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Analytic stress tensor with the periodic fast multipole method

Konstantin N. Kudin and Gustavo E. Scuseria
Center for Nanoscale Science and Technology and Department of Chemistry, Mail Stop 60, Rice University, Houston, Texas 77

~Received 25 June 1999!

An efficient algorithm for the direct space analytic evaluation of the Coulomb stress tensor in 1-, 2-, and
3-dimensional periodic systems is presented. These stress tensor components are required for energy optimi-
zations with respect to unit-cell dimensions. The proposed scheme is incorporated into the periodic fast
multipole method and has a small computational cost. Convergence problems arising from the nonzero dipole
moment of the unit cell are treated with the help of fictitious charges. The accuracy of the proposed method is
such that the stress tensor components for benchmark NaCl and CsCl structures agree to machine precision
with those obtained by direct differentiation of the Madelung energy.
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I. INTRODUCTION

Simulations on periodic systems involve two differe
sets of coordinates: the particle positions in the unit cell a
the lattice dimensions. To find an energy minimum it is ne
essary to optimize both sets of coordinates. The optimiza
procedure requires knowledge of energy gradients with
spect to particle positions as well as lattice parameters.
will refer to the former asparticle forces. The latter is known
as the stress tensor, which represents the derivatives o
energy of a periodic system with respect to the strain ten
components.

We are particularly interested in simulations of chemi
systems with periodic boundary conditions. A physic
model in this case includes the Coulomb potential. Since
potential is long ranged, special care must be taken to in
a converged result. The Ewald summation method is
equate to properly converge the arising infinite Coulo
sum.1 In this approach one part of the Coulomb contributi
is computed in direct space and another - in reciprocal sp
Alternatively, the infinite summation can be done using
periodic fast multipole method~FMM!.2–7 In this case the
procedure is carried out entirely in direct space. With eit
method, the evaluation of analytic particle forces is qu
similar to the calculation of the Coulomb potential itse
Thus, only minor modifications to these techniques are
quired for obtaining particle forces, even if dealing wi
quantum~Gaussian! charge distributions as required for ele
tronic structure calculations.8–10

Similar to the potential and forces, the stress tensor ca
computed either in direct and reciprocal spaces or in di
space only. The former approach was first employed in
simulations of solids with plane-wave basis by Nielsen a
Martin11 and later extended to calculations with Gauss
basis sets by Feibelman.12 To the best of our knowledge, n
method has been described for the computation of the C
lomb stress tensor entirely in direct space. Such met
would be preferable in cases where the direct space
approach is applied for the evaluation of energy and force
PRB 610163-1829/2000/61~8!/5141~6!/$15.00
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well. For example, in Ref. 13 we extended the periodic FM
to energy calculations for systems with Gaussian charge
tributions and demonstratedO(N) scaling properties for the
algorithm. In this particular situation, the FMM has certa
advantages over the Ewald summation such as its unive
applicability to systems periodic in one, two, and three
mensions. Therefore, in this paper we introduce a method
the direct space analytic evaluation of the stress tensor
the Coulomb potential with the help of the periodic FMM
Here, we limit our discussion to the case of point charg
and point multipoles; the generalization required to deal w
Gaussian charge distributions will be reported elsewhere14

II. THE DERIVATIVES OF THE COULOMB POTENTIAL
IN PERIODIC SYSTEMS

Let’s consider a set of chargesqi located at coordinates
r i5(r 1i ,r 2i ,r 3i) in the central cell 0. Every other cella
contains replicasqia of the charges in the central cell an
their positions arer ia . In our notation whena50 ~the cen-
tral cell! we drop the second subindex, i.e.,qi0[qi and r i0
[r i . The Coulomb energy per cell for this periodic syste
can be written as

E5
1

2 (
i , j a

8
qiqj a

ur i2r j au
, ~2.1!

where the modified sum(8 excludes the terms for which
both charges are the same (j a5 i0). Differentiating Eq.
~2.1! one obtains derivatives of the unit-cell energy with r
spect to particle positions

Fk5
dE

dr k
5(

a

dE

dr ka
5

1

2 (
j a

8
d

dr k

qkqj a

ur k2r j au

1
1

2 (
ia

8
d

dr ka

qiqka

ur i2r kau
, ~2.2!

where we denote the three derivatives (d/drk
1 ,d/drk

2 ,d/drk
3)

as d/dr k . We emphasize that derivativeFk corresponds to
5141 ©2000 The American Physical Society
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the change in the unit cell energy due to the identical d
placement of all the chargesqka in every cella. For later
use, we also introduced above derivatives of the unit-
energy with respect to the positionr ka of a given charge
qka . Due to symmetry, both contributions in Eq.~2.2! are
the same and the derivatives become

Fk5(
j a

8
d

dr k

qkqj a

ur k2r j au
. ~2.3!

In order to derive equations for the stress tensor, we wan
find the change in the system energy under a uniform lat
strain defined as

Ra→(
b

~dab1eab!Rb , ~2.4!

where a and b are Cartesian indices, anddab is the Kro-
necker delta. For a given strain componenteab the stress can
be calculated as

dE

deab
5(

j a
r j a

b dE

dr j a
a

, ~2.5!

where the sum runs over every particlej in each cella, and
the derivativesdE/dr j a

a are the same as those in Eq.~2.2!.
Now let us examine a periodic system in only one dimens
with translational vectort5(t1,t2,t3). The coordinates of
replicas of the charges in the central cell are

r ia
a 5r i

a1ata. ~2.6!

Applying the differentiation scheme~2.5! to the energy Eq.
~2.1!, we derive the following expression for the stress ten
components

dE

deab
5

1

2 (
i , j a

8 r i
b d

dri
a

qiqj a

ur i2r j au

1
1

2 (
i , j a

8 ~r j
b1atb!

d

dr j a
a

qiqj a

ur i2r j au

5(
i

r i
bFi

a2tb
1

2 (
a

a(
i j

d

dri
a

qiqj a

ur i2r j au
, ~2.7!

where we have used Eq.~2.3! for Fi
a . Equation~2.7! de-

scribes the change in energy due to an elastic strain as
sum of two terms. In the first term, the particles are ela
cally shifted with respect to one another within each c
while the translational vectort is kept fixed. Therefore, the
first term is just a sum of the forces acting on each part
multiplied by their coordinates. In the second term, all t
cells in the system are elastically displaced with respec
the central cell, keeping distances between particles wi
each cell fixed. Since in this process the cells remain rig
we will refer to the second term of the elastic stress in E
~2.7! as therigid cell stress. If all forces on particles are zero
then the elastic stress is simply equal to the rigid cell stre
and only the second part of Eq.~2.7! needs to be calculated
This situation appears when only the particle coordinates
relaxed and not the cell dimensions.
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A general three-dimensional periodic system has 3 tra
lational vectors t1 ,t2 ,t3 with coordinates (t1

1 ,t1
2 ,t1

3),
(t2

1 ,t2
2 ,t2

3), (t3
1 ,t3

2 ,t3
3). Each cella is indexed by 3 integer

indices (a1 ,a2 ,a3). The stress with respect toeab for such
a system is:

dE

deab
5(

i
r i

bFi
a2t1

b1

2 (
a

a1(
i j

d

dri
a

qiqj a

ur i2r j au

2t2
b 1

2 (
a

a2(
i j

d

dri
a

qiqj a

ur i2r j au

2t3
b 1

2 (
a

a3(
i j

d

dri
a

qiqj a

ur i2r j au
. ~2.8!

We note that combinations of the strain tensor compone
such as (exy2eyx) represent pure rotations and therefore
not affect the energy of the system. In total, 3 rotations c
be eliminated yielding only 6 independent values out o
derivatives.

All the expressions derived above are general in nat
and one can also use them for other potentials, such
Lennard-Jones. In the case of Coulomb interactions the
pressions are valid for lattices of multipoles as well, one j
needs to change the interaction potentialur i2r j u21 to the
appropriate expression.

III. RIGID CELL STRESS WITH THE FMM

Let us first discuss how to compute contributions to t
rigid cell stress from cells that are located in some vicinity
the central cell@ uau<WS, see Fig. 1~a!#. According to Eq.
~2.7! one has to compute derivatives of all pair-wise intera
tions between charges from the central cell~cell 0! and some
other cella from the vicinity, add them up, and multiply b
a. This can be visualized as if all the charges in cella are

FIG. 1. ~a! The FMM and the infinite zones (WS51); ~b! con-
tributions for a box in the central cell that come from cella. Near-
field boxes are filled, far-field boxes are indicated by momentsM1

andM2; ~c! cancellation of the dipole moment of the cell with th
help of fictitious charges. The sum of these charges is 0.
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being displaced with respect to charges in the central cel
adra .

The fast multipole method15,16 can speed up things con
siderably since it replaces individual charge-charge inte
tions between well-separated sets of charges by collec
multipole-multipole interactions. Each set of charges is r
resented as a multipole momentMlm with order up tol. The
energy~or a derivative! of 2 interacting multipoles can b
evaluated directly by using corresponding tenso
expressions.17 However, within the FMM it is more conve
nient to compute first the local momentsLlm , which are
essentially Taylor expansions of the electrostatic poten
due to a distant set of charges. Since both multipole and l
moments are expanded in orthogonal spherical harmonic
is extremely easy to compute their interaction energy w
their expansion centerss coincide

Ms(Ls5(
l 50

l max

(
m52 l

m5 l

M lm
s Llm

s . ~3.1!

In this paper, we will use the compact notation( to replace
the summation onl and m. Both multipole and local mo-
ments can be differentiated very efficiently18 and the deriva-
tive of the electrostatic energy will have the following for

d

dra
~Ms(Ls!5

dM

dra
(L52M(

dL

dra
. ~3.2!

An important part of the FMM is theM2L translational op-
erator, which allows local momentsL to be computed around
point a from multipole momentsM computed at pointb

La5T(b2a)
^ Mb, ~3.3!

whereT(b2a) are translational coefficients related to the loc
moments of the point (b2a). The ^ operation is a two

index summation ofTlm
l 8m8 with Ml 8m8 , and its detailed de-

scription can be found in Refs. 15 and 16.
A key component to achieve linear scaling in the FMM

the subdivision of the system into cubic boxes, which cre
a tree structure. If there areWSboxes in between two given
boxes under consideration, these boxes are considered
separated and can be treated by multipole expansions~far-
field!. Otherwise, the interactions are computed via pairw
terms ~near-field!. Using this concept we can also classi
cells around the central cell into two groups. The first gro
which includes the central cell and some of its neighbo
we call the ‘‘FMM zone.’’ For example, in the three
y
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dimensional~3D! case the FMM zone includes cells who
positions lie within the boundaries (2WS,WS;2WS,WS;
2WS,WS) whereWS is the FMM well separatedness crite
rion @Fig. 1~a!, WS51#. The second group of cells we ca
the ‘‘infinite zone.’’ These cells satisfy requirements for th
convergence of theM2L operator and their multipole mo
ments can be translated directly into the central cell. Con
quently, in the FMM zone we do care about individu
charges, whereas interactions of the central cell charges
the infinite zone can be replaced by interactions of a mu
pole with a lattice of equivalent multipoles.

Let us now examine how we incorporate the solid c
stress into the FMM procedure in the FMM zone. In t
following, we assume the unit cell to be cubic. For the ge
eralization to non-cubic cells, see Ref. 7. In Fig. 1~b!, one
can see near-field~NF! and far-field~FF! contributions to a
box in the central cell from a neighboring cella. For the NF
we explicitly compute derivatives of pairwise interactions.
the FF, the multipole momentsM1 andM2 are translated to
the box in the central cell, and then the electrostatic deri
tives are computed according to Eq.~3.2!. Such computa-
tions are carried out for each box in the central cell, a
contributions are added up. The sum is multiplied bya and
added to the solid stress. The operation is repeated for e
cell a. We want to emphasize that the derivatives of pa
wise interactions computed in the near field are also nee
for particle forces, and local moments of the cells from t
far field are used for potential and forces, and therefore
added computational effort for the stress is negligible.

All the cells in the infinite zone@Fig. 1~a!# are replicas of
the central cell and have the same multipole moment.
order to convert multipoles into local contributions one h
to perform theM2L translations for each cell. However, du
to the fact that theM2L operator defined in Eq.~3.3! has to
be applied to identical multipole moments over and over, o
can first add up the translational coefficients and then p
form a single translation, as first suggested by Schmidt
Lee.2 In the case of cella, the contributions are multiplied
by a, and we need to include thesea as weights into the
sums of translational coefficients. For a system periodic
three dimensions there will be 3 sums, one for each per
icity direction. Combining these with 3 subsequent differe
tiations, one obtains 9 stress components. The infinite sum
translational coefficients may be computed by either one
the following three methods: the one first proposed in Ref
the renormalization method introduced in Ref. 3, or by c
,
the
FIG. 2. ~a! Original form of the infinite FMM
sum, each cell has momentM with the non-zero
dipole term;~b! final form of the infinite FMM
sum, momentsM 8 have zero dipole moment
compensating charges appear on the border of
FMM zone.
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ating a hierarchy of supercells.4 We prefer to use the latte
approach as discussed in Ref. 7.

IV. CONVERGENCE OF THE INFINITE SUMMATIONS

In the periodic FMM, the infinite summations take pla
completely in real space, so it is necessary to make sure
the sums are convergent. Three-dimensional periodicity
resents the most difficult case since we need to perform
summation overR3 space. Charge-charge interactions hav
R21 dependence and therefore are divergent. To avoid
problem, the total charge of the cell must be 0. Dipole-dip
terms are on the edge of convergence (R23) and lead to a
shift in the total cell energy. This shift is caused by an ex
electric field in the direction of the dipole moment of th
cell. The boundaries of the unit cell are arbitrary, and if th
are changed, the dipole moment of the cell may change
well, leading to a different electric field and different tot
energy. To avoid this problem one may introduce an exte
electric field that would cancel this dipole dependent fie
Another possibility is to introduce fictitious charges, and
employ this method in our program. Its application to ar
trary lattices was discussed in Ref. 7, and here we just bri
review this strategy. Fictitious charges are placed at the
ners of the lattice such that they cancel the dipole momen
the simulation cell@Fig. 1~c!#. When the cells are brough
together, their corners coincide, and the fictitious char
cancel each other everywhere except on the surface. We
prefer to remove these fictitious charges from the FMM zo
so a second layer of the uncancelled charges is formed a
border of the FMM zone~Fig. 2!. Local moments for this
layer of charges can be computed directly. As a result,
infinite translation step uses a modified cell multipole m
ment that does not contain dipole terms along the periodi
directions. Therefore, we effectively reduced the dipo
dipole R23 interaction of the central cell multipole mome
with all the other cell moments to dipole-quadrupole inter
tions of the same moments. The latter hasR24 dependence
and is absolutely convergent. We would like to point out th
the largest portion of the contribution to the potential com
from the FMM zone and the border charges, whereas
infinite zone yields a contribution which is comparative
small. Such border correction would also be useful in me
ods that neglect the infinite part altogether and use some

FIG. 3. Contribution from the infinite zone to the solid ce
stress, displacements of the cells are shown by arrows below
picture.
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of cutoffs since the arbitrary placement of the cell boundar
and the resulting dipole moment will be accounted for pro
erly.

Similar convergence problems to those described ab
arise in the evaluation of the stress. Differentiation of t
multipole interactions transformsR2n terms intoR2(n11).
However, subsequent multiplication byr a , as in Eq.~2.5!,
restores the originalR2n dependence of a given contributio
and therefore the rigid stress calculations have the same
vergence properties as the potential. To get convergen
sults, we employ fictitious charges in this part of the code
well ~Fig. 3!. The border contribution from fictitious charge
now has to be weighted by thea index of the cell. In a 3D
periodic system, 3 different border terms are present for e
a. There is also another contribution related to the comp
sating charges. A fictitious charge at the corner of cella is
displaced byar a , whereas a charge in the cell (a11) is
displaced by (a11)r a . The consequence is that an uncom
pensated dipole appears in all cells and at the border@Fig.
4~a!#, and interacts with the multipole moment of the cent
cell, so we have to subtract this contribution from the stre
It is easiest to compute this term when we view it as
interaction of a dipole in the central cell with a lattice of ce
multipole moments@Fig. 4~b!#. In the energy and force cal
culation, we already computed local moments from the in
nite zone using cell multipole moments and properly co
pensating the dipole moment~see the discussion at the top
this section and Fig. 2!. So we just use this local moment an
interact it with the extra dipole, and the spurious term
removed.

To summarize, the non-zero dipole moment of the c
does add a few terms to the computation of the elastic str
but in return, these modifications allow us to treat syste
with any periodicity and dipole moment. Also, in spite of th
added complexity of the described manipulations, the
quired CPU time to evaluate the additional contribution d
to the dipole moment is negligible and independent of s
tem size.

V. IMPLEMENTATION ISSUES

Madelung energies for ionic systems such as NaCl
CsCl offer an extremely convenient way to check the res
of our program. Since there is an explicit inter-ionic para
eter (R), we can differentiate the Madelung energy with r
spect toR. The system is compressed uniformly so the d
rivative with respect toR represents a sum of energ

he

FIG. 4. Removal of the extra term appearing due to the use
the fictitious charges in the computation of the solid cell stress.
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TABLE I. Convergence of the energies and elastic forces for NaCl and CsCl as a function ofl max used (WS52). The exact values are
taken from Ref. 19.

LMax NaCl energy NaCl elastic force CsCl energy CsCl elastic force

4 21.7475639 0.58230 21.7634 0.583
8 21.7475645927 0.58252164 21.7626737 0.58750

12 21.74756459467 0.5825215300 21.76267491 0.5875555
16 21.74756459463313 0.5825215315436 21.762674759 0.58755832
20 21.747564594633188 0.582521531544375 21.76267477324 0.5875582568
24 21.747564594633188 0.582521531544375 21.7626747730694 0.58755825772
28 21.747564594633188 0.582521531544375 21.76267477307101 0.5875582576978
32 21.747564594633188 0.582521531544375 21.76267477307101 0.5875582576982

Exact 21.747564594633182 0.5825215315443940 21.762674773070988 0.587558257690329
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derivatives with respect to the 3 strain tensor compone
exx , eyy , andezz

dE

dexx
1

dE

deyy
1

dE

dezz
5R

d

dRS CM

R D52
CM

R
, ~5.1!

whereCM is the Madelung constant. Due to the system sy
metry, these 3 derivatives are equal to each other, so
derivative is 1/3 of the energy derivative with respect toR. In
both NaCl and CsCl all particle forces are zero so that o
the rigid cell force is important.

NaCl serves as a benchmark without a dipole mome
whereas CsCl offers an opportunity to check the part of
algorithm that uses the dipole moment correction term
Table I illustrates the convergence of the energy and ela
forces as a function ofl max. In order to make the result
easier to analyze, we have scaled all the entries in Table
a constant such that the exact energies are now equal t
Madelung constants of the systems. The results for the
poleless NaCl system converge much faster than for C
which has a dipole moment. Also, for a givenl max the rela-
tive accuracy of the elastic stress is worse than the accu
of the energy. This is not very surprising since the appro
mations used in FMM are expected to affect energy der
tives more than the energy itself.

The computational overhead caused by the evaluatio
elastic forces is very small. The infinite summation proc
dure takes about 1-4 s on an IBM 3CT workstation depe
ing on thel max employed. The differentiation step added
the M2L step of the FMM algorithm always takes less th
1% of the CPU time required for theM2L step itself. This is
a very small computational overhead for these very us
quantities.
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VI. CONCLUSIONS

In this paper, we have developed a direct space ana
procedure for the calculation of elastic stress for the C
lomb potential in systems with point charges. Two differe
contributions are present in the stress; one coming from
ticle gradients and the other from the rigid cell stress. In o
method, the FMM is used to compute both contributio
The rigid cell stress requires calculation of some inexpens
quantities during the near-field portion of the algorithm a
the multipole to local translation step. The contribution fro
the infinite part of the system to the rigid stress is converg
using a strategy similar to the one employed in ene
calculations.7 The dipole moment of the unit cell leads t
non-convergent contributions and therefore is elimina
from the infinite summation procedure with the help of fi
titious charges. When the rigid cell stress is computed
gether with energy and particle gradients, the computatio
overhead is very small, thus leading to a very efficient dir
space algorithm for the analytic evaluation of Coulomb el
tic stress in system with periodic boundary conditions. W
are currently implementing the method described in this
per for the analytic evaluation of elastic stress in electro
structure calculations with Gaussian basis sets. The detai
this implementation will be described elsewhere.14
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