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Compressible anisotropic states around the half-filled Landau levels

Nobuki Maeda
Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
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Using the von Neumann lattice formalism, we study compressible anisotropic states around the half-filled
Landau levels in the quantum Hall system. In these states the unidirectional charge-density wave~UCDW!
state seems to be the most plausible state. The charge-density profile and Hartree-Fock energy of the UCDW
are calculated self-consistently. The wavelength dependence of the energy for the UCDW is also obtained
numerically. We show that the UCDW is regarded as a collection of the one-dimensional lattice Fermi-gas
systems which extend to the uniform direction. The kinetic energy of the gas system is generated dynamically
from the Coulomb interaction.
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I. INTRODUCTION

Two-dimensional electron systems in a strong magn
field have been providing various fascinating phenomena
the last two decades of this twentieth century. The inte
quantum Hall effect1 ~IQHE! and fractional quantum Hal
effect2 ~FQHE! are observed around the integral filling fact
and rational filling factor with an odd denominator,3 respec-
tively. These effects are caused by the formation of the
compressible liquid state with a finite energy gap. The IQ
state has a Landau-level energy gap or Zeeman energy
and the FQHE state has an energy gap due to the Coul
interaction.4 Remarkable progress of the composite ferm
~CF! theory5,6 for the FQHE shed light on the Fermi-liquid
like state at the half-filled lowest Landau level. Evidence
the Fermi-liquid-like state was obtained in man
experiments.7 It is believed that the state is a compressib
isotropic state and has a circular Fermi surface.

Recent experiments at the half-filled Landau levels h
revealed the anisotropic nature of the compressible state
the half-filled third and higher Landau levels, a highly anis
tropic behavior was observed in the magnetoresistance.8,9 At
the half-filled lowest and second Landau levels, a transit
to the anisotropic state was also observed in the presenc
the periodic potential10 and in-plane magnetic field,11,12 re-
spectively. Although the origin of the anisotropy is still u
known, the unidirectional charge-density wave~UCDW!
state is a candidate for the anisotropic state. Theore
works in higher Landau levels showed the possibility of t
UCDW.13,14Recent theoretical works in lower Landau leve
support the UCDW or liquid-crystal state.15–17 In this paper
we investigate the compressible charge-density-w
~CCDW! states, which include the UCDW state and co
pressible Wigner crystal~CWC! state, in the several lowe
Landau levels. As a result, the UCDW states are found to
the lowest-energy states in the CCDW states at the half-fi
Landau levels.

The CCDW state is a gapless state with an anisotro
Fermi surface and has a periodically modulated charge d
sity. Using the von Neumann lattice18,19 representation, we
construct the CCDW state and calculate the charge-den
profile and Hartree-Fock energy self-consistently. The v
Neumann lattice representation has a quite useful proper
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studying the quantum Hall system with the period
potential.20,21 The lattice structure of the von Neumann la
tice can be adjusted to the periodic potential by varying
modular parameter of the unit cell. In the present case
periodic potential is caused by the charge density modula
through the Coulomb interaction.22–24 If the translational in-
variance on the lattice is unbroken, a Fermi surface
formed.

In the Hartree-Fock approximation, we show that the se
consistency equation for the CCDW has two types of so
tion at half-filling. One has a belt-shaped Fermi sea cor
sponding to the UCDW and the other has a diamond-sha
Fermi sea corresponding to the CWC. For the belt-sha
Fermi sea, one direction of the momentum space is filled
the other direction is partially filled. Therefore the UCDW
regarded as a collection of the one-dimensional latt
Fermi-gas systems, which was called the quantum Hall
~QHG! in Ref. 24. In the UCDW state, there are two leng
scales, the wavelength of the UCDW,lCDW, and the Fermi
wavelength of the lattice fermions,lF . These two param-
eters obey a duality relation. We obtain the wavelength
pendence of the energy. Moreover, we calculate the kin
energy of the gas system.

The paper is organized as follows. In Sec. II, the Hartr
Fock energy for the CCDW states is calculated. The den
profile, wavelength dependence of the energy, and the
netic energy of the UCDW are obtained in Sec. III. T
summary and discussion are given in Sec. IV.

II. HARTREE-FOCK ENERGY FOR THE CCDW STATE:
UCDW VERSUS CWC

In this section we construct the CCDW state in t
Hartree-Fock approximation using the formalism develop
in Ref. 24. Let us consider the two-dimensional electron s
tem in a perpendicular magnetic fieldB in the absence of
impurities. The electrons interact with each other through
Coulomb potentialV(r )5q2/r. In this paper we ignore the
spin degree of freedom and use the natural unit of\5c51.
In the l th Landau-level space, the free kinetic energy
quenched asvc( l 11/2), l 50,1,2 . . . , wherevc5eB/m.

In the von Neumann lattice formalism,19–21 the electron
field is expanded as
4766 ©2000 The American Physical Society
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c~r !5(
l ,X

bl~X!Wl ,X~r !, ~1!

whereb is an anticommuting annihilation operator andX is
an integer-valued two-dimensional coordinate. The Wann
base functionsWl ,X(r ) are orthonormal complete basis in th
l th Landau level.21 Expectation values of the position o
Wl ,X(r ) are located at two-dimensional lattice sitesme1
1ne2 for X5(m,n), where e15(ra,0), e2

5(a/r tanu,a/r ), anda5A2p/eB. The area of the unit cel
is e13e25a2, which means that a unit flux penetrates t
unit cell of the von Neumann lattice. The unit cell is illu
trated in Fig. 1. For simplicity we seta51 in the following
calculation.

The Bloch wave basis, which is given byul ,p(r )
5(XWl ,X(r )eip•X, is another useful basis on the von Ne
mann lattice.21 The lattice momentump is defined in the
Brillouin zone~BZ!, upi u<p. The wave functionul ,p(r ) ex-
tends over the entire plane and its probability density has
same periodicity as the von Neumann lattice.

In the momentum space, the system has a translati
invariance,24 which is referred to as theK invariance in the
CF model.26 In the following, we show that symmetry break
ing of theK invariance generates a kinetic energy and le
to an anisotropy in the charge density.

We consider a mean-field state of filling factorn5 l 1 n̄

where l is an integer and 0, n̄,1. Let us consider a mea
field for the CCDW that has translational invariance on
von Neumann lattice as

Ul~X2X8!5^bl
†~X8!bl~X!& ~2!

and Ul(0)5 n̄. Ignoring the Landau-level energy and th
inter-Landau-level effect, the Hartree-Fock Hamiltoni
within the l th Landau levelHHF

( l ) reads

HHF
( l ) 5 (

X,X8
Ul~X2X8!$ṽ l@2p~X̂2X̂8!#2v l~X̂2X̂8!%

3$bl
†~X!bl~X8!2 1

2 Ul~X82X!%, ~3!

where

ṽ l~k!5H Ll S k2

4p D J 2

e2k2/4pṼ~k!, ~4!

v l~X!5E d2k

~2p!2ṽ l~k!eik•X. ~5!

FIG. 1. The unit cell of the von Neumann lattice spanned by
vectorse1 ande2.
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Here Ṽ(k)52pq2/k for kÞ0 and Ṽ(0)50 due to the
charge neutrality condition.X̂ is a position of the Wannier
basis in the real space, that is,X̂5(rm1n/r tanu,n/r ) for
X5(m,n).

By Fourier transforming Eq.~3!, we obtain the self-
consistency equations for the kinetic energy« l as

« l~p,n̄ !5E
BZ

d2p8

~2p!2
ṽ l

HF~p82p!u„m l2« l~p8,n̄ !…, ~6!

n̄5E
BZ

d2p

~2p!2u„m l2« l~p,n̄ !…, ~7!

wherem l is the chemical potential andṽ l
HF is defined by

ṽ l
HF~p!5(

X
$ṽ l„2p~X̂!…2v l„X̂…%e2 ip•X. ~8!

Equations~6! and ~7! determine a self-consistent Fermi su
face. Existence of a Fermi surface breaks theK invariance
inevitably. The mean value of the kinetic energy^« l&
5*BZ« l(p)d2p/(2p)2 is equal to2v l(0)n̄, which is inde-
pendent ofr andu. The energy per particle in thel th Landau
level is calculated as

E( l )5
1

2n̄
(
X

uUl~X!u2$ṽ l~2pX̂!2v l~X̂!%. ~9!

E( l ) is a function ofn̄, r, andu. The parametersr andu are
determined so as to minimize the energyE( l ) at a fixedn̄.

There are two types of the Fermi sea that satisfy Eqs.~6!
and~7!. The one is a belt-shaped Fermi sea illustrated in F
2~a!, that is, upyu<pF . This solution corresponds to th
UCDW state. Atn5 l 1 n̄, the Fermi wave numberpF is
equal topn̄ and the mean field of the UCDW becomes

Ul~X!5dm,0

sin~pFn!

pn
, ~10!

for X5(m,n). We takeu5p/2 for the UCDW without los-
ing generality because the system has the rotational inv
ance. Then the charge density of the UCDW is uniform
the y direction and oscillates in thex direction with a wave-
length lCDW5ra. In the y direction, pF corresponds to the
Fermi wave numberkF5pFr /a5pn̄r /a in the real space.
The duality relation betweenlF52p/kF andlCDW5ra ex-
ists. NamelylFlCDW52a2/ n̄. In the CF model, the compos
ite fermion has a wave numberkF5A2p/a at n51/2. In the
UCDW state forr 51.636, which minimizes the energy a
n51/2,24 pn̄r equals 2.57, which is very close to the valu
A2p52.51. This implies that there exists unknown conne
tion between the CF state and the UCDW state.

The other Fermi sea that satisfies Eqs.~6! and ~7! at n̄
51/2 is a diamond-shaped sea illustrated in Fig. 2~b!. This
solution corresponds to the CWC state whose density
modulated with the same periodicity as the von Neuma
lattice. The mean field of the CWC becomes

e
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Ul~X!5
2

~p!2

sin@~p/2!~m1n!#sin@~p/2!~m2n!#

m22n2

~11!

for X5(m,n). Substituting Eqs.~10! and ~11! into Eq. ~9!,
we calculate the energy for various CCDW states atn̄51/2.
By varying the parametersr and u, we obtained the lowes
energy numerically.

The results are summarized in Table I. The unit of t
energy isq2/ l B and l B5A1/eB. As seen in the table, th
UCDW state is the lowest-energy state in all cases. There
the UCDW state is the most plausible state in the CCD
states. For the CWC state,u5p/2 corresponds to a rectan
gular lattice andu5p/3 to a triangular lattice. (u5p/2 and
r 51 means a square lattice andu5p/3 andr 51.075 means
a regular triangular lattice.! For the UCDW state, the wave

FIG. 2. ~a! The belt-shaped Fermi sea~shaded region! for the
UCDW at half-filling. ~b! The diamond-shaped Fermi sea~shaded
region! for the CWC at half-filling.

TABLE I. Minimum energy and corresponding parameterr for
the CCDW states atn5 l 11/2. For the CWC states, the energies
u5p/2 ~rectangular lattice! andp/3 ~triangular lattice! are shown.
The units of the energy andr areq2/ l B anda, respectively.

l EUCDW ECWC(p/2) ECWC(p/3)

0 20.4331 20.3939 20.3891
1 20.3490 20.3122 20.3110
2 20.3074 20.2715 20.2703
3 20.2800 20.2448 20.2436

l r UCDW r CWC(p/2) r CWC(p/3)

0 1.636 1.000 1.295
1 2.021 1.000 1.075
2 2.474 1.000 1.075
3 2.875 1.205 1.335
e

re

lengthlCDW5ra increases with the increasingl. This behav-
ior is consistent with the numerical calculation in fini
systems.16 The Hartree-Fock calculation in the higher La
dau level13,14predictslCDW52.7;2.9A2l 11l B . Our results
agree with this atl 51,2,3. At l 50, however, our result is
much smaller than this.

At n51/2, the energy of the UCDW state is slight
higher than the value of the charge-density wave~CDW!
with gap calculation.27 In the gapful CDW state, the higher
order correction is small because of the energy gap. In
UCDW state, however, the correction might be large co
pared with the CDW state. Therefore it is necessary fo
more definite conclusion to include fluctuation effects arou
the mean field. Although this task goes beyond the scop
this paper, the Hamiltonian on the von Neumann latt
could be useful to study fluctuation effects.

III. PROPERTY OF THE UCDW STATES

In this section, we calculate the density profile of t
UCDW and wavelength dependence of the energy. The d
sity of the electron forn5 l 11/2 reads

r~r !5 l 1E
2p

p dpx

2p E
2p/2

p/2 dpy

2p
uul ,p~r !u2. ~12!

Since uul ,p(r )u2 is a periodic function ofp in the BZ and
depends only on the combination ofr1(py/2p)e1
2(px/2p)e2 , r of Eq. ~12! is uniform in they direction.
Here we takee15(r ,0) and e25(0,1/r ) for u5p/2. The
translation in the momentum space is equivalent to the tra
lation of the charge density of the CCDW. Therefore t
symmetry breaking of theK invariance is same as the sym
metry breaking of the translational invariance in the re
space.

The density profiles for the UCDW at the half-filledl th
Landau level ofl 50,1,2 are plotted in Fig. 3. The unit of th
density isa22 and the wavelengthlCDW5ra in Table I is
used in Fig. 3. As seen in this figure, the amplitude of t
wave decreases with the increasingl.

To minimize the energy, we calculated ther dependence
of the energy, which is plotted in Fig. 4. As seen in Fig. 4
quasistable state appears forl>2 nearr 51 and ther depen-
dence of the energy becomes flattened asl grows. This

t

FIG. 3. The density profile functionr(x) for n50, 0.5, 1, 1.5,
2, 2.5, and 3. The units ofr andx area22 anda, respectively.
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means that the UCDW state forl>2 has flexibility against
disorder effect. This observation agrees with the absenc
the spontaneous formation of the anisotropic state forl<1.

The kinetic energy« l(p,n̄) for the UCDW is written as

« l~p,n̄ !5E
2p

p dpx8

2p E
2pn̄

pn̄ dpy8

2p
ṽ l

HF~p82p!. ~13!

This is independent ofpx after integration and we denot
« l(p,n̄)5« l(py ,n̄). « l(py,1/2) for l 50, 1, and 2 are shown
in Fig. 5. As seen in Fig. 5, the bandwidthG l decreases with
the increasingl, that is, G050.7363, G150.5682, andG2
50.5042 in the unit ofq2/ l B . Using the mean field of Eq
~10!, the kinetic term inHHF

( l ) is written as

KHF
( l ) 5(

m
E dpy

2p
al ,m

† ~py!« l~py ,n̄ !al ,m~py!, ~14!

where al ,m(py)5(nbl(X)e2 ipyn for X5(m,n). Therefore
the UCDW state is regarded as a collection of the o
dimensional lattice Fermi-gas systems which extend to thy
direction. In the Buttiker-Landauer formula,25 the conduc-
tance of a one-dimensional channel is equal toe2/2p in the
absence of the backscattering effect. Thus the conductan
the UCDW have an anisotropic value as

sxx50, ~15!

FIG. 4. The energy per particleE( l ) as a function ofr for n5 l
11/2. The units of energy areq2/ l B .

FIG. 5. The kinetic energy« l(py,1/2) for l 50, 1, and 2. The
units of energy areq2/ l B .
of

-

of

syy5nx

e2

2p
, ~16!

wherenx is a number of the one-dimensional channels t
extend from one edge to the other edge. If we takesxy
5ne2/2p, the resistance becomes

rxx5
nx

n2

2p

e2 , ~17!

ryy50. ~18!

Thus the formation of the UCDW leads the anisotropy in t
magnetoresistance. For n59/2, 2p/e2n251.33103V,
which is of the same order as the experimental value;1.0
3103 V. Disorder effects decreasenx by destroying the
UCDW ordering. Furthermore, the backscattering effect d
to impurities reducessyy and rxx . In the case for edge
modes in the quantum Hall regime, there is no backscatte
because of the chirality. The left-mover lives on one edge
from the other edge where the right-mover lives. For t
UCDW state, on the other hand, each one-dimensional
tem has the width ofra at most. Therefore the backscatterin
effect strongly affects on the conductance in the UCDW.

To conclude this section, we point out a subtle proble
concerned with theK invariance and the sliding mode. In a
ordinary one-dimensional system, the difference of
chemical potentials between the left and right edge of
Fermi sea yields the net electric current. In the on
dimensional system of the UCDW, however, the differen
of the chemical potentials can be canceled out by sliding
Fermi sea in Eqs.~6! and ~7!, thanks to theK invariance.
Then there is no net electric current. This contradicts
above assertion apparently. As mentioned before, the tr
lation in the momentum space is equal to the translation
the charge density in the real space. In other words, to s
the Fermi sea is the same as to slide the CCDW in the
space. The sliding mode is expected to be pinned by im
rities. Therefore the violation of theK invariance due to pin-
ning of the CCDW can remedy the contradiction.

IV. SUMMARY AND DISCUSSION

In this paper we have studied the CCDW state who
periodicity of the charge density coincides with that of t
von Neumann lattice. The CCDW state is gapless and ha
anisotropic Fermi surface. We obtained two types of
CCDW state, the UCDW state and CWC state. By calcu
ing the Hartree-Fock energy, the UCDW is found to have
lower energy at the half-filled Landau levels. Furthermo
the wavelength dependence of the energy, the density pro
and the kinetic energy of the UCDW are calculated nume
cally. As a result, it is found that the amplitude of th
UCDW and bandwidth of the Landau level decrease with
increasingl and a quasistable state appears forl>2.

The UCDW state has a belt-shaped Fermi sea. Con
quently the system consists of many one-dimensional lat
Fermi-gas systems that extend to the uniform direction. F
mation of this structure could be the origin of the anisotro
observed in experiments. To confirm this speculation, exp
mental works for detecting the wavelength of the UCD
and theoretical works to include fluctuations around
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mean-field solution are necessary. Since there is no en
gap in the CCDW state, the fluctuation effect might be la
compared with the CDW state with gaps. Actually Fradk
and Kivelson15 proposed a rich phase diagram by consid
ing fluctuations around the stripe-ordered state. We beli
that the von Neumann lattice formalism presents an ap
priate scheme to study the fluctuation effects around
mean field.

Recently a new insulating state was discovered around
quarter-filled third Landau level.28 This state seems to hav
gaps and an integral quantized Hall conductance. These
suggest that the state is a CDW state with gaps that
different from the CCDW. The CDW state whose periodic
is q/p times that of the von Neumann lattice has gaps a
hasq bands withp-fold degeneracy.27,21 In the presence of a
magnetic field and periodic potential, the Hall conductan
of the free-electron system in the gap region is equal to
Chern number.29,21 Thus the observed quantized Hall co
a
P.
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ductance is probably the Chern number of the periodic
tential problem. The transition between this CDW with ga
and the CCDW studied in this paper is an interesting fut
problem.
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