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Analytic stress tensor with the periodic fast multipole method
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An efficient algorithm for the direct space analytic evaluation of the Coulomb stress tensor in 1-, 2-, and
3-dimensional periodic systems is presented. These stress tensor components are required for energy optimi-
zations with respect to unit-cell dimensions. The proposed scheme is incorporated into the periodic fast
multipole method and has a small computational cost. Convergence problems arising from the nonzero dipole
moment of the unit cell are treated with the help of fictitious charges. The accuracy of the proposed method is
such that the stress tensor components for benchmark NaCl and CsCl structures agree to machine precision
with those obtained by direct differentiation of the Madelung energy.

[. INTRODUCTION well. For example, in Ref. 13 we extended the periodic FMM
to energy calculations for systems with Gaussian charge dis-
Simulations on periodic systems involve two different tributions and demonstrate@d(N) scaling properties for the
sets of coordinates: the particle positions in the unit cell andlgorithm. In this particular situation, the FMM has certain
the lattice dimensions. To find an energy minimum it is nec-2dvantages over the Ewald summation such as its universal
essary to optimize both sets of coordinates. The optimizatio@Pplicability to systems periodic in one, two, and three di-
procedure requires knowledge of energy gradients with remens'ions. Therefore, in.this paper we introduce a method for
spect to particle positions as well as lattice parameters. W€ direct space analytic evaluation of the stress tensor for
will refer to the former aparticle forces The latter is known the Coulomb potential with the help of the periodic FMM.
as the stress tensor, which represents the derivatives of thre: We limit our discussion to the case of point charges
energy of a periodic system with respect to the strain tenso nd pqlnt mult|pole§; the g_eneral_|zat|on required to deal with
components. aussian charge distributions will be reported elsewttere.
We are particularly interested in simulations of chemical
systems with periodic boundary conditions. A physical ' THE DERIVATIVES OF THE COULOMB POTENTIAL
model in this case includes the Coulomb potential. Since the IN PERIODIC SYSTEMS
potential is long ranged, special care must be taken to_insure Let's consider a set of chargeg located at coordinates
a converged result. The Ewald summathn _method is adfi=(fli T, ,r3) in the central cell 0. Every other celt
equate to properly converge the arising infinite. Coulombegniains replicag;, of the charges in the central cell and
sum: In this approach one part of the Coulomb contribution ey positions are; . In our notation whenx=0 (the cen-

is computed in direct space and another - in reciprocal spacg. cell) we drop the second subindex, i.g;p=0; andriq

Alternatively, the infinite summation can be done using the_, The coulomb ener er cell for this periodic svstem
periodic fast multipole method*MM).2~" In this case the - P P y

. . . L i ~ can be written as
procedure is carried out entirely in direct space. With either

method, the evaluation of analytic particle forces is quite 1w, il

similar to the calculation of the Coulomb potential itself. E= 2 2 ri=r|’ 2.9

Thus, only minor modifications to these techniques are re- bl T e

quired for obtaining particle forces, even if dealing with where the modified sunt’ excludes the terms for which

quantum(Gaussiapcharge distributions as required for elec- hoth charges are the sam@a=i0). Differentiating Eq.

tronic structure calculatiorfs1° (2.1 one obtains derivatives of the unit-cell energy with re-
Similar to the potential and forces, the stress tensor can bgpect to particle positions

computed either in direct and reciprocal spaces or in direct

space only. The former approach was first employed in the dE dE 1 «, d g,
_=_ _ i
! ; . . X ! . Fie— =2, — == 2 IR S
simulations of solids with plane-wave basis by Nielsen and dry, & dr, 257 drfre—rjal
Martin'! and later extended to calculations with Gaussian
basis sets by FeibelmdhATo the best of our knowledge, no 1w, d Qilk
method has been described for the computation of the Cou- 2 %" driq M=ol =2

lomb stress tensor entirely in direct space. Such method
would be preferable in cases where the direct space oniwhere we denote the three derivativedr ,d/drZ,d/drg)
approach is applied for the evaluation of energy and forces aas d/dr,. We emphasize that derivativg, corresponds to
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the change in the unit cell energy due to the identical dis- '
placement of all the chargeg, in every cella. For later
use, we also introduced above derivatives of the unit-cell Deen
energy with respect to the positian, of a given charge ws
Ok - Due to symmetry, both contributions in E(.2) are 0
the same and the derivatives become -Ws Drict
@ o, O
R 5 |quq; g 2.3 O
ja k Itk Tja -ws 0 Wws
In order to derive equations for the stress tensor, we want tc a C
find the change in the system energy under a uniform lattice
strain defined as
Ra— 2 (8an+ €an)Ro, (2.4
wherea and b are Cartesian indices, angl,;, is the Kro- b
necker delta. For a given strain componegy the stress can
be calculated as FIG. 1. (@) The FMM and the infinite zonesNS=1); (b) con-
tributions for a box in the central cell that come from cell Near-
SE b dE field boxes are filled, far-field boxes are indicated by momémhis
= I ) (2.9 andM,; (c) cancellation of the dipole moment of the cell with the

5€ab ja la d r_a s .
ja help of fictitious charges. The sum of these charges is O.

where the sum runs over every partigle each celle, and ) i o
the derivativesd E/dr are the same as those in H8.2). A general three-dimensional periodic system has 3 trans-

. H A :2 +3
Now let us examine a . periodic system in only one dmensmﬂaﬂonal vectors 1,1zt with - coordinates 1, ty,1),
with translational vectot=(t%,t2,t%). The coordinates of (tz:t2:t3), (t3,t5,t3). Each cella is indexed by 3 integer

replicas of the charges in the central cell are indices (x1,a,,a3). The stress with respect &g, for such
a system is:
rd =ri+at? (2.6
Applying the differentiation schem.5) to the energy Eq. ok —E rPFa— tl 2 alE e
(2.1), we derive the following expression for the stress tensor O€ap 2 |r Mol
components aq
_Hitja
E 1o, ,d ad. tzzz azz |ri_rja|
O€ap 2T r'dr?"|ri—fja|
! Q%
_t32 > a32 3 (2.8
b b d qiqja dr |r rja|
+= 2 (r +at ) a —
Lia |r Fial We note that combinations of the strain tensor components
q such as &,,— €y,) represent pure rotations and therefore do
_2 bFa tb 2 2 A%« 2.7) not affect the energy of the system. In total, 3 rotations can
= |rI Fial’ be eliminated yielding only 6 independent values out of 9
derivatives.
where we have used E@2.3 for F}. Equation(2.7) de- All the expressions derived above are general in nature

scribes the change in energy due to an elastic strain as thgd one can also use them for other potentials, such as
sum of two terms. In the first term, the particles are elasti{ ennard-Jones. In the case of Coulomb interactions the ex-
cally shifted with respect to one another within each cellpressions are valid for lattices of multipoles as well, one just
while the translational vectdris kept fixed. Therefore, the needs to change the interaction potentral—r |~ 1 to the

first term is just a sum of the forces acting on each particleappropriate expression.

multiplied by their coordinates. In the second term, all the

cells in the system are elastically displaced with respect to IIl. RIGID CELL STRESS WITH THE FMM

the central cell, keeping distances between particles within

each cell fixed. Since in this process the cells remain rigid, Let us first discuss how to compute contributions to the
we will refer to the second term of the elastic stress in Eqrigid cell stress from cells that are located in some vicinity of
(2.7) as therigid cell stress If all forces on particles are zero, the central cell|e|<WS see Fig. 1a)]. According to Eq.
then the elastic stress is simply equal to the rigid cell stres42.7) one has to compute derivatives of all pair-wise interac-
and only the second part of E(.7) needs to be calculated. tions between charges from the central ¢edll 0) and some
This situation appears when only the particle coordinates arether cella from the vicinity, add them up, and multiply by
relaxed and not the cell dimensions. a. This can be visualized as if all the charges in celare
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being displaced with respect to charges in the central cell bgimensional(3D) case the FMM zone includes cells whose
adr,. positions lie within the boundaries{WSWS -WSWS

The fast multipole methdd® can speed up things con- —WSWS whereWSis the FMM well separatedness crite-
siderably since it replaces individual charge-charge interacrion [Fig. 1(a), WS=1]. The second group of cells we call
tions between well-separated sets of charges by collectivghe “infinite zone.” These cells satisfy requirements for the
muItlpoIe—muItlpoIe'mteractlons. Eac'h set of charges is repgonvergence of thév2L operator and their multipole mo-
resented as a multipole mome,, with order up tal. The  ments can be translated directly into the central cell. Conse-
energy(or a derivative of 2 interacting multipoles can be quently, in the FMM zone we do care about individual

evaluate_d ydllzectly by 'tz'smt% Ic:(IJ\/lrrMes.?qndmg tensor'alcharges, whereas interactions of the central cell charges with
expressions. However, within he IL1S MOre CoNVe- 46 infinite zone can be replaced by interactions of a multi-

hient to compute first the_ local moments,, Wh!Ch are [Pole with a lattice of equivalent multipoles.

essentially Taylor expansions of the electrostatic potential Let us now examine how we incoroorate the solid cell

due to a distant set of charges. Since both multipole and local ress into the EMM procedure in thep EMM zone. In th

moments are expanded in orthogonal spherical harmonics, ] lowi [t)h it cell to b bic. F t.h N

is extremely easy to compute their interaction energy whe pliowing, we assume the unit cell to be cubic. For the gen-
eralization to non-cubic cells, see Ref. 7. In Figb)1 one

their expansion centerscoincide _ . I
can see near-fieltNF) and far-field(FF) contributions to a

Imax m=l box in the central cell from a neighboring cell For the NF
MSOLS= IEO > | MELE. (3.1 we explicitly compute derivatives of pairwise interactions. In
=0 =L

the FF, the multipole momentd ; and M, are translated to
In this paper, we will use the compact notati@nto replace the box in the central cell, and then the electrostatic deriva-
the summation ol and m. Both multipole and local mo- tives are computed according to E@.2). Such computa-
ments can be differentiated very efficiefland the deriva- tions are carried out for each box in the central cell, and
tive of the electrostatic energy will have the following form contributions are added up. The sum is multiplieddoyand
added to the solid stress. The operation is repeated for each
d dM dL Il . We want t hasize that the derivatives of pai
— (MOL%)=——OL=-MO —. 3.2 cella. We want to emphasize that the derivatives of pair-
dry drg dra wise interactions computed in the near field are also needed

An important part of the FMM is thé/2L translational op- for particle forces, and local moments of the cells from the
erator, which allows local momentsto be computed around far field are used for potential and forces, and therefore the

point a from multipole moment computed at poinb added computational effort for the stress is negligible.
All the cells in the infinite zon¢Fig. 1(a)] are replicas of
La=Tb-agMmPb, (3.3 the central cell and have the same multipole moment. In

order to convert multipoles into local contributions one has

whereT®~? are translational coefficients related to the localtg perform theM 2L translations for each cell. However, due
moments of the pointk(—a). The @ operation is a WO o the fact that theéV 2L operator defined in Eq3.3) has to
index summation oﬂ'lmm with M;,,», and its detailed de- be applied to identical multipole moments over and over, one
scription can be found in Refs. 15 and 16. can first add up the translational coefficients and then per-

A key component to achieve linear scaling in the FMM is form a single translation, as first suggested by Schmidt and
the subdivision of the system into cubic boxes, which creaté.ee? In the case of cell, the contributions are multiplied
a tree structure. If there ai&Sboxes in between two given by «, and we need to include thege as weights into the
boxes under consideration, these boxes are considered wslims of translational coefficients. For a system periodic in
separated and can be treated by multipole expangfans three dimensions there will be 3 sums, one for each period-
field). Otherwise, the interactions are computed via pairwisécity direction. Combining these with 3 subsequent differen-
terms (near-field. Using this concept we can also classify tiations, one obtains 9 stress components. The infinite sum of
cells around the central cell into two groups. The first groupfranslational coefficients may be computed by either one of
which includes the central cell and some of its neighborsthe following three methods: the one first proposed in Ref. 2,
we call the “FMM zone.” For example, in the three- the renormalization method introduced in Ref. 3, or by cre-

NI/NI/NI/NI/NI/M/NI/ MMM MM MM

Vvl el Vad e [ e e e e e

M/' M/' M/' M/' M| M M| M FIG. 2. (a) Original form of the infinite FMM

My (M M My M | s wrs M N sum, each cell has momeht with the non-zero
/ / / / / M| M / M| M dipole term;(b) final form of the infinite FMM

M/Y M/v M/v M/v M| v e | ve sum, momentsM’ have zero dipole moment,
Moo Mo Mo Mo Mo compensating charges appear on the border of the
Yl ValVlvValvValvalvs MM MM MMM FMM zone.
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a b FIG. 4. Removal of the extra term appearing due to the use of

the fictitious charges in the computation of the solid cell stress.
FIG. 3. Contribution from the infinite zone to the solid cell

stress, displacements of the cells are shown by arrows below théf cutoffs since the arbitrary placement of the cell boundaries

picture. and the resulting dipole moment will be accounted for prop-
erly.

ating a hierarchy of sup_erceﬁsWe prefer to use the latter  Similar convergence problems to those described above

approach as discussed in Ref. 7. arise in the evaluation of the stress. Differentiation of the

multipole interactions transformB " terms intoR™("*1),
However, subsequent multiplication by, as in Eq.(2.5),
restores the origindR™ " dependence of a given contribution

In the periodic FMM, the infinite summations take place and therefore the rigid stress calculations have the same con-
completely in real space, so it is necessary to make sure thaergence properties as the potential. To get convergent re-
the sums are convergent. Three-dimensional periodicity repsults, we employ fictitious charges in this part of the code as
resents the most difficult case since we need to perform thevell (Fig. 3). The border contribution from fictitious charges
summation oveR® space. Charge-charge interactions have aiow has to be weighted by the index of the cell. In a 3D
R~ ! dependence and therefore are divergent. To avoid thiperiodic system, 3 different border terms are present for each
problem, the total charge of the cell must be 0. Dipole-dipolex. There is also another contribution related to the compen-
terms are on the edge of convergenée ) and lead to a sating charges. A fictitious charge at the corner of aels
shift in the total cell energy. This shift is caused by an extradisplaced byar,, whereas a charge in the celk ¢ 1) is
electric field in the direction of the dipole moment of the displaced by &+ 1)r,. The consequence is that an uncom-
cell. The boundaries of the unit cell are arbitrary, and if theypensated dipole appears in all cells and at the bddiy.
are changed, the dipole moment of the cell may change a&a)], and interacts with the multipole moment of the central
well, leading to a different electric field and different total cell, so we have to subtract this contribution from the stress.
energy. To avoid this problem one may introduce an externdk is easiest to compute this term when we view it as an
electric field that would cancel this dipole dependent field.interaction of a dipole in the central cell with a lattice of cell
Another possibility is to introduce fictitious charges, and wemultipole momentgFig. 4(b)]. In the energy and force cal-
employ this method in our program. Its application to arbi-culation, we already computed local moments from the infi-
trary lattices was discussed in Ref. 7, and here we just brieflpite zone using cell multipole moments and properly com-
review this strategy. Fictitious charges are placed at the copensating the dipole momefsgtee the discussion at the top of
ners of the lattice such that they cancel the dipole moment atis section and Fig.)2So we just use this local moment and
the simulation cel[Fig. 1(c)]. When the cells are brought interact it with the extra dipole, and the spurious term is
together, their corners coincide, and the fictitious chargesemoved.
cancel each other everywhere except on the surface. We also To summarize, the non-zero dipole moment of the cell
prefer to remove these fictitious charges from the FMM zonaloes add a few terms to the computation of the elastic stress,
so a second layer of the uncancelled charges is formed at therit in return, these modifications allow us to treat systems
border of the FMM zondFig. 2). Local moments for this with any periodicity and dipole moment. Also, in spite of the
layer of charges can be computed directly. As a result, thedded complexity of the described manipulations, the re-
infinite translation step uses a modified cell multipole mo-quired CPU time to evaluate the additional contribution due
ment that does not contain dipole terms along the periodicityo the dipole moment is negligible and independent of sys-
directions. Therefore, we effectively reduced the dipole-tem size.
dipole R™2 interaction of the central cell multipole moment
with all the other cell moments to dipole-quadrupole interac-
tions of the same moments. The latter fs* dependence
and is absolutely convergent. We would like to point out that Madelung energies for ionic systems such as NaCl and
the largest portion of the contribution to the potential comesCsCl offer an extremely convenient way to check the results
from the FMM zone and the border charges, whereas thef our program. Since there is an explicit inter-ionic param-
infinite zone yields a contribution which is comparatively eter (R), we can differentiate the Madelung energy with re-
small. Such border correction would also be useful in methspect toR. The system is compressed uniformly so the de-
ods that neglect the infinite part altogether and use some typévative with respect toR represents a sum of energy

IV. CONVERGENCE OF THE INFINITE SUMMATIONS

V. IMPLEMENTATION ISSUES
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TABLE I. Convergence of the energies and elastic forces for NaCl and CsCl as a functign, ofed (VS=2). The exact values are
taken from Ref. 19.

LMax NaCl energy NaCl elastic force CsCl energy CsCl elastic force
4 —1.7475639 0.58230 —-1.7634 0.583
8 —1.7475645927 0.58252164 —1.7626737 0.58750
12 —1.74756459467 0.5825215300 —1.76267491 0.5875555
16 —1.74756459463313 0.5825215315436 —1.762674759 0.58755832
20 —1.747564594633188 0.582521531544375 —1.76267477324 0.5875582568
24 —1.747564594633188 0.582521531544375 —1.7626747730694 0.58755825772
28 —1.747564594633188 0.582521531544375 —1.76267477307101 0.5875582576978
32 —1.747564594633188 0.582521531544375 —1.76267477307101 0.5875582576982
Exact —1.747564594633182 0.5825215315443940 —1.762674773070988 0.587558257690329
derivatives with respect to the 3 strain tensor components VI. CONCLUSIONS

€xx» €yy, aNde,,
In this paper, we have developed a direct space analytic
oE +5_E+ E=Ri C_M) __ ﬂ (5.1) procedure for the calculation of elastic stress for the Cou-
O€xx O€yy J€;;  dR\ R R’ ' lomb potential in systems with point charges. Two different

whereC,, is the Madelung constant. Due to the system Sym_c.ontributi_ons are present in the stress; one coming from par-
metry, these 3 derivatives are equal to each other, so eadigle gradients and the other from the rigid cell stres_s. Ip our
derivative is 1/3 of the energy derivative with respecRton ~ Method, the FMM is used to compute both contributions.
both NaCl and CsCl all particle forces are zero so that on|yThe rl_g_ld cell stress requires calcula_tlon of some inexpensive
the rigid cell force is important. quantities during the near-field portion of the algorithm and
NaCl serves as a benchmark without a dipole momentthe rnL_JItjpoIe to local translation step. 'I_'he contri_bution from
whereas CsCl offers an opportunity to check the part of théh‘? infinite part of th.e system to the rigid stress is gonverged
algorithm that uses the dipole moment correction termsUsing a strategy similar to the one employed in energy
Table I illustrates the convergence of the energy and elastigalculations. The dipole moment of the unit cell leads to
forces as a function of,,. In order to make the results non-convergent contrlbu_tlons and thergfore is ellmlna_ted
easier to analyze, we have scaled all the entries in Table | b{fom the infinite summation procedure with the help of fic-
a constant such that the exact energies are now equal to tflious charges. When the rigid cell stress is computed to-
Madelung constants of the systems. The results for the di@ether with energy and particle gradients, the computational
poleless NaCl system converge much faster than for cscpverhead is very small, thus Ieadlng to a very efficient direct
which has a dipole moment. Also, for a giveg,, the rela-  SPace algc_mthm for thg analy_t|c _evaluatlon of Coul_qmb elas-
tive accuracy of the elastic stress is worse than the accuradif Stress in system with periodic boundary conditions. We
of the energy. This is not very surprising since the approxi-2€ currently implementing the method described in this pa-
mations used in FMM are expected to affect energy derivaPer for the analyt_lc eva_luatlon of.elastlc_ stress in electrqnlc
tives more than the energy itself. structure calculat'lons Wlth Gauss[an basis sets. The details of
The computational overhead caused by the evaluation dhis implementation will be described elsewhéfe.
elastic forces is very small. The infinite summation proce-
dure takes about 1-4 s on an IBM 3CT workstation depend-
ing on thel . employed. The differentiation step added to ACKNOWLEDGMENTS
the M2L step of the FMM algorithm always takes less than
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