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Nonlocal relation between kinetic and exchange energy densities in the Bardeen model
of a planar metal surface
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The infinite barrier model of a planar metal surface, going back to Bardeen, is shown to permit the kinetic
energy density to be written explicitly in terms of the ground-state electron density and its first derivative. The
exchange energy density is then written in what proves to be an explicitly nonlocal form in terms of the
electron density. Finally, by integrating the first-order equation for the electron density in terms of the kinetic
energy density, a precise relation is established in this metal surface model between exchange and kinetic
energy densities.
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A long-term aim of density-functional theory has been
calculate directly from the ground-state densityr(r ) the ki-
netic energy densityt(r ). In this Brief Report, we achieve
this aim in the admittedly very specialized example of t
Bardeen model of a planar metal surface.1 This then prompts
us to go on to explore the exchange energy density
single-determinant models of many-electron systems, a c
that embraces the Bardeen case considered throughou
present study, March and Santamaria2 noted that there was
fundamentally nonlocal relation between kinetic and e
change energies. Very recent work in this general area is
of Ernzerhof and Scuseria,3 where earlier references may b
found.

In the present paper we first focus on density and kin
energy. Immediately below, we merely quote the expl
expressions for the ground-state densityr(z) and the kinetic
energy densityt(z), given, respectively, by Bardeen1 and by
Moore and March.4 In the Bardeen model, electrons are co
fined by an infinite barrier in the~x,y! plane, placed atz
50. Then, if the Fermi wave number isk, Bardeen obtained
the result

r~z!5r0F12
3 j 1~2kz!

2kz G , ~1!

wherer05k3/3p2 and j 1(x)5(sinx2xcosx)/x2 is the first-
order spherical Bessel function. Moore and March4 defined
the kinetic energy densityt(r ) from the idempotent first-
order density matrixg(r ,r 8,k), which they derived for the
Bardeen model through

t~r !52
\2

2m
¹ r

2g~r ,r 8,k!ur85r . ~2!

Since motion is free except along thez axis in the model
being employed here,t(r )[t(z), and this is given in Eq.
~6.12! of Ref. 4 as

t~z!5
\2k5

2mp2 F1

5
2

j 1~2kz!

2kz
1

2 j 2~2kz!

~2kz!2 G , ~3!
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j 2(x) entering Eq. ~3!, being the second-order spheric
Bessel function. Just as we introduced the uniform densityr0
into Eq. ~1!, it will be convenient to express the Moore
March result~3! in terms of the uniform electron-gas resu
for the kinetic energy per unit volume,t0 , say, given by

t05ckr0
5/3, ck5

3h2

10m S 3

8p D 2/3

. ~4!

One then finds immediately

t~z!2t0

t0
[Dt~z!52

5

2kz
j 1~2kz!1

10j 2~2kz!

~2kz!2 . ~5!

Defining similarly

D~z!5
r~z!2r0

r0
, ~6!

one has from Eq.~1! that

2
3 j 1~2kz!

2kz
5D~z!, ~7!

and this can be inserted into the first term on the right-ha
side ~RHS! of Eq. ~5! to yield

Dt~z!5 5
3 D~z!1

10j 2~2kz!

~2kz!2 . ~8!

Next we appeal to the mathematical identity

d

dx

j 1~x!

x
52

j 2~x!

x
, ~9!

which readily allows the last term in Eq.~8! to be reex-
pressed in terms ofD(z) in Eq. ~7!. Hence the desired form
of Dt(z) is obtained solely in terms of the dimensionle
‘‘displaced’’ charge density by the infinite barrier as

Dt~z!5 5
3 D~z!1

5

6k2z

dD~z!

dz
. ~10!
5011 ©2000 The American Physical Society



rt
th

rix

d
in

fo

we

riz-

of
-

es-

ki-
al

y-
on
h

-
t,

q.

as-

for
as
r-
ly.
or a
y.

5012 PRB 61N. H. MARCH
This has achieved the first objective of this Brief Repo
namely, to express the kinetic energy density in terms of
ground-state density. We shall return to Eq.~10! below, after
we have discussed the exchange energy densityex(r ), de-
fined in terms of the idempotent first-order density mat
g(r ,r 8,k) introduced above through

ex~r !52 1
4 e2E g2~r ,r 8,k!

ur2r 8u
dr 8. ~11!

Using the first-order density matrix of Ref. 4 in Eq.~11!,
Miglio, Tosi, and March5 have writtenex(z) for the Bardeen
model under discussion in the form

ex~z!52
3e2r0k

4p
J~2kz!, ~12!

where J(2kz) is written quite explicitly. Unfortunately, in
the final form given forJ by Miglio, Tosi, and March, it has
not proved possible, motivated by the above result, Eq.~10!,
for Dt(z), to expressex(z) solely in terms of the displace
chargeD(z). Therefore, we have returned to an earlier,
tegral form forJ(2kz) given in Ref. 5, namely,

J~2kz!5~k2/z!E
0

`

dRE
h~R,z!

R12z

dR8R8F j 1~kR!

kR
2

j 1~kR8!

kR8 G2

,

~13!

where

h~R,z!5 H2z2R for R,z
R for R.z . ~14!

But now one can use again in this integral expression
J(2kz) the result~7!, to find

ex~z!52
3e2r0

4p

k3

z E
0

`

dRE
h~R,z!

R12z

dR8R8

3F2
1

3
DS R

2 D1
1

3
DS R8

2 D G2

, ~15!

which is the result analogous to Eq.~10! for the kinetic en-
ergy density in this metal surface model.

However, to complete the aims of this investigation,
finally wish to express the exchange energy densityex(z) in
terms of the kinetic energy densityt(z). Fortunately the sim-
iq
:
e

-

r

plicity of Eq. ~10! relating Dt(z) to the displaced charge
D(z) enables us to solve for this latter quantity, characte
ing ex(z) through Eq.~15!. We first seek a solution of the
RHS of Eq.~10! set equal to zero, when we find a result
the formA exp(2k2s), with s5z2. Thus we assume the gen
eralization

D~s!5A~s!exp~2k2s! ~16!

and substituting in Eq.~10! we obtain the functionA(s) as

A~s!5 3
5 k2E

l

s

Dt~q!exp~k2q!dq, ~17!

where the lower limitl must be chosen to giveD(z50)5
21. This has then achieved the final objective of this inv
tigation, for havingD(z) in terms ofDt(z) through Eqs.~16!
and ~17!, we can substitute forD(R/2), etc., in Eq.~15! in
favor of Dt.

In summary, the main results of this Brief Report are~1!
Eq. ~10!, giving the kinetic energy densityt(z) in terms of
the ground-state charge density plus its first derivative,~2!
Eq. ~15! for the exchange energy densityex(z), again in
terms of the ground-state electron density, and~3! Eq. ~16!,
giving the electron density as an explicit integral of the
netic energy density, which then allows an explicit nonloc
expression to be written forex(z) in terms of the kinetic
energy densityt(z).

Two final comments are called for. First, within densit
functional theory itself, refined treatments of the electr
density r(z) through a planar metal surface exist, whic
transcend the Bardeen result~1!, though numerical proce
dures have to be invoked.6 Second, and in the same contex
some progress has also been made in constructing a~partial!
functional derivative of the exchange energy density in E
~11! to obtain an exchange potential7 within a jellium model
framework, but further work remains to be done on this
pect of the problem.
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