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Bound polaron in a cylindrical quantum wire of a polar crystal
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The impurity binding energy in a cylindrical quantum wire was studied by the variational approach. A
two-parameter trial wave function was proposed to reflect the anisotropsy of the quantum wire. We have also
derived the electron-phonon interaction Hamiltonians for the confined longitudinal optical phonon modes and
the interface phonoflO) modes in the cylindrical quantum wire. The influence of different phonon modes on
the impurity binding energy was studied. Numerical calculation shows that the impurity binding energy
increases greatly as the radius of the quantum wire decreases and is strongly modified by the electron-phonon
interaction, especially by the electron-10 phonon interaction.

[. INTRODUCTION the polar crystals. Research on the polaron effect on the
quantum-well and quantum dot systems shows that the influ-
The great progress in semiconductor nanotechnologyence of the interface phonon could be enhanced and even
such as molecular-beam epitaxy, metal-organic chemicabecome dominating as the dimensionality of the material
vapor deposition, and chemical lithography, has made poseduces*! The polaron effect should not be ignored when
sible the realization of a wide variety of semiconductor het-studying the quantum wire systems. However, as far as we
erostructures. Among which, the quantum-well wWigdVW) know, there is no paper devoted to the polaron or bound
is of great interest to many authors. In the past decade, thgolaron properties in the quantum wire system. Of course,
study on the electronic structure, transport properties, excibefore investigating the polaron effect in a quantum wire, the
tonic and impurity levels, as well as impurity binding ener- phonon vibration modes in the quantum wire should be de-
gies in the QWW has been carried out bothrived in advance. The electron-phonon interaction in a di-
experimentally® and theoretically.® Brown and Spectof  electric confined system was first studied by Lueasl'?
studied the hydrogenlike impurities in a QWW, consideringand Licari and Evrartf under the dielectric continuum
both the infinite and finite confined potential models. Vil- model. Wendle¥* developed the framework of the theory of
lamil and Montenegrbinvestigated the binding and transi- optical phonons and electron-phonon interaction for the spa-
tion energies of the hydrogenlike donor impurity states withtially confined systems. Constantinou and Ridfeworked
the influence of the magnetic field. One of the quantum-out the phonon modes in a GaAs/Bla; _,As quantum wire.
mechanical approaches being used in studying the impuritRecently, Wang and L¥ studied the scattering of electrons
state in a QWW is the variational method. In the works men-by different phonon modes in semiconductor nanostructures;
tioned above, the trial variational wave functions with oneCampos, Das Sarma, and Stros€ialso studied the influ-
variational parameter were adopted. However, it is clear thagnce of phonons on electron transport in a quantum wire. But
the QWW system is not isotropic. A better variational wavethe electron-phonon interaction Hamiltonians developed by
function should be able to reflect this anisotropic nature ofWang and Lei, and Campos, Das Sarma, and Stroscio are
the QWW system. Actually, we have proposed two-devoted to the many-electron processes of transport, so are
parameter trial wave functions when we studied the quasinot quite suitable for the situation being considered here.
two-dimensional systems(quantum wells’™® Results Recently, Li and Cheff obtained the phonon modes in a
showed that the two variational parameters, which reflect theylindrical quantum dot by using the dielectric continuum
anisotropy of the quantum-well structure, are quite differentmodel. We shall use the dielectric continuum model to de-
when the well is narrow. They are identical when the well isrive the confined longitudinal-opticgLO) phonon modes
sufficiently wide, indicating that the system is now isotropicand the interface opticdlO) phonon modes as well as the
in nature. So, in the present paper, we will propose a twoHamiltonians of their interaction with electrons.
parameter variational trial wave function to calculate the It should be noted that the image potential induced by the
ground-state binding energy of an impurity in a cylindrical charged particles may influence the properties of electrons in
QWW. the quantum wire, especially when the quantum wire is
It is also well known that the electron-optical phonon in- narrow!®?*Wendler and Harbwitf studied the effect of the
teraction plays an important role in the physical properties ofmage potential on the binding energy of hydrogenic impu-
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rities in semiconductor quantum wells. They took all image %2 10 J 2
contributions(the mutual image potential between the hydro- Smr | T ; % P@ T2
genic impurity and the electron and the self-image potentials
of the two particles into consideration and concluded that The solution turned out to be
the image potential effects on the hydrogenic donor binding
energy are weak for donor positions in the center of the (p,z)=R(p)exdigqz]~Jy(v2m* Eolﬁzp)exp:iqz],
guantum well. Therefore, for simplicity, in the present work, 3
we shall not consider the influence of image potential but . .
focus our attention on that of the polaron egf]fecp's on the im-WhereJO(X) IS th_e Bessel function of the zeroth order. The
purity binding energy in a quantum wifé:°%2 energy level is given by

In the following, we will investigate the impurity binding
energy in a cylindrical QWW, derive the free phonon Hamil- EIC):
tonians and the Fhdich electron-phonon interaction Hamil-
tonians, and study the polaron effect on the impurity bindin | 1
energy by taking both the confined LO modes and 10 modgsgtzzrff)(gl'zs;nih;zlth zero ofJo(x). For the ground statdq

O .

into consideration. We will first study the impurity ground- — Based he ab | dering th . f
state binding energy in Sec. ll, then derive the phonon ased on the above result, considering the anisotropy o

Hamiltonians and the Fhiich electron-phonon interaction the quantum wire system, we propose f"‘mal wave function
Hamiltonians in Sec. Ill. The influence of different phonon With two variational parameters for E():

modes on the impurity binding energy is studied in Sec. IV.

In Sec. V is the numerical calculation and discussion. Fi- ®(p,2)=NJ,
nally, a brief summary is given in Sec. VI.

#(p,2)=Eoth(p,2). (2

72 (x0)?
2R @

R

exd — VN’ p—pil*+u’Z’] (5

where\ and u are variational parameters characterizing the
anisotropy in thep and z directions.N is the normalized

Let us consider a polar semiconductor cylindrical quan-constant defined by
tum wire with radiusR. It is convenient to adopt the cylin-

2. IMPURITY BINDING ENERGY

1 2
drical coordinate in this system. The impurity is locate@at sz J (M)
(taking the wire axis as the originUnder the effective-mass o R
approximation, the Hamiltonian of the system can be written . s
as(neglecting the image effect xex —2\?[p—pi|*+p’2’]pdp de dz=1
(6)
,}_LZ e2
_ 2_ or
He 2m*V e|r—ri|+v(p) (1)
1 2
ith XoP| |“ 2\ p—pil
W sz [Jo(?” TIKl(ZMp_piDP dp dep=1
», p=R )
Vip)= 0, p<R. whereK (x) is the second kind modified Bessel function of
| q . itional ‘ the first order.
n order to construct an appropriate variational wave func-" o expectation value ¢, is given by
tion, let us first consider the electron wave function in a
c_ylmdncal quantum wire with no impurity presented_, |.§., (®(p,2)|He|P(p,2))=T+U (8)
find out the solution to the following Schdmger equation:
(p<R) with
(ixp)? h2\%  4h2\?N? L s
4n%xoN*\2 [ xop| - (xop
—WJ' Jo| 5|91 & Ko(2X|p=pi)(p—pi cose)p dp de
252\N? xor\[xo . (xop| (xa)%p . [ xop
+ —_— —_— R— —_— —_— —_ . —_ .
h2(u?—\2 xsp\ 12 . _exd —2 N\ p—pi|?+ u?Z?
+(M—*) Zf ‘JOL ,U«ZZZ i 2 |p2p||22,u ]Pdpd€0d2 9
2m R Nlp—pil“+ 7z

and
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2N2e? !
€ R

2exif — 2\ p— pi[ 2+ n?2%]

Jp=pil*+2°

p dp do dz. (10

The ground-state energy of the impurity state is obtainedvhere J,,,(x) is the Bessel function of thenth order, and
by minimizing the expectation value of the HamiltoniBiy ~ Q,,;= x|/R, wherey!, is thelth zero ofJ (x).

according to the variational parametarand w: The polarization vectors for the confined LO mode are
E=min(®(p,2)|He|P(p,2)) . (11 o1
R PLO:EV(f’mI(r)

The impurity binding energy is given by

Coi[1
Eb: Eé_ E=(h)((1))2/2m* R2—E. (12) - E{E[‘Jml(QmIp)_‘Jm+l(lep)]leep
im
3. THE ELECTRON-PHONON INTERACTION +Im(Qmip) —€,
HAMILTONIAN p
Before we proceed to investigate the influence of the +\]m(Qm|p)iquZ]eim<PeiCIzZ. (20)
electron-phonon interaction on the impurity, we should de-

rive the phonon Hamiltonian as well as the electron-phonon i i o
interaction Hamiltonian for the cylindrical quantum wire 10 find the expression for the Hamiltonian of the free-
first. This is also of practical interest to other phonon_phonon field, we start from the dynamic equations of motion
attending processes such as the scattering of conducting ele-the crystal lattice:
trons by phonons. ) 5

We will use the dielectric continuum model and start with pl=— pwou+eEq, (21)
the electrostatic equations

P=neu+nakE., (22
V-D=4mpy(r), (13
where u is the reduced mass of the ion pair aneu,
D=e¢E=E+47P, (14  —u- isthe relative displacement of the positive and negative
ions, wq is the frequency associated with the short-range
E=—Va(r), (15  force between ionsE, is the local field at the position of
the ions,n is the number of ion pairs per unit volume, amd
wherepy(r) is the charge density. For free oscillatiGire.,  is the electronic polarizability per ion pair.
po=0), we have The Hamiltonian of the free vibration is given by
eV2p(r)=0. (16)

1
th=§f [nul-U+npodu-u—neu-Eqldr. (23

A. Confined LO phonon modes

Since
There are two solutions for Eq16). The first ise=0
inside the wire. Since 8
Ejoe=— 3 P (29
S 1
cw)=cx 1- w? wi D e have
e(w)=0 gives 142 mna
u=——"P (25
2_ 2 €0_ > ne
0= 0ig— =0l (18
€ then we may write
in which we have made use of the Lyddane-Sachs-Teller 5
relation, i.e., for the solution of(w) =0, one obtained a bulk 1 1+ 2 ma o
LO phonon vibration mode. The eigen function of the con- HLozif np PP
fined LO mode inside the wire can be chosen as ,
] ] ) 1+ mna
Crdm(Qmip)exdimelexdia,z], p<R FNpoio| — o P*.P|d°r. (26)

Dmi(r)= 0, p>R

(19 Since
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* L | Km(AR) I w(azp), p<R
Pml Pm'd3r— C.|2— [ +R2 J2 — megazz] T % mHz
j LO LO | m|| (X D+ 1(Xm) d(r)=Aneme | (GLRIKn(Qp), p>R (39
X 5 / ! !
mt 9) 5qu2’ @0 whereK ,(x) andl ,(x) are the first and second kind modi-
wherelL is the length of the quantum wire. If we chooS8g, fied Bessel functions, respectively. The boundary condition
to be atp=R is (suppose the material outside the quantum wire is
nonpolar material with dielectric consta&g)
87 \¥2  ne
Cmi= ( )

nul) 145 7na dp1 Iy
1 é(w )—= T (39

{ (Xm+R qz)‘Jm+1(Xm) (28)

Then we get
then PT(') may form an orthonormal and complete set, which

b dt &si
can be Lsed fo expressin (AR K e 1(GzR) + K 1(G,R) ]

S . (40
vz ) T KGR (@R T T a(aR] 40
P=2 | o] [ami(Go) +am(G) IPLo(r), (29
’ The frequency of the 10 vibration can be obtained through
Eq. (17), i.e.,
P==i2, (hwo)fan(a,) ~an(@IPlon). (30
. €~ €Ex
P and P are now quantum field operatora) (q,) and w’=|1+ 60 . 3o (41

ami(g,) are the creation and annihilation operators for the

LO phonon of themlqg, mode. They satisfy o _
The polarization field for the 10 phonon modes are

[mi(Cl2) 80 (02) 1= Sy S8 14 (3Y)
— € . .
[aml(qz),am,l,(qé)]:[ajnl(qz),a:n,l/(qé)]:o_ (32) P%:—MT VIARK (R m(g,p)€mee97]
Then the Hamiltonian operator for the confined LO phonons l-€ 1
will be = 27 AnKn(AR)| 5 0 Im-1(0z0) +1m+1(dz0) ]€,
T 1 im . o0z
HLoz% horo| an(d2)an(a,) + 5| (33 5 Im(Azp) €, + 102 m(dzp) & €€ (42)

The interaction Hamiltonian between the electron and th

phonon field is Ei:rom Egs.(21) and(22), we have

eph_ e¢(r) (34) M 2 5
Eloc=— (05— 0)U, (43
¢(r) could be expanded in terms of the normal modes, so €
_ ml me Mea—idZg P
He—LO_ _r%: l_‘LO(qZ)‘:J el e "z I(qz)+ H.c. ’ u= ) (44)
bz (35 nef1+ (au/e?)(ws— w?)]
where Following Eq. (23), we obtain the Hamiltonian for the 10
phonon
4e’h 1 1
|"ol?= 2 i w|L20 2.2 (__ _) (30
L‘]m+1(Xm)(Xm+R qz) *® €o 1 1 2
—— | g3 %
o=y | o ”“(ne[1+<ame2><wé—w2>]) P
B. Interface phonon modes
. . 1 2
Another solution for Eq(16) is + 2 %,
o g1t (apled(0l—ad]) T T
V2¢(r)=0. (37 (45)

This will give the 10 modes withe# 0 inside the quantum
wire. The solution for Eq(37) is Since
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(1- 5) g.R

f P P dr = —— o KRR (4R

a-R

X m[lm—z(QZR)_lm(qu)]

eI (@R
2(m+ 1) me
=1 m+2(qu)] } 5mm’ 5qzq;- (46)
We may choosd\, to be

2 261+ (aple?) (05— w?)]?

|Am

nu(l—e)?
167
Ka(aR) (AR AR m—1(9,R) — 4 1(0,R) ]’
(47)
or
A= do”
LKH(AR)  m(dR) AR - 1(9R) = 11 1(dR)]
X ! — ! (48)
€E— €y €€,

in which we have made use of the following relatidris:

w§=4wne2/,u, (49
4 wp 1
1--mna=—— , (50
3 WTO \/€g— €
14 - mna=—p & (51)
~ o= —— .
3 WTO \€g— €y

Then P;3 may form an orthonormal and complete set. We

may expres$ as

P=>

ma

12
) [bm(d,) +b}(a,) PR, (52)

= —Iz (ho)Yqbpn(q,) —bl(a,) PR, (53)

whereb;(qz) andb.,(q,) are the creation and annihilation

operators of the 10 phonon with frequeney They satisfy

[bm(d2),bgry (4)1= S S g, (54)

[brm(d,). b (a2)1=[bl(a,),b! (q2)]1=0.  (55)

The Hamiltonian operator for the 10 phonons is

b!(a,)bm(q )+1 (56)
m Z m ya 2

HIOZZ ﬁw
ma;

Following Eq.(34) we get
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He o= E [T1(q,)eMee 1922p1 (g,)+ H.c]

{ Kn(dR)1m(dzp), p<R 57
Im(qu)Km(qu)! p>R
where
Irm)2= 4e’hw
' LKﬁ](qu)lm(qu)qu[lmfl(qu)+|m+1(qu)]
1 1
% e—eo_ €— soc)' (58)

IV. THE BOUND POLARON BINDING ENERGY

Now we consider the polaron effect on the impurity
(which is known as bound polarpistate. The Hamiltonian
of the system can be written as

H:He+ th+ He-phv (59)

where H,, which is the impurity Hamiltonian, is given in
Eq. (1). The second term is the phonon Hamiltonian:

Hpn=Hiot H|o=m2|q ool ah(d,)am(d,) + 3]

+2 fhwlbl(a,)bm(a,) + 31. (60)

The third term is the electron-phonon interaction Hamil-
tonian given by

He—ph:He—LO+He—IO (61

in which Hg_ o andHg.o are given by Eqgs(34) and (57),
respectively. We will use the variational method in our cal-
culation. The trial wave function is chosen to be

W) =d(p,2)S/0). (62

®(p,2) is given in equation5), |0) is the phonon vacuum
state, whileS is defined by

S=ex 2 [f |*(qz)aml(qz)]

miq,

qz)aml(qz)

+ [F9(g)bl(a) — FI9" (a)bm(a)1]. (63

mdq,

The unitary operatofS transforms the phonon operator as
follows:

stal (a,)S=al(a,) + 5 (a), (64)
S'a(0,) S=am(d,) + fE3(y). (65)
Sl (q,)S=b(a,) + 1Y (q), (66)
Sbyn(0,) S=bin(0,) + F12(0,). (67)

The expectation value dfl is
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(WIHIW)=T+U+ > [f0(a,)*+ > [fi(a,)]?
mla, ma,

|
+> FE“&(qz><d><p,z>|Jm<%)
mlq,

x @Mee™ 1922/ (p,z))+ H.c.

+> [T(9,)
ma,

X(®(p,2)|9(d,.p)€M¥e 9| D(p,z)) +H.c]
(68)

where
Km(QzR)I m(dz0),
I'm(dR)Km(dzp),

Minimizing (W|H|¥) with respect to f-®"(q,) and
f'n?*(qz), respectively, one obtains

p=R

p>R. ©9

g(qzup)z[

|
Xm

fan(2) = ~ (A ()| Jo| e

)émﬂoe—i%%(r)),

(70)
f(0) = —T (AP (r)|g(q,,p)e™e 9% d(r)).
(71
Inserting Eqs(70) and(71) into Eq.(68), we get
with
AEo= S o [rLo( )|?
LO T, ho o ml q:
XI 2
><<<I><r>|Jo(3’“p)ém*ﬁe*‘*zllcb(r» (73)
and
AEo=Y —I%q,)?
IO_mqZ to m qz
XK@ (r)|g(a,,p)emee 9D ()P (74

T andU are defined in Eqg9) and(10), respectively. The
ground-state energy of the system is calculated by(E2):

E=min(WV|H|W¥).

Sy

(75)
Similar to Sec. Il, the impurity binding energy with pho-
non contribution is given by
Ep=Ej—E=(fix})%/2m* R?—E (76)

but the meaning oE is not the same as that in EG.2)

V. RESULT AND DISCUSSION
B. Impurity binding energy
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impurity binding energy(solid line) as a function of the ra-
dius of the QWW(R), the impurity is at the center. We chose
the effective atomic unit so that the unit of length is the
effective Bohr radius} = e42/m* e? and the unit of energy

is the effective Rydber@®R,=m*e*/272€?, which are about
100 A and 5.25 meV, respectively, for GaAs. We can see
from Fig. 1 that the impurity binding energy declines as the
radius of the QWWR increases, and approacheRdl, which

is the three-dimensional limit, when the radius of the QWW
is quite large. The variational parametersand A changes
with changingR (see Fig. 2. They are not the same until the
radiusR is sufficiently large(see the curve of/\ in Fig. 2)
indicating that the system of QWW is not isotropic in most
of the cases. The ratig/\ increases quickly as the radi&s
reduces, showing that the system is approaching the one-
dimensional limit as the radius of the QWW reduces. In Fig.
3 we compare our results with that of Brown and Spettor,
which was obtained based on a one-parameter trial wave
function. We could see that for the quantum wire with large
radius, the two methods give the same value for the impurity
binding energy. However, when the quantum wire is narrow,
the difference between the two methods becomes obvious.
Our method gives a larger impurity binding ener@bout

6% higher than that of Brown and Spedtaor, a lower im-
purity ground-state energy. According to the variational prin-
ciple of quantum mechanics, the present method gives a bet-
ter result. So it is quite necessary to adopt biparameter
variational trial wave function for the low-dimensional sys-
tems such as the quantum wire and quantum-well structures.
In Fig. 4, we plotted the impurity binding energy as a func-
tion of the impurity position; the radius of the QWW is 1
ag . One could find out that the impurity binding energy
decreases as the impurity shifts away from the center. We
have also plotted the impurity binding energy as a function
of the radiusk when the impurity positions at;=0.5R (see

20

Binding Energy(Hg)

FIG. 1. The binding energies of impurity, without phonon con-
tribution (solid curve$; and bound polaron, i.e, with phonon con-

We performed numerical calculation on the impurity tribution (dashed curveas functions of the radius of the quantum

binding energy with Eqs.8)—(11). In Fig. 1, we plotted the

wire.
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25 5

Parameters

Binding Energy(Rg)

05

0.0 2 1 2 1 1 1 1 1 n ) \ . \ ) \ ) ,

0 2 4 ® 8 10 ) 02 0.4 0.6 08 10
R(a,) p/R
FIG. 2. Variational parameters as functions of the radius of the F|G. 4. Binding energies of: impuritysolid curvé and bound
quantum wire. polaron (dashed curveas functions of the impurity position &
=1lag .

Fig. 1. We could see that the binding energy is smaller for
an off-center impurity compared with that when the impurity =13.18, €.,=10.89. The impurity binding energy with the
is at the center of the quantum wire. However, this differencénfluence of the LO and 10 phonons, which is also called the
vanishes wherR is large, showing that the system is now bound polaron binding energy, is calculated as a function of
three dimensional in nature, consequently the translationahe radiusR. In order to show the phonon influence on the
symmetry holds. impurity binding energy, we plotted the bound polaron bind-
ing energy(dashed curvep;=0) together with that without
phonon contribution in Fig. 1. We have to convert the energy
) o unit from meV toRy so that they are comparable. Results
The calculation of the bound polaron binding energy wassho that the phonon influence becomes stronger as redius
carried out for a free-standing QWW of GaAs. The param-yecreases. The phonon contribution to the binding energy
eters of the wire material are* =0.06"m, (M, is the free-  coyd reach as high as 23.1% at very narrow GaAs QWW. It
electron mass 1w 0=36.25 meV, fiw7o=33.29meV,€o  should be noted that the coupling between the electron and

B. Bound polaron binding energy

4

>
c
>
(o]
&
2
w 2
g i
5 <
£
o
1
0 T
0.1 1 10 0 N NP | " Ly
. 0.1 1 10
R(a,)

FIG. 3. The impurity binding energy calculated by using differ- R(a,)

ent variational trial wave functions. Solid line, this work; dashed FIG. 5. Contributions of different phonon modes to the bound
line, Brown and Spector. polaron binding energy as functions of the quantum wire.
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phonons is considered to be weak in GaAs. So it is importantvell wire. In order to reflect the anisotropy of the QWW
for us to pay attention to the influence of phonon on thesystem, we adopted a two-parameter trial wave function for
physical properties of the QWW structure. Or we may saythe variational calculation. Results show that the binding en-
that there is no “weak coupling” between the electron andergy of the impurity increases greatly as the radius of the
phonons in the QWW systems. In order to find out the roleQWW reduces. The change of the variational parameters
of different phonon modes in the total phonon contributing towith R indicates that for the low-dimensional systems, it is
the bound polaron binding energy, we plotted the contribunecessary to take the anisotropic nature of the system into
tions of different phonon modes separately in Fig. 5. We cartonsideration when constructing the variational trial wave
see from Fig. 5 that the contribution of the 10 phononsfunctions. In order to investigate the influence of optical pho-
(AE,p) plays an important role in the bound polaron bindingnon on the impurity binding energy, we derived the phonon
energy, especially when the QWW is narra\E o increases Hamiltonian and the Fidich Hamiltonians of the electron-
quickly as the radiuR reduces. As the radiutR gets smaller, phonon interaction for the confined LO phonon modes and
the interface of the QWW gets closer to the electron, hencéhe interface phonon modes. Calculations on the GaAs
the interface phonons impose greater influence on the ele@QWW shows that the phonon-electron interaction may
tron, resulting in a stronger coupling. In comparison withstrongly influence the impurity binding energy. For a very
that of the 10 phonon, the contribution of confined LO pho-narrow GaAs QWW, the contribution of electron-phonon in-
non to the impurity binding energy is far less important. Itteraction to the impurity binding energy may be up to as
does not change a lot when the radRishanges. WheRis  much as 23%. Calculations also show that as the radius of
very large, the influence of 10 phonons becomes very weakhe QWW reduces, the influence of the interface phonon be-
and the influence of the LO phonon becomes dominantcomes a dominant factor influencing the impurity binding
which is just the case of three dimensional bulk material. energy.
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