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Quantum dot dephasing by edge states

Y. Levinson
Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

~Received 6 July 1999!

We calculate the dephasing rate of an electron state in a pinched quantum dot, due to Coulomb interactions
between the electron in the dot and electrons in a nearby voltage-biased ballistic nanostructure. The dephasing
is caused by nonequilibrium time fluctuations of the electron density in the nanostructure, which create random
electric fields in the dot. As a result, the electron level in the dot fluctuates in time, and the coherent part of the
resonant transmission through the dot is suppressed.
ion

in

rin
na

rv
ng

on
vi
ut

e
d
ra
m
in
h
n

o-

ifi
t

c
g
m
on

m

r-
k, is

r,

g

in

on-
e
y in
tial
gy

r
or

lec-
t

en
be

the
I. INTRODUCTION

The dephasing of electron states in quantum dots~QD!
was considered mainly in connection with weak-localizat
phenomena, see experiments1,2 and theory.3,4 A different
type of phenomenon in which dephasing is important is
terference phenomenon in an Aharonov-Bohm ring.5 If a
pinched QD is embedded in one of the arms of such a
the transmission through this arm is supported by a reso
electron state in the QD. The dephasing of this state6 sup-
presses the interference in the ring, and this can be obse
as a decrease of of the oscillating part of the ri
conductance.7

The dephasing is due to electron-phonon or electr
electron interactions of the QD electrons with some ‘‘en
ronment,’’ which can either be in equilibrium or driven o
of it by external forces. In the experiment7 the dephasing was
due to the capacitive interaction of the QD with a voltag
biased point contact, and the amount of dephasing was
pendent on the bias. In a situation like this, one can sepa
the equilibrium dephasing, which depends only on the te
perature of the environment, from an additional dephas
which is due to voltages applied to the environment. T
theory concerning this experiment was given in Refs. 6 a
8.

In recent experiments9 the nanostructure~NS!, that was
capacitively coupled to the QD, was a multiterminal tw
dimensional electron gas~2DEG! device in a quantizing
magnetic field. We present in this paper a generalization
the theory given in Ref. 6 that takes into account the spec
effects appearing due to the complicated geometry, and
chirality of the states in the NS~see Fig. 1!. A similar prob-
lem was addressed in Ref. 10 using a different approa
based on lumped mesoscopic circuit elements. Broadenin
electron transitions in self-assembled QD’s due to Coulo
interactions with the electrons in the wetting layer was c
sidered in Ref. 11.

II. MODEL

We consider a QD with a single levele0, that is described
by the HamiltonianHQD5e0c1c, wherec1 is an operator
creating an electron in the QD state. The NS is a multiter
nal junction in the 2DEG described by the Hamiltonian
PRB 610163-1829/2000/61~7!/4748~6!/$15.00
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HNS5E drC1~r !H~r !C~r !,

H~r !5
1

2m F2 i¹2
e

c
A~r !G2

1U~r !, ~1!

whereU(r ) is the potential confining the 2DEG,A(r ) is the
vector potential of the external magnetic field (e,0,\51),
andC(r ) is the electron field operator. The capacitive inte
action between the QD and the NS, assumed to be wea

Hint5c1cE drW~r !r~r !, ~2!

where r(r )5C1(r )C(r ) is the electron density operato
andW(r ) is a Coulomb interaction kernel.

The perturbation Eq.~2! has a ‘‘dual’’ meaning. If one
combinesHNS1Hint one can see thatW(r ) is the change of
the confining potentialU(r ) due to one electron occupyin
the QD state~when ^c1c&51), while combining HQD
1Hint one can see that*drW(r )r(r ) is the change of the
energye0 due to the Coulomb interaction of the electron
the QD with the electron density in the NS.

III. DEPHASING RATE NOTION

At low temperatures, the dephasing is due to electr
electron interactions.12 To calculate the dephasing rate w
use the method developed in Ref. 6. The electron densit
the NS fluctuates in time and creates a fluctuating poten
in the QD, which brings about fluctuations of the ener
level e0. These fluctuations are given by

de0~ t !5E drW~r !dr~r ,t !, ~3!

where dr(r ,t)[r(r ,t)2^r(r )&. As a result, the correlato
^de0(t)de0(0)& is defined by the density-density correlat
^dr(r ,t)dr(r 8,0)&, while ^de0&50.

Consider resonant transmission through the QD for e
tron energiese close toe0. When the QD level does no
fluctuate the transmission amplitudet(e) contains the Breit-
Wigner factor2 i /@(e2e0)1 iG#, whereG is the width of
the level due to the QD’s connection with the leads. Wh
the level fluctuates the transmission and reflection can
elastic and inelastic. In interference experiments only
4748 ©2000 The American Physical Society
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PRB 61 4749QUANTUM DOT DEPHASING BY EDGE STATES
elastic transmission is of importance and to obtain the ela
transmission amplitudêt(e)& one has to replace the Brei
Wigner factor by6

E
0

`

dt exp@2Gt2F~ t !1 i ~e2e0!t#, ~4!

where

F~ t !5
1

2E0

t

dt8E
0

t

dt9^de0~ t8!de0~ t9!&. ~5!

One can see thatu^t(e)&u,ut(e)u which means dephasing o
the QD state, that is responsible for resonant transmiss
The same can be understood from the dynamics of the
state amplitude,6 ^c(t)1c(0)&5^c(0)1c(0)&exp@ie0t2Gt
2F(t)#.

The level fluctuations are characterized by their amplitu
^(de0)2&1/2 and by the correlation timetc . The amplitude is
proportional to the strength of the capacitive couplingW,
while the correlation time is independent ofW and is deter-
mined by the correlation time of the density-density c
relator. Hence, for weak-enough coupling, one h
^(de0)2&1/2tc!1, which corresponds to dynamical narrow
ing. In this case,F(t)5gt and the integral Eq.~4! reduces to
2 i /@(e2e0)1 i (G1g)#. Here,

g5pK~0!, ~6!

with the following level oscillations’ spectrum

K~v!5
1

2pE2`

1`

dteivt^de0~ t !de0~0!&. ~7!

This result means that in the case of dynamical narrow
one can describe the dephasing by a dephasing timetw

5g21. The dephasing rate can be estimated asg
.^(de0)2&tc , and is smaller than the amplitude of the lev
fluctuations ^(de0)2&1/2. In the general case whe
^(de0)2&1/2tc*1, the transmission probabilityu^t(e)&u2 is
not a Lorenzian, and a dephasing time cannot be define

IV. DEPHASING RATE CALCULATION

To calculate the correlatorK(v) we represent the field
operator in terms of scattering states14 ~SS’s! ~see Appendix!

FIG. 1. The quantum dot and the nanostructure.wan
6 are waves

emitted and absorbed by terminala ~see text!.
ic

n.
D

e
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g

l

C~r !5E de

2p(
an

aan~e!xan~e,r !, ~8!

whereaan
1 (e) is an operator creating an incoming electron

channeln of terminala, with energye. Performing calcula-
tions similar to those in Ref. 6 we find

K~v!5(
aa8

Kaa8~v!, ~9!

where the contribution from terminalsa anda8 is

Kaa8~v!5
1

2E de

2pE de8

2p

3(
nn8

f a~e!@12 f a8~e8!#uWan,a8n8~e,e8!u2

3@d~e82e2v!1d~e82e1v!#. ~10!

Here, we used the fact that when the SS’s are normalize
a unit of incoming flux one has^aan

1 (e)aa8n8(e8)&
52pd(e2e8)dan,a8n8 f a(e), where f a(e) is the Fermi dis-
tribution for energye in terminala. It is convenient to write
it as f (e2dma), wheredma5ma2m and f (e)5(e(e2m)/T

11)21 is the Fermi distribution with some reference chem
cal potentialm. The matrix element entering Eq.~10! con-
tains SS’s,

Wan,a8n8~e,e8!5E drW~r !xan~e,r !* xa8n8~e8,r !.

~11!

The integration here is over the interaction area, i.e., o
that part of the NS that is close enough to the QD and wh
W(r ) is not small~see Fig. 1!.

In what follows, we consider the case when the voltag
Va applied to all terminals are small. We choosem to be the
equilibrium chemical potential~when all Va50) and dma
5eVa . In this case, the relevant energies in Eq.~10! corre-
spond to the small energy windowue2mu&max@T,eV#,
where electron exchange between terminals happens. W
sume that within this energy window one can neglect
energy dependence of the scattering states and hence o
matrix elements Eq.~11!. As a result, we have

Kaa8~v!5
1

2
uWa,a8u

2E de

2pE de8

2p
f ~e2eVa!

3@12 f ~e82eVa8!#

3@d~e82e2v!1d~e82e1v!#, ~12!

with an effective matrix element

uWa,a8u
2[(

nn8
uWan,a8n8u

2. ~13!

Shifting the integration variables in Eq.~12! by eVa and
eVa8 one can see that the diagonal contributionsKaa do not
depend on the applied voltagesVa , and are equal to thei
equilibrium values atVa50, i.e.,
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4750 PRB 61Y. LEVINSON
Kaa~v!5
1

8p2 uWa,au2FT~v!, ~14!

where FT(v)5v coth(v/2T)52v@NT(v)11
2#, with NT(v)

5(ev/T11)21. Note thatFT(0)52T andF0(v)5uvu.
For the nondiagonal contributionsaÞa8 we find after a

shift of the integration variables

K (aa8)~v![Kaa8~v!1Ka8a~v!

5
1

8p2 uWa,a8u
2@FT~v1eVaa8!

1FT~v2eVaa8!#, ~15!

whereVaa85Va2Va8 .
Using Eq.~9!, one can find the dephasing rate as a s

over single terminalsandpairs of terminals,

g5(
a

g (a)1 (
a,a8

g (aa8). ~16!

It follows from Eq. ~14! that asingle terminalcontributes to
the dephasing only if SS’s emitted from this terminal rea
the interaction area, and that this is always an equilibri
contribution,

g (a)5pKaa~0!5
1

4p
uWa,au2T. ~17!

A pair of terminalscontribute to the dephasing only if SS
emitted from both terminals overlap in the interaction are

g (aa8)5K (aa8)~0!5
1

4p
uWa,a8u

2FT~eVaa8!. ~18!

When both terminals are at the same voltage, the contr
tion of this pair to dephasing is an equilibrium one.

Note thatFT(v) contains the ‘‘zero point fluctuations,’
but they do not contribute to the equilibrium dephasing ra
given byK(v) at v50, hence for zero temperature there
no equilibrium dephasing.

If one is interested in nonequilibrium dephasing one h
to look only at pairs of terminals that are at different vo
ages, and that send scattering states that overlap in the i
action region. The nonequilibrium contribution of such a p
is

gV
(aa8)[g (aa8)2g (aa8)uV50

5
1

4p
uWa,a8u

2@FT~eVaa8!2FT~0!#. ~19!

For zero temperature it reduces to

gV
(aa8)uT505

1

4p
uWa,a8u

2ueVaa8u. ~20!

Using the dual property of the interaction between the Q
and the NS, we consider nowW(r ) as a small variation of
the confining potentialU(r ) due to an electron occupying th
QD. As a result the scattering matrix of the NS is chang
according to Eq.~A15! from S to S1dS. Using in addition
h

,

u-

,

s

er-
r

d

Eq. ~A6! we can express the matrix elements Eq.~11! in
terms of the scattering matrix variation

Wane,a8n8e5 i(
bm

Sbm,an~e!* dSbm,a8n8~e!. ~21!

Pinching the QD to the Coulomb blockade regime one c
change the number of electrons in the QD one by one
measure the variation of the conductance matrixGba due to
an additional electron in the QD.13 Since Gba
5(mnuSbm,anu22db,a , this is a way to measure~in case of
simple-enough NS geometry! the variationdS and the matrix
elementsW. This procedure was performed experimental7

for the simplest NS, being a one-channel point contact.

V. DEPHASING VERSUS CURRENT NOISE

Dephasing is closely related to current noise since cur
fluctuations are related to charge density fluctuations by
continuity equation. The results obtained in Ref. 14 for t
current noise can be presented in the following form

^dI adI a8&5
e2

8p2 (
bb8

Abb8
aa8FT~eVbb8!. ~22!

Here, the left-hand side is thev50 Fourier component of
the current cross correlator in terminalsa anda8,

Abb8
aa85 (

mm8
Abm,b8m8

a Ab8m8,bm
a8 , ~23!

with

Abm,b8m8
a

5dbadb8admm82(
n

San,bm* San,b8m8 , ~24!

where the scattering matrix is ate5m. One can see that a
single terminalb contributes tô dI adI a8& only if SS’s emit-
ted from this terminal reach both terminalsa and a8, and
that this contribution, given by the term withb85b is al-
ways equilibrium.Pairs of terminalsb andb8 contribute to
^dI adI a8& only if SS’s emitted from each of these termina
reach both terminalsa and a8. This contribution given by
terms with b8Þb contains a nonequilibrium part. Thes
conditions are very similar to those in case of dephasing

VI. EXAMPLES AND DISCUSSION

We consider first a simple one channel 2-terminal dev
with a gate and a QD~see Fig. 2!. The scattering matrix of
the gate~in the absence of an electron in the QD! is

FIG. 2. A two-terminal device. Scattering states emitted fro
the terminals are labeled by the terminals’ corresponding numb
The interaction area is shown.
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PRB 61 4751QUANTUM DOT DEPHASING BY EDGE STATES
S5Ur t̃

t r̃
U[Ucosueia sinuei b̃

sinueib cosuei ãU , ã2b̃5p2~a2b!,

~25!

where r and t correspond to reflection and transmission
the SS’s approaching the gate from left, whiler̃ and t̃ cor-
respond to the SS’s approaching the gate from the righ
the magnetic fieldBÞ0 the scattering matrix is not symme
ric, tÞ t̃ .

In case of zero temperature the equilibrium part of the Q
state dephasing rate vanishes, and the nonequilibrium pa
according to Eqs.~20! and ~21!

g5puWu2eV,

uWu25ur * d t̃ 1t* d r̃ u25udu2 i ~db2da!sinu cosuu2.
~26!

Here,V[uV12u andd t̃ , d r̃ are the changes of the transmi
sion and the reflection amplitudes due to the electron in
QD. This result was obtained in Ref. 6 forB50 and a sym-
metric gate. The shot noise in this device~in the absence o
an electron in the QD! is15

^~dI !2&5~e2/4p2!ur u2utu2eV. ~27!

Both the dephasing and the shot noise are due to the s
nonequilibrium fluctuations, but they arenot proportionalto
each other. To get some insight, consider first zero or a w
magnetic field, when both SS’s 1 and 2 occupy the wh
cross-section of the sample~see Fig. 2!. If we assume there is
no reflection from the gate, i.e.,utu251, ur u250, we find
^(dI )2&50, while g5pudr u2eVÞ0. The dephasing is non
zero because SS’s emitted from different terminals ove
near the QD, while the shot noise is zero because each
minal ~where the shot noise is measured! is feeded only by
one SS. The situation for the shot noise changes if the ga
reflecting, in which case each terminal is feeded by b
SS’s.

One can understand this difference from the followi
simple calculation. In a channel without reflection the wa
function is c(x)5aeikx1be2 ikx, where the two terms are
SS’s coming from the left and right terminals. The corr
sponding charge and current densities arer(x)5e$uau2
1ubu21(ab* ei2kx1c.c.)% and j (x)5evk$uau22ubu2%. What
is important for nonequilibrium fluctuations is the overlap
SS’s coming from different terminals, i.e. terms proportion
to ab. Such terms do not exist inj but do exist inr. This is
why the shot noise is zero, while the dephasing rate is
The term (ab* ei2kx1c.c.) is of quantum origin. It mean
that in a quasiclassical situation, when the number of ch
nels is large, this term will average out due to ‘‘integration
over k. When the gate is reflecting,utu2Þ1, ur u2Þ0, both
r(x) and j (x) contain terms proportional toab. One can
easily check it using, for example, the wave function to
left of the barrierc(x)5a@eikx1re2 ikx#1b t̃e2 ikx. It is also
important to notice that forv50 the current and charg
fluctuations are not coupled by the continuity equation.

Consider now the same device in a strong magnetic fi
when the SS’s are edge states~ES’s! localized near the
boundaries. We assume also that the QD is far from the
f
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and the interaction region does not reach ES2. In this si
tion, due to the chirality of ES1 the QD can change only t
phases oft and r̃ . As a resultuWu25(db)2utu2ur u2, i.e., the
dephasing rate is proportional to the shot noise. This is
causefor chiral statesthe current and charge densities a
proportional, j 5rvk . ~The connection between dephasin
and the phase oft was mentioned in Ref. 16!.

As a second example we consider a 4-terminal dev
similar to that used in experiment,9 with a geometry as
shown in Fig. 3. The sourceS(a51) and the drainD(a
52) are used to bias the device. Two floating terminals, o
down-stream fromS to D(a53) and one up-stream fromD
to S(a54) are ‘‘dephasors’’ according to Ref. 17. GateA
regulates the source-drain current, while gatesB andC block
the floating terminals. The QD is located far from gateB. We
assume there is only one LL at the Fermi energy and that
ES’s at opposite edges are well separated and do not ove
We will be interested only in nonequilibrium dephasing a
consider zero temperature.

The SS’s emitted from the up-stream floating termina
do not reach the interaction region and hence this term
does not contribute to the dephasing of the QD.~In what
follows it is assumed that this terminal is blocked!. Only
scattering states emitted from terminals 1, 2, and 3 overla
the interaction region, and hence in accordance with Eq.~16!
one hasg5g (12)1g (23)1g (31). Since the QD is located fa
from point contactB, all SS’s in the interaction region hav
the form of the same ESw2

2(r )[w(r ) with different ampli-

tudes, i.e.,x15eif1tAr Bw, x25eif2r̃ Ar Bw, x35eif3 t̃ Bw.
Here,r A , tA and r̃ A , t̃ A are the reflection and transmissio
amplitudes for ES’s approaching A from left and from righ
r B , tB and r̃ B , t̃ B correspond to ES’s approachingB from
above and below. The phase factorseif depend on the posi
tion of the QD. The relevant matrix elements Eq.~13! are

uW12u25utAr Bu2ur Ar Bu2uWu2,

uW13u25utBu2utAr Bu2uWu2,

uW23u25utBu2ur Ar Bu2uWu2, ~28!

where

FIG. 3. A four-terminal device. Scattering states emitted fro
the terminals are labeled by the terminals’ corresponding numb
The interaction area is shown.
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4752 PRB 61Y. LEVINSON
W5E drW~r !uw~r !u2. ~29!

Using these matrix elements we find

g (12)5AutAu2ur Au2ur Bu4uV12u,

g (23)5AutBu2ur Bu2ur Au2uV23u,

g (31)5AutBu2ur Bu2utAu2uV13u, ~30!

with the constantA5(e/4p)uWu2.
When terminal 3 is open, i.e.,r B50, SS1 and SS2 ar

absorbed in this terminal and then the interaction region
reached only by SS3. There is no overlap in the interac
region of SS’s emitted from different terminals and as a
sult all the contributions to nonequilibrium dephasing ra
vanish. When terminal 3 is blocked, i.e.,tB50 we find g
5g (12)5AutAu2ur Au2uV12u[g0.

Since terminal 3 is floatingV3 is given by the condition
that the current entering this terminal is zero, which leads
V35V1utAu21V2ur Au2. Using this one finds

g5g0ur Bu2~22ur Bu2!. ~31!

One can see from this result thatg,g0, i.e., the floating
terminal suppresses the nonequilibrium dephasing rate o
QD state. This result is in agreement with experiment.9 We
would like to stress that the suppression is not becaus
dephasing the SS’s coming to the interaction region. T
absolute values of the matrix elements that enter the exp
sion of the dephasing rate according to Eq.~20! do not de-
pend on the phases of the SS’s overlapping in the interac
region. If one would simply destroy their phases it would n
affect the dephasing rateg. The floating terminal suppresse
g because it absorbs the SS’s moving towards the interac
region from different terminals. It is important to have in
mind that a theory based on the representation Eq.~8! as-
sumes that terminals absorb incoming waves as black bo
which means that terminals have infinite capacitance.

It is instructive to compare the dephasing rate with
shot noise. When terminal 3 is blocked the shot noise
known to be^(dI 1)2&5^(dI 2)2&5(e2/4p2)euV12uutAu2ur Au2.
Using Eq.~A5! one can see that opening terminal 3 does
change^(dI 1)2& but suppresŝ(dI 2)2& by exactly the same
factor ur Bu2(22ur Bu2) as the dephasing rate.
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APPENDIX

In this Appendix, we list some useful properties of t
Green function, the scattering states and the scattering
trix, valid also when the magnetic fieldBÞ0.

For each terminala, and given energye we define out-
going waveswan

1 (e,r ) and incoming waveswan
2 (e,r ), where

n is the mode number~see Fig. 1!. In case of a strong mag
is
n
-

o

he

of
e
s-

n
t

on

es,

e
is

t

s.
s

.

a-

netic fieldw6 are ES’s andn is the LL number. The waves
w6 are normalized to carry a unit flux over the cross sect
of the terminal. Choosing the gaugeAx52By,Ay50 for a
given terminal, wherex andy are the longitudinal and trans
verse coordinates in this terminal, one can represent
waves as follows:wn

1(e,r )5exp@ikn
1(e)x#fn

1(e,y), wn
2(e,r )

5exp@ikn
2(e)x#fn

2(e,y).
In what follows, we use ‘‘hat’’ to indicate the magneti

field inversion. It means for example that ifwn
1 is an outgo-

ing wave for the fieldB ~i.e., an outgoing ES for LLn) then
ŵn

1 is an outgoing wave for field2B ~i.e., an outgoing ES
for the same LL near the opposite boundary!. It is easy to
check thatwan

6 (e,r )* 5ŵan
7 (e,r ) or equivalentlykn

6(e)5

2 k̂n
7(e) andfn

6(e,y)5f̂n
7(e,y)* .

Different functionsf(y) corresponding to the same wav
vectork are eigenfunctions of the same Hamiltonian and
orthogonal. This is not the case when two functionsf1(y)
andf2(y) correspond to the same energye, but to different
wave vectorsk1 and k2. In this case the ‘‘orthogonality’’
relations are18

E dyf1f2F S k12
e

c
AxD1S k22

e

c
AxD G50, ~A1!

and

E dyf1f̂2F S k12
e

c
AxD2S k21

e

c
AxD G50. ~A2!

For a given energye the incoming field in terminala is a
superposition of incoming waves(naan(e)wan

2 (e,r ), while
the outgoing field in terminalb is a superposition of outgo
ing waves(mbbm(e)wbm

1 (e,r ). The scattering matrix con
nects the amplitudes of the incoming and outgoing wave

bbm~e!5(
an

Sbm,an~e!aan~e!. ~A3!

The scattering matrix is unitary due to flux conservation

(
bm

Sbm,an~e!* Sbm,a8n8~e!5dan,a8n8 , ~A4!

and due to time reversal

Sbm,an~e!5Ŝan,bm~e!. ~A5!

A scattering statexan(e,r ) is defined as a solution of th
Schroedinger equation with energye excited by an incoming
wavewan

2 (e,r ). Complex conjugate scattering states are
lutions of the Schroedinger equation with inverted magne
field. Comparing the behavior ofx* and x̂ at infinity one
finds that

xan~e,r !* 5(
bm

Sbm,an~e!* x̂bm~e,r ! ~A6!

and also

x̂an~e,r !5(
bm

Ŝbm,an~e!xbm~e,r !* . ~A7!
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The Green function is defined by the equation

@H~r !2e#Ge~r ,r 8!52d~r2r 8!, ~A8!

with the Hamiltonian given by Eq.~1!. The boundary condi-
tions areGe(r ,r 8)50 whenr is at the boundary of the NS
and these correspond to outgoing waves whenr approaches
infinity in some of its terminals. The Green theorem in ca
BÞ0 is as follows19

E ~r !~uHv2vH* u!

52
i

2m R dl nFuS 2 i¹2
e

c
AD v2vS 2 i¹1

e

c
ADuG ,

~A9!

wheren is the unit normal vector directed outside the NS,dl
is an element of the boundary.

Using this theorem and Eq.~A2! one can prove the sym
metry Ge(r 8,r )5Ĝe(r ,r 8).

When r approaches infinity in terminalb

xan~e,r !ur→`b5dabwan
2 ~e,r !1(

m
Sbm,an~e!wbm

1 ~e,r !,

~A10!

and

Ge~r ,r 8!ur→`b52 i(
m

wbm
1 ~e,r !x̂bm~e,r 8!. ~A11!

The first equation follows from the definition of th
scattering states and the scattering matrix, while the sec
equation can be obtained as follows. From the expl
e

nd
it

expression of the Green function for a waveguide in
magnetic field given in Ref. 20 one can see that a u
source 2d(r2r 8) at r 8→`b excites an incoming field
2 i (mwbm

2 (e,r 8)* wbm
2 (e,r ). Since each wavewbm

2 (e,r ) ex-
cites a statexbm(e,r ) we find that

Ge~r ,r 8!ur8→`b52 i(
m

wbm
2 ~e,r 8!* xbm~e,r !.

~A12!

Using the symmetry ofG, and the relation betweenw2 and
w1, we find the relation given above.

A useful function is defined as follows

Ge~r ,r 8!2Ĝe~r ,r 8!* [2 ige~r ,r 8!. ~A13!

This function can be presented in terms of the scatter
states

ge~r ,r 8!5(
an

xan~e,r !xan~e,r 8!* . ~A14!

Obviouslyge(r ,r ) is the local density of states. InvertingB
one finds ĝe(r ,r 8)5ge(r ,r 8)* . For B50 the function
ge(r ,r 8) is real.

Let the confining potentialU(r ) be subjected to some
variation dU(r ). The variation of the scattering state
dxam(e,r ) contains only outgoing waves and can be fou
from the first Born approximation using the retarded Gre
function corresponding to the potentialU(r ). The asymptotic
behavior ofdxam(e,r ) at r→`b can then be found using
Eq. ~A11!. As a result the variation of the scattering matrix

d

dU~r !
San,bm~e!52 i x̂an~e,r !xbm~e,r !. ~A15!
.
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