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Quantum states of interacting electrons in a real quantum dot

N. A. Bruce and P. A. Maksym
Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH, United Kingdom

~Received 17 August 1999!

We present an exact diagonalization method that allows the electronic states of interacting electrons in a
quantum dot to be calculated from first principles, without making assumptions about the shape of the con-
fining potential, the dimensionality of the problem or the exact nature of the electronic states. The electrostatic
potential of the entire device is calculated and the subband structure determined numerically to allow the full
three-dimensional electron motion to be included in the calculation. Exact diagonalization of the many-body
Hamiltonian then determines the states of the electrons in the dot within the effective-mass approximation. The
screening due to the gate electrodes is also taken into account. This method may be used for a range of device
geometries, but here we calculate the low-lying levels of a cylindrically symmetric, electrostatically confined
quantum dot to better than 0.1%. Results for the ground-state energy and the far-infrared absorption spectrum
are presented and the physical effects of the electron motion in the perpendicular direction and the screening
are discussed.
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I. INTRODUCTION

Semiconductor quantum dots are currently of imme
interest as the possible use of dots in laser and electr
devices has provoked intense study of their properties. T
oretical studies of the physics of these systems have b
based on a number of approximations, notably restriction
the system to two dimensions,1,2 although some work ha
included three-dimensional electron motion.3,4 There is in-
creasing recognition that more detailed calculations are
quired to investigate particular device structures,5 and this
work is concerned with a general calculation technique t
is free of the approximations and assumptions used in pr
ous studies.

Most work on dots is based on a model in which t
electron motion is two dimensional, the confining potentia
parabolic and the electrons interact via the Coulomb inte
tion. Any model that includes more detail must account
the effect of the device structure that confines the electro
The model should allow for the possibility of motion in a
three dimensions, include a realistic confining potential t
restricts the electron motion in each dimension and allow
the modifications to the interaction potential that occur
real systems, particularly those with metallic gates. T
means that the electrostatic potential for the whole dev
must be calculated and included in the calculation of
electronic properties.

The procedure described here starts from a calculatio
the electrostatic potential and leads to the quantum state
the interacting electron system from which electronic pro
erties can be calculated. The general idea is to find a suit
single-particle basis from a combination of variational a
Hartree-Fock approaches and use this basis to perform
exact diagonalization of the full Hamiltonian that includ
realistic confinement and interaction potentials. This allo
ground-state energies to be found to a numerical accurac
better than 0.1% in a reasonable amount of computer tim

Although the primary aim of this work is to establish th
viability and accuracy of our method, we also present so
PRB 610163-1829/2000/61~7!/4718~9!/$15.00
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illustrative results for a structure that is typical of curre
devices. We look at the energy and angular momentum
the ground state and the dependence of these quantitie
magnetic field. We compare these results with those fo
two-dimensional~2D! system with similar characteristic
and also with a model that does not take into account
screening due to the gate electrodes. In addition, we calcu
the far-infrared absorption spectrum of the dot and iden
effects that occur when the electron motion differs from t
ideal 2D behavior. This allows us to make some gene
comments about the use of the 2D parabolic model for in
pretation of experimental data.

The paper is organized as follows. We first present
specific device model that we use to illustrate our meth
and define the physics that we wish to include in calculatio
~Sec. II!. Next, we detail our calculational procedures~Sec.
III ! and then present illustrative results and estimate the
curacy of our method~Sec. IV!. Finally we summarize the
main conclusions about our method and the effect of corr
tions to the 2D parabolic dot model. Appendixes give ad
tional information about the matrix elements used for o
calculations.

II. GENERAL PHYSICS OF A QUANTUM-DOT DEVICE

A. Device structure

Quantum-dot devices are often constructed from a het
junction or quantum well that provides strong confinemen
the vertical direction, creating a quasi-2D electron system
order to further confine the electrons to form a quantum d
confinement in the plane of the 2D system is required. T
can be achieved in a number of ways. The most commo
to use metallic gates in conjunction with an insulating cap
order to confine the electrons electrostatically.6,7 However
other methods are also employed, such as placing stres
on the surface of the device,8 and dots can be fabricate
directly by self-organized growth.9

We use a specific device to illustrate our method~Fig. 1!,
similar in style to many on which measurements have b
4718 ©2000 The American Physical Society
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made.10 The device is made from the following layers. At th
base of the device a drain electrode is constructed fro
d-doped layer of Si in GaAs. On top of this is an undop
layer of GaAs (1800 Å thick with donor densityn
51014 cm23), then a barrier layer of undoped AlxGa12xAs
(200 Å, n50). The top full layer is of heavily doped
n-type AlxGa12xAs (200 Å, n51.531018 cm23) and
above this there is a circular cap of undoped Ga
(300 Å, n50) with radius r c52000 Å. The top of the
device ~both the cap and the uncovered section of the p
ceding layer! is covered with a metal electrode. For simpli
ity, the ionized donor density is assumed to be uniform bu
would be possible to include ionized donor dens
inhomogeneities.11 The dielectric constants were chosen
be 12.4 for the GaAs and 11.8 for AlxGa12xAs, theg factor
in GaAs was20.44 and the Schottky offsets were 0.7 eV f
GaAs and 0.95 eV for AlxGa12xAs. In all calculations we
assume there are three electrons in the dot and we con
all possible spin polarizations. As we wish all the states
consider to be bound, we set the gate voltage at a level w
ensures that the states have a negative energy with resp
that of electrons in the drain electrode. Therefore a gate v
age of20.65 V was used. The conduction-band offsets d
to the differing band gaps of the material were measu
relative to the GaAs conduction-band edge. Thus the of
in the AlxGa12xAs layers was taken to be 300 meV. All th
results presented here are for this specific device, but
stress that our method is not limited to this device or even
devices with this general construction.

B. Hamiltonian

The Hamiltonian for electrons confined as described
Sec. II A is

H5(
i

1

2m*
$p' i

2 1~pi i1eA!2%1U~Ri !1VI~Ri !

1 1
2 (

iÞ j
V~Ri ,Rj !1g* mBBSz . ~1!

Here A is the magnetic vector potential,B is the magnetic
field in thez direction,m* andg* are the electron effective
mass andg factor,Sz is thez component of the total spin, an
mB is the Bohr magneton. The subscriptsi and' denote
components in and perpendicular to the (x,y) plane, respec-
tively. U is the 3D confining potential,VI is the interaction
of each electron with its own image charge, andV is the

FIG. 1. Schematic cross section of the device structure use
the calculations.
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electron-electron interaction potential. These terms are
pendent on the 3D positionR5(r ,z) through the in-plane
position r andz coordinate.

The confinement term,U is the 3D electrostatic potentia
in the device due to the gate electrodes and the impuritie
the different materials. We calculate it by numerically so
ing the Poisson equation, whereas in 2D treatments it is g
erally approximated by a parabola. Figure 2 shows the
merically generated potential with the equivalent parab
superimposed. For radii less than 700 Å the parabolic
proximation is very good. However, at larger radii the tw
curves diverge rapidly. This implies that for small angu
momentum and large magnetic fields, the parabolic appr
mation holds well, but in general this may not be the ca
The variation of the potential perpendicular to the plane,
shown in Fig. 2, is discontinuous and highly asymmetric.

As most of the devices we consider have metallic ga
we must take account of the screening of the Coulomb
tential. The termsV andVI are determined by applying th
general approach of Hallamet al.12 to the Poisson equation
for charges in a gated device. The electron-electron poten
V is simply related to the electrostatic Green’s functio
G(R,R8), by V(R,R8)5e2G(R,R8), but a further step is
required to obtainVI . According to Ref. 12 the Green’
function splits into two terms,

G~R,R8!5G1~R,R8!1G2~R,R8!, ~2!

whereG1 is singular and results from a point charge atR8.
G2 is a correction due to induced charges andVI is obtained
from this term byVI(R)5e2G2(R,R)/2. For typical devices
a cap structure provides a means to confine the elect
laterally. The cap is, in general, very much larger than

in

FIG. 2. Potential of the device in Fig. 1. The top panel sho
the radial potential compared to a parabolic form with\v0

54.65 meV. The lower panel gives the conduction-band e
through the center of the device.
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4720 PRB 61N. A. BRUCE AND P. A. MAKSYM
average region of confinement of the electrons so it is r
sonable to suppose that the screening can be well app
mated with a parallel-plate capacitor treatment. This ena
V andVI to be obtained analytically from expressions giv
by Hallamet al.12 ~see also Sec. III C!, which has the advan
tage of reducing computer time. Test calculations, descri
in Sec. IV C, confirm the accuracy of the parallel-plate c
pacitor approximation for a number of cases.

III. CALCULATIONAL METHOD

In this section we detail the method used to calculate
quantum states of interacting electrons in the dot. The sec
quantized form of the Hamiltonian is

H5(
i j

^ i uTi1T'1U1VI u j &ci
†cj1

1
2 (

i jkl
^ i j uVukl&ci

†cj
†ckcl

1g* mBBzSz , ~3!

where i, j , . . . are single-particle states andTi and T' de-
note kinetic energy operators, which include magnetic fi
effects. The eigenstates of this Hamiltonian are found
numerical diagonalization in a Slater determinant basis
single-particle basis is needed to construct the many-par
basis and the choice of this basis is critical. We could
course choose any complete set as a basis, but an arb
choice would result in a large number of basis states be
required to achieve good accuracy. This is because the s
of a quantum dot are localized in space. Using a plane-w
basis set, for example, would require a very large numbe
Fourier components to define a localized state. To minim
the number of basis states required, and hence make the
culation tractable given finite computing resources, we
tempt to choose a basis set that represents the physica
tem as closely as possible. In this way we reduce the t
size of the Hamiltonian we need to diagonalize in order
obtain the energy levels of the system to an acceptable l
of accuracy.

To construct the single-particle basis we choose functi
that are separable into an in-plane~parallel to the interface!
and a perpendicular part. The Fock-Darwin states are a g
choice for the in-plane states because they are the eigens
of parabolically confined electrons in a magnetic field, a
the parabolic form is a good approximation sufficiently clo
to the minimum of the real potential. The perpendicular,
subband, functions are determined numerically by solvin
one-dimensional Hartree-Fock equation: all the electrons
taken to be in the same subband and the energy of a s
Slater determinant composed of products of Fock-Dar
states and subband states is minimized to obtain the sub
states. Further details are given in Sec. III A.

After the single-particle basis has been found it is used
find the matrix elements in Eq.~3! and a standard exac
diagonalization program is used to find the eigenstates of
electrons in the dot. The methods used for the matrix elem
calculation are given in the Appendixes and some detail
the calculation of electrostatic potentials and Green’s fu
tions that appear in the matrix elements are given in S
III B and III C.
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A. Single-particle basis

The basis functions are taken to have the form

c i~R!5x i~z!f i~r !, ~4!

where thef i(r ) are the in-plane functions andx i(z) are
subband functions. The Fock-Darwin states13 used for the
in-plane basis have the form

fnl~r !5Nnlr
u l uLn

u l uS r 2

2a2D e2r 2/4a2
e2 i l u, ~5!

whereNnl is the normalization constant,Ln
u l u are associated

Laguerre polynomials, anda is a length parameter. In the 2D

noninteracting casea25\/(2m* V), where V5( 1
4 vc

2

1v0
2)1/2, v0 is the in-plane confinement frequency, andvc

5eB/m* is the cyclotron frequency. The Fock-Darwi
states are orthogonal forany value ofa and we attempted to
increase accuracy by treating this parameter as a variati
parameter whose value was determined by the energy m
mization procedure used to find the subbands.

To determine the subband states we suppose that all e
trons are in the lowest subband and approximate
N-electron wave functionC as a Slater determinant com
posed ofN states of the formx(zi)f i(r i), where each elec-
tron has the same subband function. In principle, spin fu
tions can be included in this Slater determinant but,
discussed in Sec. IV D, we have only used spin-polariz
states. Minimizing the energy of the stateC subject to the
constraint thatx(z) is normalized leads to a one-dimension
Schrödinger equation forx(z). To perform the minimization
we consider the quantity

A5^CuHuC&2l H E x* ~z!x~z!dz21J , ~6!

wherel is a Lagrange multiplier. We now introduce a sma
change,dx and denote the resulting change inC by dC.
We find the first-order change inA is

dA5^dCuHuC&2lE dx* ~z!x~z!dz1H.c., ~7!

where H.c. denotes Hermitean conjugate.A is stationary
with respect to first-order variations inx whendA vanishes
and it follows thatx(z) is determined by the equation

F p'
2

2m*
1Ū~z!1VHF~z!Gx~z!5e~a!x~z!. ~8!

Heree(a) is a new variational parameter defined by the
lation

e~a!5
l

N
2

1

N (
k
E fk* ~r !

~pi1eA!2

2m*
fk~r !dr , ~9!

where the sum runs over all electrons. The quantitiesŪ(z)
andVHF(z) that appear in Eq.~8! are laterally averaged con
finement and Hartree-Fock interaction potentials, resp
tively, which are given by the equations
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Ū~z!5
1

N (
k
E fk* ~r !U~z,r !fk~r !dr , ~10!

VHF~z!5
1

N (
i j

E f i* ~r !f j* ~r 8!V~R,R8!@f i~r 8!f j~r !

2f j~r 8!f i~r !#ux~z8!u2dz8drdr 8. ~11!

Equation~8! has the form of a single-particle Schro¨dinger
equation. It can be solved numerically for any value of t
variational parametera and its solution gives a complete s
of subband functions.

The value ofa determines how accurate the results w
the truncated basis set are. If a complete set of states
used as a basis, the value ofa would be immaterial. How-
ever, we wish to use as small a number of states as poss
The value ofa determines the radius of the in-plane sta
and initially we assumed that it would be advantageous
choosea to minimize the Hartree-Fock energy. It turned o
however, that the exact ground-state energy for the partic
device considered here, is relatively insensitive toa provided
that a reasonably realistic value is used. A detailed disc
sion of this point is given in Sec. IV D.

B. Electrostatic potential

The electrostatic potentialU due to fixed charges an
electrodes in the device, is found by solving the Poiss
equation. The device has circular symmetry and the Pois
equation was solved on a 2D (4003400) grid. Boundary
conditions were chosen such that the potential was fixe
the two electrodes and its radial derivative went to zero at
other boundaries. The radius of the structure was chose
be 4000 Å as any increase in the radius had negligible ef
on the potential of the active region. Thus finite-size effe
are believed to be negligible. The potential was calculate
each grid point using a finite difference relaxation meth
that determines the potential iteratively, starting from ze
potential at all internal grid points. The convergence criter
was that potential did not change by more than 0.1%, at
grid point, in successive iterations.

C. Screening

The parallel-plate capacitor form of the electrosta
Green’s function is derived in Ref. 12. Results necessary
the present work are the Green’s function itself and the n
singular partG2 that determines image charge effects. T
Green’s function is given by

G~R,R8!5
1

~2p!2«
E f ~k,z,z8!

k
eik•(r2r8)dk ~12!

where« is the dielectric constant,

f ~k,z,z8!5
sinh@k~d2z!#sinh~kz8!

sinh~kd!
~13!

for z<z8 and

f ~k,z,z8!5
sinh@k~d2z8!#sinh~kz!

sinh~kd!
~14!
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otherwise. Herez and z8 denote distances from the botto
plate andd is the plate separation.G2 is given by

G2~R,R!5
1

2p«E0

`

dkF f ~k,z,z!2
1

2G . ~15!

IV. RESULTS

We begin with a brief overview of the physical effects
motion out of the plane and then present results. In addi
to results for the ground state we look at the optical tran
tions of the system, the accuracy of the parallel-plate scre
ing approximation and of our method in general.

Transitions of the angular momentum of the ground st
as a function of magnetic field were predicted in early wo
on the 2D model for quantum dots.1 These transitions occu
when the increasing interaction energy due to the comp
sion of the electron wave function by the magnetic field b
comes large enough to make an increase in the radius o
states, and hence confinement energy, favorable. This
results in an increase of the total angular momentum of
system. The lowest-energy states at each magnetic field
known as magic number states as they correspond to a s
of specific angular momentum values.

We can anticipate the general effect of including the m
tion perpendicular to the plane by using simple physical
guments. The main effect will be to allow the electrons
increase their separation and hence reduce their interac
energy, but retain about the same confinement energy.
will allow each magic number state to persist to a grea
magnetic field before the increase of interaction ene
causes a transition. We expect that the transitions betw
magic number states will therefore occur at higher fields
the 3D case than for the pure 2D case. A similar argum
can be made for the screened interaction in comparison to
pure Coulomb interaction. Thus the screened system sh
again have transitions at higher fields than for the unscree
case.

A. Ground states

Transitions of the ground state for the device in Fig. 1 a
presented in Fig. 3. The figure shows the ground-state an
lar momentum, calculated exactly, in comparison with
sults for an equivalent 2D model, with parabolic confin

FIG. 3. Ground-state angular momentum as a function of
plied magnetic field for 3D and 2D systems with screened a
unscreened potentials.
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4722 PRB 61N. A. BRUCE AND P. A. MAKSYM
ment, for both screened and unscreened potentials. We
see immediately that all of the curves have a similar cha
ter. This shows that the 2D calculations do include all of
essential physics of the problem. However, the 2D mo
consistently has transitions at smaller magnetic fields, ty
cally of the order of 10% too small. Additionally, it is inter
esting to note that unpolarized states continue to exist as
ground state up to 10 T, an effect that is more pronounce
the 2D case than for the more realistic model. Using a p
Coulomb potential, on the other hand, has very little eff
on the angular momentum transitions of the ground st
This doesnot imply that screening is always unimportan
The dot plane is relatively far from the plates in the pres
case but a change in device geometry could increase
effect of screening.14

The energies of the ground states~Fig. 4! show that,
again, the 2D and 3D results have a remarkably similar
havior. Note that in the figure the energy of the 2D curve h
been offset by 121 meV so that a direct comparison can
made. The largest variation between the curves is due to
relative positions of the transitions. The energy gradient
the 2D curve is greater than that of the 3D curve. This ag
implies that the 2D curve will reach the transition conditi
at a lower magnetic field than that for the 3D case.

These results have important consequences for interp
tion of experimental data. The shift in the transition field
of the order 1 T, and although this is not so large that
qualitative predictions of the 2D parabolic model are inval
it is much too large for the model to be accurate. The o
way to increase a transition field in the 2D parabolic mode
to increase the strength of the confinement but the trans
field is a slowly varying function@;(\v0)1/3# of the con-
finement energy.15 There would be a considerable overes
mate of the confinement energy if observed transitions w
used to fit the confinement energy in the 2D parabolic mo
For example, it would be necessary to double the confi
ment energy to obtain a shift of about 1 T in a transiti
occurring at a field of around 4 T in the 2Dparabolic model.
This factor is roughly consistent with a discrepancy in t
confinement energies reported in recent experimental16 and
theoretical17 work.

B. Optical transitions

Optical ~far-infrared! experiments are, in general, insen
tive to the number of electrons in a quantum dot. The

FIG. 4. Energy of the ground state as a function of magn
field at low field for 3D and 2D screened cases. Points den
energies; lines are to guide the eye.
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duced sensitivity is a consequence of the generalized Ko
theorem,1,18 which shows that electromagnetic radiation on
affects the center of mass motion in a 2D dot with ex
parabolic confinement. This leads to an excitation spectr
identical to that of a single particle but in reality, the o
served spectrum has some small splittings. Some of th
have been attributed to nonparabolic confinement,19 but the
additional effect of out-of-plane electron motion has not y
been considered. This can cause additional coupling of c
ter of mass and relative motion and hence affect the exc
tion spectrum. Optical excitation can promote an electron
the next Landau level and there is, in general, a field ra
where the energy required for this transition is close to t
required for a transition to a higher subband. It is at this po
that the higher subbands are most likely to affect the opt
spectrum.

To investigate this we consider absorption of linearly p
larized electromagnetic radiation. The transition rate from
single-electron statei to an excited statek is proportional to
z^kuxu i & z2, where the electric field of the incident radiation
polarized in thex direction andu i & and uk& are initial and
final states.20 We use a similar expression in second qua
tised form to determine the relative strengths of the abso
tion lines for each many-body state. As a check on the ac
racy of our results we use thef-sum rule,20 which is satisfied
to better than 1%.

We assess the importance of subband coupling by ex
ining the optical absorption spectrum for several cases.
spectrum in the vicinity ofB516.7 T for the device de-
scribed in Sec. II A is shown in Fig. 5. The crossing show
in the figure involves one state of predominantly first su
band character and a second of predominantly second
band character. The sizes of the points in the figure give
relative transition rates to the states. Points marked with a1
have transition rates at least two orders of magnitude
than those with dots. We can therefore see that there is
little chance of a transition to the upper subband state in
particular case. Very close to the crossing, the rate in
second subband state does rise by two orders of magnit
However, this still gives a much smaller total rate than
the other state and so would still be very difficult to dete
The subband spacing in this case is about 27 meV and
behavior shown is probably typical for a large subband sp
ing.

To examine the possible behavior with a smaller subb
spacing we artificially reduce the intersubband gap to
meV while retaining the form of the subband functions. Th

c
te

FIG. 5. Absorption spectrum for subband spacing of 27.14 m
Point sizes are proportional to the total absorption for each le
Crosses denote points too small to be visible.
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has the effect of reducing the energy spacing of the subba
but keeping their character unchanged. We now find e
dence of both anticrossing and a significant transition rat
the upper subband state atB53.45 T. Figure 6 shows the
behavior of three states as they approach each other. The
of states is mainly of first subband and the other state is
second subband character. We see that the lower state o
pair is unaffected by the presence of the upper subband le
whereas the other state shows strong anticrossing beha
The selection of only one of the pair of states to be involv
in anticrossing is physically reasonable and the mixi
hence repulsion, between levels occurs preferentially
tween levels which contain predominantly the same se
single particle angular momenta. These results indicate
subband coupling could cause electron-electron interact
to have an observable effect on the optical absorption s
trum for appropriate types of device.

C. Screening

In this section we consider exact results for the screen
effect of the electrodes. We explain the numerical proced
for calculating the exact screened potential and we comp
results of numerical and approximate calculations for a ra
of physical parameters and discuss the accuracy of
parallel-plate approximation.

The electrostatic Green’s function that determines the
act interaction potential can be calculated numerically i
similar way to the electrostatic potential. However,G di-
verges atR5R8 and its behavior in this region is therefo
unlikely to be accurately reproduced in a finite grid calcu
tion. In order to obtain more reliable results we consider o
the nonsingular part of the Green’s function,F, defined by

G~R,R8!5
1

4p«uR2R8u
1F~R,R8!. ~16!

We expectF to be well behaved over all space and also to
well represented on a finite grid. We therefore need to c
vert the equations forG into equations forF. The equation
for G is

¹2G~R,R8!52
d~R2R8!

«
~17!

hence the equation forF is

¹2F~R,R8!50, ~18!

FIG. 6. Absorption spectrum for subband spacing of 10.0 m
Point sizes are proportional to the total absorption for each lev
ds
i-
to

air
of
the
el,
ior.
d
,
e-
f
at
ns
c-

g
re
re
e
e

x-
a

-
y

e
-

and the boundary conditions forF are

G50 at z50,d⇒F52
1

4p«uR2R8u
,

]G

]r
50 at r 50,r max⇒

]F

]r
5

r

4p«@r 21~z2z8!2#3/2

together with

«1

]F

]z U
z01

5«2

]F

]zU
z02

~19!

at any boundary,z0, between materials 1 and 2.
To estimate the accuracy of the parallel-plate approxim

tion, we compared numerical Green’s functions with tho
calculated using Eq.~12!. We varied the size of the cap (r c)
and the distance of the dot plane~given by the value ofz
5z8) from the plates for our test device. This enabled t
robustness of the analytic form to be tested against varia
from the ideal parallel-plate geometry. Results forz5z8
5d/2 Å and r 850 ~Fig. 7! show that the exact in-plan
Green’s function differs from the parallel plate form by
most around 1% when the cap radius is 2000 Å or more
the in-plane separation is less than about 1000 Å. We a
examined the out-of-plane Green’s function (zÞz8) for a
reasonable range comparable to the size of the electron w
function in a dot and found agreement as good as that in
7. As the cap size increases, the agreement with the para
plate form gets better, as expected. The analytical expres
Eq. ~12! provides a good approximation for distances le
than the cap radius. As the cap size of our device is 2000
and the dot size is of the order of 500 Å, we use the anal
form in all calculations for our model device and anticipate
to be useful in most calculations using this method. Ho
ever, we stress that our method can be adapted to u
numerical interaction potential, which may be necessary
more complicated geometries.

D. Accuracy of the method

In this section we detail the numerical accuracy of o
calculation of the ground-state energies. We also discuss
numerical parameters which affect the calculation and
scribe their role. Initially we will address the issue of th

.
.

FIG. 7. Nonsingular part of the in-plane Green’s function for t
device in Fig. 1 with several cap sizes compared with the anal
result for an infinite parallel-plate capacitor.
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cutoff point for the basis set and estimate the errors inhe
in using a finite basis. Then we consider the variational
rametera and its effect on the results.

To determine the number of single-particle basis states
examined the convergence with respect to the number
Landau levels and subband states atB50, 7, and 20 T, field
values which are far from ground state transitions. ForB
50 T we found that using up to the third Landau level a
a single subband was sufficient. Increasing the numbe
Landau levels by one shifted the ground-state energy
'0.03 meV, equivalent to an error of'0.05%. Similarly
the addition of a second subband reduced the ground-
energy by'0.02 meV. ForB57 T the error due to the
addition of an extra Landau level ('0.008 meV) or sub-
band ('0.005 meV) was smaller than for theB50 T case.
This was expected as the predominant contribution to
error was from the limited number of Landau levels as
separation of the subbands was of the order of 27 m
compared to a Landau-level spacing of approximately 4
meV atB50 T and 7.63 meV atB57 T. Similarly for B
520 T, including the third Landau level gave a change
the ground-state energy of only 0.001 meV and includin
second subband, 0.002 meV. Note that at magnetic field
this strength the Landau-level spacing~17.89 meV! is be-
coming comparable to the subband spacing~27.24 meV!.
This leads to errors of the same magnitude from trunca
each part of the basis. These results imply that using a t
cated basis of single-particle states up to the third Lan
level and only the lowest subband give ground state ener
with maximum errors of the order of 0.05% or 0.03 me
This small amount of subband mixing is mainly due to t
large energy spacing of the sub-bands. Note that not
nanostructures capable of being modelled using this me
will have such strong confinement in thez direction. How-
ever, similar accuracies should be achievable in such c
by using an appropriately truncated basis set.

Another issue relevant to the numerical accuracy of
basis set is the magnetic field dependence of the subb
basis. The variation of the ground subband wave function
a function of magnetic field was very small as shown in F
8 ~lower frame!. The higher subbands had a greater variat
with magnetic field~Fig. 8, upper frame!, as did those cal-
culated with a screened compared with an unscreened i
action potential. Due to the large energy spacing the ca
lations only required one or two subbands. This relat
independence of field allowed theB50 T subbands to be
used in all calculations. Different subband sets were used
the screened and unscreened cases. Each of these was a
plete set, so any errors due to this procedure are include
the variation of the ground state with the number of su
bands in the basis set. As a guide, the energy of the gro
state atB520 T, calculated usingB50 T subband func-
tions shifted by approximately 0.02 meV.

The value ofa used for calculations is determined in
number of steps. First, we choose a magic number that
think will give the lowest-energy state. We know that t
combination of single-particle states that gives the low
energy is one that has consecutive angular momentum q
tum numbers.4,21 We assume that the transitions would occ
at approximately the same fields and to the same states
the 2D case.1 We then calculate the energy of this sta
nt
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within the Hartree-Fock prescription as a function ofa. The
value ofa that gives the lowest energy is then chosen for u
in the rest of the calculation. Although the method used
not take full account of the possible spin states—a sp
polarized state was assumed—comparison with subba
calculated using the Hartree approximation gave no nota
difference, thus implying that the form of the approximatio
in determininga is not important. For studies with large
numbers of electrons the same conclusions may not hold,
it would be possible to modify the procedure to account
spin variations. For fields close to the ground-state tran
tions, it is difficult to predict which angular momentum wi
give the minimum energy in the exact calculation. In t
middle of the B range being considered (B59.8 T) we
looked at the variation of the optimum length parameter
tween theJ53 and J56 states. The optimal values ofa
differed by 3%. The corresponding difference in the groun
state energy was less than 0.01%.

Finally, we examined thea dependence of the ground
state energy. We found that the ground-state energies fo
exact and Hartree-Fock calculations as a function ofa have
minima at different values ofa. In all cases the exact ground
state energy has a minimum at lowera than for the Hartree-
Fock case. The variation in the value ofa at the minimum
ranged from approximately 12% at low field to 4% at hig
field. The value ofa in the 2D Fock-Darwin case is alway
slightly smaller than the Hartree-Fock value, as expected
cause of electron-electron interaction effects. The Fo
Darwin values ofa were of the order of 7% less than th
Hartree-Fock values for low magnetic fields, dropping
only 2% less at the top of the field range. The exact ene
calculated with the Fock-Darwin value ofa is therefore con-
sistently lower than that with the Hartree-Fock value; ho

FIG. 8. Subband wave functions calculated with the Hartr
Fock procedure for a screened potential atB50 and 20 T and an
unscreened potential atB50 T. The ground subband function i
shown in the lower frame and the fourth subband function in
upper frame.
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ever, it is difficult to say whether this is generally true wit
out doing calculations for a wide range of devices. T
difference in energy between the exact ground states ca
lated using the Fock-Darwin and Hartree-Focka values was
of the order of 0.0007 meV for 20 T, 0.02 meV forB
57 T, but 0.04 meV~0.06%! for B50 T ~using up to the
second Landau level!. These differences become smaller
the number of Landau levels included in the calculation
increased. The errors in the exact energy due to using
Hartree-Focka are of the same order as from limiting th
basis set. We can therefore say that the results presented
are accurate to better than 0.1%.

V. CONCLUSIONS

We have developed a general method for determining
exact states of interacting electrons in a realistic model o
semiconductor nanostructure. The method accounts for
confinement potential of the device, motion perpendicula
the plane of the system, and screening of the electr
electron interaction by metallic electrodes. It is applicable
a wide range of devices and may be generalized to syst
that include holes. Energy levels can be determined to be
than 0.1% accuracy with reasonable computational cos
typical run on a HP 735 workstation took 40 min to dete
mine the electrostatic potential, 60 min to find the minimu
a, 36 min for the potential matrix elements, 46 min for t
look up table for the interaction potential and 260 min for t
diagonalization. Not all of these need to be repeated for e
run.

We have presented results for the test case of an ele
statically confined quantum dot. In general, the physics
the exact system is well reproduced by the 2D parab
model but out-of-plane motion and screening increase
fields at which ground-state transitions occur by about 1
In addition, out-of-plane motion could allow interaction e
fects to be seen in optical spectra if the subband spacing
sufficiently small. Finally, the parallel-plate approximatio
for the screening potential has been shown to be very g
for gated nanostructures of the type studied here.

Although the effects we predict are apparently sm
there are important consequences for real systems. In
ticular, small shifts in the magnetic fields at which transitio
occur will lead to important corrections to confinement e
ergies deduced from predictions based on the 2D parab
model. This is because the transition field varies slowly w
confinement energy so a small shift in transition field lea
to a large shift in a confinement energy deduced by fitt
observed fields to a 2D parabolic model.
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APPENDIX A: KINETIC ENERGY

The matrix element of the in-plane component of the
netic energy is the same as for the 2D case, except for
value ofa:
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^nlmuTiun8l 8m8&

52
\2

m* a2
d l l 8dmm8$@

1
2 g l 2 1

4 ~2n1u l u11!~11g2!#

3dnn81
1
4 ~g221!@~n11!1/2~n1u l u11!1/2

3dn8,n111n1/2~n1u l u!1/2dn8,n21#% ~A1!

whereg5eBa2/\.
The matrix element of the perpendicular component of

kinetic energy is determined by numerically evaluating

^nlmuT'un8l 8m8&5
\2

2m*
d l l 8dnn8E xm8 ~z!xm8

8 ~z!dz,

~A2!

where the prime denotes differentiation with respect to
argument. The subband functions and their derivatives w
obtained at 2000 points by numerically solving Eq.~8! and a
second-order interpolation formula was used to obtain val
between these points.

APPENDIX B: CONFINEMENT POTENTIAL

The matrix elements of the confinement potential a
given by

^nlmuUun8l 8m8&5d l l 8E dz dr xm~z!Nnlr
u l uLn

u l uS r 2

2a2D
3e2r 2/4a2

U~r ,z!Nn8 l r
u l uLn8

u l u S r 2

2a2D
3e2r 2/4a2

xm8~z!. ~B1!

To compute this, the integral overz was calculated at every
required value ofr using 20 000 points. Ther integral was
then performed for everyl and n combination required for
the calculation. The integrand was enumerated at 6
points, spread evenly inr 2 so that more points were concen
trated at lowr where the integrand was quickly varying
Both integrals were evaluated using a standard third or
quadrature rule.22

APPENDIX C: COULOMB INTERACTION

We need matrix elements ofV for both screened and un
screened interactions and the matrix element ofVI for the
screened interaction. In the screened case the matrix ele
of V is

^ i j uVukl&5
e2

4p2«
E x i* ~z!x l~z!x j* ~z8!xk~z8!pi jkl ~q!

3e2q2a2
f ~q,z,z8!dz dz8dq, ~C1!

where f (q,z,z8) is given by Eqs.~13! and ~14!, pi jkl (q) is
given by
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p1234~q!5 (
a50

n1

(
b50

n4

(
g50

n2

(
d50

n3 1

4
A!B!

3
~21!a1b1g1d

a!b!g!d! S n11u l 1u

n12a D S n41u l 4u

n42b D
3S n21u l 2u

n22g D S n31u l 3u

n32d D
3S q2a2

2 D uhu

LA
uhuS q2a2

2 DLB
uhuS q2a2

2 D ,

and

A5 1
2 ~a1b1 1

2 @ u l 1u1u l 4u2uhu# !,

B5 1
2 ~g1d1 1

2 @ u l 2u1u l 3u2uhu# !,

h5 l 12 l 45 l 32 l 2 .

The matrix element ofVI is

^ i uVI u j &5
e2

4p«E0

`

dqE
2`

`

dzx i~z!x j~z!F f ~q,z,z!2
1

2G .
~C2!

The integrals in Eqs.~C1! and ~C2! were evaluated by the
trapezium rule with 400q points, preferentially chosen a
low q, and 1000 points for both thez and t integrals.
us

.

.

.

c

W

,

The matrix elements of the unscreened Coulomb inter
tion were found with the aid of the relation

1

Ar 21z2
5

1

2pE e2quzu

q
eiq•rdq, ~C3!

which leads to the expression

^n1l 1m1n2l 2m2uVun3l 3m3n4l 4m4&

5
~2pe!2

4p«
Nn1l 1

Nn2l 2
Nn3l 3

Nn4l 4
~A2a! u l 1u1u l 2u1u l 3u1u l 4u14

3E
2`

`

dzxm1
* ~z!xm4

~z!E
2`

`

dtxm2
* ~z2t !xm3

~z2t !

3E
0

`

dqp1234~q!e2qutue2q2a2
. ~C4!

The behavior of theq integrand is determined by the expo
nential factors and the size ofutu determines which inte-
gration method is most appropriate. For largeutu, the
exp(2qutu) factor is rapidly varying and the Gauss-Laguer
method is used. For smallutu, the exp(2q2a2) factor is the
most influential and a simple quadrature rule is most app
priate. In practice, the Gauss-Laguerre method with
points was used forutu>2a and a standard quadrature rule22

with 5000 points forutu,2a. Thez andt integrals were done
with the same rule, each with 1000 points.
.
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