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The infinite barrier model of a planar metal surface, going back to Bardeen, is shown to permit the kinetic
energy density to be written explicitly in terms of the ground-state electron density and its first derivative. The
exchange energy density is then written in what proves to be an explicitly nonlocal form in terms of the
electron density. Finally, by integrating the first-order equation for the electron density in terms of the kinetic
energy density, a precise relation is established in this metal surface model between exchange and kinetic

energy densities.

A long-term aim of density-functional theory has been toj,(x) entering Eq.(3), being the second-order spherical

calculate directly from the ground-state dengify) the ki-
netic energy density(r). In this Brief Report, we achieve

Bessel function. Just as we introduced the uniform dempsijty
into Eq. (1), it will be convenient to express the Moore-

this aim in the admittedly very specialized example of theMarch result(3) in terms of the uniform electron-gas result

Bardeen model of a planar metal surf&cghis then prompts
us to go on to explore the exchange energy density. In
single-determinant models of many-electron systems, a class 53 3h?( 328
that embraces the Bardeen case considered throughout the b=Co " S%=71om|am
present study, March and Santamariated that there was a
fundamentally nonlocal relation between kinetic and ex-One then finds immediately
change energies. Very recent work in this general area is that
of Ernzerhof and Scuserfawhere earlier references may be 1(z) 1o
found. to

In the present paper we first focus on density and kineticD . __
energy. Immediately below, we merely quote the explicit€1ining similarly

10j 5(2k2)
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EAt(Z)Z - 2—kZ]1(2kZ)+ W

for the kinetic energy per unit volumég, say, given by
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expressions for the ground-state dengify) and the kinetic
energy density(z), given, respectively, by Bardekand by

Moore and MarcH.In the Bardeen model, electrons are con-

fined by an infinite barrier in théx,y) plane, placed at

=0. Then, if the Fermi wave number ks Bardeen obtained

the result

3j,(2k2)
p(2)=po 1- 5, &

wherepy=k3/372 andj,(x) = (sinx—x cosx)/x? is the first-

order spherical Bessel function. Moore and Mérdefined

the kinetic energy density(r) from the idempotent first-
order density matrixy(r,r’,k), which they derived for the
Bardeen model through

ﬁZ
t(r)=—%ny(r,r’,k)|,,:r, )

Since motion is free except along tlzeaxis in the model
being employed herg(r)=t(z), and this is given in Eq.
(6.12 of Ref. 4 as
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A(Z):M, (6)
Po

one has from Eq(l) that

) @

and this can be inserted into the first term on the right-hand
side (RHS) of Eq. (5) to yield

10j,(2k2)

—5
M2 =50D)+ — 572 ®
Next we appeal to the mathematical identity
d ji(x)  Jax)

which readily allows the last term in Eq8) to be reex-
pressed in terms ak(z) in Eq. (7). Hence the desired form
of At(z) is obtained solely in terms of the dimensionless
“displaced” charge density by the infinite barrier as

5 dA(z)

At(Z)=§A(Z)+MF. (10
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This has achieved the first objective of this Brief Report:plicity of Eq. (10) relating At(z) to the displaced charge
namely, to express the kinetic energy density in terms of thé\(z) enables us to solve for this latter quantity, characteriz-

ground-state density. We shall return to E10) below, after
we have discussed the exchange energy ders(ty), de-

ing €,(z) through Eq.(15). We first seek a solution of the
RHS of Eqg.(10) set equal to zero, when we find a result of

fined in terms of the idempotent first-order density matrixthe formA exp(—k?s), with s=z?. Thus we assume the gen-

y(r,r',K) introduced above through
2(r,r' k
ex(r)z—%ezf y|:_—r,|)dr’. (11)

Using the first-order density matrix of Ref. 4 in E(1),
Miglio, Tosi, and March have writtene,(z) for the Bardeen
model under discussion in the form

2
e pok
(z2)=— .

J(2k2), (12
where J(2kz) is written quite explicitly. Unfortunately, in
the final form given ford by Miglio, Tosi, and March, it has
not proved possible, motivated by the above result,(EQ),
for At(z), to express,(z) solely in terms of the displaced

eralization

A(s)=A(s)exp(—k?s) (16)

and substituting in Eq10) we obtain the functiom\(s) as

A(s)= 2K fl “At(q)exp(k2g)da, 17)

where the lower limitt must be chosen to givA(z=0)=
—1. This has then achieved the final objective of this inves-
tigation, for havingA (z) in terms ofAt(z) through Eqs(16)
and (17), we can substitute foA(R/2), etc., in Eq.(15) in
favor of At.

In summary, the main results of this Brief Report atg

chargeA(z). Therefore, we have returned to an earlier, in-Ed. (10), giving the kinetic energy density(z) in terms of

tegral form forJ(2kz) given in Ref. 5, namely,

* R+2z ji(kR)  j1(kR)]?
J(2kz)= (k% J de dR'R'[ - ,
(13
where
2z—R for R<z
h(R2D=1" "R for R>z (14)

the ground-state charge density plus its first derivati2g,
Eqg. (15 for the exchange energy densig(z), again in
terms of the ground-state electron density, &B)dEq. (16),
giving the electron density as an explicit integral of the ki-
netic energy density, which then allows an explicit nonlocal
expression to be written fog,(z) in terms of the kinetic
energy density(z).

Two final comments are called for. First, within density-
functional theory itself, refined treatments of the electron
density p(z) through a planar metal surface exist, which

But now one can use again in this integral expression fotranscend the Bardeen resqt), though numerical proce-

J(2kz) the result(7), to find

3e2p0 k3 o R+2z
&(z)=— yp ?fo deh(R’Z)dR R

1AR 1AR’
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which is the result analogous to E@.0) for the kinetic en-
ergy density in this metal surface model.

2

X , (15

However, to complete the aims of this investigation, wenational Centre for Theoretical Physics, Trieste,

finally wish to express the exchange energy densify) in
terms of the kinetic energy densit{z). Fortunately the sim-

dures have to be invokédSecond, and in the same context,
some progress has also been made in constructipgréal
functional derivative of the exchange energy density in Eq.
(12) to obtain an exchange potenfialithin a jellium model
framework, but further work remains to be done on this as-
pect of the problem.
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