PHYSICAL REVIEW B VOLUME 61, NUMBER 7 15 FEBRUARY 2000-I

Peierls instabilities in quasi-one-dimensional quantum double-well chains

Natalie . Pavlenkb
Institute for Condensed Matter Physics, 1, I. Svientsitsky Str., UA-79011, Lviv, Ukraine
(Received 23 June 1999; revised manuscript received 19 Augus} 1999

Peierls-type instabilities in quarter-fillech€ 1/2) and half-filled f=1) quantum double-well hydrogen-
bonded chain are investigated analytically in the framework of two-stage orientational-tunnelling model with
additional inclusion of the interactions of protons with two different optical phonon branches. It is shown that
when the energy of proton-phonon coupling becomes large, the system undergoes a transition to various types
of insulator states. The influence of two different transport amplitudes on ground-state properties is studied.
The results are compared with the pressure effect experimental investigations in superprotonic systems and
hydrogen halides at low temperatures.

[. INTRODUCTION tion of the phase sequence occurring in several superionic
crystals.

It has long been known that the formation of hydrogen Theoretical investigations of both displacive and order-
bonds between molecules or ionic groups is responsible fodisorder ferroelectric-type orderings in hydrogen-bonded
drastic changes in a wide variety of entire system propertieSystems have been based generally on pseudospin Ising-type
such as structural phase transformations and proton orderifodels with additional including the pseudospin-phonon in-
phenomena? For example, proton transport phenomena anderactions to deszcrlbe thg coupling of protons with lattice
superionic properties discovered in some hydrogen-bondeYfPration modeslf: In particular, the quantum double-well
crystals like MsH(AO,), class (where M =Rb,Cs,NH: chain with quartic symme_tpc double-well potential has been
A=Se,S) are related closely to hydrogen-bonded networ sed to model the transition from the symmetry—bquen to
rearrangement. On heating these compounds transform in e_symmetry-restored gr_ound staf[e in hydrogen halicés H
superionic conducting phase with dynamically disordere —_F,Br.,CI) (Ref.. 9 Wh'ph consist of hydrogen-bonded

. . chains with weak interchain coupling. The dynamics of both
hydrogen-bonded networfEig. 1). The protons can migrate

ionic and orientational defects created by the rotations of

through the two-dimensional conducting planes with low aCmolecular groups in hydrogen halides has been studied in the

tivation energy (-0.1 eV). In this case protonic conductiv- famework of classic approach based on soliton médel.

Ity Increases significantly to the value about 0.1 " myst be emphasized that taking into account the two-
O~ tem . Itis generally acceptédhat the two-stage con-  stage transport mechanism renders the pseudospin formalism
duction mechanism is required to sustain the proton transansuitable for the proton subsystem description since the
port. The intrabond proton tunnelling along the hydrogennymber of protons can differ from the number of possible
bridge is connected with the transfer of ionic positive- and(virtua|) hydrogen bonds and the proton occupancy of each
negative-charged defects, whereas the intermolecular protajirtual bond can be smaller than unity due to reorientational
transfer due to the reorientations of molecular group withhopping and consequent feasibility of proton migration along
proton leads to the breaking of the hydrogen bond and crethe chain. This situation, as an example, is observed in su-
ation of one between another pair of molecular complexes. Iperionic materials oM 3zH(AQO,), type, which transform on

is significant to remember that the interaction of proton sub<ooling into dielectric state with dimerized structdPelt
system with the displacements of ionic groups participatingshould be noted that such type of transitions to the dielectric
in hydrogen bonding can be of essential importance. The

formation of the hydrogen bridge induces the distortion of J) 6

groups involved in hydrogen bonding towards the proton that

results in the shortening of this boAdy this means the

protonic polaron is localized between distorted ionic groups

in the low-temperature ferroelastic phases, giving rise in this O 2 L.

case to the dimerized structure. As has been shown in Ref. 5, e i

the small polaron is formed due to the strong coupling of

proton with the optical stretching vibration modes of the

oxygen ions. It is evident that such the transformations from .
the superionic phase occurring in systems on cooling have (P
the mixed(displacive and order-disordecharacter. The hy-

drogen bond geometry is closely related to the reorientations F|G. 1. Hydrogen-bonded network on th@01) plane of

of groups involved in H bond and undergoes a change at thei,H(AO,), crystal group; the solid lines indicate the possible type
structural phase transitiofidvioreover, it is shown in Ref. 7 of dimerized structure which can appear with=3)th H-bonds
that the latter effect is of primary importance for the descrip-frozen in. The circles denote the positions of %@, groups.
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-1 I+1 duced by the kinks in such a zig-zag chain, we consider in

our model linear chaifisee Fig. 2b) where two neighboring

chains are showln The process of the proton transfer in the

double-well H-bond potential is represented as the quantum

(a) tunnelling between two proton states with the intrabond
transfer integrall

Qozl (Ci2Cib+CihCia). 1

S P
@ ' . ® wherec;’,, ¢, denote proton creation and annihilation op-

(b) erators in the positionl (v=a,b) of the chain. Besides that,
we describe the interbond reorientational proton hopping in

FIG. 2. (a) Zig-zag hydrogen-bonded chain in hydrogen halides,yo-level approximation as the quantum tunnelling effect
arrows indicate the possible path of proton migration along tthith the hopping amplitud€g

chain. (b) Simplified model chains, the antiphase and in-phase dis-

placements of ionic groups identified by the solid and dashed ar-

rows, respectively. Q> (¢ 128+ ChClt1a)- (2)
| S

states resembles that in electronic systems, in which thg, this way, within the framework of orientational-tunnelling
Peierls instabilities are observed. There have been manygdel proposed in Ref. 16 the two-stage proton migration
works to study the metal-insulator Peierls transitions iNmechanism can be considered as the sequential migration of
electron-phonon systems that are unstable against th@e ionic and orientational defects.

electron-phonon interactionS=** It is common knowledge  As far as such a double-well chain is just a structural
that the Peierls instabilities occur with the formation of component of the system we also admit a possibility of pro-
Peierls gap ak=*kq (kg is the Fermi levelin the elec-  ton exchange between the chain and surroundings by consid-

tronic energy band that connected with the electronic charggring the system thermodynamics in the framework of the
density waves condensation and structural lattice distortioBrand canonical ensemble with inclusion of the proton

modulations withg= 2k . The appearance of insulator state chemical potential

together with the structural transformation can be modeled in

the framework of the Holstein electron-phonon model with-

out additional including the anharmonic terms in the lattice —MIE Niy,s (©)
potential. "

Recent investigations of Peierls transitions in electronwhich is to be determined at the given proton concentration
phonon systems have prompted us to study similar effects im the chain from corresponding equation for the chemical
several hydrogen-bonded solids. To analyze the influence gjotential.
the proton-ionic group displacements coupling, we consider Our main interest is to analyze the influence of the longi-
the simplified model, namely the quasi-one-dimensionatudinal optical ionic group vibration modes on the proton
quantum double-well chain along one of the proton pathwaysubsystem ground state. However, it was noted in Ref. 17
(for instance, the virtual hydrogen bond sequence-1  that the interactions between the protons of the neighboring
—3-1-3—---in Fig. 1). As an initial step, we neglect the chains can lead to the appearance of three-dimensional or-
interproton repulsion and direct our attention to the analysiglering. The more detailed analysis of the interchain proton
of the lattice effect on the proton subsystem thermodynaminteraction effect in this model together with the determina-
ics. However, we take into account the possibility of protontion of stability conditions for the existence of the phases
exchange between our selected chain and surrounding. Besth different ordering type at finite temperatures will be
sides the superionic compounds we also analyze in this worfsresented elsewhet® Here the interactions of protons with
the influence of ionic group displacements on the proton subkwo different types of ionic group displacements are taken
system behavior in quasi-one-dimensional solid hydrogemnto account. Since our model allows to distinguish double-
halides[see Fig. 2a)]. We reveal possible symmetry-broken well structure of H-bond potential, the coupling to these dis-
phases with proton charge disproportionalities coming fronplacements leads to the specific changes of the potential for
a Holstein coupling to th&O, ionic groups otX atoms. We  each proton positionl (v) within the bond. In particular, on
compare our conclusions with the results of the pressure ethe one hand we consider the antiphase stretching vibration
fect theoretical studies iM3H(AQ,), (Ref. 14 and hydro- mode that causes a change of H-bond length as indicated in
gen halide€:™ Although the first step of our analysis con- Fig. 2(b) by solid arrows. The coupling to the first type of
sists in the quasi-one-dimensional chain study, we believelisplacements leads to the equal change of the potential
our results can also be relevant for other hydrogen-bondedells (I,a) and (,b) depths within the H-bond
materials.

(1) +
T N, +n)(by1+b7 1), 4
Il. DESCRIPTION OF THE MODEL % Q) (Mgt M) (BB g.0) @

The object of our consideration is the chain shown in Fig.which is evident from the symmetry reasons. The tédn
2(a). However, to avoid the geometric complexities intro- follows from the well-known fact of the potential barrier
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decrease with the shortening of the distance between thetate is predominantly stabilized gt =2ke==/d (Ref. 11
H-bonded iong? On the other hand, we also take into ac-and 12 and is characterized by the expectation values of the
count the optical in-phase vibrations of ionic groups in thephonon creation and annihilation operators

chain which induce their displacements with respect to the

surrounding chains as identified in Fig(b2 by dashed ar- N A

rows. The coupling to this vibration mode induces, for in- (Bgqp)=(Pg 1t b—q,ﬁza\/ﬁ%,q*a ()
stance, the difference of the distances betweenltfhéon

and the nearest proton positiorisa) and ( —1,b). Itiseasy where A denotes the introduced distortion order parameter
to show that generally this interaction causes the differencevhich should be determined from the stationarity conditions

of these potential minima depths of the free energy. Since the condensation of displacements
(8) leads to the unit cell doubling, using the Fourier transfor-
(2) _ + mation ¢, =1/N/2Z,cy,i1e'"'? where the index i
7 Nia—Nj—1p)(bg 2+ b ). 5 (i) KCka(i)
% (@) (Ma = Mi-15) (g2 a? ©) ={+,—} denotes k=2m) or (I=2m+1)th unit cell, the

) ) - _ Hamiltonian in condensed state with static periodic distor-
Here, 7 2(Q): ~2ig1Vhl2MNwy(g)sinGadexiiq+1/  tions (8) (we assume that the adiabatic treatment is appli-
2)d] and 7{?)(q) = g,\A/2MNw,(q)exigld] whereg; and  cable for these systems, which is justified by the small ratio

g, are corresponding coupling constarits,is the effective  petween the proton mass and the mass of H-bonded ionic
ionic group massN denotes the number of hydrogen bondsgroup?) is given by

in chain andd is the lattice parameter. Theh optical pho-

non branch creation and annihilation operatdrs (,2) are 5 ~ 1 A2
denoted b)b;j andb, ;, respectively. Furthermore, we take H=(—,¢L+A)2 nky(ﬂ—(,quA)Z nkv(,)+§NE—
a dispersionless approximation for the phonon frequencies: kv kv 0
w1(q)=w, and w,(q)=w,, and assume the harmonic ap-

proximation for the lattice vibration energies +Qo; (Clzra(i)ckb(i)"_CI:rb(i)Cka(i))
|
ho bebg1ttio by bg2- 6 i + i
l% Gl 2% @z © +QR§k: _;/ (Cia Chbin€ "+ Cipiry Craiy € ).
171
First of all, let us consider the case of the isolated chain (9)

without a coupling to the phonon bath. Since the Hamil-
tonian(1)—(3) can be exactly diagonalized, the proton energywhere Eq=(7ig1)%/2M (f»,)? is well known from polaron
spectrum theory’! the protonic polaron binding energy, which appears

_ _ —ikd in the expression for the elastic energy per H-bond\#/&,
el ==t t=0o+ Qe () and K=4AJFi/2Mw, = 4A Eqfiwy/g,. The similar result
forms two energy bands with the bandwidie=Q,+Qr can be obtained when we consider the second type
—|Qo—Qg|. The energy gap in this case id,, of the ionic group displacements, in this cagB )
=2|Qy—Qpg|. Eliminating one of the elementary transport =(bg o+ bfqz):A’/gz\/Nﬁ and the Hamiltonian in

. . . a.q*
process by setting the hopping amplitdg=0 or Qg=0,  cyndensed state has the form similar (8 with A—A’

we can see that both of the energy bands degenerate into tge,2 hi2Mw, and Eq— E{=(%g,)22M (fiw,)?. Since the

two energy levels and the quantum_fluctuagons betwee.rihclusion of the coupling to the second phonon mode leads
these two system states could be derived. It is clear that 'Hwerely to renormalization of the binding energy in the

the case whem=1/NX,,(n;,)=1 (one proton is averaged Hamiltonian, further we focus on the analysis of E2).with
within the bond the lower band is filled and the chemical gnly one type of displacements taken into account. Introduc-
pOtential,u is centered between bands—thus the material is "ihg the double-time one-fermion diagona' Green functionS,
dielectric state. Suchgsituation can be observed in hydrogeghe can get rigorously the density of proton states

halides. However, fon=3 only half of the lower band is

filled and this corresponds to the case of protonic conductor 2 |e|-|t,—€? 5

that occurs for example in superionic phases of superpro-P(€)= ;T{(@[S'ng{«?)—\/tl—tz]

tonic crystals. 12

We will discuss afterwards the consequences of the —O[e-sgne)— ,/(QO_Z)ZJF 021+ 0[e-sgre)
proton-phonon coupling effect focusing on the analysis of
the two physically different cases=3 (1/4-filled two-band - \/t1+tg]—®[s-sgr(s)— V(Qo+A)2+ 021,
mode) andn= 1 (half-filling case in two-band modgl (10)
IIl. BROKEN-SYMMETRY SOLUTIONS where
A. Casen=3

. B, = V(t;—£2)2-403R%,
Let us now focus on the case of quarter filling when the

half of the lower proton band is fille@ne proton is averaged TR 55

per two bonds Then the macroscopic condensed phonon B,= V403(K2+02)— (t,— ¢?)

(11)




PRB 61 PEIERLS INSTABILITIES IN QUASI-ONE . . .

4991

1.0

{A" <> WM
0.8 oo /e odd !

i L el FIG. 4. Dimerized structure which appears in the case of
0.6 ; quarter-filled chain.

ool i iy B i

04 G _ou pel  subbands A;=t;+20Q0A —\t;— 2Q0A~20,A/

1 8=10 \/QO2+QZR tends to zero forQu—0. In this case, A=
0'2—_ g +J4E2—- 2 and the phase transitiqithange in the nature
0.0 g f L . of the ground stadeoccurs when the localization energy

0.0 0.3 @) 0.6 0.9 ~(9F)?=3Qg. The energy gap between the second and

third subbands increases fg{>gp

2

ple) Aabzzx/tl—zgzox/12+9§.

-14 07 00

The proton chemical potentigk is centered between two

i lowest subbands with further increasing gf>gp that
points on the insulator state appearance. We see from inset in
Fig. 3(a) that the distortion stability is accompanied by the
formation of the proton charge-density-wave state in which
(n)=(np)=%[1+(—1)'"] that means the forming of
dimerized structure as shown in Fig. 4. Consider further the
ground-state phase diagramg, €9, /fw;,00=Q0/fw;)

(b) and @;,0r=Qgr/hw,) shown in Fig. 5. We see the strong

FIG. 3. (a) Distortion parameteA’ =|A|/%, as a function of
proton-phonon couplin@; =g, /A, for Qo=Qq/fiw,=0.5; in-
set: dependence of the average proton occupancieg, dar {5
=0g/hw,;=0.14. (b) Proton density of states p(e)

=p(e)ltw,(¢=¢lhw;), the dashed and dotted curves indicate the
cases ofA’=0.5 andA’'=0.0, respectively.

and the following notations are introducet;=Q3+ Q3

+A2, t9=20,V02+A? and O(x) is the Heaviside step
function. The expression for the ground state energy can be
obtained easily fron{9) and(10):

N A2 =
E=——-2> \/t1+290\/A2+Q§co§kd. (12)

_8E0 k

To determine the stable phase the equatit/ JA =0
should be solved. It appears that this equation has besides

A =0, a nonzero additional solutiak+ 0 for g,>gp where
gp is the crossover proton-phonon coupling strength. The

solutionA #0 corresponds to the global minimum Bfand,
as a result, implies the structural distortion stabilization with

the amplitudes;= \A/2MNw (B« ) = A/2g,(— 1)' [see Fig.
3(a)]. Let us discuss the proton position average occupancies
on the bonds and the band structure.gitgp each proton
band splits into two subbands

eari—)(K)=7F \/tl—l— 20 VA%+ Q2 cog kd,
ep(+1—)(K)== \/tl—zs)ox/32+9§cos? kd

as shown in Fig. @) where the proton density of states in

13

&

3
(b)

influence of the amplitud€)i on the dimerized state stabil-
ity. The increasing of(}g suppresses dimerization. Alg
—0 (without reorientational hoppinghe system is brought

FIG. 5. Ground-state phase diagrart® (9;,00) and (b)

the disordered and dimerized phases is represented. Tlig,,(}). The notations PD and PU denote the dimerized and uni-
Peierls energy gap between either of the tlawver and up-  form phases, respectively.
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FIG. 6. Broken-symmetry structure that appears in the case of 0.9
half-filled chain.

immediately into the dimerized state. Only for the finite val- 0.6

ues of() i the uniform disordered phase begins to appear and

the “metal”-insulator transition occurs. 0.3
It is necessary to mention that the hopping amplitudgs

and Q) depend strongly on external pressure. In particular, 0.0
the Q¢ value decreases with pressure that deduced from the
quantum mechanical calculatiotsThis is associated with h . functics
the shortening of the distance between two potential minima, FIG. 7. The average pr_Oton Occupan_c'es asa uncncmchbr
(I1,v) on the bond. Thus, we can make a conclusion about thito=0-8: the bold and thin curves indicate the cases whgn
pressure effect on the system state from the diagrams shown0-5 andQ2g=2.5.

in Fig. 5. Using the obtained in Ref. 5 values for parameters _
Qgr, g; and w; [Qr/hw;~0.14 and ﬁzgi/ZM(ﬁw1)3 i.e., u=0. We present the equation for determinationAof
~3.8] we reveal that the dimerized state is always stable at 0 which follows from the stationary condition &

T=0 under pressure for this set of parameters. It is interest-

ing that the similar picture has been observetigH(AQ,), 1 1 1 an
materials from experimentally measured baric dependencies E: N = 2
at low temperature¥ Nevertheless, we notice that as 0 A%+t

decreases and approaches the critical vglue Qg/2, the The nonzero solution, which appears fgs>gp, corre-

transition from the dimerized to the uniform state occursgpongs to the formation of a proton charge density wave in

with pressure. This effect appears due to the more Weal?hain together with the distortions,=A/2g, stabilization

proton phonpn coupllng and, asa result, to the tendenpy Vsee Fig. 8. The typical dependencies of the proton position
the proton disorder in the chain, when the overlapping inte- . A )
L average occupancig®,,) are represented in Fig. 7. It is
gral between the proton states within the H-bond decreases. : s ) .
interesting that the system now is invariable with respect to

the interchangind)y—Qg. Thus, it is sufficiently to ana-

B. Casen=1 lyze the system behavior as a function @f for instance,

Let us discuss another case when one proton in average Y4th the given fixed value oflr. The ground-state phase
placed in the bond. According to Peierls thédrguch a diagram @,=0,/fw,,00=Qq/fw,) (see Fig. 8 differs
system is very susceptible towards the lattice modulation aéssentially from the case of=%. The phase equilibrium
g*=0. It should be noted that in this case only the secondurve has the specific salient point@p=Qg. The drasti-
type of optical vibrationginterchain modg =2) contributes  cally decrease ofp in the vicinity of Q,=Qg is connected
to the lattice distortions condensation. The Hamiltonian inwith the fact that the transfer anisotrof,— Qx| forms the

condensed phase has the form additional transverse field, which competes with the ordering
5 stabilization process. This anisotropy is vanished(gf
~ ~ A2 =g that leads to the lowering of the crossover proton-
H ZZK [(—M+A)nka—(M+A)”kb]+§NE—o phonon coupling energgp required for the ordering stabili-
zation. The interpretation of the diagrarg,({,) with re-
+2k (tiCkaCib Tt CkpCrca) - (14 20
i gz os4 &, PO
In this case, the density of proton states 04-
1.5 PU
0.2 PU
(e)=2 i {0l sgr(e) 170 e
E)— — £-S & 248 249 250 281 252 | .
: T \AQ505— (e2—1)2 J 1.0

— VA4 (Qp—Qr)2]—O[&-sgre)
— VAZ+(Qo+QR)%} (15

points on the two-band structure

5

g,(k)== VAZ+|t,/? (16) FIG. 8. Ground-state phase diagrargs (,). The notation PO
indicates the symmetry-broken phase with proton ordering on the

with the Peierls energy gaf,,=2VA?+(Q,—Qg)%. The  hydrogen bonds; inset: the regidd,~Qg for g=2.5 in more
chemical potential always is centered between two bandsietail.
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005 —m08 — 0— sure at low temperatures. Thus, our results in the vicinity of
1A oo "> e Q,~Qg and for considerably weak proton-phonon coupling
0.04 m g.<g5 are in qualitative agreement with the conclusions of
- | ; Refs. 8 and 15 confirming a proper treatment of the quantum
0.03 N N & effects in these hydrogen-bonded materials.
. |
IV. CONCLUSIONS
0.02
- In the present work, the lattice effect on the ground-state
0.01 - properties of the quantum quasi-one-dimensional hydrogen-
i Q bonded chain is analyzed in the framework of the two-stage
0.00 1 ; 1 ) 0 orientational-tunneling model. The interaction of protons
0.4 0.6 0.8 with two different types of the surrounding ionic group op-

5 B tical displacements is considered. We show that when the
FIG. 9. Distortion parameter as a function @f, for g,=0.32  proton-phonon coupling energy becomes large, the system
andQz=0.5; inset: the corresponding dependencies of the averagendergoes a transition from disordered to broken-symmetry
proton occupancies. phases. The different cases of proton concentration have
been analyzech=1/2 andn=1. It is shown that in the first
spect to the pressure effect is very interesting. The secondase the Peierls transition to the dimerized phase occurs,
order transition from the uniform to the ordered state occurgvhereas in the second one we obtain a transformation into
under pressurgwith €, decrease for g,>g%=\Qg/2.  the proton-ordered state. The influence of two different trans-
However, in the regiomy,<g? the additional reentrant tran- port amplitudes on ground-state properties is aI;;o studied.
sition from the symmetry-broken to the uniform state ap-We compare our.ground-'state pha§e dlggrams with th'e pres-
pears(see Fig. 9. In this case the region of symmetry-broken SU® effect experimental investigations in superprotonic sys-
phase equilibrium narrows with, decrease. We notice that €MS and hydrogen halides at low temperatures.
the first-principle calculatiort3'’?2and the results of Monte
Carlo simulation$ in quasi-one-dimensional hydrogen ha-

lides show a transition from the symmetry-broken phase This work was partially supported by INTAS Grant No.
shown in Fig. 6 to the uniform symmetric phase under pres95-0133.
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