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Peierls instabilities in quasi-one-dimensional quantum double-well chains
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~Received 23 June 1999; revised manuscript received 19 August 1999!

Peierls-type instabilities in quarter-filled (n̄51/2) and half-filled (n̄51) quantum double-well hydrogen-
bonded chain are investigated analytically in the framework of two-stage orientational-tunnelling model with
additional inclusion of the interactions of protons with two different optical phonon branches. It is shown that
when the energy of proton-phonon coupling becomes large, the system undergoes a transition to various types
of insulator states. The influence of two different transport amplitudes on ground-state properties is studied.
The results are compared with the pressure effect experimental investigations in superprotonic systems and
hydrogen halides at low temperatures.
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I. INTRODUCTION

It has long been known that the formation of hydrog
bonds between molecules or ionic groups is responsible
drastic changes in a wide variety of entire system proper
such as structural phase transformations and proton orde
phenomena.1,2 For example, proton transport phenomena a
superionic properties discovered in some hydrogen-bon
crystals like M3H(AO4)2 class ~where M5Rb,Cs,NH4;
A5Se,S) are related closely to hydrogen-bonded netw
rearrangement. On heating these compounds transform
superionic conducting phase with dynamically disorde
hydrogen-bonded network~Fig. 1!. The protons can migrate
through the two-dimensional conducting planes with low
tivation energy (;0.1 eV). In this case protonic conductiv
ity increases significantly to the value about 0
V21 cm21. It is generally accepted3 that the two-stage con
duction mechanism is required to sustain the proton tra
port. The intrabond proton tunnelling along the hydrog
bridge is connected with the transfer of ionic positive- a
negative-charged defects, whereas the intermolecular pr
transfer due to the reorientations of molecular group w
proton leads to the breaking of the hydrogen bond and
ation of one between another pair of molecular complexe
is significant to remember that the interaction of proton s
system with the displacements of ionic groups participat
in hydrogen bonding can be of essential importance. T
formation of the hydrogen bridge induces the distortion
groups involved in hydrogen bonding towards the proton t
results in the shortening of this bond.4 By this means the
protonic polaron is localized between distorted ionic grou
in the low-temperature ferroelastic phases, giving rise in
case to the dimerized structure. As has been shown in Re
the small polaron is formed due to the strong coupling
proton with the optical stretching vibration modes of t
oxygen ions. It is evident that such the transformations fr
the superionic phase occurring in systems on cooling h
the mixed~displacive and order-disorder! character. The hy-
drogen bond geometry is closely related to the reorientat
of groups involved in H bond and undergoes a change at
structural phase transitions.6 Moreover, it is shown in Ref. 7
that the latter effect is of primary importance for the descr
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tion of the phase sequence occurring in several superi
crystals.

Theoretical investigations of both displacive and ord
disorder ferroelectric-type orderings in hydrogen-bond
systems have been based generally on pseudospin Ising
models with additional including the pseudospin-phonon
teractions to describe the coupling of protons with latt
vibration modes.1,2 In particular, the quantum double-we
chain with quartic symmetric double-well potential has be
used to model the transition from the symmetry-broken
the symmetry-restored ground state in hydrogen halidesX
(X5F,Br,Cl) ~Ref. 8! which consist of hydrogen-bonde
chains with weak interchain coupling. The dynamics of bo
ionic and orientational defects created by the rotations
molecular groups in hydrogen halides has been studied in
framework of classic approach based on soliton model.9

It must be emphasized that taking into account the tw
stage transport mechanism renders the pseudospin forma
unsuitable for the proton subsystem description since
number of protons can differ from the number of possib
~virtual! hydrogen bonds and the proton occupancy of e
virtual bond can be smaller than unity due to reorientatio
hopping and consequent feasibility of proton migration alo
the chain. This situation, as an example, is observed in
perionic materials ofM3H(AO4)2 type, which transform on
cooling into dielectric state with dimerized structure.10 It
should be noted that such type of transitions to the dielec

FIG. 1. Hydrogen-bonded network on the~001! plane of
M3H(AO4)2 crystal group; the solid lines indicate the possible ty
of dimerized structure which can appear with (f 53)th H-bonds
frozen in. The circles denote the positions of theAO4 groups.
4988 ©2000 The American Physical Society
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PRB 61 4989PEIERLS INSTABILITIES IN QUASI-ONE- . . .
states resembles that in electronic systems, in which
Peierls instabilities are observed. There have been m
works to study the metal-insulator Peierls transitions
electron-phonon systems that are unstable against
electron-phonon interactions.11–13 It is common knowledge
that the Peierls instabilities occur with the formation
Peierls gap atk56kF (kF is the Fermi level! in the elec-
tronic energy band that connected with the electronic cha
density waves condensation and structural lattice distor
modulations withq52kF . The appearance of insulator sta
together with the structural transformation can be modele
the framework of the Holstein electron-phonon model wi
out additional including the anharmonic terms in the latt
potential.

Recent investigations of Peierls transitions in electr
phonon systems have prompted us to study similar effect
several hydrogen-bonded solids. To analyze the influenc
the proton-ionic group displacements coupling, we consi
the simplified model, namely the quasi-one-dimensio
quantum double-well chain along one of the proton pathw
~for instance, the virtual hydrogen bond sequencē21
2321232¯ in Fig. 1!. As an initial step, we neglect th
interproton repulsion and direct our attention to the analy
of the lattice effect on the proton subsystem thermodyna
ics. However, we take into account the possibility of prot
exchange between our selected chain and surrounding.
sides the superionic compounds we also analyze in this w
the influence of ionic group displacements on the proton s
system behavior in quasi-one-dimensional solid hydro
halides@see Fig. 2~a!#. We reveal possible symmetry-broke
phases with proton charge disproportionalities coming fr
a Holstein coupling to theAO4 ionic groups orX atoms. We
compare our conclusions with the results of the pressure
fect theoretical studies inM3H(AO4)2 ~Ref. 14! and hydro-
gen halides.8,15 Although the first step of our analysis con
sists in the quasi-one-dimensional chain study, we beli
our results can also be relevant for other hydrogen-bon
materials.

II. DESCRIPTION OF THE MODEL

The object of our consideration is the chain shown in F
2~a!. However, to avoid the geometric complexities intr

FIG. 2. ~a! Zig-zag hydrogen-bonded chain in hydrogen halid
arrows indicate the possible path of proton migration along
chain.~b! Simplified model chains, the antiphase and in-phase
placements of ionic groups identified by the solid and dashed
rows, respectively.
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duced by the kinks in such a zig-zag chain, we conside
our model linear chain@see Fig. 2~b! where two neighboring
chains are shown#. The process of the proton transfer in th
double-well H-bond potential is represented as the quan
tunnelling between two proton states with the intrabo
transfer integralV0

V0(
l

~cla
1clb1clb

1cla!, ~1!

wherecln
1 , cln denote proton creation and annihilation o

erators in the position (l ,n5a,b) of the chain. Besides that
we describe the interbond reorientational proton hopping
two-level approximation as the quantum tunnelling effe
with the hopping amplitudeVR

VR(
l

~cl 11,a
1 clb1clb

1cl 11,a!. ~2!

In this way, within the framework of orientational-tunnellin
model proposed in Ref. 16 the two-stage proton migrat
mechanism can be considered as the sequential migratio
the ionic and orientational defects.

As far as such a double-well chain is just a structu
component of the system we also admit a possibility of p
ton exchange between the chain and surroundings by con
ering the system thermodynamics in the framework of
grand canonical ensemble with inclusion of the prot
chemical potential

2m(
l ,n

nln , ~3!

which is to be determined at the given proton concentrat
in the chain from corresponding equation for the chemi
potential.

Our main interest is to analyze the influence of the lon
tudinal optical ionic group vibration modes on the prot
subsystem ground state. However, it was noted in Ref.
that the interactions between the protons of the neighbo
chains can lead to the appearance of three-dimensiona
dering. The more detailed analysis of the interchain pro
interaction effect in this model together with the determin
tion of stability conditions for the existence of the phas
with different ordering type at finite temperatures will b
presented elsewhere.18 Here the interactions of protons wit
two different types of ionic group displacements are tak
into account. Since our model allows to distinguish doub
well structure of H-bond potential, the coupling to these d
placements leads to the specific changes of the potentia
each proton position (l ,n) within the bond. In particular, on
the one hand we consider the antiphase stretching vibra
mode that causes a change of H-bond length as indicate
Fig. 2~b! by solid arrows. The coupling to the first type o
displacements leads to the equal change of the pote
wells (l ,a) and (l ,b) depths within the H-bond

(
l ,q

t l
(1)~q!~nla1nlb!~bq,11b2q,1

1 !, ~4!

which is evident from the symmetry reasons. The term~4!
follows from the well-known fact of the potential barrie

,
e
-
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4990 PRB 61NATALIE I. PAVLENKO
decrease with the shortening of the distance between
H-bonded ions.19 On the other hand, we also take into a
count the optical in-phase vibrations of ionic groups in t
chain which induce their displacements with respect to
surrounding chains as identified in Fig. 2~b! by dashed ar-
rows. The coupling to this vibration mode induces, for
stance, the difference of the distances between thel th ion
and the nearest proton positions (l ,a) and (l 21,b). It is easy
to show that generally this interaction causes the differe
of these potential minima depths

(
l ,q

t l
(2)~q!~nla2nl 21,b!~bq,21b2q,2

1 !. ~5!

Here, t l
(1)(q)522ig1A\/2MNv1(q)sin(1

2qd)exp@iq(l11/
2)d# andt l

(2)(q)5g2A\/2MNv2(q)exp@iqld# whereg1 and
g2 are corresponding coupling constants,M is the effective
ionic group mass,N denotes the number of hydrogen bon
in chain andd is the lattice parameter. Thej th optical pho-
non branch creation and annihilation operators (j 51,2) are
denoted bybq, j

1 andbq, j , respectively. Furthermore, we tak
a dispersionless approximation for the phonon frequenc
v1(q)5v1 and v2(q)5v2, and assume the harmonic a
proximation for the lattice vibration energies

\v1(
q

bq,1
1 bq,11\v2(

q
bq,2

1 bq,2 . ~6!

First of all, let us consider the case of the isolated ch
without a coupling to the phonon bath. Since the Ham
tonian~1!–~3! can be exactly diagonalized, the proton ener
spectrum

«n~k!56utku, tk5V01VRe2 ikd ~7!

forms two energy bands with the bandwidthD«5V01VR
2uV02VRu. The energy gap in this case isDab
52uV02VRu. Eliminating one of the elementary transpo
process by setting the hopping amplitudeV050 or VR50,
we can see that both of the energy bands degenerate int
two energy levels and the quantum fluctuations betw
these two system states could be derived. It is clear tha
the case whenn̄51/N( ln^nln&51 ~one proton is average
within the bond! the lower band is filled and the chemic
potentialm is centered between bands–thus the material i
dielectric state. Such a situation can be observed in hydro
halides. However, forn̄5 1

2 only half of the lower band is
filled and this corresponds to the case of protonic condu
that occurs for example in superionic phases of super
tonic crystals.

We will discuss afterwards the consequences of
proton-phonon coupling effect focusing on the analysis
the two physically different casesn̄5 1

2 ~1/4-filled two-band
model! and n̄51 ~half-filling case in two-band model!.

III. BROKEN-SYMMETRY SOLUTIONS

A. Casen̄Ä 1
2

Let us now focus on the case of quarter filling when t
half of the lower proton band is filled~one proton is average
per two bonds!. Then the macroscopic condensed phon
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state is predominantly stabilized atq* 52kF5p/d ~Ref. 11
and 12! and is characterized by the expectation values of
phonon creation and annihilation operators

^Bq,1&5^bq,11b2q,1
1 &5

D

g1
ANdq,q* , ~8!

whereD denotes the introduced distortion order parame
which should be determined from the stationarity conditio
of the free energy. Since the condensation of displacem
~8! leads to the unit cell doubling, using the Fourier transf
mation cln( i )51/AN/2(kckn( i )e

ikld where the index i
5$1,2% denotes (l 52m) or (l 52m11)th unit cell, the
Hamiltonian in condensed state with static periodic dist
tions ~8! ~we assume that the adiabatic treatment is ap
cable for these systems, which is justified by the small ra
between the proton mass and the mass of H-bonded i
group20! is given by

H5~2m1D̃ !(
kn

nkn(1)2~m1D̃ !(
kn

nkn(2)1
1

8
N

D̃2

E0

1V0(
k,i

~cka( i )
1 ckb( i )1ckb( i )

1 cka( i )!

1VR(
k

(
iÞ i 8

~cka( i )
1 ckb( i 8)e

2 ikd1ckb( i 8)
1 cka( i )e

ikd!,

~9!

whereE05(\g1)2/2M (\v1)2 is well known from polaron
theory21 the protonic polaron binding energy, which appea
in the expression for the elastic energy per H-bond 1/8D̃2/E0

and D̃54DA\/2Mv154DAE0\v1/g1. The similar result
can be obtained when we consider the second t
of the ionic group displacements, in this case^Bq,2&
5^bq,21b2q,2

1 &5D8/g2ANdq,q* , and the Hamiltonian in

condensed state has the form similar to~9! with D̃→D̃8
52A\/2Mv2 and E0→E085(\g2)2/2M (\v2)2. Since the
inclusion of the coupling to the second phonon mode le
merely to renormalization of the binding energyE0 in the
Hamiltonian, further we focus on the analysis of Eq.~9! with
only one type of displacements taken into account. Introd
ing the double-time one-fermion diagonal Green functio
one can get rigorously the density of proton states

r~«!5
2

p

u«u•ut12«2u
B1B2

$Q@«•sgn~«!2At12t2
0#

2Q@«•sgn~«!2A~V02D̃ !21VR
2 #1Q@«•sgn~«!

2At11t2
0#2Q@«•sgn~«!2A~V01D̃ !21VR

2 #%,

~10!

where

B15A~ t12«2!224V0
2D̃2,

~11!

B25A4V0
2~D̃21VR

2 !2~ t12«2!2
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and the following notations are introduced:t15V0
21VR

2

1D̃2, t2
052V0AVR

21D̃2 and Q(x) is the Heaviside step
function. The expression for the ground state energy can
obtained easily from~9! and ~10!:

E5
N

8

D̃2

E0

2(
k

At112V0
AD̃21VR

2 cos2 kd. ~12!

To determine the stable phase the equation]E/]D̃50
should be solved. It appears that this equation has bes
D̃50, a nonzero additional solutionD̃Þ0 for g1.gP where
gP is the crossover proton-phonon coupling strength. T
solutionD̃Þ0 corresponds to the global minimum ofE and,
as a result, implies the structural distortion stabilization w
the amplitudeul5A\/2MNv1^Bq* &5D̃/2g1(21)l @see Fig.
3~a!#. Let us discuss the proton position average occupan
on the bonds and the band structure. Atg15gP each proton
band splits into two subbands

«a(1/2)~k!57At112V0
AD̃21VR

2 cos2 kd,
~13!

«b(1/2)~k!56At122V0
AD̃21VR

2 cos2 kd

as shown in Fig. 3~b! where the proton density of states
the disordered and dimerized phases is represented.
Peierls energy gap between either of the two~lower and up-

FIG. 3. ~a! Distortion parameterD85uD̃u/\v1 as a function of

proton-phonon couplingg̃15g1 /\v1 for Ṽ05V0 /\v150.5; in-

set: dependence of the average proton occupancies ong̃1 for ṼR

5VR /\v150.14. ~b! Proton density of states r̃(«)

5r(«)/\v1( «̃5«/\v1), the dashed and dotted curves indicate
cases ofD850.5 andD850.0, respectively.
be

es

e

es

he

per! subbands D15At112V0D̃2At122V0D̃'2V0D̃/
AV0

21VR
2 tends to zero forV0→0. In this case,D̃5

6A4E0
22VR

2 and the phase transition~change in the nature
of the ground state! occurs when the localization energyE0

;(g1* )25 1
2 VR . The energy gap between the second a

third subbands increases forg1.gP

Dab52At122V0
AD̃21VR

2.

The proton chemical potentialm is centered between two
lowest subbands with further increasing ofg1.gP that
points on the insulator state appearance. We see from ins
Fig. 3~a! that the distortion stability is accompanied by th
formation of the proton charge-density-wave state in wh
^nla&5^nlb&5 1

4 @11(21)l # that means the forming o
dimerized structure as shown in Fig. 4. Consider further
ground-state phase diagrams (g̃15g1 /\v1 ,Ṽ05V0 /\v1)
and (g̃1 ,ṼR5VR /\v1) shown in Fig. 5. We see the stron
influence of the amplitudeVR on the dimerized state stabi
ity. The increasing ofVR suppresses dimerization. AtVR
→0 ~without reorientational hopping! the system is brough

FIG. 4. Dimerized structure which appears in the case
quarter-filled chain.

FIG. 5. Ground-state phase diagrams~a! (g̃1 ,Ṽ0) and ~b!

(g̃1 ,ṼR). The notations PD and PU denote the dimerized and u
form phases, respectively.
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4992 PRB 61NATALIE I. PAVLENKO
immediately into the dimerized state. Only for the finite va
ues ofVR the uniform disordered phase begins to appear
the ‘‘metal’’-insulator transition occurs.

It is necessary to mention that the hopping amplitudesV0
and VR depend strongly on external pressure. In particu
the V0 value decreases with pressure that deduced from
quantum mechanical calculations.19 This is associated with
the shortening of the distance between two potential min
( l ,n) on the bond. Thus, we can make a conclusion about
pressure effect on the system state from the diagrams sh
in Fig. 5. Using the obtained in Ref. 5 values for paramet
VR , g1 and v1 @VR /\v1'0.14 and \2g1

2/2M (\v1)3

'3.8] we reveal that the dimerized state is always stabl
T50 under pressure for this set of parameters. It is inter
ing that the similar picture has been observed inM3H(AO4)2
materials from experimentally measured baric dependen
at low temperatures.14 Nevertheless, we notice that asg1

decreases and approaches the critical valueg1* 5AVR/2, the
transition from the dimerized to the uniform state occu
with pressure. This effect appears due to the more w
proton-phonon coupling and, as a result, to the tendenc
the proton disorder in the chain, when the overlapping in
gral between the proton states within the H-bond decrea

B. Casen̄Ä1

Let us discuss another case when one proton in avera
placed in the bond. According to Peierls theory11 such a
system is very susceptible towards the lattice modulation
q* 50. It should be noted that in this case only the seco
type of optical vibrations~interchain modej 52) contributes
to the lattice distortions condensation. The Hamiltonian
condensed phase has the form

H5(
k

@~2m1D̃ !nka2~m1D̃ !nkb#1
1

8
N

D̃2

E0

1(
k

~ tkcka
1 ckb1tk* ckb

1 cka!. ~14!

In this case, the density of proton states

r~«!5
2

p

u«u

A4V0
2VR

22~«22t1!2
$Q@«•sgn~«!

2AD̃21~V02VR!2#2Q@«•sgn~«!

2AD̃21~V01VR!2#% ~15!

points on the two-band structure

«n~k!56AD̃21utku2 ~16!

with the Peierls energy gapDab52AD̃21(V02VR)2. The
chemical potential always is centered between two ban

FIG. 6. Broken-symmetry structure that appears in the cas
half-filled chain.
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i.e., m50. We present the equation for determination ofD̃
Þ0 which follows from the stationary condition ofE

1

4E0

5
1

N
(

k

1

AD̃21utku2
. ~17!

The nonzero solution, which appears forg2.gP , corre-
sponds to the formation of a proton charge density wave
chain together with the distortionsul5D̃/2g2 stabilization
~see Fig. 6!. The typical dependencies of the proton positi
average occupancieŝnln& are represented in Fig. 7. It i
interesting that the system now is invariable with respec
the interchangingV0↔VR . Thus, it is sufficiently to ana-
lyze the system behavior as a function ofV0 for instance,
with the given fixed value ofVR . The ground-state phas
diagram (g̃25g2 /\v2 ,Ṽ05V0 /\v2) ~see Fig. 8! differs
essentially from the case ofn̄5 1

2 . The phase equilibrium
curve has the specific salient point atV05VR . The drasti-
cally decrease ofgP in the vicinity of V05VR is connected
with the fact that the transfer anisotropyuV02VRu forms the
additional transverse field, which competes with the order
stabilization process. This anisotropy is vanished atV0
5VR that leads to the lowering of the crossover proto
phonon coupling energygP required for the ordering stabili
zation. The interpretation of the diagram (g̃2 ,Ṽ0) with re-

of

FIG. 7. The average proton occupancies as a function ofg̃2 for

Ṽ050.8; the bold and thin curves indicate the cases whenṼR

50.5 andṼR52.5.

FIG. 8. Ground-state phase diagrams (g̃2 ,Ṽ0). The notation PO
indicates the symmetry-broken phase with proton ordering on

hydrogen bonds; inset: the regionV0;VR for ṼR52.5 in more
detail.
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spect to the pressure effect is very interesting. The seco
order transition from the uniform to the ordered state occ
under pressure~with V0 decrease! for g2.g2* 5AVR/2.
However, in the regiong2,g2* the additional reentrant tran
sition from the symmetry-broken to the uniform state a
pears~see Fig. 9!. In this case the region of symmetry-broke
phase equilibrium narrows withg2 decrease. We notice tha
the first-principle calculations15,17,22and the results of Monte
Carlo simulations8 in quasi-one-dimensional hydrogen h
lides show a transition from the symmetry-broken pha
shown in Fig. 6 to the uniform symmetric phase under pr

FIG. 9. Distortion parameter as a function ofṼ0 for g̃250.32

andṼR50.5; inset: the corresponding dependencies of the ave
proton occupancies.
-

c

ic

t

h

d-
s

-

e
-

sure at low temperatures. Thus, our results in the vicinity
V0'VR and for considerably weak proton-phonon coupli
g2,g2* are in qualitative agreement with the conclusions
Refs. 8 and 15 confirming a proper treatment of the quan
effects in these hydrogen-bonded materials.

IV. CONCLUSIONS

In the present work, the lattice effect on the ground-st
properties of the quantum quasi-one-dimensional hydrog
bonded chain is analyzed in the framework of the two-sta
orientational-tunneling model. The interaction of proto
with two different types of the surrounding ionic group o
tical displacements is considered. We show that when
proton-phonon coupling energy becomes large, the sys
undergoes a transition from disordered to broken-symm
phases. The different cases of proton concentration h
been analyzed:n̄51/2 andn̄51. It is shown that in the first
case the Peierls transition to the dimerized phase occ
whereas in the second one we obtain a transformation
the proton-ordered state. The influence of two different tra
port amplitudes on ground-state properties is also stud
We compare our ground-state phase diagrams with the p
sure effect experimental investigations in superprotonic s
tems and hydrogen halides at low temperatures.
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1R. Blinc and B. Žekš, Soft Modes in Ferroelectrics and Antifer

roelectrics~North-Holland, Amsterdam, 1974!.
2V.L. Aksenov, N.M. Plakida, and S. Stamenkovic´, Neutron Scat-

tering by Ferroelectrics~World Scientific, Singapore, 1989!.
3A.V. Belushkin, C.J. Carlile, and L.A. Shuvalov, Ferroelectri

167, 21 ~1995!.
4A. Pietraszko, B. Hilczer, and A. Pawlowski, Solid State Ion

119, 281 ~1999!.
5N. Pavlenko, J. Phys.: Condens. Matter11, 5099~1999!.
6A. Katrusiak, Phys. Rev. B48, 2992~1993!.
7I.V. Stasyuk and N. Pavlenko, J. Phys.: Condens. Matter10, 7079

~1998!.
8X. Wang, D.K. Campbell, and J.E. Gubernatis, Phys. Rev. B49,

15 485~1994!.
9A.V. Savin and A.V. Zolotaryuk, Solid State Ionics77, 15

~1995!.
10A. Pietraszko, K. Łukaszewicz, and M.A. Augustyniak, Ac

Crystallogr., Sect. C: Cryst. Struct. Commun.48, 2069 ~1992!;
K. Łukaszewicz, A. Pietraszko, and M.A. Augustyniak,ibid. 49,
430 ~1993!; A. Pietraszkos and K. Łukaszewicz, Bull. Polis
s

s

a

Acad. Sci.41, 157 ~1993!.
11R.E. Peierls,Quantum Theory of Solids~Clarendon Press, Ox-

ford, 1955!.
12M.J. Rise and S. Stra¨ssler, Solid State Commun.13, 125 ~1973!.
13E. Jeckelmann and S.R. White, Phys. Rev. B57, 6376~1998!; E.

Jeckelmann, C. Zhang, and S.R. White, cond-mat/9903149~un-
published!.

14V.V. Sinitsyn, A.I. Baranov, E.G. Ponyatovsky, and L.A. Shu-
valov, Solid State Ionics77, 118 ~1995!.

15R.W. Jansen, R. Bertocini, D.A. Pinnick, A.I. Katz, R.C. Hanson,
O.F. Sankey, and M. O’Keeffe, Phys. Rev. B35, 9830~1987!.

16I.V. Stasyuk, O.L. Ivankiv, and N. Pavlenko J. Phys. Stud.1, 418
~1997!.

17M. Springborg, Phys. Rev. B40, 5774~1989!.
18N. Pavlenko~unpublished!.
19S. Scheiner, inProton Transfer in Hydrogen-Bonded Systems

~Plenum Press, New York, 1992!.
20Y. Yamada, Ferroelectrics170, 23 ~1995!.
21Yu. A. Firsov,Polarons~Nauka, Moscow, 1975! ~in Russian!.
22M. Springborg, Phys. Rev. B38, 1483~1988!.


