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We further develop an extended dynamical mean-field approach introduced earlier. It goes beyond the
standardD = dynamical mean field theory by incorporating quantum fluctuations associated with intersite
(Ruderman-Kittel-Kasuya-Yosida likénteractions. This is achieved by scaling the intersite interactions to the
same power in I as that for the kinetic terms. In this approach, a correlated lattice problem is reduced to a
single-impurity Anderson model with additional self-consistent bosonic baths. Here, we formulate the ap-
proach in terms of standard perturbation expansions. We show that the two-particle vertex functions are
momentum-dependent, while the single-particle self-energy remains local. In spite of this, the approach is
conserving. Finally, we also determine the form of a momentum-dependent dynamical susceptibility; the
resulting expression relates it to the corresponding Weiss field, local correlation functidmantentum-
dependentintersite coupling.

[. INTRODUCTION onic bath of the impurity problem reflects the influence, at
the one-particle level, of the rest of the lattice on the selected
In strongly correlated electron systems, both local andi.e., impurity) site. All the intersite correlations of the lattice
nonlocal interactions are important in determining the naturgroblem, on the other hand, are neglected. In this sense, non-
of the ground state and low-lying excitations. One exampldocal quantum fluctuations are completely lost.
illustrating this point comes from Kondo systems, such as In earlier works, wé® and independently Kajueter and
heavy fermions. Here, the competition between the |oca|(0t|ial'9 have extended the DMFT such that intersite quan-
Kondo interactions and nonlocal Ruderman-Kittel-Kasuyatum fluctuations are treated on an equal footing with local
Yosida (RKKY) interactions was recognized to play an es-ones. This extended DMFT reduces a correlated lattice prob-
sential role from very early oh? The Kondo effect tends to |em into a novel effective impurity problem, which corre-
quench local moments altogether, while the RKKY interac-sponds to an Anderson impurity model with additional self-
tions promote magnetic ordering. What happens when theonsistent bosonic baths. These bosonic baths reflect the
two processes are about “equa“y” important is an intriguinginﬂuence, at the tWO—partiCIe level, of the rest of the lattice
question that remains poorly understood. This question ha@n the impurity site. In the magnetic case, for instance, they
once again become centrally important, due to the emergendepresent the fluctuating magnetic fields induced by the in-
of a host of heavy fermion metals lying in the vicinity of a tersite spin-exchange interactions. Through self-consistency,
quantum phase transitidn. they keep track of the intersite quantum fluctuations. In these
The interplay between local and nonlocal interactions isearlier works, the mean-field equations were derived using
also essential in Mott-Hubbard systefridhen on-site inter-  the so-called “cavity” method.
actions are strong, their effects can be thought of as deter- The purpose of this paper is to give an alternative formu-
mining the atomic configurations that lie at low energies.lation of this extended DMFT using diagrammatic perturba-
The precise form of the ground state and low-lying excita-tion methods. Using the new formulation, we are able to
tions, on the other hand, have to be determined by the regstablish the conserving nature of this approach and also de-
sidual intersite couplings between these low-energy configudve the expressions for momentum-dependent correlation
rations. functions. These expressions specify how to calculate the
In general, a separation of electron-electron interaction§orrelation functions from the corresponding Weiss fields,
into local and nonlocal ones is not necessarily well definedlocal correlation functions an@nomentum-dependerinter-
Local interactions, when combined with kinetic terms, cansite Interactions.
lead to effective nonlocal interactions. After all, both RKKY  To be specific, we focus on a one band model,
and super-exchange interactions arise in this fashion.
In theoretical apprpaches, hoyvever, such a separation can ZE Uniin; + z tijCiTg-ler
often be sharply defined. In this paper, we are concerned i (e
with the dynamical mean field thecryDMFT), which iés 1 1
formally exact in the limit of infinite dimensions(=x). _ = . _ _ &.a
The DMFT reduces a correlated lattice problem to a self- 2 <.2,> vij (M= {m)(n; =(n)) 2 <.ZJ> S-S
consistent Anderson impurity model, namely a quantum im- 1)
purity coupled to a self-consistent fermionic bath. The inter-
actions between the impurity degrees of freedom reflect th&he first two terms alone would correspond to the standard
on-site interactions of the lattice problem; in this way localHubbard model for a spin 1/2 band. The third and forth terms
quantum fluctuations are retained. The self-consistent fermare the intersite density-density;() and spin-exchange
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(Jjj) interactions. Heren; and S are the density and spin
operators for the electrons.{ij) labels a pair of nearest-
neighbor sites. For simplicity, we limit both the hopping and
intersite-interaction terms to nearest-neighbor only. General-
izing to the case with longer-range hopping and interaction

terms is straightforward.
In the standard largP approach, the single-electron hop- .. — _‘
ping term is taken to be of orderID:

FIG. 1. A typical intersite self-energy diagram. A full line rep-
tijy=t/ \D. 2 resents a single-particle Green’s function, and a dashed line corre-
sponds to an intersite interaction. This diagram is subleading.
The largeD limit leads to an effective single-site problem,
which describes an impurity coupled to a self-consistenin order for the larged limit to be well defined, we need to
Weiss field. There is one Weiss field for each frequency, dugubtract the Hartree contribution as has already been done in
to the quantum-mechanical nature of the hopping term. Th&d. (1). (The normal-ordering notationy: will be used to
coupling of the impurity to this frequency-dependent Weissdenoter—(7).)
field can be equivalently described in terms of a coupling We now establish that the self-energy is still local. Con-
between the impurity and an effective noninteracting fermi-sider first the self-energ.;;,. The Hartree contributions
onic bath. The bath is fermionic, since the Weiss field defrom bothv;;, and J.;, vanish. The Fock and high-order
scribes the influence of the rest of sites to the selected impwsontributions to the self-energy can be written in a skeleton
rity site at the one-particle level. On the other hand, theexpansion. As illustrated in Fig. 1, any skeleton expansion
intersite interaction terméoth v ;;, andJ;;;,) are taken to  diagram for the self-energy contains at least an intersite in-
be of order 1D. With such scaling, only the static Hartree teraction path and a fermion propagator from site sitej.
contributions survive the larg® limit.1 All the quantum  Both are at least of order {D. Therefore 3 ;,~O(1/D).
fluctuations associated with these interactions are then nédore generally,Eij~O(1/D)”"J”, where ||i —j|| is the
glected. least number of steps from sit¢o sitej. This implies that in
In the extended DMFT, these intersite interaction termghe largeD limit the self-energy is momentum-independent:
are also scaled to the orderyD. The largeD limit then  2(Q,0)=3;(w).
leads to a different effective impurity problem: the impurity ~ Consider now the on-site self energy;(w). The only
is now also coupled to the frequency-dependent Weiss fieldeal-space self-energy diagrams that survive the |Brgimnit
induced by these intersite interactions. The two-particle nahave the form illustrated in Fig.(a), as explained in detail in
ture of the intersite interactions dictate the bosonic nature ofppendix B. Here a solid line represents the fermion propa-
the corresponding effective baths in the impurity problem.gator, G;;. A dashed line denotes the intersite interaction
As a result, the effective single-site problem can be thoughteither vj; or J;;). The loop formed by two dashed lines
of as an impurity coupled not only to a self-consistent fermi-enclosing a solid square is denoted as eitjagfo(w) or
onic bath but also to self-consistent bosonic baths. X;&(w), which, as explained in Appendix B, has the follow-
The rest of the paper is organized as follows. In Sec. lling form,
we introduce the extended lar@elimit and derive the mean-

field equations using perturbation methods. We then derive -1 ZE oi(Xepii— . y )

the expressions for the momentum-dependent correlation Xcho 3 Violoj{Xehij ~ XchioXch,oj / Xch,loc
functions in Sec. Ill. The proof that the approach is conserv- (4)
ing is given in Sec. IV. In Sec. V, w¢a) generalize the 1

approach to multiband systems as well as to the case of an Xs,ozizj JioJoj(Xs,ij ~ XsioXs0i/ Xsoc):

ordered state(b) specify an approximate procedure to deal _ o
with incommensurate spatial fluctuations; and finalty ~ where xc, and x5 are the charge and spin susceptibilities,
compare our approach with others within the general DMFTrespectively. More specifically, they are the Fourier trans-

framework. forms of (T 7;:(7): 74:(0)) and(Tfé(T)éj(O)), respec-
tively.
Il. THE EXTENDED DYNAMICAL MEAN-FIELD
APPROACH

In this section, we introduce the extended lafydimit
and derive the mean-field equations. ""- —-’

The intersite hopping ternt;;,, remains of order 4/D = 1 -
as given in Eq.(2). The nearest-neighbor interactions are I |
now scaled to the same order, I

(@ h

FIG. 2. (a) An on-site self-energy diagram of the lattice prob-
©) lem. (b) The corresponding local self-energy diagram of the effec-
J<ij>=J/\/5. tive impurity problem. A shaded line corresponds to a Weiss field.

v(ijy=v/\D
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The above implies thal;; can be equivalently calculated

in terms of a local problem with an action of the following iwn+M—t22k Uiwn—E)=Gg (i)
form,
SMF_f drUn;(7)n (1) — f dfj dr’ FZ% Wq/[(i70)? = Wg1= Xenoli n) (10)
X[ X el (1Gy Hr— 7 )e (7)) + () Xero gz; Wq /[ (ivn)2=W3]= x50 (i vn),

whereiw, andiv, are Matsubara frequencies for fermions
(5) and bosons, respectively.

Equation(9) describes a single-impurity Anderson model
where n:=n—(n). The skeleton expansion for the self- coupled to two additional bosonic bands. The impurity cor-
energy of this local problent,,., has the form given in responds to the orbital. %y, is the usual fermionic bath of
Fig. 2b) where a solid line  represen@io; and a shaded line the Anderson model, with a dispersionif. p, is a scalar-
represents elthex/Cho or xs0 - Since there exists a one-to- bosonic bath¢, corresponds to a vector-bosonic bath. Note
one correspondence between the diagrams in Figs.ahd that the different components of the vector boson commute
2(b), we have with each other{ ¢q, &% 1= 8,485 Where a,B=x.y,z.

The dispersions of the bosonic baths #g andw,,.

X(r—7")n(7"): +S(7') Xso(T 7')57')

oo =i ©) As in the usual largeD limit, having solved the local
if Gy is chosen such that problem we can then calculate the lattice Green’s function
Gioc=G;ii - (7 1

Glk0)= s (11)
In standard fashiohjt can be seen from the Dyson equations otp-e—2(o

for both the local problem and the lattice problem that, Egsin the following, we establish that a parallel procedure can

(6) and(7) are satisfied if the Weiss field is chosen as be carried out for the lattice correlation functions.
G =it u— tot- (G (i I1l. MOMENTUM-DEPENDENT CORRELATION
0 (lwp)=iwy+pu 2 i0 Oj[ IJ( wp) FUNCTIONS
—Gjo(iwn) Goj(iwn)/Gjpc(iwy)].  (8) We now specify the procedure to calculate the

momentum-dependent correlation functions. For simplicity,

Consider now the higher-order correlation functions. In awe focus on the spin-spin correlation function only. The
skeleton expansion for any on-site correlation function of thedensity-density correlation function has a similar form.
lattice problem, every diagram also has the form of Fig) 2
[with ever{odd) number of fermion loops for any everdd)- A. Two-particle vertex functions
number-particle correlation functiohsLikewise, the skel- i i i
eton expansion diagrams for the corresponding local correla- e first establish the form of two-particle vertex func-
tion function of the impurity problem have the structure of ions. Consider the spin susceptibilitys(q,»), which can
Fig. 2(b). As a result Eqs(4) and (7), or equivalently, Eqs. P& Written as
(4) and (8), also guarantee that all the on-site higher-order

correlation functions of the lattice problem can be calculated Xs(q,w):f de;desxs(€1,€2;0,), (12
from the effective impurity problem. In particulagp joc
= Xchii andxs oc= Xs,ii - wheree,, €, are illustrated in Fig. 3, which also specifies the

Equationg5), (8), and(4) form the self-consistency equa- Bethe-Salpeter equation,
tions. The effective impurity problem, defined by the action .
given in Eq.(5), can be equivalently written in terms of an  Xsiij(€1,€2;0) = x{"(€1;0) 8, ,
impurity Hamiltonian of the following form,
+f df'l > Xﬁ?iml(fl;w)
1

,my,lo,my

Himp=Huint Ea2 Clcy+Ungng, +t§, (¢! po+H.C)

X1 1,mym,(€1€" @) Xs 1 jm,i (€', €2} ).

+F2 ingi(pgtpl )+ 02 Se (bt dly) (13
! ‘ (9) Here xP" represents the particle-hole Ieubble, with fuII-fer-
: : sy s mion propagators, m,i,m, IS the irreducible vertex function
Hyin= kE Bk kot 20 Wopapat 2 Wodh: da, in the triplet particle-hole channel. It follows from the count-
7 4 a ing rules of Appendix A that only a limited number of con-
whereEq= — u and the parameteis, ,\W,,wg,V, F, andg  tributions on the right-hand side are of leading order. For the
are given by first term on the right-hand side, only the j contribution is
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FIG. 3. The Bethe-Salpeter equation. Here a bubble with a shaded insertion represents the susceptibility. The solid square describes an
irreducible vertex function.

leading. For the second term, only terms witk=m;=i and  site self-energy in Fig. 2. This again follows from the power

[,=m, contribute. Eq(13) then leads to counting rules of Appendix A and can be derived following
a procedure parallel to that of Appendix B. As a result, all
Xs(q,w);l,ezzxph(el;w)_1551,52— I(€1,€65;0, ), the loops involving intersite interactions are equal to the cor-

(14)  responding Weiss fieldgs g and xgno-

. — < iR ) The above, in turn, implies that the quant®y we have
wherel (e, €2;q,w)=2;€7 il (€1, €2;0). Note that EQ. st defined for the lattice model is also equal to the sum of
(14) is a matrix equation, witley, €, specifying matrix ele- 5y the diagrams for the local spin susceptibility of the effec-

mevnvts. g culate the irreducibl unci tive impurity problem, Eq(5), which are not reducible by
& now need to calculate the irreducible vertex ur'Ct'oncutting a single)(;ol line. The local spin susceptibility then

I(el,ez;q,w).m terms of the effective impurity problem. To. satisfies the following equation,
do that, we first carry out a cumulant expansion for the spin
susceptibility of the lattice model. A cumulant is introduced

in a perturbative expansion in terms ©f, v;; andJ;; . It Xsjoc(€1,€2;0)=Cs(€1,€2 )

represents the corresponding local single-particle or two-

particle Green’s function calculated entirely in terms of the +J de’j de”CS(el,e’;w)X;(}(w)
on-site (“atomic” ) part of the lattice Hamiltonian. For our

purpose, it is more convenient to introduce an effective spin X xs(€",€;0) (17

cumulant in analogy to the one-particle effective cumulant

introduced by Metznet! The effective spin cumulant is de- as illustrated in Fig. 5. Equatiofi7) leads to
fined as all the diagrams for the on-site spin susceptibility

which are irreducible in terms of cutting ady,, line (where Cy(w) L
| and m are arbitrary. Loosely speaking, it is the bare spin ST e
cumulant plus all the local decorations. Denoting the effec- . . . .
tive spin cumulant a€(e;,e,:®), the leading order spin which specifies how to calculate the effective spin cumulant

o . P rom the Weiss field and the local spin susceptibility.
susceptibility has the structure illustrated in Fig. 4 and can bé Combining Eqgs(16), (14), and (18), we derive the fol-

= Xsloc @) ¢ te, Xs0(®), (18)

written as , . :
lowing form for the momentum-dependent irreducible vertex
Xs,ij(€1,€2,0) =Cq(€1,62;0) 6 function,
+ 2 f de’ f de”Cs(el,e’;w) I (61’62;q1w):Xph(61;w)_1551,eZ_XS,loc(w)e_lj,-ez
[

_ -1 o
X Jj xs,1j(€" €2, 0), (15) Xs0(®)+J(q) (19

as well as the local irreducible vertex function

which is equivalent to
loc(€1€; w)EEqI (€1,€2;0,0),

xs(G,0) 1 =Cslw) ., —I(a). (16)
1

l|OC(61162;w):Xph(61;w)71551,62_XS,|0C(w);1,52
The leading in 1D contributions to the effective spin cu-

mulant contain diagrams of the form illustrated for the on- ~Xso(®). (20

E+w

FIG. 4. Susceptibility expansion in terms of cumulants. The bubble with a shaded insertion represents the susceptibility, while the bubble
with a solid insertion corresponds to an effective two-particle cumulant.
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FIG. 5. Local susceptibility expansion in terms of cumulants and the Weiss field.

B. Correlation functions energy and two-particle irreducible vertex functions are

We now proceed to determine the momentum-dependerﬁi‘_nmional derivatives_ of the _Luttinger-Ward)-pptential
correlation function. Again, we focus on the spin susceptibil-With réspect to the single-particle Green’s functiohhe
ity. latter is defined as the sum of all closed skeleton diagrams,

Integrating both sides of Eq15) over bothe; and e, gnd isqfunctional of the singlg-partﬁcle Grgen’s function anld
leads to the following, interaction parameters. Applying this criterion to our case is
somewhat subtle. The momentum-dependent part of the ver-
tex function comes from diagrams for the Luttinger-Ward
Xsiij(@) =M(w) 5 +2| My(@)Jdiixs)j(@), (21 potential that are subleading in0/ These include the Har-
tree and Fock contributions. In fact, due to the usage of
where the integrated spin  cumulant My(w) normal-ordered operators in the Hamiltonian the Hartree

=[deyfde,Cq(€1,€5; w). Equation(21) yields, contributions to Luttinger-Ward potential and to the self-
energy, given in Figs. (@ and &b) respectively, are identi-
My(w) 22) cally zero. The corresponding Fock contributions, also given

Xs(d, @)= 1-J(g)M(w) " in Figs. 6a) and &b), respectively, are subleading in0L/At
. . ) the same time, both the Hartree and Fock contributions to the
The integrated spin cumulaM () can be determined two-particle vertex functions, given in Fig(, are of lead-
from integrating both sides of E4L7) over bothe; andez, ing order: Their contributions tb;, are of order 1{/D.
_ -1 Because of this subtlety, we use an alternate set of con-
Xsloc( @) =Ms(@) + Ms(@)xs0(@)Xsj0c( @), (23 serving criteria introduced in Ref. 13. Two conditions are
which vyields, sufficient for an approach to be conserving. The first states
G,(1,3,17,37)=G,»(3,1,3",17), whereG, is the standard
Xs,loc(®) (24 two-particle Green’s functior{In this section we follow the
1+ Xs0(®) Xs1oc( @) ) short-hand notation of Ref. 13. For instance, 1 labels
' (X1,71), and 1" labels ;,7,+07").] This condition is sat-
Inserting Eq.(24) into Eq.(22) leads to the final form for isfied in our case.
the momentum-dependent correlation function, The second condition relates the single-particle self-
energy and the reducible two-particle vertex function. This
_ 171 _ (25) condition contains two equations, one derived from the equa-
Uxsioc(@)+ xso(@)—3(Q) tion of motion,aflG(l,l’)=[G(1,1’),H], and the other its

My(w)=

XS(q7w)

Equation(25) is one of the most important conclusions of

this paper. It specifies how to calculate the momentum-
dependent spin susceptibility from the local spin susceptibil- Oi-—-'JO
i !
(a)

ity, the Weiss field x5, see Eq.(4)], and the exchange
interaction. As a check for the validity of this expression,
one may rewrite it in the following form,

XS(q!w):XSJOC(w)+XS,lOC(w)[J(q)_XS_,(:)L(w)]XS(qlw)' Q TN
(26) | A W
By using the expression for the Weiss fiqlgg, Eq.(4),itis 1 i j
straightforward to see that summing both sides of 26) {b) [
over g leads toxs oc=Xs10c- AN alternative derivation of
Eq. (25) is given in Appendix C. \/
J
IV. CONSERVING CRITERIA >— —— .< :

We see from the above that the single-particle self-energy ! ] [

is local, but the two-particle vertex function is momentum ©

dependent. We show in this section that, in spite of this, the
approach is conserving. FIG. 6. Hartree and Fock contributions ta) the Luttinger-
An approach is conserving if both the single-particle selfward potentiali(b) the self-energy; an¢c) the vertex function.
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adjoint. In what follows, we show that the first equation is Luttinger-Ward potential, it is necessary to keep not only the
satisfied; similar arguments establish the validity of the secleading in 1D contributions to the Luttinger-Ward potential
ond equation. In addition, for notational simplicity, we con- but also the Hartree-Fock-type terms, which are formally
sider the case when only the intersite density-density intersubleading. Thé — oo limit has to be taken after differenti-
actiony;; is finite (the conclusion is unchangedJf; is also  ating the Luttinger-Ward potential with respect to the
presenk In this case, the condition for the Hamiltonian given Green’s functions. The process of taking a functional deriva-

by Eg. (1) has the following form, tive of a diagram with respect to the single-particle Green’s
functi_on can change.the order inOL/In spite of these com-
12)~ | dacBded, G IaE-y)  Phealons we establshed ihat e approach sl sasfes
+G(1,5)G(3,6)I'(5,6,1,8)G(8,3)] V. DISCUSSIONS
_f dgdgdguw(l— 1)n_,(1) A. Multiband models and ordered states

The generalization of our approach to multiband cases is
= ST/ E R o e straightforward. For a two-band extended Hubbard model,
TG(LHGLOI(561.8)G@E.1], (27 the corresponding mean field equations have already been
whereT is the reducible two-particle vertex functioh. written down in Refs. 7 and 8.
Consider first the case whey is nearest neighbor to; . Another important two-band model is the Kondo lattice
A contribution is of leading order if it is of order D. The ~ model,
left-hand side is of order I and hence subleading. The
right-hand side contains the nonlocal component of the ver- _ S S o &.&
tex function; one might then worry about whether it is still H_m;g t"ci”c‘”+zi eSS, <|2,> S-S (29
subleading. That it is so can be seen by enumerating the . -
possible spatial locations of the integration variables and uswvhereS; denotes an impurity spin at si't;aandsCi represents
ing the rules of Appendix A. In fact, the dominant contribu- the spin of conductiond—) electrons at sité. Taking the

tions are all of order I and, hence, the right-hand side is |arge D limit, again witht;; =to/\D andJ;; =Jo/+/D, results
also subleading. We illustrate this with two examples. Coni the following effective impurity action,

sider first the casg;=Xg=Xg= Xy, andXs=X;, , which con-
tribute to the second term on the right-hand side of [2@). ME B 5> - B B
The nonlocal vertex functioh(1',1,1',1), which is of order ST =Si0pt fo d7JkS-sc— J; deo dr
1/\D, is accompanied by another nonlocal Green’s function,
G(1,1'), which is also of order 3/D. Consider next the

contribution from the first term on the right-hand side of Eq.
(27), with Xs=x;, andxz=Xg=Xg=X;, wherex, is nearest-

neighbor to x;. Again, the non-local vertex function 2 1 e
I'(1’,1,1',1), which is now of order 1, is accompanied by + (1) Xso(7=7)S(7')
G(1,1) and Uy % both of which are of order D; sum-
ming overl gives rise to a factob, leading to an overall I

X| > el (NG H(r—7)c (7))

(o8

, (30

where S;,, describes the Berry-phase of the impurity spin.

A . 71 71 .
contribution. We conclude that to leading order, E2) is '€ Weiss fieldsG, = and x, o are determined by the self-

indeed satisfied. Analogous arguments apply to arbitigry CONSiStency equations as given in E(®). and (4). The ef-
- fective action can equivalently be written in terms of the

Consider nextx;=x,,. The leading-order here corre- following impurity problem,

sponds to @L). To this leading order Eq27) becomes, o
— L Himp:kE Ex e kot Wq¢g'¢q—,u2 cle,
2(1,1)=—fd3vx1,ng(1,1)G(3,3)r(1,3,1,3)e(3, ) 7 a o

—U[Nn_,(1)+G(1,1G(L,D(L,1,1,0G(1,1)]. 2 (et He) + IS s,
(28)
S 7 o4 gt
[For notational simplicity, we have suppressed the time indi- +9% S (gt ¢=q), (32)

ces] Here, the right-hand side also contains the nonlocal

components of the vertex functioh. We can expand the whereE,, t, wy andg may be determined from the Weiss

right-hand side in terms of the bare intersite interaction byfields Ggl and)(_;o1 as specified by Eq.10).

expressing” in terms of the irreducible vertex functidrand Finally, we can also extend the approach to a state with

using Egs.(19) and(20). This leads to diagrams that are in long-range commensurate spatial ordering. This requires tak-

one to one correspondence with those for the on-site selfig the normal ordering, as specified in Ed), with a site-

energy. Equationi28) is then satisfied as well. dependent average charge or spin appropriate for the ordered
To summarize, in order to correctly derive the leading-state. The dynamical mean field equations, Eg5.(8), and

order irreducible vertex function by differentiating the (4) still apply.
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B. Incommensurate susceptibilities . i

The form of the momentum-dependent correlation func- 1
tion given by Eq.(25) applies to generig. The momentum
dependence is entirely given by that of the corresponding
intersite interaction. It does not depend on the single-particle
dispersion. ]
The situation is different from the standard lafgdimit,
where the momentum dependence of the correlation func- 0 -1 -2
tions is given entirely by the single-particle dispersion. The D D D
latter is possible for lattices with unbounded bare density of @
states — such as hypercubic lattice—which contains special
q such thate,==;;€'9"Rit;; is of orderyD. 3 1 1
Formally, the extended DMFT described here can only be Q R
defined for lattices with a bounded bare density of states. It 11 /7 \
becomes ill defined for lattices with unbounded density of H d___b
states: Wherg, is of ordery/D, so isJ(q); through the form . .
of the susceptibility, E¢(25), the system would then become ] J 1
unstablgwhenJ(q) is positive.
One way to approximately incorporate the incommensu- 0 0
rate fluctuations induced by Fermi-surface features is D D
through the(exac) Bethe-Salpeter equation (b)

FIG. 7. (a) Single-site, two-site, and three-site diagrams for the
Xs(qaw)gll,ezz)(ph(fliqaw)_15el,52— I(€1,€;0,w), Luttinge_r-War_d potenti_al in a direct expansion iD1/(b) The cor-
(32) responding diagrams in the extended DMFT.

to the standard largp DMFT. The precise relationship be-

where xP"(e;;q,®) is the usual particle-hole susceptibility yyeen their approach and the extended DMFT described here
bubble calculated in terms of the full single-particle propa-is ynclear.

gators. One still uses the extended DMFT to calculate the Finally, our approach also has some similarities with the
self-energy and the irreducible vertex function, Et9). At gynamical mean field theory of random spin systems. Bray
the same time, one adopts the momentum-dependeng®of and Moord® considered the quantum Sherrington-
and the intersite interactions in a given system at finite dijrkpatrick model, in which the exchange coupling is infinite
mensions. This procedure is of course no longer exact.  ranged and has a Gaussian distribution of mean zero and
variance scaled td%/N whereN is the size of the system.
Carrying out disorder averaging using replicas, as usual,
leads to a problem with four-spin interactions; each spin now
A direct 1D expansion has been introduced by Schillercarries a replica index. Since the exchange couplings associ-
and Ingersent® The expansion is carried out for the ated with different bonds are uncorrelated, the four spin in-
Luttinger-Ward ®-potential’® i.e., all the closed skeleton teraction has the form of two spins at different timeand
diagrams. The leading (P) order contributions involve, as 7', from any site, interact with two other spins, alsorand
usual, only a single site. The next-to-leading ordeD()1/ 7', at every other site. Introducing a Hubbard-Stratonovich
contributions come from diagrams involving two sites. A decomposition and taking thd—oo limit then leads to a
dynamical mean field description to this level requires twosingle-site problem with retarded spin-spin interactions. In
effective actions describing a single impurity and a two-the paramagnetic phase, the effective impurity problem has a
impurity cluster, each coupled to its respective self-similar form as the spin part of Eq5), with a self-
consistent medium. Similarly, expanding to ordeD2/re-  consistency equation which is also similar—though not
quires solving simultaneously effective problems involvingidentical—to Eq(4). Generalizing®?°to the case when con-
one-site, two-site, and up 1o+ 1 site clusters, each embed- duction electrons are also present gives rise to mean field
ded in its own self-consistent medium. equations similar to those described here. The form of cor-
The extended DMFT described here can be thought of aselation functions is of course very different.
a conserving resummation of contributions to all orders in
1/D. This is illustrated in Fig. 7. A detailed comparison be-
tween the two approaches should in principle be meaningful
when spatial correlations are short ranged. To summarize, we have presented a perturbative deriva-
An alternative approach has recently been introduced byion of the extended dynamical mean-field theory. This ap-
Hettleret al’ In this approach, the Brillouin zone is divided proach goes beyond the stand&re-> DMFT by incorpo-
into N regions. For each frequency, one introduces oneating the quantum fluctuations associated with intersite
Weiss field for each momentum region. The resulting selfinteractions.
consistent problem describes Bp-site cluster embedded in The self-consistent impurity problem has the form of an
theseN, self-consistent Weiss fields. Fdl.=1, it reduces Anderson impurity model with additional bosonic baths.

C. Comparison with other approaches

VI. CONCLUSIONS
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This is a novel kind of impurity problem, and is of interest in
its own right. The role of a scalar boson bath is to introduce
additional screening, thereby enhancing orthogonality. The
precise consequences of the enhanced screening depends on
the form of the spectral function of the bosons. Reference 7
analyzed an impurity problem containing both a scalar boson
bath with a spectral function @” and a conduction electron
band with a regular density of states at its Fermi energy. The
correlation functions have mean-field exponents. The effect
of an anisotropic vector-boson bath is similar to the scalar
case. The effect of an isotropic vector-boson bath is more
complex. We and, independently, Sengupta have carried
ou?! a renormalization group analysis of spins coupled
both to a regular conduction electron banti) and to a
vector-boson batlig) with a spectral function of”. In the
subohmic casey<1), there exists a critical point separating

a phase characterized by the fixed poinligt=,g* =0 and FIG. 8. A diagram for the on-site self-energy. It connects the
another byJi =0,g* ~\1—y. The critical exponents are selected site to the rest of the lattice by three interaction lines,
anomaloug? In the absence of conduction electrons, the im-making it subleading.

purity problem corresponds to a spin coupled to vector

bosons alone. Sachdev and (Ref. 22 solved such a model NSF Grant No. DMR-9712626, Research Corporation, and
in the large N limit(see also Ref. 23 Finally, we note that A. P. Sloan Foundation.

guantum Monte Carlo methods have recently been developed
for this type of impurity problem$&?

The momentum-dependent correlation functions in the ex-
tended DMFT have the general form given by Eg5). The order in 1D of the correlation functions and vertex
While different in detalils, it is similar to the phenomenologi- functions can be determined by analyzing the diagrams in
cal expression recently introduced in Refs. 25 and 26 in theea| space.
context of the dynamical spin susceptibility in a heavy fer-  Consider first the single particle Green’s functi@y) and
mion metal (CeCyl ,Au,) close to a zero-temperature phasevertex functionsl;; andLy;;; . In any real space Feynman
transition. The experimerfts®’ at the critical concentration diagrams for these quantities, it takes at léfist j|| number
are suggestive of a dynamical spin susceptibiliy(q)  of fermion propagation or intersite interaction steps. There-

’—-
\~—

APPENDIX A: POWER COUNTING RULES

+f(w,T)] ! over the entire Brillouin zone, where the fre- fore, Gi; ~ liji; ~ Lijij No(l/D)Hi—Jle_
quency and temperature dependencef(w,T) show an  Consider next the vertex functions involving three inde-
anomalous exponent. Whether a quantum critical point wittpendent sites|(i,j,i,I) andI'(i,j,i,l). Every diagram in-

an anomalous exponent in the dynamical susceptibility caolves at least three independent paths of fermion propaga-
emerge in the extended DMFT described here is an excitingsrs and/or interaction lines. Its order inClfs smaller than

open questioR? what corresponds to two bonds connecting one site to the

Finally, the extended DMFT described here should be aptwo remaining sites. Therefore,l(i,j,i,|)~T(i,j,i,!)
plicable to quantitatively study the short, but finite, ranged—o(1/D)Ms2  where  Mg=min(|i—j||+|li—II./li—jll+|li
dynamical fluctuations in paramagnetic phasebether or || |li—1/|+j —1|)).

not the ground state is ordejedConsider, for example, the  Finally, consider the vertex functions involving four inde-
spin fluctuations in the paramagnetic phase of a Mott insulapendent sites(i,j,I,m) andI'(i,j,I,m). Every diagram in-

tor. In the standard larg® limit, these fluctuations simply yolves at least four independent paths of fermion propagators
reflect isolated local moments: They contain no damping andng/or interaction lines. As a resul(j,j,l,m)~T(i,j,!,m)

are featureless in momentum space. In the extended DMFT, (1/D)M42 where M, is the minimum of the sum of the
the self-consistent problem contains mode coupling a”%ngths of three bonds connecting all four sitéEhe three

hence damping. In addition, through E@5) the dynamical  onds can either terminate at one site or form a continuous
spin susceptibility is expected to be peaked at antiferromagsath petween two different sites.

netic wave vectors. The extended DMFT is particularly use-
ful at temperatures where the correlation length is short; here
other approaches which take into account only long-wave- APPENDIX B: ON-SITE SELF-ENERGY
length fluctuations would break down. Quantitative calcula-

) . ) X Consider an arbitrary skeleton expansion diagram for the
tions using the extended DMFT will perhaps allow a detalledon_site self energy for site O3 ow). From the counting

understanding of the neutron scattering results in both UN:,les of Appendix A, only local fermion propagators appear.
doped and doped M(_)tt msu!ators, SUCh\é‘&‘O? (Ref. 28 The only non-local terms involve intersite interactions.
where the exchange interactions are not particularly large. thege intersite interaction terms can be grouped into separate
loops, each starting at site 0 and returning to site 0 as is
illustrated in Fig. 2a). Note that, no loop can return to site O

We would like to thank G. Kotliar and D. Vollhardt for more than once. For instance, a contribution given in Fig. 8
useful discussions. This work has been supported in part big subleading.
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The analytic expression for each loop can be determined We re-write Eq.(4) in momentum space,
as follows. The beginning and ending interaction lines give a
productJyJmg, Wherel and m are arbitrary sites nearest-
neighbor to site 0. The solid square then represents a corre-

lation function involvingS, and S,,. Given that site 0 is
excluded from anywhere in the solid square, this correlation
function has to be evaluated in termsH{®), defined as the
original Hamiltonian Eq{(1) with site 0 excluded. As a re-
sult, this loop can be written as

xal<w>=§ I x(q,0)

2
/ Xioc(®).  (CI)

% J(@)x(q,0)
In addition, we use Eq22), i.e.,
% ‘]OI‘]mOXI(r(r)l)i

(B1)

x(0,0)= (C2

O /T & (. & (m , : M(w) t=J(q)
wherey =(T.S(7) - Sn(7') ), which can be determined
as follows. Fory;n=(T,5(7)-Sn(7"))n, the cumulant ex-
pansion given in Eq(15) implies that its Fourier transform
satisfies Xim= X1l XimXmm» where Xim
=Zpathsil X101, L,X00 - xi g dimand [0,
[,,,m] labels a non-self-retracing path from sit¢o site m.
This in turn implies x{9= xim— X1 X/oXooXomXmm- There-
fore,

We now substitute Eq.C2) into Eq.(C1). By using

J(q)

- v -1
= M(w)_l—J(q) 1+ M(w)™ “xioc( @)

(C3

and

X{%= Xim= X10Xom/ X00 (B2
leading to the expression for the spin Weiss fiqlg@l , given
in Eq. (4).

Similarly, an interaction chain generated by corre-
sponds to the charge Weiss fiejd,, given in Eq.(4).

Ja? L
Y Mo ot M@ T T ed(w)] (€4

we obtainy, () =M () 1= 1y ec(w), i.e.,

M (@)1= 1xj0c( @)+ xg (). (CH

APPENDIX C: ALTERNATIVE DERIVATION

OF THE MOMENTUM-DEPENDENT SUSCEPTIBILITY Inserting Eq.(C5) into Eq.(C2) then leads to Eq25).

In this section we present an alternative derivation for the Note that, Eq(25) reduces to the correct result for generic
momentum-dependent susceptibilipyq, ), Eq. (25). g in the standard larg® limit where J(q)=0 andX51=0.
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