 over the entire Brillouin zone, where the fre
quency and temperature dependence inf (v,T) show an
anomalous exponent. Whether a quantum critical point w
an anomalous exponent in the dynamical susceptibility
emerge in the extended DMFT described here is an exci
open question.29

Finally, the extended DMFT described here should be
plicable to quantitatively study the short, but finite, rang
dynamical fluctuations in paramagnetic phases~whether or
not the ground state is ordered!. Consider, for example, the
spin fluctuations in the paramagnetic phase of a Mott ins
tor. In the standard largeD limit, these fluctuations simply
reflect isolated local moments: They contain no damping
are featureless in momentum space. In the extended DM
the self-consistent problem contains mode coupling
hence damping. In addition, through Eq.~25! the dynamical
spin susceptibility is expected to be peaked at antiferrom
netic wave vectors. The extended DMFT is particularly u
ful at temperatures where the correlation length is short; h
other approaches which take into account only long-wa
length fluctuations would break down. Quantitative calcu
tions using the extended DMFT will perhaps allow a detai
understanding of the neutron scattering results in both
doped and doped Mott insulators, such asV2O3 ~Ref. 28!
where the exchange interactions are not particularly larg
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APPENDIX A: POWER COUNTING RULES

The order in 1/D of the correlation functions and verte
functions can be determined by analyzing the diagrams
real space.

Consider first the single particle Green’s functionGi j and
vertex functionsI i j i j and G i j i j . In any real space Feynma
diagrams for these quantities, it takes at leastuu i 2 j uu number
of fermion propagation or intersite interaction steps. The
fore, Gi j ;I i j i j ;G i j i j ;O(1/D) uu i 2 j uu/2.

Consider next the vertex functions involving three ind
pendent sites,I ( i , j ,i ,l ) and G( i , j ,i ,l ). Every diagram in-
volves at least three independent paths of fermion propa
tors and/or interaction lines. Its order in 1/D is smaller than
what corresponds to two bonds connecting one site to
two remaining sites. Therefore,I ( i , j ,i ,l );G( i , j ,i ,l )
;o(1/D)M3/2 where M35min(uui2juu1uui2luu,uui2juu1uuj
2luu,uui2luu1uuj2luu).

Finally, consider the vertex functions involving four inde
pendent sites,I ( i , j ,l ,m) andG( i , j ,l ,m). Every diagram in-
volves at least four independent paths of fermion propaga
and/or interaction lines. As a result,I ( i , j ,l ,m);G( i , j ,l ,m)
;o(1/D)M4/2 whereM4 is the minimum of the sum of the
lengths of three bonds connecting all four sites.~The three
bonds can either terminate at one site or form a continu
path between two different sites.!

APPENDIX B: ON-SITE SELF-ENERGY

Consider an arbitrary skeleton expansion diagram for
on-site self energy for site 0,S00(v). From the counting
rules of Appendix A, only local fermion propagators appe
The only non-local terms involve intersite interaction
These intersite interaction terms can be grouped into sepa
loops, each starting at site 0 and returning to site 0 a
illustrated in Fig. 2~a!. Note that, no loop can return to site
more than once. For instance, a contribution given in Fig
is subleading.

FIG. 8. A diagram for the on-site self-energy. It connects t
selected site to the rest of the lattice by three interaction lin
making it subleading.
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The analytic expression for each loop can be determi
as follows. The beginning and ending interaction lines giv
product J0lJm0, where l and m are arbitrary sites neares
neighbor to site 0. The solid square then represents a co

lation function involvingSW l and SW m . Given that site 0 is
excluded from anywhere in the solid square, this correlat
function has to be evaluated in terms ofH (0), defined as the
original Hamiltonian Eq.~1! with site 0 excluded. As a re
sult, this loop can be written as

(
lm

J0lJm0x lm
(0) , ~B1!

wherex lm
(0)5^TtSW l(t)•SW m(t8)&H(0), which can be determined

as follows. Forx lm5^TtSW l(t)•SW m(t8)&H , the cumulant ex-
pansion given in Eq.~15! implies that its Fourier transform
satisfies x lm5x l l x lm8 xmm, where x lm8
[(pathsJll 1

x l 1l 1
Jl 1l 2

x l 2l 2
. . . x l nl n

Jl nm and @ l ,l 1 ,l 2 , . . . ,

l n ,m# labels a non-self-retracing path from sitel to site m.
This in turn impliesx lm

(0)5x lm2x l l x l08 x00x0m8 xmm. There-
fore,

x lm
(0)5x lm2x l0x0m /x00 ~B2!

leading to the expression for the spin Weiss field,xs,0
21 , given

in Eq. ~4!.
Similarly, an interaction chain generated byv i j corre-

sponds to the charge Weiss field,xch,0
21 , given in Eq.~4!.

APPENDIX C: ALTERNATIVE DERIVATION
OF THE MOMENTUM-DEPENDENT SUSCEPTIBILITY

In this section we present an alternative derivation for
momentum-dependent susceptibilityx(q,v), Eq. ~25!.
av
.

n

o
R
.

d
a

re-

n

e

We re-write Eq.~4! in momentum space,

x0
21~v!5(

q
J2~q!x~q,v!

2F(
q

J~q!x~q,v!G2Y x loc~v!. ~C1!

In addition, we use Eq.~22!, i.e.,

x~q,v!5
1

M ~v!212J~q!
. ~C2!

We now substitute Eq.~C2! into Eq. ~C1!. By using

(
q

J~q!

M ~v!212J~q!
5211M ~v!21x loc~v! ~C3!

and

(
q

J~q!2

M ~v!212J~q!
5M ~v!21@211x loc~v!# ~C4!

we obtainx0
21(v)5M (v)2121/x loc(v), i.e.,

M ~v!2151/x loc~v!1x0
21~v!. ~C5!

Inserting Eq.~C5! into Eq. ~C2! then leads to Eq.~25!.
Note that, Eq.~25! reduces to the correct result for gener

q in the standard largeD limit where J(q)50 andx0
2150.
is

.

del.
s it

e,
1S. Doniach, Physica B91, 231 ~1977!.
2B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys. Rev. Lett.61,

125 ~1988!.
3Proceedings of the ITP Conference on Non-Fermi Liquid Beh

ior in Metals, Santa Barbara, 1996, edited by P. Coleman, B
Maple, and A. J. Millis@J. Phys.: Condens. Matter,8 ~1996!#.

4The Metallic and Nonmetallic States of Matter, edited by P. P.
Edwards and C. N. R. Rao~Taylor & Francis, London, 1985!;
Metal-Insulator Transitions Revisited~Taylor & Francis, Lon-
don, 1995!.

5For an earlier review, see A. Georges, G. Kotliar, W. Krauth, a
M. J. Rozenberg, Rev. Mod. Phys.68, 13 ~1996!.

6W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
7Q. Si and J. L. Smith, Phys. Rev. Lett.77, 3391~1996!.
8J. L. Smith and Q. Si, Europhys. Lett.45, 228 ~1999!;

cond-mat/9705140~unpublished!.
9 H. Kajueter and G. Kotliar~private communication!; H. Ka-

jueter, Ph.D. thesis, Rutgers University, 1996.
10The Hartree contributions influence the energetics of spatially

dered states. See, for example, P. J. van Dongen, Phys.
Lett. 74, 182 ~1995!; D. Vollhardt et al., Z. Phys. B: Condens
Matter 103, 283 ~1997!.

11W. Metzner, Phys. Rev. B43, 8549~1991!.
-

d

r-
ev.

12G. Baym, Phys. Rev.127, 1391~1962!.
13G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!.
14 We note that the Fock self-energy diagram~for x1 nearest neigh-

bor to (x18) vx1 ,x18
G(1,18) appears on the right-hand side and

subleading (}1/D).
15A. Schiller and K. Ingersent, Phys. Rev. Lett.75, 113 ~1995!.
16The expansion forF was first introduced in E. Halvorsen, G. S

Uhrig, and G. Czycholl, Z. Phys. B: Condens. Matter94, 291
~1994!. These authors considered a spinless one-band mo
The absence of any on-site interaction in this model make
possible to explicitly enumerate all contributions to order 1/D; a
cluster expansion is not necessary in this special case.

17M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschk
and H. R. Krishnamurthy, Phys. Rev. B58, 7475~1998!.

18A. J. Bray and M. A. Moore, J. Phys. C13, L655 ~1980!.
19S. Sachdev, N. Read, and R. Oppermann, Phys. Rev. B52, 10

286 ~1995!.
20A. M. Sengupta and A. Georges, Phys. Rev. B52, 10 295~1995!.
21A. M. Sengupta, cond-mat/9707316.
22S. Sachdev and J. Ye, Phys. Rev. Lett.70, 3339~1993!.
23O. Parcollet and A. Georges, Phys. Rev. B59, 5341~1999!.
24D. R. Grempel and M. J. Rozenberg, Phys. Rev. B60, 4702

~1999!.



le

e-

n-
. B

K.

PRB 61 5193SPATIAL CORRELATIONS IN DYNAMICAL MEAN- . . .
25A. Schroder, G. Aeppli, E. Bucher, R. Ramazashvili, and P. Co
man, Phys. Rev. Lett.80, 5623~1998!.

26P. Coleman, Physica B258–261, 353 ~1999!.
27O. Stockert, H. von Lo¨hneysen, A. Rosch, N. Pyka, and M. Lo

wenhaupt, Phys. Rev. Lett.80, 5627~1998!.
-28W. Bao, C. Broholm, G. Aeppli, S. A. Carter, P. Dai, T. F. Rose
baum, J. M. Honig, P. Metcalf, and S. F. Trevino, Phys. Rev
58, 12 727~1998!.

29More recent discussions can be found in Q. Si, J. L. Smith, and
Ingersent, Int. J. Mod. Phys. B13, 2331~1999!.


