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Three-dimensional Anderson transition for two electrons in two dimensions
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It is shown that Coulomb interaction can lead to the delocalization of two-electron states in a two-
dimensional disordered potential in a way similar to the Anderson transition in three dimensions. At a fixed
disorder strength the localized phase corresponds to a low electron density and a large value of the parameter
rs. Analytical results are supported by a numerical study of level spacing statistics.

Contrary to a well-established theoretical redudiccord-  hopping between nearest sités|is the on-site(nearestin-
ing to which noninteracting electrons are always localized irteraction, and the energy is taken in the middle of the band.
a two-dimensiona(2D) disordered potential, the pioneering In a sense the above estimate is similar to the case of one-
experiment by Kravchenket al?> demonstrated the exis- particle localization in two dimensions, where |{r-kel
tence of metal-insulator transition for real interacting elec-~(V/W)?, and the product of the Fermi wave vecigron a
trons in two dimensions. The ensemble of experimental datmean free pathis proportional to a local diffusion raté W
obtained by different groups® clearly indicates the impor- is the strength of the on-site disorder. Indeed, in the same
tant role played by interaction. In the majority of experi- manner the interaction-induced diffusion rate of a pair is
ments the Coulomb energy of electron-electron interactiomjiven by D,~13T",~ «/I3Inl,. According to the above es-
Eee is significantly larger than the Fermi ener@g esti-  timatesl . should vary smoothly with the effective interaction
mated for noninteracting electron gas in the absence of disstrength characterized by the dimensionless parameter
order. The ratio of these energies is characterized by thplowever, this consideration is valid only for a short-range
dimensionless parametey=1/y/mn.as =E./Er, wheren, interaction, while the analysis of the long-range Coulomb
is the electron density in two dimensions, araf; interaction requires a separate study. The investigation of
=h2eo/m*e?,m*, and ¢, are the effective Bohr radius, this case is also dictated by the experiméntswhere the
electron mass, and dielectric constant respectively. Sucflectrons are not screened and are located far from each other
large ro values as 10-30 have been reached's>1). On qualitative grounds one can expect that the ef-
experimentally’~® At theser values the electrons are lo- fect of Coulomb interaction will be stronger since electrons
cated far from each other, and it is natural to assume that id"® always interacting differently from the case of short-
this regime the interaction effects will be dominated by pairfange interaction. As we will see below, the interaction ef-
interaction. The important role of the residual two-body in-fects will play an important role even at low density when
teraction is also clear from the fact that in the Hartree-Fockhe electrons are far from each othé&!,), and where the

(mean f|e|d approxima’[ion the prob|em is again reduced to acoulomb interaction can lead to a delocalization transition
One-partic|e 2D disordered potentia' with localized similar to one in the 3D Anderson model. It is convenient to

eigenstates. study this transition by means of level spacing statistics, as

The problem of two electrons interacting in the localizedwas done for the 3D one-particle case in Ref. 15.
phase is rather nontrivial. Indeed, recently it has been shown To analyze the effect of the Coulomb interaction between
that a short-range repulsive/attractive interaction betweefVO electrons, let us consider a 2D Anderson model with
two particles can destroy one-particle localization and lead téliagonal disorder W/2<E;<W/2), hopping V, lattice
the creation of pairs propagating at a distance much largegonstanta=1, and interactiotd/|r,—r|. In these notations
than their siz& 13 The pair size is of the order of the one- rs=U/(2Vy/any), and it is convenient to introduce another
particle localization length, . Inside this length the colli- dimensionless parametey = Ul,/2\/7V, which is equal to
sions between particles destroy the quantum interference theg at ng=1/%. We will consider the case with)~V and
results in their coherent propagation at a distdped ;. The  r,>1 when the average distance between electrBns
important point is that only pairs can propagate at a large=|r,;—r,| is much larger than their noninteracting localiza-
distance. Indeed, the particles separated by a distéhce tion length:R~1/J/ng~r>1,51. In this case the two-body
>|, have an exponentially small overlap; the interaction bednterelectron interaction has a dipole-dipole form, and is of
tween them is weak, and such states are localized as in thRe order ofUqq~UAr;Ar,/R*~UI%/R®. Indeed, the first
noninteracting case. According to the theoreticaltwo terms in the expansion of the Coulomb interaction give
estimate3'*%in two dimensions the localization length  only mean-field corrections to the one-particle potential, and
grows exponentially withl; according to the relation the nontrivial two-body term appears only in second order in
In(lc/l)~x>1. Here k~T'zp,, whereT',~U?/(VI?) is the  the electron displacementsr,~Ar,~1, near their initial
interaction-induced transition rate between localized statepositionsr; ,. The matrix element of this dipole-dipole in-
in, e.g., the 2D Anderson modgl,~17/V is the density of teraction between localized noninteracting eigenstates is of
two-particle states directly coupled by interactidhjs the  the order ofUs~USAr;Ar,g*/R3~U/R®. Here y~exp
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(—|Ary J/11)/1, are localized one-electron states, and due to '° T n y ;
Iocallzatlon the sum runs ovéf sites and each term in the " Ojnﬂ;;* a 08 ‘*;:\X ]
sum has a random sign. According to the Fermi golden rule *® [® ey | R ¢
these matrix elements give the interaction-induced transition R SN eay,. | 08 SRR 7
rateI";~U2p,~U34/V, where the density of coupled states o ’x}g
in the middle of the energy band is stﬁ:l13~l‘1"/v, since, due 04 b | o4 ﬂz’ﬂ“&\\'\\\ .
to localization, only jumps on a distandg are allowed. ‘_,jf\iz‘

These interaction-induced matrix elements mix two-electron o2 1 o2r iy T
states ifke~Tep,>1, that corresponds tB<I,(Ul,/V)*? o SN
[a similar estimate for electrons in three dimensions was %% 55202 06 08 10 12 o8 “%0 > Cya—
given in Ref. 9b)]. Sincel;>1, the conditionR>1; is still
satisfied. Fom,>1 these transitions lead to a diffusion with [ m vy
the rate "08 - o8 ‘,;,:i:"“‘“c\. l
=3 %
Do~ 12T o~ Vi, /12, @ Ll os ¥ S, el
S bl
This diffusion expands in an effective 3D space. Indeed, the 04 | \.\ “u J
center of mass of two electrons diffuses in a 2D lattice plane, ° \’ u,
and in addition the electrons diffusively rotate on a ring of o2t d *x;‘\v ]
radiusR and widthl, . The radius of the ring is related to the Te,
e-e energyE~U/R, which remains constant. Sin€e>1 it 0.0 L 00 !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 /B 0.4

takes a long time to make one rotation along the ring. As for =~ *< ** ™= % g
the 3D Anderson model, this diffusion becomes delocalized
when the hopping is larger than the level spacing between FIG. 1. Dependence of; on the rescaled one-electron energy

direct'y Coup|ed states, name'y, €/B (with B=4V) for differentW, system sizé.[ (a—c)] and inter-
action strengthJ(d). For (a—(c), the sizes aré =6 (+),8 (full
Xe~ Kélﬁwrf/3/r5> 1. 2) triangle); 10 (0); 12 (OJ); 16 (full diamond, 20 (*), and 24(X), so

that 2.3%<r,<9.57U/V=2, and W/V=15(a),10(b), and 7(c).
Formally the situation corresponds to a quasi-two-For (d), W/V=7,L=16, and U/V=2 (full diamond,
dimensional case WithM i~=R/l;==r*>>1 parallel 1(V),0.4(¢), 0.2(full circle), and 0.1(full trangle).

planes(the number of circles of sizh in the ring, so that

the pair localization length, jumps froml~1; for ke<<1to  lomb glass phase the— e-interaction becomes weaker and
I ~I1exp(m<erﬂ’3)>ll above the transitior,>1. The tran- weaker with the growth of the average distance between
sition is sharp and similar to a 3D Anderson transition, wherelectronsR~n_ Y2«r, in natural agreement with Eq2).
r<>r >1. Indeed, according to the standard scalingTransition border(2) was obtained for excited states. How-
argument%4 for a quasi-2D Anderson model witfl coupled  ever, it is clear that if the interaction is not able to delocalize
planes and isotropic hopping, the localization length jumpshe excited states then the low-energy states will also remain
from 1;~1 to |;~exp@) when W crosses the 3D critical localized, since the two-electron density drops at low en-
point W, . Hereg~M (W, /W)? is the conductance equal to ergy. In this sense Eq2) determines the upper border for
the ratio of Thouless energl¢. to level spacingA. In a  rg.

similar way, for the case of two electrons we can write that To study delocalization transitio(®), the level spacing
E.~D¢/L? whereL is the system size in which the center statisticsP(s) is determined numerically for different system
of mass moves diffusively with the raf®,. Since for each sizesL. To follow the transition from the localized phase
position of the first electron, or the center of mass, the secwith the Poisson statisticBp(s) to the delocalized phase
ond electron can occupy approximaté%Mef states, then with the Wigner-Dyson statisticB,yp(S), it is convenient to
the level spacing i& ~V/(L?iM,) and the effective con- use the parameterp=J[P(s)—Pyp(s)1ds/ [P Pp(s)
ductance ige;~Ec/A~DgliMet/V~keMg;. As the result  —Pp,,5(s)]ds, wheres,=0.472... is theintersection point
above the transitior./l;~exp@)~expk.Mes), in agree- of Pp(s) and Py, p(S). In this way =1 corresponds to the
ment with the estimate given above. If electrons would bePoissonian case, ang=0 to Pyp(s). The dependence of
able to move inside the ring thev ¢ would be even larger on the one-electron energy= E/2, counted from the ground
(Mgi~r123). state, is shown in Fig. 1 for different disordéf and inter-

It is important to stress that the parameggr, which de-  action strengthJ. Usually ND=4000 realizations of disor-
termines the delocalization border and measures the effectivder are used to compuf(s) for each spacing between lev-
strength of two-body interaction, decreases with the increasels i andi+ 1, counted from the ground state. Then these
of rg. This looks to be against the common lore, accordingP(s)’s are averaged in a small energy interval that allows
to which the largerg is, the stronger the-e-interaction is.  one to increase the total statistics for fif&{s) and » from
The reason for this contradiction with E() is simply due  NS=12000 for low-energy states up S=10° at high
to the fact thatry comparesk,. with Ex computed in the energies with a larger density of levels. In Fig. 1 the size of
absenceof disorder. In the presence of not very weak disor-the energy interval is equal to the distance between symbols.
der (rp=E¢/W<1 andr >1), one-electron states are lo- The matrix diagonalization is done in the one-electron eigen-
calized and form the basis of Coulomb gla8sn this Cou-  basis truncated at high energies, that allows one to study
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two-electron low-energy excitatiorfwith energyE) at large 1.0 T T
system sized <24. The periodic boundary conditions are P(s)|"

used for one-electron states, and the Coulomb interaction is

taken between electrons in one cell of sizeand with a 0.8 :
charge of eight images in eight nearby cells. Coulomb inter-
action periodic in one cell gave similar results. Only the
triplet case was considered, but the singlet case should give
similar results'?

The results of Fig. (g) show that at fixed interaction and
strong disordeiV/V =15 theP(s) statistics approaches the
Poisson distributionf=1) at large system size and large
r<=UL/(2\27V). This means that all states are localized.
For smaller disorder the situation becomes differdfigs.

1(b) and Xc)]. While near the ground statg— 1 still holds 0 %
for largeL, the tendency is inverted above some critical en- 0.0 1.0 2.0 S 3.0

ergy €. where n—0. All curves 5(e) for differentL’s are o N
crossed in one point in a way similar to the 3D Anderson .FIG. 2. Level statistic®(s) for two 2D electrons at the crltlt_:al
transition studied in Ref. 15. point: (+)—W/V=10, L=12(0.55<¢/B<0.65), and total statis-

This result can be understood in the following way. At atics NS=4x10° [see Fig. 1)]. (0—W/V=7, L=16(0.25<¢/B
strong Coulomb interactiot ~V the excitation energy is g.o.'?’)’ andNS:5x105 [see Fig. o)]. The full line shows the
related to the distance between electrBns~U/R (a simi- critical P(s) in the 3D Anderson modelW/V=16.5 andL =14,
lar relation was used in Ref. 16 for the Coulomb glagst taken from Rgf. 18 the dashed lines give Poisson statistics and the

: : : ~~ _ Wigner surmise.
higher e the distanceR becomes smaller, the interaction is
stronger, and fore> ¢, the delocalization bordeR~U/e 3 .
~|1fi/3 [Eq. (2)] is crossed and the states become delocalto th_e fact.tha.t the parametb}‘ was not suffl.C|entIy .Iargt_a.
ized. Since the distandR is related to the two-electron en- The investigation of the case with lardgrrequires a signifi-
ergyE=2¢~U/R, the spacing statistid(s), which is local cant increase of the systr—;m size>24. Indeed, forL=24
in energy and therefore also R is not influenced by states and W/V=5_the localization length becomes comparable
where particles are far from each other. In this sense th&ith L(I;~V§;=~9), which gives a decrease gf~0.13.
situation is different from the case of short-range interaction. Of course, one cannot expect that the simple model of two
According to the above argumerés= EC|411/3/B should re- electrons conS|derqu above WI|| explain the variety of experi-
main constant wheh, changes with disorder. The value of mental results obtamgd by _dlfferen.t grOpré.Howe\(er, I
[, can be extracted from the average inverse participatioﬁho_ws some tendencies which are in agreement with th? ex-
ratio &=1/5|y|* computed for one-particle states in the periment. Ind_eed at large (a density lower t_h.an some criti-
middle of the bandlg~ vZ,). ForL =24 andW/V=10, 7, cal nC)., experiments dgmonstrgte thg transition from a _metal
and 5, we haveé,—11.6, 36.7, and 84.2, respectively, to an insulator. According to Fig. 4 in Ref. 6, the density at

: : - 9" the transitionngx1/\rs drops exponentially with the in-
which, with 6?/8 ~0'6’ 0.28, and _0'1&he caseV/V=>5 is crease or decrease of the mobility or disorder1/W?. This
not shown, givese.=3.08+0.01, in satisfactory agreement ,qrees qualitatively with estimat€) according to which
with the above expectations. The variation pfwith the a5/ the transition Ine~In(Lr )~ —In r,~—1M2. How-

interactionU is shown in Fig. 1d). According to thiSm  eyer, the conditiom>r, seems not to be well satisfied, and
increases with the decreaseWf(states become more local- 4nnarently multielectron effects should also be taken into

ized in agreement with the general estimé®. The analy-  account. Another interesting experimental re@iig. 2 in
sis above allows to understand the dependenog@ie and  Ref. § shows that the conductivity, near the critical point
L. Another reason for the decreasespét highere is related grows with an increase of density or disordeW. This is in

to the fact that the two-electron density of stafgsgrows  qygjitative agreement with estimat#) according to which
with energy, which allows us to mix levels more easily. A ~Do/V~1N2ccr 2xr 8303 gince near the critical

more detailed theory should take this fact into account an(g

y > . . oint [Eq. (2)] ke~1 andrg~r 3. It is also interesting to
al_so ?”a'Yze th_e variation of the rdfewith e. The results in remark that the scaling index=1.5 found in Ref. 3 is close
this direction will be published elsewhete.

The P(s) statistics for two electrons in two-dimensions to the indexy~1.5 near the 3D Anderson transitidine fact
- . . g . that in three dimensiong~s can be related to the observed
near the critical poink./B is shown in Fig. 2. Its compari-

son with the critical statistics in the 3D Anderson model'symmetry of thel -V curves. Finally, let us note that recent

result€® also show a delocalization effect of the interaction
takgn _from Ref. 185¢e also Ref. ])9demonstrate_s that both for highly excited states in two dimensions.
statistics are really in very close agreement with the argu-
ments given above. At the critical point the value gf is | thank Y. Hanein and A. Hamilton for the stimulating
close to its value in the Anderson modej=0.20). The discussions of experimental results, D. Braun for the possi-
small deviations from this value in the case of 2D electronility to use the data of Ref. 18, and K. Frahm for a useful

[ 7.~0.25(W/V=10) and 0.174%V/V=7)] can be attributed suggestion.
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