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Quantum dot dephasing by edge states

Y. Levinson
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 6 July 1999

We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions
between the electron in the dot and electrons in a nearby voltage-biased ballistic nanostructure. The dephasing
is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random
electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the
resonant transmission through the dot is suppressed.

I. INTRODUCTION
HNSZJ dr¥ " (r)H(r)Ww(r),

The dephasing of electron states in quantum dQB)
was considered mainly in connection with weak-localization
phenomena, see experiméritsand theory’* A different HID=54
type of phenomenon in which dephasing is important is in-
terference phenomenon in an Aharonov-Bohm fig.a  WhereU(r) is the potential confining the 2DE@(r) is the
pinched QD is embedded in one of the arms of such a ring€ctor potential of the external magnetic fiele(0/=1),
the transmission through this arm is supported by a resona@Nd ¥ (r) is the electron field operator. The capacitive inter-
electron state in the QD. The dephasing of this State- action between the QD and the NS, assumed to be weak, is
presses the interference in the ring, and this can be observed
as a decrease of of the oscillating part of the ring Him=c+cf drw(r)p(r), 2
conductancé.

The dephasing is due to electron-phonon or electronghere p(r)=¥*(r)¥(r) is the electron density operator,
electron interactions of the QD electrons with some “envi-andw(r) is a Coulomb interaction kernel.
ronment,” which can either be in equilibrium or driven out  The perturbation Eq(2) has a “dual” meaning. If one
of it by external forces. In the e_:xperimémlne dephasing was combinesH s+ H;,; One can see that/(r) is the change of
due to the capacitive interaction of the QD with a voltage-the confining potentiall(r) due to one electron occupying
biased point con'gact, and 'ghe qmognt of_ dephasing was dgpe QD state(when (c*c)=1), while combining Hop
pendent on the bias. In a situation like this, one can separatanint one can see thatdrW(r)p(r) is the change of the

the equilibrium dephasing, which depends only on the temgnergye, due to the Coulomb interaction of the electron in
perature of the environment, from an additional dephasingp,e QD with the electron density in the NS.

which is due to voltages applied to the environment. The
theory concerning this experiment was given in Refs. 6 and
8.

In recent experimenisthe nanostructur¢NS), that was At low temperatures, the dephasing is due to electron-
capacitively coupled to the QD, was a multiterminal two- electron interaction¥ To calculate the dephasing rate we
dimensional electron gaDEG) device in a quantizing use the method developed in Ref. 6. The electron density in
magnetic field. We present in this paper a generalization ofhe NS fluctuates in time and creates a fluctuating potential
the theory given in Ref. 6 that takes into account the specifign the QD, which brings about fluctuations of the energy
effects appearing due to the complicated geometry, and thevel ¢,. These fluctuations are given by
chirality of the states in the N&ee Fig. 1 A similar prob-
lem was addressed in Ref. 10 using a different approach,
based on lumped mesoscopic circuit elements. Broadening of 560(t):f drw(r) p(r.), ©)
electron transitions in self-assembled QD’s due to Coulomb

interactions with the electrons in the wetting layer was conWhere sp(r,t)=p(r,t) =(p(r)). As a result, the correlator
sidered in Ref. 11. (S8eg(t) 8eg(0)) is defined by the density-density correlator

(8p(r,t)Sp(r’,0)), while (Sep)=0.

Consider resonant transmission through the QD for elec-
tron energiese close toeyg. When the QD level does not
fluctuate the transmission amplitutfee) contains the Breit-

We consider a QD with a single leve}, that is described Wigner factor—i/[(e—€p)+il'], wherel" is the width of
by the HamiltonianHop=€oc’ ¢, wherec™ is an operator the level due to the QD’s connection with the leads. When
creating an electron in the QD state. The NS is a multitermithe level fluctuates the transmission and reflection can be
nal junction in the 2DEG described by the Hamiltonian elastic and inelastic. In interference experiments only the

2
+U(r), (1)

_ e
iV = _A(D)

IIl. DEPHASING RATE NOTION
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d
V0= [ 553 am(@xalen. ®

wherea () is an operator creating an incoming electron in
channeln of terminal @, with energye. Performing calcula-
tions similar to those in Ref. 6 we find

K(w)=2 K™ (w), 9
0(0(’
area T where the contribution from terminats and o’ is
FIG. 1. The quantum dot and the nanostructwg, are waves 1( de [ de
emitted and absorbed by terminal(see text Kaa'(w)zif | 5=
o a

elastic transmission is of importance and to obtain the elastic
transmission amplitudét(e€)) one has to replace the Breit- x> fol€)[1—T (€)W ornr(€,€)|?
Wigner factor by nn’

X[5(€' —e—w)+ (€ — e+ w)]. (10

fo dtexd —I't—®(t) +i(e—et], (4)  Here, we used the fact that when the SS’s are normalized to
a unit of incoming flux one has(a), (€)a, n(€))
where =276(e—€')Oun,arn fol€), wheref () is the Fermi dis-
tribution for energye in terminal «. It is convenient to write
1t t it as f(e—du,), wheredu,,=u,—p and f(e)=(ele=H'T
O(t)= Efodt' fodt"< Seo(t’) de(t”)). (5 +1) 1is the Fermi distribution with some reference chemi-
cal potentialu. The matrix element entering E¢LO) con-
One can see tha{t(e))|<|t(e)| which means dephasing of tains SS's,
the QD state, that is responsible for resonant transmission.
The same can be understood from the dynamics of the QD "N * /
state amplitud8, (c(t)*c(0))=(c(0)"c(0))exmiet—TIt Wan,arn' (€€ )_f drW(r)Xan(€,1)” Xarnr(€',1).
—d(t)]. (13)
The level fluctuations are characterized by their amplitud
((6€0)?)Y2 and by the correlation time,. The amplitude is
proportional to the strength of the capacitive couplvy

while the correlation time is independentWf and is deter- In what follows, we consider the case when the voltages

mined by the correlation time of the den5|_ty-den3|ty cor-va applied to all terminals are small. We chogséo be the
relator. Hence, for weak-enough coupling, one has

((8€5)2)2r.<1, which corresponds to dynamical narrow- equilibrium chemical potentiajwhen allV,=0) and du,

. . = . =eV,. In this case, the relevant energies in Et) corre-
IE?/'[I(TEIS ;iﬁﬁg)g]ﬂ;‘;z the integral Eq(4) reduces to spond to the small energy windowe— u|<=maxT.eV],
0 Y- ' where electron exchange between terminals happens. We as-

sume that within this energy window one can neglect the

The integration here is over the interaction area, i.e., over
that part of the NS that is close enough to the QD and where
W(r) is not small(see Fig. 1

y=7K(0), ) energy dependence of the scattering states and hence of the
with the following level oscillations’ spectrum matrix elements Eq(11). As a result, we have
1 (+e Kaa’ 1 W zf def de']c v
K(w)= %Lc dte"(Seo(t) Sen(0)).  (7) (@)=5Waul®] 57 | 57 T(emeVa)

This result means that in the case of dynamical narrowing X[1-T(e'—eVa)]

one can describe the dephasing by a dephasing timne X[6(e' —e—w)+ (€ — et w)], (12
=+y"1. The dephasing rate can be estimated @s ) , .

~((5€g)?) 7., and is smaller than the amplitude of the level With an effective matrix element

fluctuations ((8ep)?)*2 In the general case when

((6€0)?)Y27,=1, the transmission probabiliti(t(e))|? is W, 2=S (W, | (13)
not a Lorenzian, and a dephasing time cannot be defined. @l e

Shifting the integration variables in E(¢L2) by eV, and
eV, one can see that the diagonal contributi&tf$' do not

To calculate the correlatdk(w) we represent the field depend on the applied voltag®s,, and are equal to their
operator in terms of scattering stateéSS’s (see Appendix  equilibrium values av,=0, i.e.,

IV. DEPHASING RATE CALCULATION
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1 Gate NS
K (@)= g—2|Wa,al Fr(@), (14) -
— Nl - SN
\ 1+2 2 \
where Fr()= o coth@/2T)=2u{Ng(w)+ 1], with Nr(w) oy Lo Wt
=(e*'T+1) 1. Note thatF(0)=2T andFo(w)=|w|. L
For the nondiagonal contributions# «’ we find after a O QD
shift of the integration variables

FIG. 2. A two-terminal device. Scattering states emitted from

(aa’) —paa a'a
K (@0)=K™ (@) + K %(w) the terminals are labeled by the terminals’ corresponding numbers.

1 The interaction area is shown.
:W|Wa,a'|2[FT(w+eVaa’)
Eq. (A6) we can express the matrix elements Etjl) in
+F(w—eV,,)], (15  terms of the scattering matrix variation

whereV,, =V,—V, . , .
Using Eq.(9), one can find the dephasing rate as a sum Wane,a’n’sz'BEm Sgm,an(€)* 6Spm,an’(€). (21)
over single terminalsand pairs of terminals
Pinching the QD to the Coulomb blockade regime one can
N wa! change the number of electrons in the QD one by one and
7=§ Y+ ;, ye, (18 measure the variation of the conductance maBjx, due to
o an additional electron in the QB. Since Gpg,
It follows from Eq.(14) that asingle terminalcontributes to =3 | Sem anl?— 4.4, this is a way to measur@n case of
the dephasing only if SS’s emitted from this terminal reaChsimpIe—enéugh NS’geome)rghe variationsS and the matrix
the interaction area, and that this is always an equilibriumglementsw. This procedure was performed experimentally
contribution, for the simplest NS, being a one-channel point contact.

NOE WK““(0)=4i|Wa 2T 17) V. DEPHASING VERSUS CURRENT NOISE
— W,

. ) ) ) ) , Dephasing is closely related to current noise since current

A pair of terminalscontribute to the dephasing only if SS's fjyctuations are related to charge density fluctuations by the

emitted from both terminals overlap in the interaction area, continuity equation. The results obtained in Ref. 14 for the
current noise can be presented in the following form

(60) 2 K ) (0) = W, |PF<(eV, 18
Y - ( )_E| a,a’| T(e aa’)' ( )

e? .
(8140l 1) =g > AgsFr(eVgp). (22)
When both terminals are at the same voltage, the contribu- BB’

tion of this pair to dephasing is an equilibrium one. Here, the left-hand side is the=0 Fourier component of
Note thatF+(w) contains the “zero point fluctuations,” ine current cross correlator in terminatsand o’
but they do not contribute to the equilibrium dephasing rate, ’

given byK(w) at w=0, hence for zero temperature there is , ,

no equilibrium dephasing. Aba=2 Ab s A g (23
If one is interested in nonequilibrium dephasing one has mm’

to look only at pairs of terminals that are at different volt- with

ages, and that send scattering states that overlap in the inter-

action region. The nonequilibrium contribution of such a pair o
s A g1 = 5Baéﬁ,a5mm,—; St pmSan g (249

yglaa’)zy(aa’)_ 7(““’)|v:o where the scattering matrix is at= . One can see that a
single terminalB contributes tq 81,51 /) only if SS’s emit-
ted from this terminal reach both terminalsand «’, and
that this contribution, given by the term wit’' =g is al-
ways equilibrium.Pairs of terminalsg and 3’ contribute to

1
:Elwa,a’|2[FT(eVaa’)_FT(O)]' (19

For zero temperature it reduces to (81,61, only if SS’s emitted from each of these terminals
1 reach both terminale: and «’. This contribution given by

,ys/aa )|T=O:_|Wa,a’|2|evaa’|' (20) term;_wnhﬁ *B coptglns a nonequnlbrlum part. These
4 conditions are very similar to those in case of dephasing.

Using the dual property of the interaction between the QD
and the NS, we consider noW(r) as a small variation of
the confining potentidl (r) due to an electron occupying the  We consider first a simple one channel 2-terminal device
QD. As a result the scattering matrix of the NS is changedvith a gate and a QDsee Fig. 2 The scattering matrix of
according to Eq(A15) from Sto S+ §S. Using in addition  the gate(in the absence of an electron in the RB

VI. EXAMPLES AND DISCUSSION
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r 7| |cosee® singe| _ @ ]
S= t T B singe'? cosf)ei;‘ o amp=m—(a=p), 1\ A 42n
(29) cl |
wherer andt correspond to reflection and transmission of vl A NS 2
the SS’s approaching the gate from left, whilandt cor- ~ =T = =
respond to the SS’s approaching the gate from the right. If § . A |y? 14243 §
the magnetic field+ 0 the scattering matrix is not symmet- (\) 1 el | "
ric, t#1. N 1;2 O
In case of zero temperature the equilibrium part of the QD QD

state dephasing rate vanishes, and the nonequilibrium part is
according to Eqs(20) and (21)

— 2
y=mW[%eV, FIG. 3. A four-terminal device. Scattering states emitted from
5 . e 12 ) ) ) the terminals are labeled by the terminals’ corresponding numbers.
|W|#=[r* st+t* or[°=|56—i(6B— da)sinf cose|”. The interaction area is shown.

(26)
Here,V=|V,, andst, &F are the changes of the transmis- and the interaction region does not reach ES2. In this situa-
sion and the reflection amplitudes due to the electron in thd0N: due to the chirality of ES1 the QD can change only the

QD. This result was obtained in Ref. 6 fB=0 and a sym- Phases ot andT. As a resul{W|*=(58)[t|?|r|?, i.e., the
metric gate. The shot noise in this devide the absence of dephasing rate is proportional to the shot noise. This is be-

an electron in the Qpis®® causefor chiral statesthe current and charge densities are
proportional, j=pv,. (The connection between dephasing
((81)2)y=(e?4m?)|r|?|t|%eV. (270 and the phase dfwas mentioned in Ref. 16

_ _ As a second example we consider a 4-terminal device

Both the dephasing and the shot noise are due to the sarg@milar to that used in experime?ltwith a geometry as
nonequilibrium fluctuations, but they an®t proportionalto shown in Fig. 3. The sourc8§(a=1) and the drairD(a
each other. To get some insight, consider first zero or a weak 2) are used to bias the device. Two floating terminals, one
magnetic field, when both SS's 1 and 2 occupy the wholgjown-stream fronSto D(«=3) and one up-stream frof
cross-section of the sampllgee Fig. 2 If we assume thereis to S(a=4) are “dephasors” according to Ref. 17. Gake
no rezflection from the gate, Lejt|?=1, |r|?=0, we find  regulates the source-drain current, while g&tesdC block
((81)%)=0, while y=m|5r[*eV+0. The dephasing is non- the floating terminals. The QD is located far from gBtaVe
zero because SS’s emitted from different terminals overlagissume there is only one LL at the Fermi energy and that the
near the QD, while the shot noise is zero because each tegS's at opposite edges are well separated and do not overlap.
minal (where the shot noise is measurési feeded only by  We will be interested only in nonequilibrium dephasing and
one SS. The situation for the shot noise changes if the gate ipnsider zero temperature.
reflecting, in which case each terminal is feeded by both The SS's emitted from the up-stream floating terminal 4
SS’s. o ~do not reach the interaction region and hence this terminal

One can understand this difference from the followingdoes not contribute to the dephasing of the QD. what
simple calculation. In a channel without reflection the wavefollows it is assumed that this terminal is blocke®nly
function is ¢(x)=a€**+be™™, where the two terms are scattering states emitted from terminals 1, 2, and 3 overlap in
SS’s coming from the left and right terminals. The corre-the interaction region, and hence in accordance with(Eg).
sponding charge and current densities aex) =e{|al? one hasy= 12+ ()4 (31 Since the QD is located far
+|b|2+ (ab*e'#*+c.c.)} andj(x)=ev,{|al?~|b|?}. What  from point contacB, all SS’s in the interaction region have
is important for nonequilibrium fluctuations is the overlap of the form of the same E®, (r)=w(r) with different ampli-
SS’s coming from different terminals, i.e. terms proportlonaltudes’ e, x1=€PtArgW, Yo=€ % Araw, xs=e€ %gw.

to ab. Such terms do not exist ijnbut do exist inp. This is ~ T~ . e
Here,ra, ty andr,, ta are the reflection and transmission

why the shot noise is zero, while the dephasing rate is no ’ . )
Thg term @b*e?*+c.c) is of quantumporigin.glt means amplitudes for ES'’s approaching A from left and from right.

that in a quasiclassical situation, when the number of charfe, ts andrg, tg correspond to ES's approachifigfrom
nels is large, this term will average out due to “integration” above and below. The phase factet$ depend on the posi-
over k. When the gate is reflectingt|2#1, |r|2#0, both  tion of the QD. The relevant matrix elements E#3) are

p(x) and j(x) contain terms proportional tab. One can

easily check it using, for example, the wave function to the [Wio2=[targ|?|r arel?I W2,
left of the barriery(x) =a[ e’ +re ]+ bte ** Itis also
important to notice that fow=0 the current and charge |W1g?=]tg|?[targ|?|WI?,
fluctuations are not coupled by the continuity equation.
Consider now the same device in a strong magnetic field |Waq = tg| %[ AT || W|?, (28

when the SS’s are edge statédsS’s) localized near the
boundaries. We assume also that the QD is far from the gate@here
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netic fieldw™ are ES’s andh is the LL number. The waves
w* are normalized to carry a unit flux over the cross section
of the terminal. Choosing the gaugg=—By,A,=0 for a
given terminal, wherex andy are the longitudinal and trans-

W=f drw(r)|w(r)|2. (29

Using these matrix elements we find

2= Alt412]r 12lr |4V verse coordinates in this terminal, one can represent the
Y [tal %7 al?[rgl*Vadl, oy " n _
waves as follows:w, (€,r)=exdik, (e)x]d, (€Y), W, (&r)
'y(23)=A|tB|2|I’B|2|rA|2|V23|, =eXF{|k;(6)X]d’r:(fay)
In what follows, we use “hat” to indicate the magnetic
YEU=A|tg)?|rg|?tal?Vad, (30) field inversion. It means for example thatif’ is an outgo-

ing wave for the fieldB (i.e., an outgoing ES for LIn) then

When terminal 3 is open, i.etg=0, SS1 and SS2 are w, is an outgoing wave for field—lB (i.e., an ogtgoing ES
absorbed in this terminal and then the interaction region i€0" the same LL near the opposite boundaiy is easy to
reached only by SS3. There is no overlap in the interactiogheck thatw,(e,r)* =w,,(e,r) or equivalentlyk, (e)=
region of SS’s emitted from different terminals and as a re-—k () and ¢ (€,y)= &, (€,y)*.
sult all the contributions to nonequilibrium dephasing rate  Different functionsg(y) corresponding to the same wave
vanish. When terminal 3 is blocked, i.¢g=0 we find y  vectork are eigenfunctions of the same Hamiltonian and are
= y(12D=A|tp|?|r al?|V1d= 70 orthogonal. This is not the case when two functighgy)

Since terminal 3 is floatiny; is given by the condition and ¢,(y) correspond to the same energybut to different

that the current entering this terminal is zero, which leads tavave vectorsk; and k,. In this case the “orthogonality”
V3=V,|ta|?+ V,|r a|2. Using this one finds relations aré®

y=7yolrel?(2—|rg|?. (31)

One can see from this result thai vy,, i.e., the floating
terminal suppresses the nonequilibrium dephasing rate of thgnd
QD state. This result is in agreement with experintewe

with the constanA= (e/4)|W|2.

) . e 1
f dydi¢, (kl__Ax)+(k2__Ax) =0, (A}

would like to stress that the suppression is not because of o e e \]
dephasing the SS’s coming to the interaction region. The f dy¢,¢s (kl— EAX)_ k,+ EAX) =0. (A2
absolute values of the matrix elements that enter the expres- . -
sion of the dephasing rate according to E20) do not de- For a given energy the incoming field in terminak is a

pend on the phases of the SS’s overlapping in the interaCﬁOQuperposition of incoming waves, a,,(e)w_,(er), while

region. If one would simply destroy their phases it would notia outgoing field in terming is a superposition of outgo-
affect the dephasing ratg The floating terminal suppresses . + . :
because it absorbs the SS’s moving towards the interactioIng wavesEmb,{;m(e)me(e,r)_. The_ scattering mgtrlx con-
¥ DA . - ving aCtOflacts the amplitudes of the incoming and outgoing waves
region fromdifferent terminals It is important to have in
mind that a theory based on the representation (Bgas-
sumes that terminals absorb incoming waves as black bodies, bgm( €)= > Sgm,an(€)Agn(€). (A3)
which means that terminals have infinite capacitance. an

It is instructive to compare the dephasing rate with theThe scattering matrix is unitary due to flux conservation
shot noise. When terminal 3 is blocked the shot noise is

known to be((811)?)={((81,)%)=(e*/4m%)e|V1]|ta|?|r .

Using Eq.(A5) one can see that opening terminal 3 does not Bzm Spm,an(€)” Spm,arn’ (€)= Gan,arn’ (A4)
change((51,)?) but suppresg(4l,)?) by exactly the same _
factor |rg|?(2—|rg|?) as the dephasing rate. and due to time reversal
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APPENDIX

In this Appendix, we list some useful properties of the Xan(fyf)*:;n Spm,an(€)* X gm(€.1) (AB)
Green function, the scattering states and the scattering ma-
trix, valid also when the magnetic fieBl#0. and also

For each terminaky, and given energy we define out-
go_ing waveswv; (e,r) and inpoming wavew/ (€,r), where ;(an(eyr): 2 éﬁm,an(e)XBm(evr)*- (A7)
n is the mode numbeisee Fig. 1 In case of a strong mag- Bm
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The Green function is defined by the equation expression of the Green function for a waveguide in a
magnetic field given in Ref. 20 one can see that a unit
source —8(r—r') at r'—wB excites an incoming field
—iZWam(€,r")*wWgn(e€,r). Since each waverz(e,r) ex-
cites a statgy gy(e,r) we find that

[H(r)—€]G(r,r')=—=68(r—r"), (A8)

with the Hamiltonian given by Eq1). The boundary condi-
tions areG(r,r')=0 whenr is at the boundary of the NS,
and these correspond to outgoing waves whepproaches

infinity in some of its terminals. The Green theorem in case

B+#0 is as follows®

f (r)Y(UHv—VvH*u)

i
=‘mf}9d'”
(A9)

wheren is the unit normal vector directed outside the NS,
is an element of the boundary.

e e
u(—iV——A)v—v(—iV+—A u
c c

Using this theorem and EgA2) one can prove the sym-

metry G(r',r)=G(r,r').
Whenr approaches infinity in terming®

Xan(€0)]wup= 5an;n<e,r>+§ Spm.an( €W (1),
(A10)
and

G, wp= —i§m: Win(en) xpm(er). (ALl

The first equation follows from the definition of the
scattering states and the scattering matrix, while the second
equation can be obtained as follows. From the explicit

Ge(r,r’)lr/wﬁ=—i%‘, Wam(€,1)* X gm(€.1).
(A12)

Using the symmetry o6, and the relation betweem™ and
w*, we find the relation given above.
A useful function is defined as follows

Gr,r) =G (r,r)*=—ig.r,r’). (A13)

This function can be presented in terms of the scattering
states

gs<r,r'>=2n Xan(€.F) Xan(€,1')* . (A14)

Obviouslyg(r,r) is the local density of states. Invertirig)
one finds f;e(r,r’)=g€(r,r’)*. For B=0 the function
ge(r,r") is real.

Let the confining potential(r) be subjected to some
variation 6U(r). The variation of the scattering states
Sx.m(€,r) contains only outgoing waves and can be found
from the first Born approximation using the retarded Green
function corresponding to the potentla(r). The asymptotic
behavior of Sy ,m(€,r) atr—ooB can then be found using
Eqg.(All). As a result the variation of the scattering matrix is

1) -
msan,ﬁm(f):—iXan(GJ)Xpm(f,r)- (A15)
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