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Quantized electron transport through a time-dependent potential barrier
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Electron transport by a potential minimum that moves through a barrier is investigated numerically and
theoretically. The integrated electron transfer as a function of the Fermi level has a series of plateaus, each of
which corresponds to an integral number of electrons. The accuracy of the quantization depends on the barrier
height and can be 1 part in f0or better. The transport mechanism involves nonadiabatic Landau-Zener
transitions.

Time-dependent quantum systems, which could serve as@ntains only one minimum of the SAW potentialtat 7/2
new standard of electrical current, are coming under increasand this condition is simulated by choosin@=22\. The
ing scrutiny. If there was a system which could transfer arwavelength and frequency are chosen to berh and 1
integral number of electrons per cycle when its HamiltonianGHz, similar to experimental values. The GaAs effective
was changed periodically, it would function as a frequencymass is usedm* =0.067n,. For simplicity, most calcula-
to current converter, giving an accurate standard of curreriions are done witlJ,=V, and the effect of relaxing this
when driven with an accurately known frequency. Althoughassumption is discussed later.
the combination of speed and accuracy required for metrol- The electron transfer per cycle is calculated by solving the
ogy (above 1 GHz and between 1 part in’18nd 1§) has time-dependent Schdinger equation. The barrier is taken to
not yet been reached, there are two promising approachee in the center of an enclosing box of widtk= 10 um and
One is to construct the system from a chain of small metallighe wave function is taken to vanish at the end points of the
islands coupled by quantum tunnel junctidn&nother is to  box. Initial states are found by diagonalizing the Hamiltonian
transport electrons in the potential minima of a surfacewith potential V(x,tp). The initial time t, is set to
acoustic wave (SAW) propagating through a one- —0.001r as a precaution against numerical problems with
dimensional1D) channel in a piezoelectric semiconductor. accurate calculation df=0 eigenstates which are highly de-

A model inspired by this approach is investigated in thegenerate, but the physics is insensitive to the precise value of
present work. The mechanism of electron transfer is found tdy. Each state is propagated for one period and the net elec-
involve nonadiabatic Landau-Zener transitions and the accuron transferN is found by summing electron transfers for
racy of the electron transfer is shown to be 1 part if®®  individual states up to the Fermi level:

better.

The SAW device consists of a 1D GaAs channel that
separates a 2D electron gas into two regions. SAWs propa-
gate in the direction parallel to the channel and their poten- ) i _
tial is believed to be screened in the regions of high electrofFach state up t& is taken to be singly occupied. Double
density on either side of the chaniélhus the SAW poten- 0ccupancy cannot be treated accurately without considering
tial is only significant in the vicinity of the channel and the interaction of electrons in the SAW minimum.

SAW generates a potential minimum that develops in Results for the electron transfer as a functionEef are
strength and moves through the channel. Although transpo0wn in Fig. 1. Each curve has a plateau or plateaus where
through the device is probably influenced by the transitiorfhe electron transfer is very close to an integer. For the low-
from 2D motion to 1D motion at the mouth of the channel
and by electron-electron interactions, the time-dependent po-

L
N=_ 2 J|¢i<x,to+T)|2—|¢i<x,to)|2dx. (1)
Ei(tg)<Ef JL/2

4.5

tential is essentially one dimensional. It seems that a prereq- S Ogmeybamer —
uisite for accurate electron transfer in the device as a whole 35 0.1meV barrier -
is accurate transfer of noninteracting electrons through a 3}

time-dependent channel at zero temperature and the purpose
of this work is to investigate whether this is possible. The
influence of other effects, such as interactions and finite tem-
perature, is briefly discussed after the possibility of accurate
electron transfer in the 1D noninteracting system has been i
established. 0.5 I
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Electron transfer

A 1D model potential consistent with the conditions in a oF
SAW device is V(x,t)=exp(—x%a?)[Vy+ Uy coskx— wt)], 05 - . . . : -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

whereV, is the height of the potential barrier between the
two regions of high electron density,, is the amplitude of
the SAW potentialk=2#/\, w=27/7, and\ andr are the FIG. 1. Net electron transfer as a function of the Fermi level for
SAW wavelength and period. Experimentally, the barriervarious barrier heights.

Fermi level (meV)
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FIG. 2. Accuracy of quantization at plateau centers. The inset
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N . m
shows the low barrier regime. 8
&
est barrier height only one plateau is evident, then the elec- Be——m— =<
; P 0.0 . : .
tron transfer drops to zero & increases. This is a conse- 0.0 05 10 00 0.5 1.0
guence of unitarity. A& becomes large each of the two Time (nS) Time (nS)

sums in Eq(1) approaches the trace 6{x—L/2). The trace
is time invariant because the time evolution operator is UNlmeV barrier. Left and bottom right frames: eigenvalues, bold line,
tary, therefore the two terms tend to cancel when there argigenvalue 35: top right: eigenstate 35.
sufficiently many states belo®r . For the larger values of
Vo, the cancellation does not occur in the energy rangéize. The accuracy in the high barrier regime is well fitted by
shown. The electron transfer occurs at relatively Bwbe- @ exp(—ByVo) with @=0.81+0.07, B=4.76+0.05. .
causeU,=V,; the first plateau shifts to high&: whenU, To investigate thel transport mechanlsm,' the time-
is decreased. dependent wave functions are related to the instantaneous
Numerical investigation of the quantization accuracy re-€i9enstatesy; of the Hamiltonian which obeyf p?/2m*
quires N to be calculated to 1 part in 1bor better. The VX DIXi(x.)=Ei()xi(x,t). The eigenvalues(t) for
Hamiltonian is discretized in real space with a finite differ- Vo=0.9 meV are shown in the left hand frame of Fig. 3.

ence approximation to the second derivative orkispace Each level is nondegenerate, but there are many anticross-

with a Fourier sine expansion. The time-dependent 'Schroings at which the level splitting is too small to be resolved in
. ) P ' be : the figure. Except fot=0 andt=7/2, the instantaneous
dinger equation then becomes a system of ordinary differen-

al i hich ved ically with aut i eigenstates are of propagating, left, right, or bound character.
lal equations which are solved numerically with automa ICPropagating states occupy both sides of the barrier; left and
control of the space-time grid size. However, step size con

) ~"right states occupy only one side of the barrier and bound
trol procedures generally give control over local errors whilegiaias are localized in a potential minimum. Fer0 andt

the global error needs to be controlled to compute the elec- 712, left and right states can be constructed from nearly
tron transfer. To check the global error the calculations aregenerate symmetric and antisymmetric states. The charac-
done with both real ané-space discretization. The real and tgr of each state is time dependent. The bound states corre-
k-space programs are independent except for the functiogpond to the parabolic structures in the figure and the devel-
that calculates the potential and use of both approaches givegpment of the lowest structure is shown on an expanded
some protection against programming errors as well as gloscale in the bottom right frame. State number(BBld en-
bal errors. Some calculations were done on two differenkrgy leve) is bound fort~ 7/2 and the characters of this state
computers as a precaution against system errors. and state 36 are indicated at selected time points by the let-
The accuracy of the first plateau as a functionVgfis  ters|, r, b. The top right frames show state 35 in its left,
shown in Fig. 2. The accuracy is measured byN at the  right, and bound phases and the topmost frame shows the
plateau center, wherdN/dEx has a minimum. The dia- localization of the bound state shifting from left to right at
monds and crosses indicate the real &gpace results, re- t~ 7/2. The character of all states changes at an anticrossing
spectively. ForV,<<23 meV, the results for N agree to  but only a few states are bound &t 7/2 and only these
3% and the agreement is better than 0.5%Mg 15 meV. states are associated with a shift of localization from left to
The two curves diverge whevi,>23 meV and this is prob- right. Anticrossing behavior that involves two levels is typi-
ably due to a small normalization error-(L0~ %) which oc-  cal and also occurs for asymmetric barriers. More compli-
curs in the real space calculation when a very fine grid isated behavior that involves more than two levels can occur
used. It is clear from the figure that there are two regimes. Irby accident at special barrier heights.
the high barrier regimey,>1 meV, the accuracy improves The anticrossings influence the time evolution via
smoothly with barrier height and is system size independent.andau-Zener transitiofisbetween the two states entering
In the low barrier regime the accuracy oscillatese inset  and leaving the anticrossing. The probability of a Landau-
and the form of the oscillations is sensitive to the systenzZener transition can be found by using a special basis in

FIG. 3. Instantaneous eigenvalues and eigenstates for the 0.9
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which each state has the same character at all filmaisan
approximate treatment in the instantaneous eigenstate basis,
which does not seem to be in the literature, gives more in- 0.30
sight into the numerical data. The two level Hamiltonian is

found by Taylor expanding the potential about the anticross-

1 0.09

ing time, t,. This gives the matrix elementH; 10
=E(ty), Hx=Es(ty), and Hy,=m(t—t,) where m 020
= wUo{ x1(ta) |exp(—x%a®)sinkx— wt,)|x(t)). The evolving o = ——— 103
quantum state of the two level system is written in terms 2 Smev == 09meVE
of its instantaneous eigenvalues and eigenstateand , &
as ay(t)x1(t)exd —(i/k) [E1dt]+ax(t) xo(texd — (i/4) SExdt]. &
The coefficientsa; anda, satisfy 0.03 r { 000
a;=M(t)exp(i 6(t))a,,
{ 0.06
a;=—M(t)exp(—i6(t))ay, )
where 6(t)=[(E;—E,)dt/A, M(t)=ms/{2[ 62+ m2(t 001 1 003

—t,)%]} and 25=E,(t,) —E.(t,). When the level splitting
26 is small, the states are coupled only for a short time and
if the phase changé during this time is negligible, the so-
lution of Eqgs.(2) that satisfiesa;(—»)=1, a,(—=*)=0 is FIG. 4. Evolution of wave functions and time dependence of
a;=coq " M(t")dt’), a,=—sin(f* .M(t")dt’). Thus the instantaneous eigenvalues. At each time, the circle areas represent
probability of a transition from state 1 to state 2 is the coefficientgc;|? in the instantaneous eigenstate expansiog.of
[sin(f* ..M (t")dt")|?>=1 and the probability of a transition
from state 2 to state 1 is also 1. Because the character of treémilarly for the left side. Further, if the states RandL
states changes at an anticrossing the effect of the transition @uple appreciably only to bound statestatr/2+t,, the
to preserve the character at the expense of the eigenstatéectron transfer is
number. In numerical data this appears as a rapid shift of
weight from eigenstata to n+ 1. This result relies om(t) 2
remaining small while the transition takes place and this is ER e ];B Ujjltot 7,772+ t0) ] U (/24 to, 1)
possible because the phase changze during the time taken for TR
the probability to reach % ¢ is ~2687/(hme). The splitting
26 is proportional to the barrier transmission coefficlest :].;B keLzE:SE |Ujk(7'/2+t01t0)|21
it is exponentially small when the barrier is high, therefore T
the phase change is small. The corrections to this approxiyhereB is the set of states bound tat 7/2+t, and the last
mate treatment are of ordef/(im)~ 6°/(hwUg) and the step follows from unitarity. Unitarity then ensures that the
exact Landau-Zener theory shows that the probability of thesjectron transfer at the first plateau is close to one in two
transition is actually ex-27 5%/ (him))~1—27 5% (hm). cases: either ifa) only one state belovEg couples to the
The existence of anticrossings and a small number oktates inB or if (b) only one state iB couples to the states
bound states at~ 7/2 is very important for accurate electron be|owEF . One or other of these cases app”es when Landau-
transfer. Ideally, Landau-Zener transitions would occur withzener transitions occur with high probability thus the elec-
probability one and there would be no other transitions. Thefiron transfer is accurately quantized.
an initial state on one of the parabolic structures in Fig. 3 The actual time evolution is illustrated in Fig. 4. Each
would follow the structure and undergo a change of localizaframe shows the evolution of the state that makes the largest
tion att~ 7/2, leading to transfer of one electron. In contrast,contribution to the first plateau at various barrier heights.
all the other states would undergo character preservinghe areas of the circles indicate the squared coefficients
Landau-Zener transitions without a change of Iocalization{ci(t)|2 in the expansior;c;(t)xi(x,t) of the computed
leading to no electron transfer. When the Fermi level wasyave function. The evolution is nearly ideal in the high bar-
swept through these states the net electron transfer woulger regime ,=9 me\). Then only one initial state con-
stay constant leading to plateaus of the form shown in Fig. lgriputes significantly to the plateau and this state is localized
The net electron transfer, summed up to the Fermi levelin 3 weak potential minimum on the left of the barrier. Sub-
is insensitive to perturbations to the idealized sequence ojequenﬂy, the system tends to be in one instantaneous
transitions. This can be shown by expressing the time eVO'“eigenstate—the one circle at each time corresponds; o
tion operatotU (to+ 7,t) in the instantaneous eigenstate ba->0.9977. The change of the eigenstate number with time
sis and factorizing it in the formU(to+ 7,7/2+to)U(7/2  indicates that the evolution follows the idealized sequence of
+1o,t0). If the effects of propagating states and barrier pen{_andau-zener transitions. The squatéelements for direct
etration are negligible, the net electron transfer |S|_R Coup”ng are of order 1015 or less and the sum rule in
ZicrTjeL =g Uij(tot 7,to)|%, whereR s the set of states form (a) ensures that the first plateau height differs from 1 by
bound on the right or of right character ahdis defined about 6 parts in 10 although the dominant;|? differs from

0.0 0.5 1.0 00 0.5 1.0
Time (nS)
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25 - - - - - - plateaus, for example the accuracy for the 9 meV barrier is
T=00K — 5.64x10 7 at 0 K and 6.1& 10 ® at 150 mK. This is the
5k T=0IK - worst case: higher barriers have broader plateaus and the

effect of temperature is much less significant. In general, the
electron transfer as a function & for a large system at
temperatureT, is

- df(E,Eg,T)

fo n(E)P(E)f(EvEF,T)dEZ—J'O N(E)TdE’

Electron transfer

05} wheren(E) is the transfer at enerdy, N(E) is the cumula-
tive transfer,p(E) is the density of states arids the Fermi-
iy ) ) ) ) Dirac function. When the temperature is low,

0 0.1 02 03 04 05 06 07 —df(E,Eg,T)/dE is sharply peaked aE=Ef, therefore

Fermi level (meV) the electron transfer at the plateau center remains close to the

zero temperature value provided that the plateau width ex-

Ceeds a fewkT. This is the case in the high barrier regime.
The present results suggest it may be possible to use a

time-dependent 1D channel as the basis of a quantum current

ﬁe?yh;b;ulggsﬁggg&n_lg %Or'nz\r}eaﬁ:jloéuf?;‘e;;;%\’\gvgzlnerstandard, however, the effects of departures from 1D motion,
9 o~ ' disorder, electron-electron, and electron-phonon interactions

terms are significant in the instantaneous eigenstate EXPalmain to be investigated. It is not yet known whether these

sion. The evolution is also nonideal when two anticrossingg¢ +s enhance or degrade accuracy but the accuracy pre-
are very closg together &0 (V=1 me\Q. In these Cases icted here exceeds the required accuracy by up to four or-
Fhe sum rule in formb) ensures that the first plateau height ders of magnitude. So if a device that approached the condi-
IS STt'rI]I close to 1 u?ltisyo IS \:_eryt_sm?jll. q barri tions described here could be made, it could be usable even
1€ accuracy of the quantization depends on barrier per)y departures from ideal conditions reduced its accuracy. Cur-
etration in the initial states, the probability of Landau—Zenerrently the only type of device to which the theory might be
transitions, and the strength of dirddR coupling. All three releva;nt is the SAW device. Experiments with this type of

effects are sensitive to the exponential tails of the right, Ieftdevice are done by sweeping a gate voltage to change the

and bou”‘?' states and thig is why .the accuracy as a funCtio[5btential of the 1D channel relative to the Fermi level of the
of Vo at fixed frequency is well fitted by exp(~BvVo).  contacts. This results in quantized plateaus in the acousto-

The high accuracy in the high barrier regime is partly due t0ectric current as a function of gate voltage. These plateaus

the _|n|t|al state having bound charac_ter and the blndlng 'Tould be similar to ones found theoretically when the Fermi

particularly strong wheWo=Uy. In reality, the SAW ampli- ey is swept. The theoretical plateaus occur because narrow
tude sets an upper limit ob, but calculations for a wide 5nqs of states are responsible for the majority of the elec-
range of model potentials are needed to determine whethefo ransfer and the plateau edges correspond to the Fermi
an initial state of bound character is necessary for high aggye| passing through these bands. If similar bands of states
curacy. The important point is that the predicted accuracy igyist in the experimental channel, plateaus would be seen

up to several orders of magnitude better than the requiregnen these bands pass through the Fermi level as the gate
accuracy. o _ voltage is swept. The best accuracy in current SAW devices
The effect of finite temperature is to reduce the accuracyg g parts per milliorl. The present results, which are not

but the reduction is small at typical experimental egyicted to SAW devices, suggest it may be possible to
temperaturéswhich are between 150 mK and 1.3 K. The engineer a device with better accuracy.

states that correspond to the largest electron transfer have

energies near the plateau edges, therefore the initial effect of | thank Dr V. |. Talyanskii for explaining the SAW de-
increasing the temperature is to smooth the edges whileice and critically reading the manuscript. | am grateful for
keeping the electron transfer at the plateau center intact. Thiselpful discussions with him and Dr C. H. W. Barnes, Pro-
is illustrated in Fig. 5 for the 9 meV barrier whose accuracyfessor J. L. Beeby, J. Cunningham, Dr C. J. B. Ford, Profes-
is just below the minimum required for practical purposes.sor M. Pepper, A. Robinson, and Dr J. Shilton. | thank Dr D.
The effect of temperature is largest for systems with narrowE. Khmelnitskii for drawing my attention to Ref. 4.

FIG. 5. Temperature dependence of the first two plateaus for th
9 meV barrier.
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