PHYSICAL REVIEW B VOLUME 61, NUMBER 7 15 FEBRUARY 2000-I

Compressible anisotropic states around the half-filled Landau levels
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Using the von Neumann lattice formalism, we study compressible anisotropic states around the half-filled
Landau levels in the quantum Hall system. In these states the unidirectional charge-densityy@BW)
state seems to be the most plausible state. The charge-density profile and Hartree-Fock energy of the UCDW
are calculated self-consistently. The wavelength dependence of the energy for the UCDW is also obtained
numerically. We show that the UCDW is regarded as a collection of the one-dimensional lattice Fermi-gas
systems which extend to the uniform direction. The kinetic energy of the gas system is generated dynamically
from the Coulomb interaction.

[. INTRODUCTION studying the quantum Hall system with the periodic
potential?®?! The lattice structure of the von Neumann lat-
Two-dimensional electron systems in a strong magnetidice can be adjusted to the periodic potential by varying the
field have been providing various fascinating phenomena fofodular parameter of the unit cell. In the present case the
the last two decades of this twentieth century. The integePeriodic potential is caused by the charge density modulation
quantum Hall effedt (IQHE) and fractional quantum Hall through the Coulomb interactidA=2*If the translational in-
effecf (FQHE) are observed around the integral filling factor variance on the lattice is unbroken, a Fermi surface is
and rational filling factor with an odd denominaforespec- ~ formed. o
tively. These effects are caused by the formation of the in- [N the Hartree-Fock approximation, we show that the self-
compressible liquid state with a finite energy gap. The IQHECONSistency equation for the CCDW has two types of solu-
state has a Landau_|eve| energy gap or Zeeman energy gasn at- half'ﬂl“ng. One has a be|t-Shaped Fe-rm| sea corre-
and the FQHE state has an energy gap due to the Cou|0nﬁp0nd|ng to the UCDW and the other has a d|am0nd'5haped
interaction* Remarkable progress of the composite fermionFérmi sea corresponding to the CWC. For the belt-shaped
(CP) theory® for the FQHE shed light on the Fermi-liquid- Fermi sea, one direction of the momentum space is filled and
like state at the half-filled lowest Landau level. Evidence forthe other direction is partially filled. Therefore the UCDW is
the Fermi-liquid-like state was obtained in many regarded as a collection of the one-dimensional lattice

experimentg. It is believed that the state is a compressibleFermi-gas systems, which was called the quantum Hall gas

isotropic state and has a circular Fermi surface. (QHG) in Ref. 24. In the UCDW state, there are two length
Recent experiments at the half-filled Landau levels havécales, the wavelength of the UCDWgpy, and the Fermi

revealed the anisotropic nature of the compressible states. Atavelength of the lattice fermions,r. These two param-

the half-filled third and higher Landau levels, a highly aniso-€ters obey a duality relation. We obtain the wavelength de-

tropic behavior was observed in the magnetoresistiné¢. ~ pendence of the energy. Moreover, we calculate the kinetic

the half-filled lowest and second Landau levels, a transitiorgnergy of the gas system.

to the anisotropic state was also observed in the presence of The paper is organized as follows. In Sec. Il, the Hartree-

the periodic potentid? and in-plane magnetic fiefh;'2re-  Fock energy for the CCDW states is calculated. The density

spectively. Although the origin of the anisotropy is still un- profile, wavelength dependence of the energy, and the ki-

known, the unidirectional charge-density waygCDW) netic energy of the UCDW are obtained in Sec. Ill. The

state is a candidate for the anisotropic state. Theoreticgummary and discussion are given in Sec. IV.

works in higher Landau levels showed the possibility of the

UCDW.**Recent theoretical works in I0Y¥7er Landau levels || | ARTREE-FOCK ENERGY FOR THE CCDW STATE:

support the UCDW or liquid-crystal staté-1’In this paper UCDW VERSUS CWGC

we investigate the compressible charge-density-wave

(CCDW) states, which include the UCDW state and com- In this section we construct the CCDW state in the

pressible Wigner crysta]CWC) state, in the several lower Hartree-Fock approximation using the formalism developed

Landau levels. As a result, the UCDW states are found to b& Ref. 24. Let us consider the two-dimensional electron sys-

the lowest-energy states in the CCDW states at the half-filletem in a perpendicular magnetic fieRlin the absence of

Landau levels. impurities. The electrons interact with each other through the
The CCDW state is a gapless state with an anisotropi€oulomb potentiaM(r)=q?/r. In this paper we ignore the

Fermi surface and has a periodically modulated charge derspin degree of freedom and use the natural unfi efc=1.

sity. Using the von Neumann lattit®'® representation, we In the Ith Landau-level space, the free kinetic energy is

construct the CCDW state and calculate the charge-densityuenched as (1 +1/2), 1=0,12...,wherew,=eB/m.

profile and Hartree-Fock energy self-consistently. The von In the von Neumann lattice formalisti;?! the electron

Neumann lattice representation has a quite useful property ifield is expanded as
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Here V(k)=2mq%/k for k#0 and V(0)=0 due to the
charge neutrality conditionX is a position of the Wannier
basis in the real space, that &= (rm-+n/r tané,n/r) for

alr X=(m,n).
By Fourier transforming Eq(3), we obtain the self-
0 consistency equations for the kinetic energyas
e <p7>=f O (o~ p) B (0" ), (®
ra (AN BZ(27T)2 | M | ) )
FIG. 1. The unit cell of the von Neumann lattice spanned by the
vectorse, ande,. __f d’p 9 — .
V= | )R (n1—e&i(p,v)), (7)

w(r)_LEx DI X) Wi (1), @ where, is the chemical potential ang{™™ is defined by
whereb is an anticommuting annihilation operator aKds

an integer-valued two-dimensional coordinate. The Wannier viF(p)=2, {(vi2m(X))—v (X)}e P, 8
base function®V, x(r) are orthonormal complete basis in the X
Ith Landau levef! Expectation values of the position of
W, x(r) are located at two-dimensional lattice site®e,
+ne, for X=(m,n), where e =(ra,0), &
=(alr tand,alr), anda= \27/eB. The area of the unit cell
is e; X e,=a?, which means that a unit flux penetrates the
unit cell of the von Neumann lattice. The unit cell is illus-
trated in Fig. 1. For simplicity we set=1 in the following

Equations(6) and(7) determine a self-consistent Fermi sur-
face. Existence of a Fermi surface breaks kh@&variance
inevitably. The mean value of the kinetic enerdy,)

= [gz£/(p)d?p/(27)? is equal to—v,(0)v, which is inde-
pendent of and #. The energy per particle in th¢éh Landau
level is calculated as

calculation. 1
The Bloch wave basis, which is given by, ,(r) h__— 207 Y v (%
=3xW, x(r)e'P%, is another useful basis on the von Neu- E 27; VICOIAVI2mX) =i (X)) ©

mann latticé* The lattice momentunp is defined in the B
Brillouin zone (BZ), |p;|=< . The wave functiony, ,(r) ex-  E(" is a function ofv, r, and 6. The parametersand ¢ are
tends over the entire plane and its probability density has thgetermined so as to minimize the eneiEl) at a fixedy.

same periodicity as the von Neumann lattice. There are two types of the Fermi sea that satisfy Egjs.

_In the momentum space, the system has a translationgl, (7). The one is a belt-shaped Fermi sea illustrated in Fig.
invariance;* which is referred to as thi invariance in the 2(a), that is, |py|<pg. This solution corresponds to the
1 ’ yl= -0

CF modef® In the following, we show that symmetry break- - . .
ing of theK invariance generates a kinetic energy and leads’CPW state. Atv=I+v, the Fermi wave numbepe. is

We consider a mean-field state of filling factoe=1 +v Sin(pgn)
wherel is an integer and € v<<1. Let us consider a mean U (X)= 5m,O—F, (10
field for the CCDW that has translational invariance on the mn
von Neumann lattice as for X=(m,n). We taked= /2 for the UCDW without los-
U|(X—X’)=<b|*(x’)b,(X)) ) ing generality because the system has the rotational invari-

ance. Then the charge density of the UCDW is uniform in
and U|(0):; |gnoring the Landau-level energy and the they direction and oscillates in thedirection with a wave-
inter-Landau-level effect, the Hartree-Fock HamiltonianlengthAcpw=ra. In they direction, pe corresponds to the
within the Ith Landau IeveHﬂ),: reads Fermi wave numbekg=pgr/a=mvr/a in the real space.
The duality relation betweeRg=27/kg and\cpy=ra ex-
(- BRIV SN (YT ists. NamelyA p\ cpw=2a%/v. In the CF model, the compos-
A x,Exr Ui =X0w2m(X =X = (X =XD) ite fermion has a wave numbkg=\27/a at v=1/2. In the
+ 1 , UCDW state forr=1.636, which minimizes the energy at
by (B (XT) =2 (X" =X} ® v=1/22* 7vr equals 2.57, which is very close to the value
where J27=2.51. This implies that there exists unknown connec-
K212 tion between the CF state and the UCDW state. -
Vl(k):[h(—)] e‘k2’4“V(k), (4) The other Fermi sea that satisfies E(®. and (7) at v
4m =1/2 is a diamond-shaped sea illustrated in Fidn)2This
) solution corresponds to the CWC state whose density is
v (X)=f dok T (k)elk X 5) modulated with the same periodicity as the von Neumann
! (2m7)2"! ' lattice. The mean field of the CWC becomes



4768 NOBUKI MAEDA PRB 61

|

a

|

S
Density profile

=

2

(b) Py -1 =2 0 2 4

FIG. 3. The density profile functiop(x) for v=0, 0.5, 1, 1.5,
2, 2.5, and 3. The units gf andx area 2 anda, respectively.

-n T p length\ cpw=ra increases with the increasihgrhis behav-

X ior is consistent with the numerical calculation in finite
systems® The Hartree-Fock calculation in the higher Lan-
dau levet**predicts\ cpy=2.7~2.9y21 + 1l 5 . Our results
agree with this at=1,2,3. Atl=0, however, our result is
0 much smaller than this.

At v=1/2, the energy of the UCDW state is slightly
higher than the value of the charge-density wa@®W)
with gap calculatiorf” In the gapful CDW state, the higher-
order correction is small because of the energy gap. In the
2 sin(w/2)(m+n)]sin(7/2)(m—n)] UCDW state, however, the correction might be large com-

pared with the CDW state. Therefore it is necessary for a
(12) mhore definfitelccj:oni:lﬁsior;]tohincludke fluctugtion edffehcts around]c
i _ the mean field. Although this task goes beyond the scope o
for X=(m,n). Substituting Eqs(10) and (11) into EQ.(9), s paper, the Hamiltonian on the von Neumann lattice
we calculate the energy for various CCDW statesatl/2.  could be useful to study fluctuation effects.
By varying the parametensand ¢, we obtained the lowest
energy numerically.

The results are summarized in Table I. The unit of the
energy isq?/lg andlg=/1/eB. As seen in the table, the In this section, we calculate the density profile of the
UCDW state is the lowest-energy state in all cases. Thereford CDW and wavelength dependence of the energy. The den-
the UCDW state is the most plausible state in the CCDWsity of the electron fow=1+1/2 reads
states. For the CWC staté= 7/2 corresponds to a rectan-
gular lattice andd= 7/3 to a triangular lattice. {= /2 and (=1+ Jw dpy (2 dpy

p(r)= X -y

FIG. 2. (a) The belt-shaped Fermi séahaded regionfor the
UCDW at half-filling. (b) The diamond-shaped Fermi séshaded
region for the CWC at half-filling.

U|(x):(77)2 m2_n2

IIl. PROPERTY OF THE UCDW STATES

. 2
r=1 means a square lattice afi¢t /3 andr = 1.075 means [up p(r)]%. (12

. . 77277 771'/2277
a regular triangular lattice For the UCDW state, the wave-

. 2 . . . . .
TABLE I. Minimum energy and corresponding parametdor S'nce|u'vp(r)| is a periodic funqtlor! op in the BZ and
the CCDW states at=1+1/2. For the CWC states, the energies at depends only on the qomb_'nat'or_] of + (p_y/277_) €1
9= /2 (rectangular latticeand =/3 (triangular lattice are shown.  — (Px/2m)&, p of Eqg. (12) is uniform in they direction.

The units of the energy andare g%z anda, respectively. Here we takee;=(r,0) ande,=(0,1f) for 6=m/2. The
translation in the momentum space is equivalent to the trans-

| E ucow Ecwc(/2) Ecwc(/3) lation of the charge density of the CCDW. Therefore the
symmetry breaking of th& invariance is same as the sym-

0 —0.4331 —0.3939 —0.3891 metry breaking of the translational invariance in the real

1 —0.3490 —0.3122 —0.3110 space.

2 —0.3074 —0.2715 —0.2703 The density profiles for the UCDW at the half-filldth

3 —0.2800 —0.2448 —0.2436 Landau level of =0,1,2 are plotted in Fig. 3. The unit of the

| f ucow fewd 712) Fewd(713) densit_y isf'sl‘2 and the Wa_lvele_ngt_hCDW=ra in Tgble I is
used in Fig. 3. As seen in this figure, the amplitude of the

0 1.636 1.000 1.295 wave decreases with the increasing

1 2.021 1.000 1.075 To minimize the energy, we calculated thelependence

2 2.474 1.000 1.075 of the energy, which is plotted in Fig. 4. As seen in Fig. 4, a

3 2.875 1.205 1.335 quasistable state appears fer2 nearr =1 and ther depen-

dence of the energy becomes flattenedl agrows. This
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2

e

2 Oyy= nxz, (16)
6]
'43 wheren, is a humber of the one-dimensional channels that
8 extend from one edge to the other edge. If we takg
5 = ve?/27r, the resistance becomes
o,
v Ny 2
g Px=72 g7 (17)
o
3}

pyy=0. (18

Thus the formation of the UCDW leads the anisotropy in the
magnetoresistance. Forv=9/2, 2mw/e?*»?*=1.3x10°Q),
FIG. 4. The energy per particiE() as a function of for v=| which is of the same order as the experimental vaiie0
+1/2. The units of energy am?/|. x10° Q. Disorder effects decrease, by destroying the
UCDW ordering. Furthermore, the backscattering effect due
means that the UCDW state for2 has flexibility against to impurities reducesr,, and p,. In the case for edge
disorder effect. This observation agrees with the absence @hodes in the quantum Hall regime, there is no backscattering
the spontaneous formation of the anisotropic state ot . because of the chirality. The left-mover lives on one edge far
The kinetic energy,(p,v) for the UCDW is written as  from the other edge where the right-mover lives. For the
UCDW state, on the other hand, each one-dimensional sys-
— (7 dpg [ APye e tem has the width ofa at most. Therefore the backscattering
8|(I0.V):f 277f SV (p" —p). (13)  effect strongly affects on the conductance in the UCDW.

T o To conclude this section, we point out a subtle problem
concerned with th& invariance and the sliding mode. In an
ordinary one-dimensional system, the difference of the
chemical potentials between the left and right edge of the
Fermi sea yields the net electric current. In the one-
dimensional system of the UCDW, however, the difference
of the chemical potentials can be canceled out by sliding the
Fermi sea in Egs(6) and (7), thanks to theK invariance.
dp Then there is no net electric current. This contradicts the

(- Yot I above assertion apparently. As mentioned before, the trans-

K % f 27 AmPy)eiPy )3 m(Py). - (14) lation in the momentum space is equal to the translation of

. the charge density in the real space. In other words, to slide

where a; ,(py) =Zpby(X)e™ ™" for X=(m,n). Therefore he Fermi sea is the same as to slide the CCDW in the real
the UCDW state is regarded as a collection of the Onegpace. The sliding mode is expected to be pinned by impu-

dimensional lattice Fermi-gas systems which extend toythe rities, Therefore the violation of th invariance due to pin-
direction. In the Buttiker-Landauer formutd,the conduc- ning of the CCDW can remedy the contradiction.

tance of a one-dimensional channel is equaé@ in the
absence of the backscattering effect. Thus the conductance of
the UCDW have an anisotropic value as

This is independent op, after integration and we denote
gi(p,v)=¢/(py,v). £(py,1/2) forl=0, 1, and 2 are shown
in Fig. 5. As seen in Fig. 5, the bandwidkh decreases with
the increasind, that is,I'3=0.7363, I'1=0.5682, andl",
=0.5042 in the unit ofg?/lg. Using the mean field of Eq.
(10), the kinetic term irH{!) is written as

IV. SUMMARY AND DISCUSSION

In this paper we have studied the CCDW state whose

Txx=0, (15  periodicity of the charge density coincides with that of the
von Neumann lattice. The CCDW state is gapless and has an
of anisotropic Fermi surface. We obtained two types of the
CCDW state, the UCDW state and CWC state. By calculat-
o, ~0.2f ing the Hartree-Fock energy, the UCDW is found to have a
g lower energy at the half-filled Landau levels. Furthermore,
2 0.4 the wavelength dependence of the energy, the density profile,
g and the kinetic energy of the UCDW are calculated numeri-
T 0.6 cally. As a result, it is found that the amplitude of the
g UCDW and bandwidth of the Landau level decrease with the
< 0.8 increasing and a quasistable state appearslfep.

The UCDW state has a belt-shaped Fermi sea. Conse-
quently the system consists of many one-dimensional lattice
Fermi-gas systems that extend to the uniform direction. For-
mation of this structure could be the origin of the anisotropy
observed in experiments. To confirm this speculation, experi-

FIG. 5. The kinetic energy,(p,,1/2) forI=0, 1, and 2. The ~mental works for detecting the wavelength of the UCDW
units of energy arg?/|. and theoretical works to include fluctuations around the
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mean-field solution are necessary. Since there is no energluctance is probably the Chern number of the periodic po-
gap in the CCDW state, the fluctuation effect might be largeential problem. The transition between this CDW with gaps
compared with the CDW state with gaps. Actually Fradkinand the CCDW studied in this paper is an interesting future
and Kivelsol® proposed a rich phase diagram by consider-problem.
ing fluctuations around the stripe-ordered state. We believe
that the von Neumann lattice formalism presents an appro-
priate scheme to study the fluctuation effects around the
mean field. I would like to thank K. Ishikawa, T. Ochiai, and J. Goryo
Recently a new insulating state was discovered around thi®r useful discussions. | also thank Y. S. Wu and G. H. Chen
quarter-filled third Landau levéP This state seems to have for helpful discussions. This work was partially supported by
gaps and an integral quantized Hall conductance. These fadise special Grant-in-Aid for Promotion of Education and Sci-
suggest that the state is a CDW state with gaps that arence in Hokkaido University provided by the Ministry of
different from the CCDW. The CDW state whose periodicity Education, Science, Sports, and Culture, the Grant-in-Aid for
is g/p times that of the von Neumann lattice has gaps andcientific Research on Priority aré@hysics of CP violation
hasq bands withp-fold degeneracy’?* In the presence of a (Grant No. 11127201 the Grant-in-Aid for Basic Research
magnetic field and periodic potential, the Hall conductancgGrant No. 10044043 and the special Grant for Basic Re-
of the free-electron system in the gap region is equal to theearch(Hierarchical matter analyzing systgifinrom the Min-
Chern numbef®?! Thus the observed quantized Hall con- istry of Education, Science, Sports, and Culture, Japan.
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