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Bound polaron in a cylindrical quantum wire of a polar crystal
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The impurity binding energy in a cylindrical quantum wire was studied by the variational approach. A
two-parameter trial wave function was proposed to reflect the anisotropsy of the quantum wire. We have also
derived the electron-phonon interaction Hamiltonians for the confined longitudinal optical phonon modes and
the interface phonon~IO! modes in the cylindrical quantum wire. The influence of different phonon modes on
the impurity binding energy was studied. Numerical calculation shows that the impurity binding energy
increases greatly as the radius of the quantum wire decreases and is strongly modified by the electron-phonon
interaction, especially by the electron-IO phonon interaction.
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I. INTRODUCTION

The great progress in semiconductor nanotechnolo
such as molecular-beam epitaxy, metal-organic chemi
vapor deposition, and chemical lithography, has made p
sible the realization of a wide variety of semiconductor h
erostructures. Among which, the quantum-well wire~QWW!
is of great interest to many authors. In the past decade,
study on the electronic structure, transport properties, e
tonic and impurity levels, as well as impurity binding ene
gies in the QWW has been carried out bo
experimentally1–3 and theoretically.4–6 Brown and Spector6

studied the hydrogenlike impurities in a QWW, consideri
both the infinite and finite confined potential models. V
lamil and Montenegro4 investigated the binding and trans
tion energies of the hydrogenlike donor impurity states w
the influence of the magnetic field. One of the quantu
mechanical approaches being used in studying the impu
state in a QWW is the variational method. In the works me
tioned above, the trial variational wave functions with o
variational parameter were adopted. However, it is clear
the QWW system is not isotropic. A better variational wa
function should be able to reflect this anisotropic nature
the QWW system. Actually, we have proposed tw
parameter trial wave functions when we studied the qu
two-dimensional systems~quantum wells!.7–9 Results
showed that the two variational parameters, which reflect
anisotropy of the quantum-well structure, are quite differ
when the well is narrow. They are identical when the wel
sufficiently wide, indicating that the system is now isotrop
in nature. So, in the present paper, we will propose a tw
parameter variational trial wave function to calculate t
ground-state binding energy of an impurity in a cylindric
QWW.

It is also well known that the electron-optical phonon i
teraction plays an important role in the physical properties
PRB 610163-1829/2000/61~7!/4827~8!/$15.00
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the polar crystals. Research on the polaron effect on
quantum-well and quantum dot systems shows that the in
ence of the interface phonon could be enhanced and e
become dominating as the dimensionality of the mate
reduces.10,11 The polaron effect should not be ignored wh
studying the quantum wire systems. However, as far as
know, there is no paper devoted to the polaron or bou
polaron properties in the quantum wire system. Of cour
before investigating the polaron effect in a quantum wire,
phonon vibration modes in the quantum wire should be
rived in advance. The electron-phonon interaction in a
electric confined system was first studied by Lucaset al.12

and Licari and Evrard13 under the dielectric continuum
model. Wendler14 developed the framework of the theory o
optical phonons and electron-phonon interaction for the s
tially confined systems. Constantinou and Ridley15 worked
out the phonon modes in a GaAs/AlxGa12xAs quantum wire.
Recently, Wang and Lei16 studied the scattering of electron
by different phonon modes in semiconductor nanostructu
Campos, Das Sarma, and Stroscio17 also studied the influ-
ence of phonons on electron transport in a quantum wire.
the electron-phonon interaction Hamiltonians developed
Wang and Lei, and Campos, Das Sarma, and Stroscio
devoted to the many-electron processes of transport, so
not quite suitable for the situation being considered he
Recently, Li and Chen18 obtained the phonon modes in
cylindrical quantum dot by using the dielectric continuu
model. We shall use the dielectric continuum model to d
rive the confined longitudinal-optical~LO! phonon modes
and the interface optical~IO! phonon modes as well as th
Hamiltonians of their interaction with electrons.

It should be noted that the image potential induced by
charged particles may influence the properties of electron
the quantum wire, especially when the quantum wire
narrow.19,20 Wendler and Harbwig21 studied the effect of the
image potential on the binding energy of hydrogenic imp
4827 ©2000 The American Physical Society
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rities in semiconductor quantum wells. They took all ima
contributions~the mutual image potential between the hyd
genic impurity and the electron and the self-image potent
of the two particles! into consideration and concluded th
the image potential effects on the hydrogenic donor bind
energy are weak for donor positions in the center of
quantum well. Therefore, for simplicity, in the present wo
we shall not consider the influence of image potential
focus our attention on that of the polaron effect on the i
purity binding energy in a quantum wire.4,6,9,22

In the following, we will investigate the impurity binding
energy in a cylindrical QWW, derive the free phonon Ham
tonians and the Fro¨hlich electron-phonon interaction Hami
tonians, and study the polaron effect on the impurity bind
energy by taking both the confined LO modes and IO mo
into consideration. We will first study the impurity ground
state binding energy in Sec. II, then derive the phon
Hamiltonians and the Fro¨hlich electron-phonon interactio
Hamiltonians in Sec. III. The influence of different phono
modes on the impurity binding energy is studied in Sec.
In Sec. V is the numerical calculation and discussion.
nally, a brief summary is given in Sec. VI.

2. IMPURITY BINDING ENERGY

Let us consider a polar semiconductor cylindrical qua
tum wire with radiusR. It is convenient to adopt the cylin
drical coordinate in this system. The impurity is located atr i
~taking the wire axis as the origin!. Under the effective-mas
approximation, the Hamiltonian of the system can be writ
as ~neglecting the image effect!

He52
\2

2m*
¹22

e2

eur2r i u
1V~r! ~1!

with

V~r!5H `, r>R

0, r,R.

In order to construct an appropriate variational wave fu
tion, let us first consider the electron wave function in
cylindrical quantum wire with no impurity presented, i.e
find out the solution to the following Schro¨dinger equation:
(r,R)
-
ls

g
e
,
t
-

g
s

n

.
i-

-

n

-

\2

2m* F2
1

r

]

]r S r
]

]r D2
]2

]z2Gc~r,z!5E0c~r,z!. ~2!

The solution turned out to be

c~r,z!5R~r!exp@ iqz#;J0~A2m* E0 /\2r!exp@ iqz#,
~3!

whereJ0(x) is the Bessel function of the zeroth order. Th
energy level is given by

E0
l 5

\2~x0
l !2

2m* R2 , ~4!

wherex0
l is the l th zero ofJ0(x). For the ground state,E0

1

5(\x0
1)2/2m* R2.

Based on the above result, considering the anisotrop
the quantum wire system, we propose a trial wave funct
with two variational parameters for Eq.~1!:

F~r,z!5NJ0S x0
1r

R Dexp@2Al2ur2r i u21m2z2# ~5!

wherel andm are variational parameters characterizing t
anisotropy in ther and z directions.N is the normalized
constant defined by

N2E FJ0S x0
1r

R D G2

3exp@22Al2ur2r i u21m2z2#r dr dw dz51

~6!

or

N2E FJ0S x0
1r

R D G2 2lur2r i u
m

K1~2lur2r i u!r dr dw51

~7!

whereK1(x) is the second kind modified Bessel function
the first order.

The expectation value ofHe is given by

^F~r,z!uHeuF~r,z!&5T1U ~8!

with
T5
~\x0

1!2

4m* R22
\2l2

2m*
1

4\2l2N2

2m* m E @J0~x0
1r/R!#2K0~2lur2r i u!r dr dw

2
4\2x0

1N2l2

2m* m E J0S x0
1r

R D J1S x0
1r

R DK0~2lur2r i u!~r2r i cosw!r dr dw

1
2\2lN2

2m* m E J0S x0
1r

R D Fx0
1

R
J1S x0

1r

R D 2
~x0

1!2r

2R2 J2S x0
1r

R D GK1~2lur2r i u!ur2r i udr dw

1
\2~m22l2!

2m*
N2E FJ0S x0

1r

R D G2

m2z2
exp@22Al2ur2r i u21m2z2#

l2ur2r i u21m2z2 r dr dw dz ~9!

and
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2N2e2

e E FJ0S x0
1r

R D G2exp@22Al2ur2r i u21m2z2#

Aur2r i u21z2
r dr dw dz . ~10!
e

th
e
o
e
n
el

ith

lle

n

e-
ion

ive
ge

f

The ground-state energy of the impurity state is obtain
by minimizing the expectation value of the HamiltonianHe
according to the variational parametersl andm:

E5min
m,l

^F~r,z!uHeuF~r,z!& . ~11!

The impurity binding energy is given by

Eb5E0
12E5~\x0

1!2/2m* R22E . ~12!

3. THE ELECTRON-PHONON INTERACTION
HAMILTONIAN

Before we proceed to investigate the influence of
electron-phonon interaction on the impurity, we should d
rive the phonon Hamiltonian as well as the electron-phon
interaction Hamiltonian for the cylindrical quantum wir
first. This is also of practical interest to other phono
attending processes such as the scattering of conducting
trons by phonons.

We will use the dielectric continuum model and start w
the electrostatic equations

¹•D54pr0~r !, ~13!

D5eE5E14pP, ~14!

E52¹f~r !, ~15!

wherer0(r ) is the charge density. For free oscillation~i.e.,
r050), we have

e¹2f~r !50. ~16!

A. Confined LO phonon modes

There are two solutions for Eq.~16!. The first is e50
inside the wire. Since

e~v!5e`1
e02e`

12v2/vTO
2 ~17!

e(v)50 gives

v25vTO
2 e0

e`
5vLO

2 , ~18!

in which we have made use of the Lyddane-Sachs-Te
relation, i.e., for the solution ofe(v)50, one obtained a bulk
LO phonon vibration mode. The eigen function of the co
fined LO mode inside the wire can be chosen as

fml~r !5H CmlJm~Qmlr!exp@ imw#exp@ iqzz#, r<R

0, r.R
~19!
d

e
-
n

-
ec-

r

-

where Jm(x) is the Bessel function of themth order, and
Qml5xm

l /R, wherexm
l is the l th zero ofJm(x).

The polarization vectors for the confined LO mode are

PLO
ml 5

1

4p
¹fml~r !

5
Cml

4p H 1

2
@Jm21~Qmlr!2Jm11~Qmlr!#Qmler

1Jm~Qmlr!
im

r
ew

1Jm~Qmlr!iqzezJ eimweiqzz. ~20!

To find the expression for the Hamiltonian of the fre
phonon field, we start from the dynamic equations of mot
of the crystal lattice:

mü52mv0
2u1eEloc , ~21!

P5neu1naEloc, ~22!

where m is the reduced mass of the ion pair andu5u1

2u2 is the relative displacement of the positive and negat
ions, v0 is the frequency associated with the short-ran
force between ions,Eloc is the local field at the position o
the ions,n is the number of ion pairs per unit volume, anda
is the electronic polarizability per ion pair.

The Hamiltonian of the free vibration is given by

Hph5
1

2 E @nmu̇•u̇1nmv0
2u•u2neu•Eloc#d

3r . ~23!

Since

Eloc52
8

3
pP ~24!

we have

u5
11 8

3 pna

ne
P ~25!

then we may write

HLO5
1

2 E FnmS 11 8
3 pna

ne
D 2

Ṗ* •Ṗ

1nmvLO
2 S 11 8

3 pna

ne
D 2

P* •PGd3r . ~26!

Since
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E PLO
m8 l 8*

•PLO
ml d3r 5uCmlu2

L

8p H 1

2
~xm

l 21R2qz
2!Jm11

2 ~xm
l !J

3dmm8d l l 8dqzqz8
, ~27!

whereL is the length of the quantum wire. If we chooseCml
to be

Cml5S 8p

nmL D 1/2 ne

11 8
3 pna

3H 1

2
~xm

l 21R2qz
2!Jm11

2 ~xm
l !J 21/2

~28!

thenPLO
ml may form an orthonormal and complete set, whi

can be used to expressP in

P5 (
mlqz

S \

vLO
D 1/2

@aml~qz!1aml
† ~qz!#PLO

ml ~r !, ~29!

Ṗ52 i (
mlqz

~\vLO!1/2@aml~qz!2aml
† ~qz!#PLO

ml ~r !. ~30!

P and Ṗ are now quantum field operators.aml
† (qz) and

aml(qz) are the creation and annihilation operators for
LO phonon of themlqz mode. They satisfy

@aml~qz!,am8 l 8
†

~qz8!#5dmm8d l l 8dqzqz8
, ~31!

@aml~qz!,am8 l 8~qz8!#5@aml
† ~qz!,am8 l 8

†
~qz8!#50. ~32!

Then the Hamiltonian operator for the confined LO phono
will be

HLO5 (
mlqz

\vLOFaml
† ~qz!aml~qz!1

1

2G . ~33!

The interaction Hamiltonian between the electron and
phonon field is

He-ph52ef~r !. ~34!

f(r ) could be expanded in terms of the normal modes, s

He-LO52 (
mlqz

FGLO
ml ~qz!JmS xm

l r

R Deimwe2 iqzzaml
† ~qz!1H.c.G ,

~35!

where

uGLO
ml u25

4e2\vLO

LJm11
2 ~xm

l !~xm
l 21R2qz

2!
S 1

e`
2

1

e0
D . ~36!

B. Interface phonon modes

Another solution for Eq.~16! is

¹2f~r !50. ~37!

This will give the IO modes witheÞ0 inside the quantum
wire. The solution for Eq.~37! is
e

s

e

f~r !5AmeimweiqzzH Km~qzR!I m~qzr!, r<R

I m~qzR!Km~qzr!, r.R
~38!

whereKm(x) and I m(x) are the first and second kind mod
fied Bessel functions, respectively. The boundary condit
at r5R is ~suppose the material outside the quantum wire
nonpolar material with dielectric constanted)

e~v!
]f1

]r
5ed

]f2

]r
. ~39!

Then we get

e~v!52
I m~qzR!@Km21~qzR!1Km11~qzR!#

Km~qzR!@ I m21~qzR!1I m11~qzR!#
ed. ~40!

The frequency of the IO vibration can be obtained throu
Eq. ~17!, i.e.,

v25F11
e02e`

e`2e GvTO
2 . ~41!

The polarization field for the IO phonon modes are

PIO
m 5

12e

4p
¹@AmKm~qzR!I m~qzr!eimweiqzz#

5
12e

4p
AmKm~qzR!H 1

2
qz@ I m21~qzr!1I m11~qzr!#er

1
im

r
I m~qzr!ew1 iqzI m~qzr!ezJ eimweiqzz. ~42!

From Eqs.~21! and ~22!, we have

Eloc5
m

e
~v0

22v2!u, ~43!

u5
P

ne@11~am/e2!~v0
22v2!#

. ~44!

Following Eq. ~23!, we obtain the Hamiltonian for the IO
phonon

H IO5
1

2 E d3r FnmS 1

ne@11~am/e2!~v0
22v2!# D

2

Ṗ* "Ṗ

1nmv2S 1

ne@11~am/e2!~v0
22v2!# D

2

P* "PG .
~45!

Since
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E PIO
m*

•PIO
m8d3r 5

~12e!2qzRL

16p
Am

2 Km
2 ~qzR!I m~qzR!

3F qzR

2~m21!
[ I m22~qzR!2I m~qzR!]

1
qzR

2~m11!
([ I m(qzR)

2I m12(qzR)] Gdmm8dqzqz8
. ~46!

We may chooseAm to be

uAmu25
n2e2@11~am/e2!~v0

22v2!#2

nm~12e!2

3
16p

LKm
2 ~qzR!I m~qzR!qzR@ I m21~qzR!2I m11~qzR!#

,

~47!

or

uAmu25
4v2

LKm
2 ~qzR!I m~qzR!qzR@ I m21~qzR!2I m11~qzR!#

3F 1

e2e0
2

1

e2e`
G ~48!

in which we have made use of the following relations:13

vp
254pne2/m, ~49!

12
4

3
pna5

vp

vTO

1

Ae02e`

, ~50!

11
8

3
pna5

vp

vTO

e`

Ae02e`

. ~51!

Then PIO
m may form an orthonormal and complete set. W

may expressP as

P5(
mqz

S \

v D 1/2

@bm~qz!1bm
† ~qz!#PIO

m , ~52!

Ṗ52 i(
mqz

~\v!1/2@bm~qz!2bm
† ~qz!#PIO

m , ~53!

wherebm
† (qz) and bm(qz) are the creation and annihilatio

operators of the IO phonon with frequencyv. They satisfy

@bm~qz!,bm8
†

~qz8!#5dmm8dqzqz8
, ~54!

@bm~qz!,bm8~qz8!#5@bm
† ~qz!,bm8

†
~qz8!#50. ~55!

The Hamiltonian operator for the IO phonons is

H IO5(
mqz

\vFbm
† ~qz!bm~qz!1

1

2G . ~56!

Following Eq.~34! we get
He-IO52(
mqz

@G IO
m ~qz!e

imwe2 iqzzbm
† ~qz!1H.c.#

3H Km~qzR!I m~qzr!, r<R

I m~qzR!Km~qzr!, r.R
~57!

where

uG IO
m u25

4e2\v

LKm
2 ~qzR!I m~qzR!qzR@ I m21~qzR!1I m11~qzR!#

3S 1

e2e0
2

1

e2e`
D . ~58!

IV. THE BOUND POLARON BINDING ENERGY

Now we consider the polaron effect on the impuri
~which is known as bound polaron! state. The Hamiltonian
of the system can be written as

H5He1Hph1He-ph, ~59!

where He , which is the impurity Hamiltonian, is given in
Eq. ~1!. The second term is the phonon Hamiltonian:

Hph5HLO1H IO5 (
mlqz

\vLO@aml
† ~qz!aml~qz!1 1

2 #

1(
mqz

\v@bm
† ~qz!bm~qz!1 1

2 #. ~60!

The third term is the electron-phonon interaction Ham
tonian given by

He-ph5He-LO1He2IO ~61!

in which He-LO and He-IO are given by Eqs.~34! and ~57!,
respectively. We will use the variational method in our c
culation. The trial wave function is chosen to be

uC&5F~r,z!Su0&. ~62!

F(r,z) is given in equation~5!, u0& is the phonon vacuum
state, whileS is defined by

S5expS (
mlqz

@ f ml
LO~qz!aml

† ~qz!2 f ml
LO* ~qz!aml~qz!#

1(
mqz

@ f m
IO~qz!bm

† ~qz!2 f m
IO* ~qz!bm~qz!#G . ~63!

The unitary operatorS transforms the phonon operator a
follows:

S†aml
† ~qz!S5aml

† ~qz!1 f ml
LO* ~qz!, ~64!

S†aml~qz!S5aml~qz!1 f ml
LO~qz!. ~65!

S†bm
† ~qz!S5bm

† ~qz!1 f m
IO* ~qz!, ~66!

S†bm~qz!S5bm~qz!1 f m
IO~qz!. ~67!

The expectation value ofH is
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^CuHuC&5T1U1 (
mlqz

u f ml
LO~qz!u21(

mqz

u f m
IO~qz!u2

1 (
mlqz

FGLO
ml ~qz!^F~r,z!uJmS xm

l r

R D
3eimwe2 iqzzuF~r,z!&1H.c.G1(

mqz

@G IO
m ~qz!

3^F~r,z!ug~qz ,r!eimwe2 iqzzuF~r,z!&1H.c.#

~68!

where

g~qz ,r!5H Km~qzR!I m~qzr!, r<R

I m~qzR!Km~qzr!, r.R.
~69!

Minimizing ^CuHuC& with respect to f ml
LO* (qz) and

f m
IO* (qz), respectively, one obtains

f ml
LO~qz!52Gml

LO~qz!^F~r !uJ0S xm
l

R
r Deimwe2 iqzzuF~r !&,

~70!

f m
IO~qz!52Gm

IO~qz!^F~r !ug~qz ,r!eimwe2 iqzzuF~r !&.
~71!

Inserting Eqs.~70! and ~71! into Eq. ~68!, we get

^CuHuC&5T1U2DELO2DEIO ~72!

with

DELO5 (
mlqz

1

\vLO
uGml

LO~qz!u2

3U^F~r !uJ0S xm
l

R
r Deimwe2 iqzzuF~r !&U2

~73!

and

DEIO5(
mqz

1

\v
uGm

IO~qz!u2

3 z^F~r !ug~qz ,r!eimwe2 iqzzuF~r !& z2. ~74!

T andU are defined in Eqs.~9! and~10!, respectively. The
ground-state energy of the system is calculated by Eq.~72!:

E5min
l,m

^CuHuC&. ~75!

Similar to Sec. II, the impurity binding energy with pho
non contribution is given by

Eb5E0
12E5~\x0

1!2/2m* R22E ~76!

but the meaning ofE is not the same as that in Eq.~12!

V. RESULT AND DISCUSSION

B. Impurity binding energy

We performed numerical calculation on the impur
binding energy with Eqs.~8!–~11!. In Fig. 1, we plotted the
impurity binding energy~solid line! as a function of the ra-
dius of the QWW~R!, the impurity is at the center. We chos
the effective atomic unit so that the unit of length is t
effective Bohr radiusa0* 5e\2/m* e2 and the unit of energy
is the effective RydbergRg5m* e4/2\2e2, which are about
100 Å and 5.25 meV, respectively, for GaAs. We can s
from Fig. 1 that the impurity binding energy declines as t
radius of the QWWR increases, and approaches 1Rg , which
is the three-dimensional limit, when the radius of the QW
is quite large. The variational parametersm and l changes
with changingR ~see Fig. 2!. They are not the same until th
radiusR is sufficiently large~see the curve ofm/l in Fig. 2!
indicating that the system of QWW is not isotropic in mo
of the cases. The ratiom/l increases quickly as the radiusR
reduces, showing that the system is approaching the o
dimensional limit as the radius of the QWW reduces. In F
3 we compare our results with that of Brown and Specto6

which was obtained based on a one-parameter trial w
function. We could see that for the quantum wire with lar
radius, the two methods give the same value for the impu
binding energy. However, when the quantum wire is narro
the difference between the two methods becomes obvi
Our method gives a larger impurity binding energy~about
6% higher than that of Brown and Spector!, or, a lower im-
purity ground-state energy. According to the variational pr
ciple of quantum mechanics, the present method gives a
ter result. So it is quite necessary to adopt biparame
variational trial wave function for the low-dimensional sy
tems such as the quantum wire and quantum-well structu
In Fig. 4, we plotted the impurity binding energy as a fun
tion of the impurity position; the radius of the QWW is
a0* . One could find out that the impurity binding energ
decreases as the impurity shifts away from the center.
have also plotted the impurity binding energy as a funct
of the radiusR when the impurity positions atr i50.5R ~see

FIG. 1. The binding energies of impurity, without phonon co
tribution ~solid curves!; and bound polaron, i.e, with phonon con
tribution ~dashed curve! as functions of the radius of the quantu
wire.
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Fig. 1!. We could see that the binding energy is smaller
an off-center impurity compared with that when the impur
is at the center of the quantum wire. However, this differen
vanishes whenR is large, showing that the system is no
three dimensional in nature, consequently the translatio
symmetry holds.

B. Bound polaron binding energy

The calculation of the bound polaron binding energy w
carried out for a free-standing QWW of GaAs. The para
eters of the wire material arem* 50.067m0 (m0 is the free-
electron mass!, \vLO536.25 meV, \vTO533.29 meV,e0

FIG. 2. Variational parameters as functions of the radius of
quantum wire.

FIG. 3. The impurity binding energy calculated by using diffe
ent variational trial wave functions. Solid line, this work; dash
line, Brown and Spector.
r

e

al

s
-

513.18, e`510.89. The impurity binding energy with th
influence of the LO and IO phonons, which is also called
bound polaron binding energy, is calculated as a function
the radiusR. In order to show the phonon influence on th
impurity binding energy, we plotted the bound polaron bin
ing energy~dashed curve;r i50) together with that without
phonon contribution in Fig. 1. We have to convert the ene
unit from meV toRg so that they are comparable. Resu
show that the phonon influence becomes stronger as radiR
decreases. The phonon contribution to the binding ene
could reach as high as 23.1% at very narrow GaAs QWW
should be noted that the coupling between the electron

e FIG. 4. Binding energies of: impurity~solid curve! and bound
polaron ~dashed curve! as functions of the impurity position atR
51a0* .

FIG. 5. Contributions of different phonon modes to the bou
polaron binding energy as functions of the quantum wire.
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phonons is considered to be weak in GaAs. So it is impor
for us to pay attention to the influence of phonon on
physical properties of the QWW structure. Or we may s
that there is no ‘‘weak coupling’’ between the electron a
phonons in the QWW systems. In order to find out the ro
of different phonon modes in the total phonon contributing
the bound polaron binding energy, we plotted the contri
tions of different phonon modes separately in Fig. 5. We
see from Fig. 5 that the contribution of the IO phono
(DEIO) plays an important role in the bound polaron bindi
energy, especially when the QWW is narrow.DEIO increases
quickly as the radiusR reduces. As the radiusR gets smaller,
the interface of the QWW gets closer to the electron, he
the interface phonons impose greater influence on the e
tron, resulting in a stronger coupling. In comparison w
that of the IO phonon, the contribution of confined LO ph
non to the impurity binding energy is far less important.
does not change a lot when the radiusR changes. WhenR is
very large, the influence of IO phonons becomes very w
and the influence of the LO phonon becomes domina
which is just the case of three dimensional bulk material

VI. SUMMARY

In this paper, we have calculated the ground-state ene
and binding energy of an impurity in a cylindrical quantu
s

nt
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n

e
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-
t

k
t,

gy

well wire. In order to reflect the anisotropy of the QWW
system, we adopted a two-parameter trial wave function
the variational calculation. Results show that the binding e
ergy of the impurity increases greatly as the radius of t
QWW reduces. The change of the variational paramet
with R indicates that for the low-dimensional systems, it
necessary to take the anisotropic nature of the system
consideration when constructing the variational trial wa
functions. In order to investigate the influence of optical ph
non on the impurity binding energy, we derived the phon
Hamiltonian and the Fro¨hlich Hamiltonians of the electron-
phonon interaction for the confined LO phonon modes a
the interface phonon modes. Calculations on the Ga
QWW shows that the phonon-electron interaction m
strongly influence the impurity binding energy. For a ve
narrow GaAs QWW, the contribution of electron-phonon i
teraction to the impurity binding energy may be up to
much as 23%. Calculations also show that as the radius
the QWW reduces, the influence of the interface phonon
comes a dominant factor influencing the impurity bindin
energy.
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