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We present an exact diagonalization method that allows the electronic states of interacting electrons in a
quantum dot to be calculated from first principles, without making assumptions about the shape of the con-
fining potential, the dimensionality of the problem or the exact nature of the electronic states. The electrostatic
potential of the entire device is calculated and the subband structure determined numerically to allow the full
three-dimensional electron motion to be included in the calculation. Exact diagonalization of the many-body
Hamiltonian then determines the states of the electrons in the dot within the effective-mass approximation. The
screening due to the gate electrodes is also taken into account. This method may be used for a range of device
geometries, but here we calculate the low-lying levels of a cylindrically symmetric, electrostatically confined
guantum dot to better than 0.1%. Results for the ground-state energy and the far-infrared absorption spectrum
are presented and the physical effects of the electron motion in the perpendicular direction and the screening
are discussed.

I. INTRODUCTION illustrative results for a structure that is typical of current
devices. We look at the energy and angular momentum of
Semiconductor quantum dots are currently of immenséhe ground state and the dependence of these quantities on
interest as the possible use of dots in laser and electroni®agnetic field. We compare these results with those for a
devices has provoked intense study of their properties. Théwo-dimensional(2D) system with similar characteristics
oretical studies of the physics of these systems have beeld also with a model that does not take into account the
based on a number of approximations, notably restriction ofcreening due to the gate electrodes. In addition, we calculate
the system to two dimensiong, although some work has the far-infrared absorption spectrum of the dot and identify
included three-dimensional electron motithThere is in-  €ffects that occur when the electron motion differs from the
creasing recognition that more detailed calculations are rédeal 2D behavior. This allows us to make some general
quired to investigate particular device structutemd this ~comments about the use of the 2D parabolic model for inter-
work is concerned with a general calculation technique thaPretation of experimental data.

is free of the approximations and assumptions used in previ- The paper is organized as follows. We first present the
ous studies. specific device model that we use to illustrate our method

Most work on dots is based on a model in which theand define the physics that we wish to include in calculations

electron motion is two dimensional, the confining potential is(Sec. 1). Next, we detail our calculational procedurec.
parabolic and the electrons interact via the Coulomb interacll) and then present illustrative results and estimate the ac-
tion. Any model that includes more detail must account forcuracy of our methodSec. IV). Finally we summarize the
the effect of the device structure that confines the electrongnain conclusions about our method and the effect of correc-
The model should allow for the possibility of motion in all tions to the 2D parabolic dot model. Appendixes give addi-
three dimensions, include a realistic confining potential thational information about the matrix elements used for our
restricts the electron motion in each dimension and allow fofalculations.
the modifications to the interaction potential that occur in
real systems, particularly those with metallic gates. This Il. GENERAL PHYSICS OF A QUANTUM-DOT DEVICE
means that the electrostatic potential for the whole device
must be calculated and included in the calculation of the
electronic properties. Quantum-dot devices are often constructed from a hetero-

The procedure described here starts from a calculation gfinction or quantum well that provides strong confinement in
the electrostatic potential and leads to the quantum states dfe vertical direction, creating a quasi-2D electron system. In
the interacting electron system from which electronic prop-order to further confine the electrons to form a quantum dot,
erties can be calculated. The general idea is to find a suitabEonfinement in the plane of the 2D system is required. This
single-particle basis from a combination of variational andcan be achieved in a number of ways. The most common is
Hartree-Fock approaches and use this basis to perform ao use metallic gates in conjunction with an insulating cap in
exact diagonalization of the full Hamiltonian that includes order to confine the electrons electrostatic&ifyHowever
realistic confinement and interaction potentials. This allowsother methods are also employed, such as placing stressors
ground-state energies to be found to a numerical accuracy @i the surface of the devieand dots can be fabricated
better than 0.1% in a reasonable amount of computer timedirectly by self-organized growth.

Although the primary aim of this work is to establish the ~ We use a specific device to illustrate our mettibd). 1),
viability and accuracy of our method, we also present somaimilar in style to many on which measurements have been

A. Device structure
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FIG. 1. Schematic cross section of the device structure used in 0 500 1000 ., 1500 2000
the calculations. 05 A
made'® The device is made from the following layers. At the 04¢
base of the device a drain electrode is constructed from a —o03l
o-doped layer of Si in GaAs. On top of this is an undoped z
layer of GaAs (1800 A thick with donor density £02;
=10 cm®), then a barrier layer of undoped &g _,As 2 o
(200 A, n=0). The top full layer is of heavily doped &= [
ntype ALGa_,As (200 A, n=1.5x10"® cm % and o—""
above this there is a circular cap of undoped GaAs

(300 A, n=0) with radiusr.=2000 A. The top of the 015 S50 7050 7500 2030
device (both the cap and the uncovered section of the pre- z(A)

ceding layer is covered with a metal electrode. For simplic-

ity, the ionized donor density is assumed to be uniform but itIhe
would be possible to include ionized donor density:4
inhomogeneities! The dielectric constants were chosen to,,.. .
be 12.4 for the GaAs and 11.8 for 8a, ,As, theg factor

in GaAs was—0.44 and the Schottky offsets were 0.7 eV for
GaAs and 0.95 eV for AlGa_,As. In all calculations we
assume there are three electrons in the dot and we consid
all possible spin polarizations. As we wish all the states w

consider to be bound, we set the gate voltage at a level Wh'qﬁ the device due to the gate electrodes and the impurities in

ensures that the states have a negative energy with respectiQ. ditferent materials. We calculate it by numerically solv-

that of electrons in the drain electrode. Therefore a gate vol ing the Poisson equation, whereas in 2D treatments it is gen-

agehof—d%GS. v \t/)vasdused. Thfe cr:]onductio.n-lband offsets du%:ally approximated by a parabola. Figure 2 shows the nu-
to the differing band gaps of the material were measure erically generated potential with the equivalent parabola
relative to the GaAs conduction-band edge. Thus the Offse&uperimposed. For radii less than 700 A the parabolic ap-
in the AkGa,_As layers was taken to be 300 mey. All the roximation is very good. However, at larger radii the two
results presented here are for this specific device, but w

: - ) ) urves diverge rapidly. This implies that for small angular
stress that our method is not limited to this device or even omentum and large magnetic fields, the parabolic approxi-
devices with this general construction. '

mation holds well, but in general this may not be the case.

The variation of the potential perpendicular to the plane, as
B. Hamiltonian shown in Fig. 2, is discontinuous and highly asymmetric.

The Hamiltonian for electrons confined as described in AS MOst of the devices we consider have metallic gates,

Sec. Il Ais we must take account of the screening of the Coulomb po-
tential. The termd/ andV, are determined by applying the
1 general approach of Hallaet al'? to the Poisson equation

H=>, _{pii+(p\\i+eA)2}+ U(R)+V,(R;) for charges in a gated device. The electron-electron potential

i 2m* V is simply related to the electrostatic Green’s function,

G(R,R’), by V(R,R")=€’G(R,R’), but a further step is

FIG. 2. Potential of the device in Fig. 1. The top panel shows
radial potential compared to a parabolic form wilw,

65 meV. The lower panel gives the conduction-band edge
through the center of the device.

electron-electron interaction potential. These terms are de-

pendent on the 3D positioR=(r,z) through the in-plane
bsitionr andz coordinate.

The confinement term) is the 3D electrostatic potential

+%2 V(R ,R)+0* usBS,. (1) requi.red to.ob.tainvl. According to Ref. 12 the Green’s
= function splits into two terms,
Here A is the magnetic vector potentidB is the magnetic G(R,R")=G;(R,R")+G,(R,R"), 2

field in thez direction,m* andg* are the electron effective

mass ang) factor, S, is thez component of the total spin, and whereG; is singular and results from a point chargeRat

up is the Bohr magneton. The subscrigtsand L denote G, is a correction due to induced charges &hds obtained
components in and perpendicular to they( plane, respec- from this term byV,(R) =e?G,(R,R)/2. For typical devices
tively. U is the 3D confining potential, is the interaction a cap structure provides a means to confine the electrons
of each electron with its own image charge, avids the laterally. The cap is, in general, very much larger than the
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average region of confinement of the electrons so it is rea- A. Single-particle basis

sonable to suppose that the screening can be we]l approxi- The basis functions are taken to have the form
mated with a parallel-plate capacitor treatment. This enables

V andV, to be ?thamed analytically fror_n expressions given #i(R)=xi(2) i (1), (4)
by Hallamet al.*“ (see also Sec. Il L which has the advan-

tage of reducing computer time. Test calculations, describedhere the¢;(r) are the in-plane functions ang(z) are
in Sec. IV C, confirm the accuracy of the parallel-plate ca-subband functions. The Fock-Darwin stafessed for the
pacitor approximation for a number of cases. in-plane basis have the form

Iy 11 r? —r2422 il g
l1l. CALCULATIONAL METHOD da(r)=Npyr'L] v e e " 5)
a

In this section we detail the method used to calculate the
quantum states of interacting electrons in the dot. The seconahere Ny, is the normalization constarit,'nI| are associated
guantized form of the Hamiltonian is Laguerre polynomials, analis a length parameter. In the 2D
noninteracting casea’=#%/(2m*Q), where Q=(%w?
+ 03)'2 w, is the in-plane confinement frequency, ang

H=2 (i|T+T.+U+V|j)cle;+3> (ij|VIklyclcewe =eB/m* is the cyclotron frequency. The Fock-Darwin
' 1kl states are orthogonal fany value ofa and we attempted to
+g* 1gB,S,, (3) increase accuracy by treating this parameter as a variational

parameter whose value was determined by the energy mini-
. . . mization procedure used to find the subbands.
where!, ), ... are single-particle states aigandT, d_e- ) To determine the subband states we suppose that all elec-
note kinetic energy operators, which include magnetic field,;ns are in the lowest subband and approximate the
effects. The eigenstates of this Hamiltonian are found by qlectron wave function? as a Slater determinant com-

n.umerical .diagona}liz'ation in a Slater determinant basis.' osed ofN states of the formy(z)&(r;), where each elec-
single-particle basis is needed to construct the many-patrticl on has the same subband function. In principle, spin func-
basis and the choice of this basis is critical. We could o X

of a quantum dot are localized in space. Using a plane-wav chainger equation fog(z). To perform the minimization
basis set, for example, would require a very large number o ; ;

) X . .-~ “we consider the quantity
Fourier components to define a localized state. To minimize
the number of basis states required, and hence make the cal-
culation tractable given finite computing resources, we at- A=(\P|H|\If)—)\{f x*(2)x(z)dz—1y, (6)
tempt to choose a basis set that represents the physical sys-
tem as closely as possible. In this way we reduce the tota}here) is a Lagrange multiplier. We now introduce a small

size of the Hamiltonian we need to diagonalize in order tochange sy and denote the resulting changedn by 5.
obtain the energy levels of the system to an acceptable leveye find, the first-order change i is

of accuracy.

To construct the single-particle basis we choose functions
that are separable into an in-plagarallel to the interfage 6A=<5\I’|H|\If>—)\f Sx*(2)x(2)dz+H.c., (7)
and a perpendicular part. The Fock-Darwin states are a good
choice for the in-plane states because they are the eigenstatgRere H.c. denotes Hermitean conjugaté.is stationary
of parabolically confined electrons in a magnetic field, andwith respect to first-order variations jpwhen 8.4 vanishes

the parabolic form is a good approximation sufficiently closeand it follows thaty(z) is determined by the equation
to the minimum of the real potential. The perpendicular, or

subband, functions are determined numerically by solving a P> _
one-dimensional Hartree-Fock equation: all the electrons are — +U(2)+ Vue(2) | x(2) = e(a) x(2). (8)
taken to be in the same subband and the energy of a single 2m*

Slater determinant composed of products of Fock-Darwi . ational defined by th
states and subband states is minimized to obtain the subbarhaﬁ:i:)ene(a) Is a new variational parameter defined by the re-

states. Further details are given in Sec. Il A.
After the single-particle basis has been found it is used to 2

find the matrix elements in Eq3) and a standard exact e(a)zﬁ_i E fd’*(r)Md’k(f)df (9)

diagonalization program is used to find the eigenstates of the N N K 2m* '

electrons in the dot. The methods used for the matrix element o

calculation are given in the Appendixes and some details ofvhere the sum runs over all electrons. The quantiti¢s)

the calculation of electrostatic potentials and Green’s funcandVyg(z) that appear in Eg8) are laterally averaged con-

tions that appear in the matrix elements are given in Secdinement and Hartree-Fock interaction potentials, respec-

[l B and Il C. tively, which are given by the equations
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— 1 12 " screened, 3

- * ,
U2)=5 2 J¢k<r>U(z,r>¢k<r)dr, (10 0 bhecracned, 2
screened, 2

1
Vir(@= 5 2 [ sr 091 VERR 09,0

= ¢i(r")¢i(N]x(z')[*dz'drdr’. 11

Equation(8) has the form of a single-particle Schiinger

equation. It can be solved numerically for any value of the

variational parametea and its solution gives a complete set 0 5 10

of subband functions. B
The value ofa determines how accurate the results with |G, 3. Ground-state angular momentum as a function of ap-

the truncated basis set are. If a complete set of states Waed magnetic field for 3D and 2D systems with screened and

used as a basis, the value @fwvould be immaterial. How- unscreened potentials.

ever, we wish to use as small a number of states as possible.

The value ofa determines the radius of the in-plane statesotherwise. Herez andz’ denote distances from the bottom

and initially we assumed that it would be advantageous tglate andd is the plate separatioG, is given by

choosea to minimize the Hartree-Fock energy. It turned out,

15 20

however, that the exact ground-state energy for the particular 1 (= 1
device considered here, is relatively insensitiva fwrovided G2(R,R)= —f dk| f(k,z,2)— =|. (15
L i . . 2me Jo 2
that a reasonably realistic value is used. A detailed discus-
sion of this point is given in Sec. IV D.
IV. RESULTS

B. Electrostatic potential We begin with a brief overview of the physical effects of

The electrostatic potentidl) due to fixed charges and motion out of the plane and then present results. In addition
electrodes in the device, is found by solving the Poissorio results for the ground state we look at the optical transi-
equation. The device has circular symmetry and the Poissoiipns of the system, the accuracy of the parallel-plate screen-
equation was solved on a 2D (40@00) grid. Boundary ing approximation and of our method in general.
conditions were chosen such that the potential was fixed at Transitions of the angular momentum of the ground state
the two electrodes and its radial derivative went to zero at th@s a function of magnetic field were predicted in early work
other boundaries. The radius of the structure was chosen @n the 2D model for quantum dotsThese transitions occur
be 4000 A as any increase in the radius had negligible effesvhen the increasing interaction energy due to the compres-
on the potential of the active region. Thus finite-size effectssion of the electron wave function by the magnetic field be-
are believed to be negligible. The potential was calculated atomes large enough to make an increase in the radius of the
each grid point using a finite difference relaxation methodstates, and hence confinement energy, favorable. This also
that determines the potential iteratively, starting from zerdesults in an increase of the total angular momentum of the
potential at all internal grid points. The convergence criteriorsystem. The lowest-energy states at each magnetic field are
was that potential did not change by more than 0.1%, at anignown as magic number states as they correspond to a series

grid point, in successive iterations. of specific angular momentum values.
We can anticipate the general effect of including the mo-
C. Screening tion perpendicular to the plane by using simple physical ar-

) _ guments. The main effect will be to allow the electrons to

The parallel-plate capacitor form of the electrostatiCincrease their separation and hence reduce their interaction

Green'’s function is derived in Ref. 12. Results necessary foénergy, but retain about the same confinement energy. This
the present work are the Green’s function itself and the nongi|| allow each magic number state to persist to a greater
singular partG, that determines image charge effects. Themagnetic field before the increase of interaction energy

Green’s function is given by causes a transition. We expect that the transitions between
) magic number states will therefore occur at higher fields in

G(RR')= 1 j f(k,zz )e‘k‘("r')dk (12) the 3D case than for the pure 2D case. A similar grgument

' (27)% k can be made for the screened interaction in comparison to the

pure Coulomb interaction. Thus the screened system should

wheree is the dielectric constant, again have transitions at higher fields than for the unscreened
case.
sinf k(d—z)]sinh(kz’
Hkoz,2')= Hk( _ )k]d h(kz') 13
sinf(kd) A. Ground states
for z<z' and Transitions of the ground state for the device in Fig. 1 are
] o presented in Fig. 3. The figure shows the ground-state angu-
Hkoz.2')= sint{k(d—2")]sinh(kz) (14 lar momentum, calculated exactly, in comparison with re-

sinh(kd) sults for an equivalent 2D model, with parabolic confine-
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FIG. 4. Energy of the ground state as a function of magneti | 7
grosses denote points too small to be visible.

field at low field for 3D and 2D screened cases. Points denot

energies; lines are to guide the eye. . .
g g y duced sensitivity is a consequence of the generalized Kohn's

A8\ i ; it
ment, for both screened and unscreened potentials. We cd eorem’"®which shows that electromagnetic radiation only

see immediately that all of the curves have a similar charac® fects the center of mass motion in a 2D dot with exact

ter. This shows that the 2D calculations do include all of theoar""t.)OIiC confinement.'This Iead.s to an (_axcitati'on spectrum
essential physics of the problem. However, the 2D mc)O|e|dent|cal to that of a single particle but in reality, the ob-

consistently has transitions at smaller magnetic fields, typi_served spectrum has some small splittings. Some of these

cally of the order of 10% too small. Additionally, it is inter- have been attributed to nonparabolic confinemt&uit the

esting to note that unpolarized states continue to exist as t)‘%ﬁd't'onal effect of out-of-plane electron motion has not yet

ground state up to 10 T, an effect that is more pronounced i en considered. Thi_s can cause additional coupling of cen-
’ éer of mass and relative motion and hence affect the excita-

the 2D case than for the more realistic model. Using a pure . -
Coulomb potential, on the other hand, has very little effec ion spectrum. Optical excitation can promote an e_Iectron to
' X the next Landau level and there is, in general, a field range

on the angular momentum transitions of the ground state. ; . NN
This doesnot imply that screening is always unimportant. wher.e the energy r_e_quwed fqr this transition IS close.to that
I‘gequwed for a transition to a higher subband. It is at this point

The dot plane is relatively far from the plates in the presen ) . .
case but a change in device geometry could increase t Qat the higher subbands are most likely to affect the optical
effect of screening? spectrum. . . . .

To investigate this we consider absorption of linearly po-

The energies of the ground statésig. 4) show that, larized elect tic radiation. The t it o f
again, the 2D and 3D results have a remarkably similar pe'dfized electromagnetic radialion. The transition raté from a
ingle-electron stateto an excited stat& is proportional to

havior. Note that in the figure the energy of the 2D curve ha " S or o
been offset by 121 meV so that a direct comparison can b k|X|.'>| , where the electric field of the incident radiation is
made. The largest variation between the curves is due to ﬂ_}%olanzed |§no thex direction and|i) and|k) are initial and

relative positions of the transitions. The energy gradient of Nal states.” We use a similar expression in second quan-

the 2D curve is greater than that of the 3D curve. This agaiﬁ!sed_form to determine the relative strengths of the absorp-
implies that the 2D curve will reach the transition condition 1O ines for each many-body state. As a check on the accu-
at a lower magnetic field than that for the 3D case. racy of our results we use thiesum rules” which is satisfied

These results have important consequences for interpretéQ 3\(/9tter than 1:]/(". f subband lina b
tion of experimental data. The shift in the transition field is, e assess the importance of subband coupling by exam-

of the order 1 T, and although this is not so large that théning the optical absorption spectrum for several cases. The

gualitative predictions of the 2D parabolic model are invalid,SPectrum in the vicinity OfB:.16'7 T for the de\_/lce de-

it is much too large for the model to be accurate. The only>criPed in Sec. Il A'is shown in Fig. 5. The crossing shown
way to increase a transition field in the 2D parabolic model ig" the figure involves one state of predominantly first sub-
to increase the strength of the confinement but the transitioﬁand character and a second of pr_edor_nlnantly SeCO’Fd sub-
field is a slowly varying functior] ~ (% )3 of the con- and character. The sizes of the points in the figure give the

finement energy® There would be a considerable overesti- relative transition rates to the states. Points marked with a
ave transition rates at least two orders of magnitude less

mate of the confinement energy if observed transitions wer% X .

used to fit the confinement energy in the 2D parabolic modelt"an those with dots. \_/\(e can therefore see that there IS very
For example, it would be necessary to double the Conﬁnel_lttle_chance of a transition to the upper sgbband state in this
ment energy to obtain a shift of about 1 T in a transitionParticular case. Very close to the crossing, the rate in the
occurring at a field of arouh4 T in the 2Dparabolic model.  S€cond subband state does rise by two orders of magnitude.
This factor is roughly consistent with a discrepancy in thelHowever, this still gives a much smaller total rate than for

confinement energies reported in recent experim&ngaid the other state and so would still be very difficult to detect.
theoretical” work. The subband spacing in this case is about 27 meV and the

behavior shown is probably typical for a large subband spac-
ing.
To examine the possible behavior with a smaller subband
Optical (far-infrared experiments are, in general, insensi- spacing we artificially reduce the intersubband gap to 10
tive to the number of electrons in a quantum dot. The remeV while retaining the form of the subband functions. This

B. Optical transitions
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FIG. 6. Absorption spectrum for subband spacing of 10.0 meV. In-plane separation (A)

Point sizes are proportional to the total absorption for each level. . . .
prop P FIG. 7. Nonsingular part of the in-plane Green’s function for the

. . evice in Fig. 1 with several cap sizes compared with the analytic
has the effect of reducing the energy spacing of the subbant?gsult for an infinite parallel-plate capacitor.

but keeping their character unchanged. We now find evi-
dence of both anticrossing and a significant transition rate tQnd the boundary conditions f&t are
the upper subband state Bt=3.45 T. Figure 6 shows the y

behavior of three states as they approach each other. The pair 1

of states is mainly of first subband and the other state is of G=0 atz=0d=F=———-—7—,
second subband character. We see that the lower state of the 4me|R—R'|

pair is unaffected by the presence of the upper subband level,

whereas the other state shows strong anticrossing behavior. 9G JF r

The selection of only one of the pair of states to be involved 5~ at r:O!rmax:W = Ame[r2+(z—2')2]%

in anticrossing is physically reasonable and the mixing,
hence repulsion, between levels occurs preferentially betogether with
tween levels which contain predominantly the same set of
single particle angular momenta. These results indicate that JF
subband coupling could cause electron-electron interactions 177
to have an observable effect on the optical absorption spec- %o+
trum for appropriate types of device. at any boundaryz,, between materials 1 and 2.
To estimate the accuracy of the parallel-plate approxima-

C. Screening tion, we compared numerical Green’s functions with those

galculated using Eq12). We varied the size of the capy

JF

=& (19

Zo_

In this section we consider exact results for the screenin ) i
effect of the electrodes. We explain the numerical procedur nd/ the distance of the dot plafigiven by the value of
for calculating the exact screened potential and we compare 2 ) from the plates for our test device. This enabled the
results of numerical and approximate calculations for a rangEPPustness of the analytic form to be tested against variation
of physical parameters and discuss the accuracy of th&0m the ideal parallel-plate geometry. Results forz
parallel-plate approximation. =d/2 A andr’'=0 (Fig. 7) show that the exact in-plane

The electrostatic Green’s function that determines the ex®"€en’s functign differs from the parallel plate form by at
act interaction potential can be calculated numerically in oSt around 1% when the cap radius is 2000 A or more and

similar way to the electrostatic potential. Howev&, di- the in.-plane separation is less than about_ 1000 A. We also
verges aR=R’ and its behavior in this region is therefore €xamined the out-of-plane Green's functior#(z') for a
unlikely to be accurately reproduced in a finite grid calcula-féasonable range comparable to the size of the electron wave
tion. In order to obtain more reliable results we consider onlyfunction in a dot and found agreement as good as that in Fig.

the nonsingular part of the Green’s functidh, defined by 7. As the cap size increases, the agreement Wi_th the parall_el-
plate form gets better, as expected. The analytical expression

1 Eqg. (12) provides a good approximation for distances less
G(R,R )= ——+F(R,R). (16)  than the cap radius. As the cap size of our device is 2000 A,
4me|R—R'| and the dot size is of the order of 500 A, we use the analytic

W Eiob Il behaved I dal b form in all calculations for our model device and anticipate it
e expect to be well behaved over all space and also 10 b, po yseful in most calculations using this method. How-

well rﬁpresentgd O? %f]nlte grid. We t?e"r:ef_clx_rhe need {0 CONgyer, we stress that our method can be adapted to use a
;/erth 'e equations fo6 into equations fol. The equation  ,,nerical interaction potential, which may be necessary for
ortis more complicated geometries.
S(R-R’)
V:G(R,R)=———— (17) D. Accuracy of the method

&
In this section we detail the numerical accuracy of our

hence the equation fd¥ is calculation of the ground-state energies. We also discuss the
numerical parameters which affect the calculation and de-
V2F(R,R")=0, (18) scribe their role. Initially we will address the issue of the
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cutoff point for the basis set and estimate the errors inherent
in using a finite basis. Then we consider the variational pa-
rametera and its effect on the results.

To determine the number of single-particle basis states we
examined the convergence with respect to the numbers of
Landau levels and subband state8&t0, 7, and 20 T, field
values which are far from ground state transitions. Bor
=0 T we found that using up to the third Landau level and
a single subband was sufficient. Increasing the number of
Landau levels by one shifted the ground-state energy by
~0.03 meV, equivalent to an error 6£0.05%. Similarly
the addition of a second subband reduced the ground-state
energy by~0.02 meV. ForB=7 T the error due to the
addition of an extra Landau leve0.008 meV) or sub-
band =0.005 meV) was smaller than for tl=0 T case.
This was expected as the predominant contribution to the
error was from the limited number of Landau levels as the
separation of the subbands was of the order of 27 meV,
compared to a Landau-level spacing of approximately 4.65
meV atB_=O Tand 7.63 meV aB=7 T. Similarly for B _ 1hoo 1200 1400 1600 1800 2000
=20 T, including the third Landau level gave a change in Z(A)
the ground-state energy of only 0.001 meV and including a _ )
second subband, 0.002 meV. Note that at magnetic fields of FIG. 8. Subband wave functions c_alculated with the Hartree-
this strength the Landau-level spacif7.89 meVf is be- ~ ~Ock procedure for a screened potentiaBat0 and 20 T and an
coming comparable to the subband spaci@@.24 meV. urr:scree_neﬂ p(I)tentlafI a=0 Td' 'I;]hefgrm;]nd il;)bb%n? function Ish
This leads to errors of the same magnitude from truncatinqc'I Oan'n the lower frame and the fourth subband function in the
each part of the basis. These results imply that using a trun-PPer frame.
cated basis of single-particle states up to the third Landau
level and only the lowest subband give ground state energieithin the Hartree-Fock prescription as a functionaofThe
with maximum errors of the order of 0.05% or 0.03 meV. value ofathat gives the lowest energy is then chosen for use
This small amount of subband mixing is mainly due to thein the rest of the calculation. Although the method used did
large energy spacing of the sub-bands. Note that not altot take full account of the possible spin states—a spin-
nanostructures capable of being modelled using this methogolarized state was assumed—comparison with subbands
will have such strong confinement in tlzedirection. How-  calculated using the Hartree approximation gave no notable
ever, similar accuracies should be achievable in such caselfference, thus implying that the form of the approximation
by using an appropriately truncated basis set. in determininga is not important. For studies with larger

Another issue relevant to the numerical accuracy of thenumbers of electrons the same conclusions may not hold, but
basis set is the magnetic field dependence of the subbaridwould be possible to modify the procedure to account for
basis. The variation of the ground subband wave function aspin variations. For fields close to the ground-state transi-
a function of magnetic field was very small as shown in Fig.tions, it is difficult to predict which angular momentum will
8 (lower frame@. The higher subbands had a greater variatiorgive the minimum energy in the exact calculation. In the
with magnetic field(Fig. 8, upper framg as did those cal- middle of the B range being consideredBE9.8 T) we
culated with a screened compared with an unscreened inteleoked at the variation of the optimum length parameter be-
action potential. Due to the large energy spacing the calcuaveen theJ=3 andJ=6 states. The optimal values af
lations only required one or two subbands. This relativediffered by 3%. The corresponding difference in the ground-
independence of field allowed ti&=0 T subbands to be state energy was less than 0.01%.
used in all calculations. Different subband sets were used for Finally, we examined the dependence of the ground-
the screened and unscreened cases. Each of these was a cstate energy. We found that the ground-state energies for the
plete set, so any errors due to this procedure are included iexact and Hartree-Fock calculations as a functioa bave
the variation of the ground state with the number of sub-minima at different values d. In all cases the exact ground-
bands in the basis set. As a guide, the energy of the grourstate energy has a minimum at lowsethan for the Hartree-
state atB=20 T, calculated usind=0 T subband func- Fock case. The variation in the value ®fat the minimum
tions shifted by approximately 0.02 meV. ranged from approximately 12% at low field to 4% at high

The value ofa used for calculations is determined in a field. The value ofa in the 2D Fock-Darwin case is always
number of steps. First, we choose a magic number that welightly smaller than the Hartree-Fock value, as expected be-
think will give the lowest-energy state. We know that the cause of electron-electron interaction effects. The Fock-
combination of single-particle states that gives the lowesDarwin values ofa were of the order of 7% less than the
energy is one that has consecutive angular momentum quahtartree-Fock values for low magnetic fields, dropping to
tum number$:>! We assume that the transitions would occuronly 2% less at the top of the field range. The exact energy
at approximately the same fields and to the same states asdalculated with the Fock-Darwin value afis therefore con-
the 2D casé. We then calculate the energy of this statesistently lower than that with the Hartree-Fock value; how-

screened, B=0T — ‘
I screened, B=20T —
unscreened, B=0T

Wave function (arb. units})

S A M o M OB o

| screéned, B-0T _
screened, B=20T ...
I unscreened, B=0T -

Wave function (arb. units)
L O NWR OO N®O
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ever, it is difficult to say whether this is generally true with- <n|m|TH|n'| 'm’)
out doing calculations for a wide range of devices. The

difference in energy between the exact ground states calcu- 2

lated using the Fock-Darwin and Hartree-Fackalues was == ﬁdlﬁmm'{[%?" —7(2n+[I][+1)(1+97)]
of the order of 0.0007 meV for 20 T, 0.02 meV f@&

=7 T, but 0.04 meM0.06% for B=0 T (using up to the X S+ 1(Y?—D[(N+ )Y+l +1)2/2
second Landau levelThese differences become smaller as o 1o

the number of Landau levels included in the calculation is X 8nr et AN+ Y80 noq 1} (A1)

increased. The errors in the exact energy due to using the
Hartree-Focka are of the same order as from limiting the whereyzeBaZ/ﬁ. _
basis set. We can therefore say that the results presented here! € matrix element of the perpendicular component of the

are accurate to better than 0.1%. kinetic energy is determined by numerically evaluating
ﬁZ
V. CONCLUSIONS (nIm|T,[n"I'm")= ﬁan,ﬁnwj Xm(2) x1(2)dz,
We have developed a general method for determining the (A2)

exact states of interacting electrons in a realistic model of a

semiconductor nanostructure. The method accounts for thehere the prime denotes differentiation with respect to the
confinement potential of the device, motion perpendicular targument. The subband functions and their derivatives were
the plane of the system, and screening of the electronebtained at 2000 points by numerically solving E8). and a
electron interaction by metallic electrodes. It is applicable tosecond-order interpolation formula was used to obtain values
a wide range of devices and may be generalized to systenigtween these points.

that include holes. Energy levels can be determined to better
than 0.1% accuracy with reasonable computational cost. A
typical run on a HP 735 workstation took 40 min to deter-
mine the electrostatic potential, 60 min to find the minimum The matrix elements of the confinement potential are
a, 36 min for the potential matrix elements, 46 min for the given by

look up table for the interaction potential and 260 min for the

APPENDIX B: CONFINEMENT POTENTIAL

diagonalization. Not all of these need to be repeated for each r2
run. (nIm|U|n’I’m’>=8”,J dz o Xm(z)Nn,r”LH'(—z)
We have presented results for the test case of an electro- 2a
statically confined quantum dot. In general, the physics of )
the exact system is well reproduced by the 2D parabolic ><e*'2’4a2U(r 2N e A
model but out-of-plane motion and screening increase the e n"l 242

fields at which ground-state transitions occur by about 1 T. -

In addition, out-of-plane motion could allow interaction ef- xXe "M%y (2). (B1)

fects to be seen in optical spectra if the subband spacing was

sufficiently small. Finally, the parallel-plate approximation To compute this, the integral overwas calculated at every

for the screening potential has been shown to be very goorkequired value of using 20 000 points. The integral was

for gated nanostructures of the type studied here. then performed for every and n combination required for
Although the effects we predict are apparently smallthe calculation. The integrand was enumerated at 6000

there are important consequences for real systems. In papoints, spread evenly irf so that more points were concen-

ticular, small shifts in the magnetic fields at which transitionstrated at lowr where the integrand was quickly varying.

occur will lead to important corrections to confinement en-Both integrals were evaluated using a standard third order

ergies deduced from predictions based on the 2D paraboliguadrature rulé?

model. This is because the transition field varies slowly with

confinement energy so a small shift in transition field leads

to a large shift in a confinement energy deduced by fitting

observed fields to a 2D parabolic model. We need matrix elements &f for both screened and un-

screened interactions and the matrix elemen¥pfor the

screened interaction. In the screened case the matrix element
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fXi*(z))a(z)xl*(Z')Xk(z')pijkl(Q)

APPENDIX A: KINETIC ENERGY Xe*qzazf(q,z,z’)dz dZdg, (C1)

The matrix element of the in-plane component of the ki-
netic energy is the same as for the 2D case, except for theheref(q,z,z") is given by Eqgs(13) and (14), pjj,(q) is
value ofa: given by
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np Ny Ny ng The matrix elements of the unscreened Coulomb interac-
P123d q)= E 2 > > AI =] tion were found with the aid of the relation
—0 y=0 5=0 4
1 1 (e 97
(=) By o g+ 1]} [ng+ [l —:—J eldrd
T AT s JrZ+z2 2w q a ©3
a!l Byl ol n,—a«a n,— B
which leads to the expression
na+ |15l s+l
N,—y Ng— 6 (N1l 1mynalomy| Vgl smgnyl smy)
[9] 2.2 2.2 (27e)?
q g a g-a - [1al+1ol+ 15l + 14l +4
x| | Lkl =L ), 2 Nyt N Nog N,y (2a)ltal sl s

d ) )
" X fﬁmdzxgl(Z)xw(z) f,mthﬁz(z‘t)Xma(Z—t)

=3(a+B+3[|14]+[ld=]2[D),
B=3(y+ &+ 5[+ 15— 7lD), Xfo dqplzsz(Q)efqlt‘efqzaz- (CH

n=l1—1,=153—15. The behavior of they integrand is determined by the expo-
nential factors and the size ¢f| determines which inte-
gration method is most appropriate. For lar{te, the
1 exp(—qft|) factor is rapidly varying and the Gauss-Laguerre
f(q,z,2) - 5}- method is used. For smdll|, the exptg?a?) factor is the
(c2) most influential and a simple quadrature rule is most appro-
priate. In practice, the Gauss-Laguerre method with 60
The integrals in Eqs(C1) and (C2) were evaluated by the points was used folt|=2a and a standard quadrature Afle
trapezium rule with 400y points, preferentially chosen at with 5000 points foit| <2a. Thez andt integrals were done

The matrix element oY/, is

2

(i\viljy=

f:dq :CdZXi(Z)Xj(Z)

4e

low g, and 1000 points for both theandt integrals. with the same rule, each with 1000 points.
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