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Role of tight-binding parameters and scaling laws on effective charges in semiconductors

U. Iessi, C. Parisi, M. Bernasconi, and Leo Miglio
INFM and Dipartimento di Scienza dei Materiali, Universita´ di Milano-Bicocca, Via Cozzi 53, I-20125, Milano, Italy

~Received 10 August 1999!

We compute the transverse effective charges for several compound semiconductors by using the empirical
tight-binding model and the Berry-phase approach. We compare different parametrizations showing that a
suitable tuning of the scaling laws for the radial part of the hopping parameters provides a fairly good
prediction of the effective charges even with the minimalsp3 basis set. In contrast new and refined param-
etrizations that reproduce very well the dispersion of the conduction band at equilibrium by includingd and/or
s* polarization orbitals may underestimate the effective charges. We suggest that the root of such a discrep-
ancy may rest with the difficulty of determining the scaling laws for polarization orbital.
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I. INTRODUCTION

Very recently, Bennetto and Vanderbilt have shown h
to compute the transverse effective charge of compo
semiconductors in the framework of the tight binding~TB!
approach and the Berry-phase scheme.1 They also pointed
out that thesp3 Harrison parametrization seriously undere
timates the transverse charge in most of the cases.2 Besides
the use of a semiempirical Hamiltonian, the main furth
approximation of this framework comes from the repres
tation of the position operator assumed to be diagonal in
tight-binding basis set. However, including on-site mat
elements betweens andp orbitals does not seem to improv
the results, nor does using a nonorthogonal basis set, as
posed by van Schilfgaarde and Harrison.3

Subsequently, Di Ventra and Fernandez4 have made a
similar calculation with the more refinedsp3s* parametriza-
tion by Priester, Allan, and Lannoo.5 They claim that an
improvement is obtained by expanding the basis set to
exciteds* orbital and by expressing the expectation value
the position operator in terms of a constant that measures
displacement of the charge from the atomic positions.

However, still within the diagonal representation of t
position operator, different results can be obtained depen
on the parameter set and, in particular, on the scaling l
for the radial part in the hopping coefficient.

Actually, the dispersion relations of the electronic sta
strongly depend on the tight-binding parametrization~both
diagonal and off diagonal!. The inclusion of more distan
neighbors or the expansion of the orbital basis set is kno
to improve the comparison of the conduction bands to theab
initio and the experimental data. This issue would be part
larly helpful in calculating the dielectric and optical prope
ties of the semiconductors at fixed atomic positions.

On the other hand, the scaling laws for the radial part
the off diagonal terms determine how the bands~and the
eigenvectors! change with atomic displacements. The Har
son prescription used in Ref. 1, for instance, was derived
comparison to the trend with compression in the fre
electron system,6 but recently more accurate prediction
were obtained by considering theab initio deformation
potentials.5

The effective charge depends both on the tight-bind
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parameters and the scaling rules, since it can be obta
from the change in valence-band eigenvectors induced
one sublattice displacement. In this work we compute
effective charges for several II-VI, III-V, and IV-IV zinc-
blende semiconductors showing that the values of the ef
tive charges are very sensitive to the scaling laws of so
two-center integrals.

It turns out that a better reproduction of the conducti
bands at equilibrium, as obtained, for instance, by expand
the basis set, does not guaranteeper seimproved effective
charges. On the other hand, an accurate tailoring of the s
ing laws does sensibly improve the results for most semic
ductors even within a minimalsp3 basis set.

II. CALCULATION METHOD

The transverse charge (eT* )ag of an atom in a crystal is a
tensor that represents the variation of the total polariza
PTOT in the a direction with the displacementd of the sub-
lattice at which the atom belongs in theg direction:

~eT* !ag5V
]Pa

TOT

]dg
U

d50

, ~1!

whereV is the unit-cell volume anda andg are Cartesian
indices. Expression~1! can be more easily evaluated by th
finite-difference method. The change in polarization due
an atom displacementd is the sum of the ionic and the elec
tronic contributions:

DPTOT5
Zd

V
1@P~d!2P~0!#, ~2!

whereZ is the core charge of the atom.
According to the theory of King-Smith and Vanderbil7

the electronic contribution to the polarization takes the fo

P5
ie

~2p!3 (
n
E

BZ
dk^unku¹kuunk&, ~3!

where n runs over occupied bands andunk is the periodic
part of the Bloch wave functions. For sake of simplicity w
4667 ©2000 The American Physical Society
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now restrict ourselves to the case of the diatomic cubic c
tal. The extension to a more general case is straightforw
along the lines of Ref. 7.

By considering one sublattice displacement alongz and a
discretization of the prismatic Brillouin zone~BZ! such as
k'[(kxi

,kyi
) and kj[kzj

with 0< j <J21, it has been
shown7 that Eq.~3! becomes

Pz52
2e~Dk!2

~2p!3 (
k'

F~k'!, ~4!

where (Dk)2[(kxi 11
2kxi

)(kyi 11
2kyi

) is a small area in the

xy plane, and

F~k'![Im ln )
j 50

J21

det̂ um,k' ,kj
uun,k' ,kj 11

&. ~5!

Here

un,k' ,kJ
[un,k' ,k0

e2 iGi•r ~6!

satisfies the periodic boundary condition withGi5(2p/a) ẑ,
wherea is the lattice parameter.

In the orthogonal tight-binding approach the periodic p
of the electronic wave function is written as

un,k~r !5e2 ik•r(
ia

Cia
n ~k!c ia,k~r ! ~7!

and the basis set$c ia,k% is generated by a combination o
orthogonal, localized orbitalsw ia(r2R2xi)[u iaR&:

c ia,k~r !5
1

AN
(
R

eik•(R1xi )w ia~r2R2xi !. ~8!

R runs over theN Bravais vectors,xi are the atomic positions
inside the unit cell, anda is the orbital symmetry. The co
efficientsCia

n (k) are the solutions of the eigenvalue equati

(
lb

@Hia,lb~k!2En~k!d ia,lb#Clb
n ~k!50, ~9!

whereEn(k) are the electronic band energies, and the Ham
tonian matrix elementsHia,lb(k) are

Hia,lb~k!5(
R

eik•(R2xi1xl )^ ia0uH~R2xi1xl !u lbR&.

~10!

From Eqs.~7! and~8! with k j[(k' ,kj ), the matrix element
in Eq. ~5! becomes

^um,k j 21
uun,k j

&5
1

N (
lbR8

Clb
m* ~k j 21!(

iaR
Cia

n ~k j !

3^ lbR8ueik j •(R1xi2r )2ik j 21•(R81xl2r )u iaR&.

~11!

As proposed in Ref. 1 we assume the position operato
be diagonal on the atomic basis set, i.e.,
s-
rd

t

l-

to

^w ia~r2R2xi !ueik•ruw lb~r2R82xl !&

5eik•(R1xi ) d ia lbdR8R , ~12!

which implies

^um,k j
uun,k j 11

&5(
ia

Cia
m* ~k j 21!Cia

n ~k j ! ~13!

for 0< j ,J21 and

^um,kJ21
uun,kJ

&5(
ia

Cia
m* ~kJ21!Cia

n ~k0!e2 iGi•xi ~14!

for j 5J21. The eigenvectorsC involved in the previous
equations are determined by the choice of the Hamilton
matrix elements in Eq.~10!. The diagonal elements represe
the orbital energies of the isolated atom modified by ortho
nalization process and by the crystal field. Off-diagonal e
ments do not vanish only ifu(R2xi1xl)u is smaller than the
maximum interaction distance. Slater and Koster8 have
shown that̂ ia0uHu lbR& can be decomposed in terms of th
direction cosines ofR2xi1xl by a small number of two-
center integrals~hoppings! Vll 8m , where the indicesl l 8 in-
dicate the symmetry of the orbitalsa and b and m the an-
gular momentum components along the common axes~s or
p!, respectively. According to Ref. 8 the diagonal eleme
and the two-center integrals at the equilibrium atomic po
tions can be fitted to theab initio electronic bands.

In the empirical tight-binding scheme the hoppingsVll 8m ,
fitted on the equilibrium band structure, are then assume
scale with the interatomic distance following a suitable d
caying function. By comparing the band dispersion obtain
from tight-binding and from free-electron theory, Froyeu a
Harrison6 proposed a simple power law forVll 8m , such as

Vll 8m~r !5Vll 8m~r 0!S r 0

r D nll 8m

, ~15!

where r 0 are the equilibrium distances and the expone
nll 8m are all equal to 2.

However, more refined fittings of the scaling laws can
exploited, wherenll 8m do depend on the orbital symmetry
Some recent parametrizations5,9 are reported in Tables I an
II. In the following we will show how the choice ofnll 8m
and ofVll 8m(r 0) independently affect the values of the effe
tive charges.

TABLE I. Scaling law parametersnll 8m of the hopping terms as
proposed by Harrison~Harr.! ~Ref. 2!, Priester, Allan, and Lannoo
~PAL! ~Ref. 5!, and present work~PW!.

nll 8m Harr. PAL PW

sss 2.0 3.76 3.5
sps 2.0 2.0 3.0
pps 2.0 1.98 2.0
ppp 2.0 2.16 2.5
s* p - 2.0 ~2.0!
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III. RESULTS

In our calculations we choose as unit cell the conventio
cubic cell containing 8 atoms. The BZ integration is pe
formed by Monkhorst and Pack mesh10 of 16316 points in
the k' plane and on a string of 48 points alongkz . We
displaced the cations by 1023 Å in the z direction inducing a
change in thePz component only. Such a mesh reproduc
the results of Bennetto and Vanderbilt1 up to the second
decimal digit either for cation or anion displacements. Co
vergence to the first digit is already found for ak' mesh of
434 and 8 points alongkz . Since Bennetto and Vanderbil1

have shown that the sp3 ‘‘universal’’ Harrison
parametrization2,6 systematically underestimates the effecti
charges, we first compared effective charges for four pro
typical III-V compounds~GaAs, AlSb, InP, and GaSb! as
produced by the Harrison parametrization and by the
very recent and performing parametrizations proposed
Priesteret al.5 and Jancuet al.9

The parametrization by Priesteret al. is grounded on a
sp3s* basis set and it is nearly identical to that one propo
by Vog et al.9 but for the scaling laws. The extended ba
was introduced to obtain a good reproduction of both
valence and the conduction bands at equilibrium in a fi
neighbor approximation. Thes* orbital couples only top
states; this interaction shifts down thep antibonding states
providing for a better reproduction of the indirect gap w
respect to the simplesp3 basis set. The dependence of t
radial part of the hoppings on the interatomic distance~i.e.,
nsss , npps , andnppp) have been fitted by Priesteret al.5 to
reproduce a good variation of the band gap with hydrost
pressure only, so that the performance of the parametriza
for internal deformations in the unit cell is not included
the fitting. The orbital-dependent exponentsnll 8m are given
in Table I.

A more accurate and complete fitting procedure of b
parameters and exponents has been performed very rec
by Jancuet al.9 by including the d polarization orbitals,
which provide a very good fitting of the two lowest condu
tion bands and by fitting also the uniaxial deformation p
tentials. In this work an extendedsp3d5s* basis set has bee
used and a careful fitting on theab initio bands at equilib-
rium ~both valence and conduction! is obtained by using as
starting values of the hoppings the ones provided by a s
metry analysis of free electron and TB bands. The diff
ences between the on-site energies agree with the free-

TABLE II. Scaling low parametersnll 8m of the hopping terms,
as proposed by Jancuet al. ~Ref. 9! for some prototypical III-V
compounds.

nll 8m InP GaAs AlSb GaSb

sss 3.113 3.640 3.245 4.041
sps 3.582 3.582 3.702 3.644
pps 1.825 2.045 1.763 1.524
ppp 4.153 4.126 4.152 4.203
sds 1.993 1.954 1.721 1.799
s* ps 1.692 1.712 1.772 1.770
pds 1.772 1.827 1.797 1.753
pdp 1.732 1.651 1.557 1.642
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values, except for the excitedd levels, pushed at higher en
ergies by the orthogonalization procedure. The scaling la
are determined by comparing to deformation potentials
several band positions atG,X, andL, including the uniaxial
deformation. Still the ansatznss* s5ns* s* [0 and ndds

5nddp5nddd5ns* ds[2 has been taken in order to simplif
the fitting procedure and because of the lack in reliable
formations on high-energy bands. The other exponents
reported in Table II. The localized charge density around
nuclei provided by the mostly localized orbital set has be
considered responsible for the steepest distance depend
of these integrals with respect to the other exponent.

Both Priesteret al.5 and Jancuet al.9 parametrizations
have been generated including the spin-orbit coupling. Ho
ever, we found that this feature has little influence on
estimate of the effective charges. In fact the errors due to
neglection of the spin-orbit coupling turns out to be 1–2
For sake of comparison to other TB parametrizations,
report in Table III the effective charges calculated with t
TB parametrization of Priesteret al. and Jancuet al. without
spin-orbit coupling.

As shown in Table III the parametrization of Priest
et al. predicts effective charges by far lower than the expe
mental values,12 even lower than those given by the Harriso
sp3 parametrization. Conversely, the parametrization
Jancuet al. provides a very good result for AlSb, but sti
sizably underestimates the effective charges of the o
compounds. These results suggest that the expansion o
basis set, a very good reproduction of the valence and low
conduction bands, and a satisfactory fitting to only few d
formation potentials do not guaranteeper sea reliable esti-
mate of the effective charges. Obviously, a better res
would have been obtained by including the effective char
themselves in the global fitting procedure, which is, ho
ever, a nonlinear process where the independent role of
different TB parameters~on site and hoppings! and the scal-
ing laws is likely to be hidden. For this reason we tried
understand for a very limited set of paradigmatic semic
ductors how much the separate effects of orbital expans
and scaling laws affect the value of the effective charges.
report in Table IV our results for GaAs, ZnSe, and SiC f
different equilibrium parametrizations but the same Harris
scaling laws (nll 8m52). The parameters by Harrison,2 Vogl
et al.,11 and Chadi and Cohen13 have been used for GaAs an
ZnSe and those of Harrison, Voglet al., and Robertson14 for
SiC.

All these parametrizations underestimate the experime
values; the simplesp3 parametrization by Chadi perform
slightly better than the others. In particular, we notice th
the eT* values obtained with thesp3s* basis set are alway

TABLE III. Effective transverse charge in atomic units calc
lated with Harrison,1,2 Priester, Allan, Lannoo,5 and Jancuet al.9

models, compared to experimental values.

Compound Expt. Harr. PAL Jancu

GaAs 2.16 1.73 1.49 1.38
AlSb 1.93 1.48 1.17 1.99
InP 2.55 2.26 2.16 1.75
GaSb 2.15 1.41 1.10 1.43
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worse than those calculated with thesp3 set. This fact con-
firms that the inclusion ofs* polarization orbitals generally
lowers the value ofeT* . One possible reason for such a b
havior could be the contribution of polarization orbitals
the valence states, which might change sizably with sub
tice displacements. In particular, it is likely that the ve
reasonablenll 8m52 scaling law ansatz for the polarizatio
orbitals is not suited to reproduce their actual effect on
valence states.

Getting back to a safer ground, i.e., the scaling laws
the sp3 basis set, the work of Jancuet al.9 suggests that, in
the case of orthogonal TB at first neighbors, the expone
can be much larger than the Harrison prediction. This is
agreement with the prediction of linearized muffin-t
orbital–atomic spherical approximation~LMTO-ASA! cal-
culations in transition metals by Sluiter and Singh15 and to
the linear combination of atomic orbitals~LCAO! calcula-
tions for silicon by Grosso and Piermarocchi.16 Since here
we are just interested in understanding the trends withnll 8m ,
we selected a set of qualitative~i.e., not fitted! scaling laws
which takes into account the hierarchy among thenll 8m pro-
vided by the ab initio calculations: nsss.nsps.nppp

.npps . The exponents used in the present work~PW! are
reported in Table I. The effective charges at GaAs, Zn
and SiC obtained with our choice~PW! of the scaling laws
are reported in Table IV.

The new set of exponents systematically increases the
fective charge for all the compounds and parametrizati
reported in Table IV. This behavior makes the combinat
of our set of exponents~PW! with the sp3 Harrison param-
etrization the best performing choice. In fact the undere
mation of the effective charges produced by thesp3s* pa-
rametrization is not remedied by the improved scaling la
~PW! for the sp3 basis only. In order to check if a prope
tuning of the scaling laws is indeed the key ingredient for
calculation of reliable effective charges within the TB mod
we compare~Table V and Fig. 1! the effective charges o
several III-V and II-VI compounds as given by our set
exponents and the Harrison exponents, all within the Ha
sonsp3 choice of equilibrium TB parameters. Notice that
sizable improvement in the effective charges is obtained
by tuning the scaling laws for minimal and universalsp3

parametrization.

TABLE IV. Effective transverse charge in atomic units calc
lated with different parametrizations, by Harrison scaling laws, a
our scaling laws, compared to experimental values.

Compound Parametrization eT* Harr. PW

Harrison (sp3) 1.72 2.09
GaAs Voglet al. (sp3s* ) 2.16 1.47 1.87

Chadi (sp3) 1.91 2.31
Harrison (sp3) 1.79 2.10

ZnSe Voglet al. (sp3s* ) 2.03 0.87 1.27
Chadi (sp3) 1.93 2.47

Harrison (sp3) 1.97 2.19
SiC Vogl et al. (sp3s* ) 2.57 1.44 1.57

Robertson (sp3s* ) 1.57 1.73
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IV. CONCLUSIONS

The importance of the scaling laws in predicting t
charge transfer due to a lattice displacement, outlined in
previous section, can be also illustrated~see the Appendix!
by a simple analytical calculation for a diatomic molecu
with ones orbital for each atom. Assumingue12e2u53 eV
as the difference in the on-site energies and takingt(r )
5t0(r 0 /r )n as hopping integral (r 052 Å!, the charge trans-
fer due to a molecular stretching of 1023 Å is computed
analytically as a function oft0 and n, and shown in Fig. 2.
The charge transfer is clearly more sensitive to the chang
the exponentn with respect to the change of the hoppin
parametert0. Concerning the choice of the basis set, o
should consider that the inclusion of polarization orbitals (s*
andd) affects the prediction of the effective charges in tw
ways: it modifies the hopping values for thesp3 orbitals at
equilibrium, Vllm(r 0), and it introduces additional scalin
laws. According to our findings the former effect should
small, while the second could be larger. In particular, if t
scaling laws of polarization orbitals have rather small exp
nents, such as those chosen by Priesteret al. (n52), the
effective charge turns out to be sizably underestimated. T

d
TABLE V. At given lattice spacingd, experimental transverse

charges for zincblende semiconductors compared with values
culated by tight-binding model using Harrison’s scaling law
~Harr.! and our choice~PW!.

Compound d ~Å! Expt. Harr. PW

ZnSe 2.45 2.03 1.79 2.10
ZnS 2.34 2.15 1.83 2.12
ZnTe 2.64 2.00 1.73 2.07
CdTe 2.81 2.35 1.86 2.17
GaAs 2.45 2.16 1.72 2.09
GaSb 2.65 2.15 1.41 1.77
GaP 2.36 2.04 1.88 2.23
InSb 2.81 2.42 1.85 2.25
InP 2.54 2.55 2.26 2.63
SiC 1.88 2.57 1.97 2.19

FIG. 1. Calculated effective charge with Harrison~Harr.! and
our scaling laws~PW! vs experimental values.
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drawback seems to be counterbalanced by a large valu
the exponent forVsps , as it happens to occur in some cas
of the Jancuet al. parametrization. In the case of minim
sp3 basis set with largensps value, such as in the parametr
zation suggested in the present work, a satisfactory est
tion of the effective charge is obtained. One should also c
sider that the diagonal approximation in Eq.~12! could
perform differently for different basis sets. Unfortunately,
the TB model we have no access to the Wannier-like orbi
needed to systematically improve over the latter approxim
tion. However, the attempt made by Bennetto and Vande
to go beyond the diagonal approximation by also includ
matrix elements betweens and p atomiclike orbitals shows
that at least the first-order correction to Eq.~12! does not
change the effective charges significantly. Therefore,
though based on an additional ansatz@Eq. ~12!#, we think
that a viable procedure to improve the TB parametrizat
might come from the simultaneous fitting of band structure
equilibrium ~both valence and conduction!, hydrostatic de-
formation potential, and effective charges. This proced

FIG. 2. Charge transfer~atomic units! in a stretched diatomic
molecule as a function of the equilibrium hopping integralt0 and
the exponent of the scaling lawn.
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might be simpler than the fitting of all the nonhydrosta
deformation potentials.
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APPENDIX

The secular equation for a diatomic molecule is

S e1 t

t e2D S c1

c2D 5lS c1

c2D , ~A1!

wheree i are the on-site energies,t is the hopping integral,ci
are the eigenvector coefficients, andl is the energy eigen-
value. Solving forc2 we find

ic2i25
4t2~r !

8t2~r !12D2@12A114t2~r !/D2#)
, ~A2!

where D5ue12e2u. The charge transfer in atomic unit
DQ2, due to a bond elongationd is therefore

DQ25ic2~r 01d!i22ic2~r 0!i2. ~A3!

By considering a Taylor expansion oft(r ) at the first order
in the elongationd,

t~r 01d!5t0S 12n
d

r 0
D , ~A4!

we obtain a simple expression forDQ2 as a function of the
exponentn of the scaling law and the hopping integral
equilibrium t0; the latter is shown in Fig. 2.
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