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Quantized electron transport through a time-dependent potential barrier

P. A. Maksym
Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

~Received 30 April 1999; revised manuscript received 8 September 1999!

Electron transport by a potential minimum that moves through a barrier is investigated numerically and
theoretically. The integrated electron transfer as a function of the Fermi level has a series of plateaus, each of
which corresponds to an integral number of electrons. The accuracy of the quantization depends on the barrier
height and can be 1 part in 1010 or better. The transport mechanism involves nonadiabatic Landau-Zener
transitions.
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Time-dependent quantum systems, which could serve
new standard of electrical current, are coming under incre
ing scrutiny. If there was a system which could transfer
integral number of electrons per cycle when its Hamilton
was changed periodically, it would function as a frequen
to current converter, giving an accurate standard of cur
when driven with an accurately known frequency. Althou
the combination of speed and accuracy required for met
ogy ~above 1 GHz and between 1 part in 107 and 108) has
not yet been reached, there are two promising approac
One is to construct the system from a chain of small meta
islands coupled by quantum tunnel junctions.1 Another is to
transport electrons in the potential minima of a surfa
acoustic wave ~SAW! propagating through a one
dimensional~1D! channel in a piezoelectric semiconducto2

A model inspired by this approach is investigated in t
present work. The mechanism of electron transfer is foun
involve nonadiabatic Landau-Zener transitions and the ac
racy of the electron transfer is shown to be 1 part in 1010 or
better.

The SAW device consists of a 1D GaAs channel t
separates a 2D electron gas into two regions. SAWs pro
gate in the direction parallel to the channel and their pot
tial is believed to be screened in the regions of high elect
density on either side of the channel.3 Thus the SAW poten-
tial is only significant in the vicinity of the channel and th
SAW generates a potential minimum that develops
strength and moves through the channel. Although trans
through the device is probably influenced by the transit
from 2D motion to 1D motion at the mouth of the chann
and by electron-electron interactions, the time-dependent
tential is essentially one dimensional. It seems that a pre
uisite for accurate electron transfer in the device as a wh
is accurate transfer of noninteracting electrons throug
time-dependent channel at zero temperature and the pur
of this work is to investigate whether this is possible. T
influence of other effects, such as interactions and finite t
perature, is briefly discussed after the possibility of accur
electron transfer in the 1D noninteracting system has b
established.

A 1D model potential consistent with the conditions in
SAW device is V(x,t)5exp(2x2/a2)@V01U0 cos(kx2vt)#,
whereV0 is the height of the potential barrier between t
two regions of high electron density,U0 is the amplitude of
the SAW potential,k52p/l, v52p/t, andl andt are the
SAW wavelength and period. Experimentally, the barr
PRB 610163-1829/2000/61~7!/4727~4!/$15.00
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contains only one minimum of the SAW potential att;t/2
and this condition is simulated by choosing 2a5l. The
wavelength and frequency are chosen to be 1mm and 1
GHz, similar to experimental values. The GaAs effecti
mass is used,m* 50.067m0. For simplicity, most calcula-
tions are done withU05V0 and the effect of relaxing this
assumption is discussed later.

The electron transfer per cycle is calculated by solving
time-dependent Schro¨dinger equation. The barrier is taken
be in the center of an enclosing box of widthL510 mm and
the wave function is taken to vanish at the end points of
box. Initial states are found by diagonalizing the Hamiltoni
with potential V(x,t0). The initial time t0 is set to
20.001t as a precaution against numerical problems w
accurate calculation oft50 eigenstates which are highly de
generate, but the physics is insensitive to the precise valu
t0. Each state is propagated for one period and the net e
tron transferN is found by summing electron transfers fo
individual states up to the Fermi level:

N5 (
Ei (t0)<EF

E
L/2

L

uc i~x,t01t!u22uc i~x,t0!u2dx. ~1!

Each state up toEF is taken to be singly occupied. Doubl
occupancy cannot be treated accurately without conside
interaction of electrons in the SAW minimum.

Results for the electron transfer as a function ofEF are
shown in Fig. 1. Each curve has a plateau or plateaus w
the electron transfer is very close to an integer. For the lo

FIG. 1. Net electron transfer as a function of the Fermi level
various barrier heights.
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4728 PRB 61P. A. MAKSYM
est barrier height only one plateau is evident, then the e
tron transfer drops to zero asEF increases. This is a conse
quence of unitarity. AsEF becomes large each of the tw
sums in Eq.~1! approaches the trace ofu(x2L/2). The trace
is time invariant because the time evolution operator is u
tary, therefore the two terms tend to cancel when there
sufficiently many states belowEF . For the larger values o
V0, the cancellation does not occur in the energy ran
shown. The electron transfer occurs at relatively lowEF be-
causeU05V0; the first plateau shifts to higherEF whenU0

is decreased.
Numerical investigation of the quantization accuracy

quires N to be calculated to 1 part in 1010 or better. The
Hamiltonian is discretized in real space with a finite diffe
ence approximation to the second derivative or ink space
with a Fourier sine expansion. The time-dependent Sch¨-
dinger equation then becomes a system of ordinary diffe
tial equations which are solved numerically with automa
control of the space-time grid size. However, step size c
trol procedures generally give control over local errors wh
the global error needs to be controlled to compute the e
tron transfer. To check the global error the calculations
done with both real andk-space discretization. The real an
k-space programs are independent except for the func
that calculates the potential and use of both approaches g
some protection against programming errors as well as
bal errors. Some calculations were done on two differ
computers as a precaution against system errors.

The accuracy of the first plateau as a function ofV0 is
shown in Fig. 2. The accuracy is measured by 12N at the
plateau center, wheredN/dEF has a minimum. The dia
monds and crosses indicate the real andk-space results, re
spectively. ForV0,23 meV, the results for 12N agree to
3% and the agreement is better than 0.5% forV0,15 meV.
The two curves diverge whenV0.23 meV and this is prob-
ably due to a small normalization error (;10211) which oc-
curs in the real space calculation when a very fine grid
used. It is clear from the figure that there are two regimes
the high barrier regime,V0.1 meV, the accuracy improve
smoothly with barrier height and is system size independ
In the low barrier regime the accuracy oscillates~see inset!
and the form of the oscillations is sensitive to the syst

FIG. 2. Accuracy of quantization at plateau centers. The in
shows the low barrier regime.
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size. The accuracy in the high barrier regime is well fitted
a exp(2bAV0) with a50.8160.07, b54.7660.05.

To investigate the transport mechanism, the tim
dependent wave functions are related to the instantane
eigenstatesx i of the Hamiltonian which obey@p2/2m*
1V(x,t)#x i(x,t)5Ei(t)x i(x,t). The eigenvaluesEi(t) for
V050.9 meV are shown in the left hand frame of Fig.
Each level is nondegenerate, but there are many anticr
ings at which the level splitting is too small to be resolved
the figure. Except fort50 and t5t/2, the instantaneous
eigenstates are of propagating, left, right, or bound charac
Propagating states occupy both sides of the barrier; left
right states occupy only one side of the barrier and bou
states are localized in a potential minimum. Fort50 and t
5t/2, left and right states can be constructed from nea
degenerate symmetric and antisymmetric states. The cha
ter of each state is time dependent. The bound states c
spond to the parabolic structures in the figure and the de
opment of the lowest structure is shown on an expan
scale in the bottom right frame. State number 35~bold en-
ergy level! is bound fort;t/2 and the characters of this sta
and state 36 are indicated at selected time points by the
ters l, r, b. The top right frames show state 35 in its le
right, and bound phases and the topmost frame shows
localization of the bound state shifting from left to right
t;t/2. The character of all states changes at an anticros
but only a few states are bound att;t/2 and only these
states are associated with a shift of localization from left
right. Anticrossing behavior that involves two levels is typ
cal and also occurs for asymmetric barriers. More com
cated behavior that involves more than two levels can oc
by accident at special barrier heights.

The anticrossings influence the time evolution v
Landau-Zener transitions4 between the two states enterin
and leaving the anticrossing. The probability of a Landa
Zener transition can be found by using a special basis

t

FIG. 3. Instantaneous eigenvalues and eigenstates for the
meV barrier. Left and bottom right frames: eigenvalues, bold li
eigenvalue 35; top right: eigenstate 35.
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which each state has the same character at all times4 but an
approximate treatment in the instantaneous eigenstate b
which does not seem to be in the literature, gives more
sight into the numerical data. The two level Hamiltonian
found by Taylor expanding the potential about the anticro
ing time, ta . This gives the matrix elementsH11
5E1(ta), H225E2(ta), and H125m(t2ta) where m
5vU0^x1(ta)uexp(2x2/a2)sin(kx2vta)ux2(ta)&. The evolving
quantum state of the two level system is written in ter
of its instantaneous eigenvalues and eigenstates,Ẽ and x̃,
as a1(t)x̃1(t)exp@2(i/\)*Ẽ1dt#1a2(t)x̃2(t)exp@2(i/\)*Ẽ2dt#.
The coefficientsa1 anda2 satisfy

ȧ15M ~ t !exp„iu~ t !…a2 ,

ȧ252M ~ t !exp„2 iu~ t !…a1 , ~2!

where u(t)5*(Ẽ12Ẽ2)dt/\, M (t)5md/$2@d21m2(t
2ta)2#% and 2d5Ẽ2(ta)2Ẽ1(ta). When the level splitting
2d is small, the states are coupled only for a short time a
if the phase changeu during this time is negligible, the so
lution of Eqs.~2! that satisfiesa1(2`)51, a2(2`)50 is
a15cos„*2`

t M (t8)dt8…, a252sin„*2`
t M (t8)dt8…. Thus the

probability of a transition from state 1 to state 2
usin„*2`

` M (t8)dt8…u251 and the probability of a transition
from state 2 to state 1 is also 1. Because the character o
states changes at an anticrossing the effect of the transiti
to preserve the character at the expense of the eigen
number. In numerical data this appears as a rapid shif
weight from eigenstaten to n61. This result relies onu(t)
remaining small while the transition takes place and this
possible because the phase change during the time take
the probability to reach 12« is ;2d2/(\m«). The splitting
2d is proportional to the barrier transmission coefficient5 so
it is exponentially small when the barrier is high, therefo
the phase change is small. The corrections to this appr
mate treatment are of orderd2/(\m);d2/(\vU0) and the
exact Landau-Zener theory shows that the probability of
transition is actually exp„22pd2/(\m)…;122pd2/(\m).

The existence of anticrossings and a small number
bound states att;t/2 is very important for accurate electro
transfer. Ideally, Landau-Zener transitions would occur w
probability one and there would be no other transitions. Th
an initial state on one of the parabolic structures in Fig
would follow the structure and undergo a change of locali
tion at t;t/2, leading to transfer of one electron. In contra
all the other states would undergo character preserv
Landau-Zener transitions without a change of localizati
leading to no electron transfer. When the Fermi level w
swept through these states the net electron transfer w
stay constant leading to plateaus of the form shown in Fig

The net electron transfer, summed up to the Fermi le
is insensitive to perturbations to the idealized sequence
transitions. This can be shown by expressing the time ev
tion operatorU(t01t,t0) in the instantaneous eigenstate b
sis and factorizing it in the formU(t01t,t/21t0)U(t/2
1t0 ,t0). If the effects of propagating states and barrier p
etration are negligible, the net electron transfer
( i PR( j PL,Ej<EF

uUi j (t01t,t0)u2, whereR is the set of states
bound on the right or of right character andL is defined
sis,
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similarly for the left side. Further, if the states inR and L
couple appreciably only to bound states att5t/21t0, the
electron transfer is

(
i PR

(
kPL,Ek<EF

U(
j PB

Ui j @ t01t,t/21t0!]U jk~t/21t0 ,t0!U2

5 (
j PB

(
kPL,Ek<EF

uU jk~t/21t0 ,t0!u2,

whereB is the set of states bound att5t/21t0 and the last
step follows from unitarity. Unitarity then ensures that t
electron transfer at the first plateau is close to one in t
cases: either if~a! only one state belowEF couples to the
states inB or if ~b! only one state inB couples to the state
belowEF . One or other of these cases applies when Land
Zener transitions occur with high probability thus the ele
tron transfer is accurately quantized.

The actual time evolution is illustrated in Fig. 4. Eac
frame shows the evolution of the state that makes the lar
contribution to the first plateau at various barrier heigh
The areas of the circles indicate the squared coefficie
uci(t)u2 in the expansion( ici(t)x i(x,t) of the computed
wave function. The evolution is nearly ideal in the high ba
rier regime (V059 meV!. Then only one initial state con
tributes significantly to the plateau and this state is localiz
in a weak potential minimum on the left of the barrier. Su
sequently, the system tends to be in one instantane
eigenstate—the one circle at each time corresponds touci u2
.0.9977. The change of the eigenstate number with t
indicates that the evolution follows the idealized sequence
Landau-Zener transitions. The squaredU elements for direct
LR coupling are of order 10215 or less and the sum rule in
form ~a! ensures that the first plateau height differs from 1
about 6 parts in 107, although the dominantuci u2 differs from

FIG. 4. Evolution of wave functionc and time dependence o
instantaneous eigenvalues. At each time, the circle areas repr
the coefficientsuci u2 in the instantaneous eigenstate expansion ofc.
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1 by about 2 parts in 1000. The evolution at lower barr
heights is less ideal (V050.9 meV and 0.1 meV! and several
terms are significant in the instantaneous eigenstate ex
sion. The evolution is also nonideal when two anticrossin
are very close together att50 (V051 meV!. In these cases
the sum rule in form~b! ensures that the first plateau heig
is still close to 1 unlessV0 is very small.

The accuracy of the quantization depends on barrier p
etration in the initial states, the probability of Landau-Zen
transitions, and the strength of directLR coupling. All three
effects are sensitive to the exponential tails of the right, l
and bound states and this is why the accuracy as a func
of V0 at fixed frequency is well fitted bya exp(2bAV0).
The high accuracy in the high barrier regime is partly due
the initial state having bound character and the binding
particularly strong whenV05U0. In reality, the SAW ampli-
tude sets an upper limit onU0 but calculations for a wide
range of model potentials are needed to determine whe
an initial state of bound character is necessary for high
curacy. The important point is that the predicted accurac
up to several orders of magnitude better than the requ
accuracy.

The effect of finite temperature is to reduce the accur
but the reduction is small at typical experimen
temperatures6 which are between 150 mK and 1.3 K. Th
states that correspond to the largest electron transfer
energies near the plateau edges, therefore the initial effe
increasing the temperature is to smooth the edges w
keeping the electron transfer at the plateau center intact.
is illustrated in Fig. 5 for the 9 meV barrier whose accura
is just below the minimum required for practical purpos
The effect of temperature is largest for systems with narr

FIG. 5. Temperature dependence of the first two plateaus for
9 meV barrier.
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plateaus, for example the accuracy for the 9 meV barrie
5.6431027 at 0 K and 6.1831026 at 150 mK. This is the
worst case: higher barriers have broader plateaus and
effect of temperature is much less significant. In general,
electron transfer as a function ofEF for a large system a
temperature,T, is

E
0

`

n~E!r~E! f ~E,EF ,T!dE52E
0

`

N~E!
d f~E,EF ,T!

dE
dE,

wheren(E) is the transfer at energyE, N(E) is the cumula-
tive transfer,r(E) is the density of states andf is the Fermi-
Dirac function. When the temperature is low
2d f(E,EF ,T)/dE is sharply peaked atE5EF , therefore
the electron transfer at the plateau center remains close to
zero temperature value provided that the plateau width
ceeds a fewkT. This is the case in the high barrier regim

The present results suggest it may be possible to us
time-dependent 1D channel as the basis of a quantum cu
standard, however, the effects of departures from 1D mot
disorder, electron-electron, and electron-phonon interact
remain to be investigated. It is not yet known whether the
effects enhance or degrade accuracy but the accuracy
dicted here exceeds the required accuracy by up to four
ders of magnitude. So if a device that approached the co
tions described here could be made, it could be usable e
if departures from ideal conditions reduced its accuracy. C
rently, the only type of device to which the theory might b
relevant is the SAW device. Experiments with this type
device are done by sweeping a gate voltage to change
potential of the 1D channel relative to the Fermi level of t
contacts. This results in quantized plateaus in the acou
electric current as a function of gate voltage. These plate
could be similar to ones found theoretically when the Fer
level is swept. The theoretical plateaus occur because na
bands of states are responsible for the majority of the e
tron transfer and the plateau edges correspond to the F
level passing through these bands. If similar bands of st
exist in the experimental channel, plateaus would be s
when these bands pass through the Fermi level as the
voltage is swept. The best accuracy in current SAW devi
is 50 parts per million.7 The present results, which are n
restricted to SAW devices, suggest it may be possible
engineer a device with better accuracy.
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